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MULTI-SPEED SOLITARY WAVES

OF NONLINEAR SCHRÖDINGER SYSTEMS:

THEORETICAL AND NUMERICAL ANALYSIS

FANNY DELEBECQUE, STEFAN LE COZ, AND RADA M. WEISHÄUPL

Abstract. We consider a system of coupled nonlinear Schrödinger equations
in one space dimension. First, we prove the existence of multi-speed solitary
waves, i.e solutions to the system with each component behaving at large times
as a solitary wave. Then, we investigate numerically the interaction of two soli-
tary waves supported each on one component. Among the possible outcomes,
we find elastic and inelastic interactions, collision with mass extraction and
reflexion.
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1. Introduction

We consider the following nonlinear Schrödinger system:
{
i∂tu1 + ∂xxu1 + µ1|u1|2u1 + β|u2|2u1 = 0,

i∂tu2 + ∂xxu2 + µ2|u2|2u2 + β|u1|2u2 = 0,
(NLS)

where for j = 1, 2 we have uj : R× R → C, µj > 0, and β ∈ R \ {0}.
When µ1 = µ2 = β, system (NLS), also called Manakov system has been intro-

duced by Manakov (see [21] for example) as an asymptotic model for the propaga-
tion of electric fields in waveguides. In this particular case, it is to be noticed that
the usual roles of x and t are inverted to study the evolution of the electrical field
along the propagation axis.

It has also been used later on to model the evolution of light in optical fiber links.
One of the main limiting effects of transmission in optical fiber links is due to the
polarization mode dispersion (PMD). It can be explained by the birefringence effect,
i.e the fact that the electric field is a vector field and that the refraction index of
the medium depends on the polarization state (see e.g [1, 2]). The evolution of two
polarized modes of an electrical field in a birefringent optical fiber link can indeed
be modeled by (NLS) in the case where µ1 = µ2 and β measures the strength
of the cross phase modulation which depends of the fiber (see [21]). Randomly
varying birefringence is studied adding random coefficients in both nonlinearity
and coupling terms of (NLS) (see for example [15])

In higher dimensions, systems of nonlinear coupled Schrödinger equations ap-
pears in various physical situations such as the modeling of the interaction of two
Bose-Einstein condensates in different spin states.

Systems of type (NLS) have also been studied from the mathematical point of
view. When µ1 = µ2 = β, in dimension 1, the system (NLS) has the particularity to
be completely integrable. Hence explicit calculations of solutions are possible and
one can exhibit a variety of “truly” nonlinear solutions like solitons, multi-solitons
or breathers (see e.g. the book [1]). The integrability property is however not
robust, and the slightest change in the parameters µ1, µ2 and β destroys it. Many
works (see, among many others, [3, 8, 14, 28]) have been devoted to the study of
the stationary version of (NLS)

{
∂xxφ1 + µ1|φ1|2φ1 + β|φ2|2φ1 = ω1φ1,

∂xxφ2 + µ2|φ2|2φ2 + β|φ1|2φ2 = ω2φ2,
(1)

that one obtains when looking for standing waves solutions

(u1, u2)(t, x) = (eiω1tφ1(x), e
iω2tφ2(x)).

When standing waves exist, it is natural to study their stability and again many
works have been devoted to this problem (see, again among many others, [16, 20, 26,
27]). Note that (NLS) is Galilean-invariant. Hence a Galilean transform modifies
a standing wave into a solitary wave traveling at some non-zero speed.

Our goal in this paper is to provide a new point of view on the study of this
system. We aim at understanding better the behavior in large times of solutions
starting at initial time as two scalar solitary waves carried by the two different com-
ponents. We will use a mixture of theoretical and numerical tools, a combination
seldom seen when dealing with this kind of problems.
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First, we propose to push further a study initiated in [17] on the multi-speed
solitary waves of system (NLS) and followed up for a different nonlinearity in [29].
A multi-speed solitary wave is a solution of (NLS) which behaves at large time as
two solitary waves. Here and as in [17], we restrict ourselves to the case where the
composing solitary waves are each carried on only one component of the system.
In other words, taken independently, each component behaves as a scalar solitary
wave at large time. Our first aim is to remove the high speed assumption under
which the main result in [17] was proved. We therefore consider the system (NLS)
in dimension 1 and benefit from the fact that scalar solitary waves are in that case
orbitally stable (see e.g [11]).

Our next aim is to investigate further the properties of multi-speed solitary
waves solutions when they are crossing at positive time. Our theoretical result
(Theorem 1) indeed only guarantees existence of multi-speed solitary wave solutions
to (NLS) when no interaction can occur at large time between the composing waves.
But what happens when two solitary waves carried by different components collide?
Due to the possible complexity of the phenomenon and the lack of appropriate
theoretical tools to study it, we proceed the following numerical experiment. We
take as initial data solitons on each components, both away from 0 but facing each
other for the direction of propagation. Among the possible outcomes, we find elastic
and inelastic interactions, interaction with mass exctraction, and reflexion.

1.1. The theoretical result. Before stating our main theoretical result, let us
give a few preliminaries.

Let Qω ∈ H1(R) be the unique positive radial ground state solution to

− ∂xxQω + ωQω − |Qω|2Qω = 0, Qω > 0, Qω ∈ H1
rad(R). (2)

From simple calculations we note that the following scaling occurs:

Qω(x) :=
√
ω Q1(

√
ωx). (3)

For j = 1, 2, consider ωj > 0, γj ∈ R, xj , vj ∈ R and define

Rj(t, x) = ei(ωjt− 1

4
|vj |2t+ 1

2
vj ·x+γj)

√
1

µj
Qωj

(x− vjt− xj). (4)

The function Rj is a solitary wave solution to

i∂tu+ ∂xxu+ µj |u|2u = 0. (5)

In this paper, we want to investigate the existence of solutions to (NLS) where
each component behaves like a solitary wave Rj solution to the scalar equation (5).
Our main theoretical result is the following.

Theorem 1. Let µ1, µ2 > 0 and β ∈ R \ {0}. For j = 1, 2, take vj , xj , γj ∈ R,
ωj > 0 and consider the ground state profile Qωj

solution to (2) and the soliton Rj

defined in (4). Then, there exist C > 0, T0 > 0 and
(
u1, u2

)
solution to (NLS) on

the time interval [T0,+∞) such that for all t ∈ [T0,+∞), we have
∥∥∥∥
(
u1(t)
u2(t)

)
−
(
R1(t)
R2(t)

)∥∥∥∥
H1×H1

6 Ce−
√
ω∗v∗t,

where ω∗ = 1
2304 min{ω1, ω2} and v∗ = |v1 − v2|.
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Remark 1. Compare to [17, Theorem 1], the main differences are the following.
Our result is valid for any speeds, whereas the one in [17] required a high speed
assumption. We restrict ourselves to dimension 1 to have stable solitons (in [17],
any dimension was allowed). The overall proof strategy is similar, but in our case we
need to perform several technical refinements which include in particular working
with localized momenta and modulated waves.

In addition, we are introducing the technical artefact consisting into introducing
arbitrary constants in the definition (15) of the global action. This is a new feature
for this type of analysis, which is quite surprising as usually such a flexibility is not
allowed by the algebra of the problem.

The scheme of the proof is inspired by the one developed for the study of multi-
solitons in scalar nonlinear Schrödinger equations in [12, 13, 23, 25] (see also [9] for
a similar approach applied to Klein-Gordon equations). It consists in solving (NLS)
backward in time, taking as final data a couple of solitary waves

(
R1(T

n), R2(T
n)
)
,

for an increasing sequence of times T n → +∞. Thus we get a sequence
(
un
1 , u

n
2

)

of solutions to (NLS) on a time interval (−∞, T n] such that
(
un
1 (T

n), un
2 (T

n)
)
=(

R1(T
n), R2(T

n)
)
. We then have to prove the existence of a time T0, independent

of n such that for n large enough,
(
un
1 , u

n
2

)
is close to

(
R1, R2

)
on [T0, T

n]. The
key tools at hand to prove Theorem 1 are

• uniform in n estimates

∀t ∈ [T0, T
n],

∥∥∥∥
(
un
1 (t)

un
2 (t)

)
−
(
R1(t)
R2(t)

)∥∥∥∥
H1×H1

6 Ce−
√
ω∗v∗t,

• a compactness argument that gives the existence of
(
u0
1, u

0
2

)
∈ H1(R) ×

H1(R) such that
(
un
1 , u

n
2

)
converges strongly in Hs(R) (s ∈ [0, 1)) towards(

u0
1, u

0
2

)
.

Remark 2. The method used to obtain Theorem 1 is a powerful tool to obtain sharp
existence results for multi-solitons composed of ground states. Another approach
relying on a fixed point argument has been developed for nonlinear Schrödinger
equations in [18, 19]. This approach is very flexible and allows to prove existence
of solutions more complicated than the ones in Theorem 1 like infinite trains of
solitons or multi-kinks. The main drawback is that it always requires a large speed
assumption.

We also have tested numerically if the multi-speed solitary wave configuration
was stable provided the starting waves are well-ordered and well-separated. In
other words, we took the interaction to be small at the origin and the composing
waves going away from each other. With such a well-prepared initial configuration,
we remain close to a similar configuration in large time. This suggests that the
multi-speed solitary waves are stable (no matter the coupling parameter). Note
that this is expected due to the fact that each wave taken individually is stable.
We have however no theoretical mean to verify this conjecture. Similar difficulties
arise in the analysis of the stability for multi-solitons in nonlinear scalar Schrödinger
equations (see e.g. [24]).

1.2. The numerical experiments. We solve the system (NLS) in one dimen-
sion by adapting the time-splitting spectral method described in [7]. This method
is unconditionally stable, time reversible, of spectral-order accuracy in space and
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second-order accuracy in time, and it conserves the discrete total mass [5]. One
can refer to [4] for other possible schemes and their properties.

We will also compute the real valued ground state (minimizer of the energy
on fixed L2 mass constraints) of the system (1) using a normalized gradient flow
approach. This will be used to make the comparison between the outcome of the
interaction between two solitary waves and a solitary wave with profile (φ1, φ2).

As already mentioned, the experiment consists in taking as initial data the initial
data of two solitary waves facing each other, each on one component.

We considered four cases, the first one being the integrable case, where we expect
the solitons after the interaction to move with the same velocity and amplitude.
Apart when µ1 = µ2 = β, the system is not integrable, hence we do not expect
pure elastic interaction between solitons. However, there are still regimes where
we expect the outcome of interaction between solitons to be also a multi-speeds
solitary wave, different from the input at two level: first, there are modifications
in the speeds and amplitudes of the composing solitons. Second, there is a loss of
a bit of energy, mass and momentum into a small dispersive remainder. In certain
cases, we have been able to identify the profiles of the outcome of the interactions
as ground states of the stationary system (1).

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1
assuming uniform estimates. In Section 3, we prove the uniform estimates. The
numerical methods are described in Section 4, and the numerical experiments are
presented in Section 5. Appendix A contains the proof of a modulation result.

2. Existence of multi-speed solitary waves

This short section is devoted to the proof of Theorem 1, assuming uniform esti-
mates proved in the next section.

In this section and in the next one, we assume that µ1, µ2 > 0 and β ∈ \{0} are
fixed constants and that we are given for j = 1, 2 soliton parameters ωj , vj , xj , γj ∈
R. Denote by Qωj

and Rj the corresponding profile and soliton.
We make the assumption that

0 < v1 = −v2. (6)

Since (NLS) is Galilean invariant, this assumption can be done without loss of
generality. This will simplify calculations later on.

Note that it follows from classical arguments (see [10]) that the Cauchy prob-
lem for (NLS) is globally well-posed in the energy space H1(R) ×H1(R) and also
in L2(R) × L2(R). In particular, for any initial data (u0

1, u
0
2) ∈ H1(R) × H1(R)

there exists a unique global solution (u1, u2) of (NLS) in C(R, H1(R) × H1(R)) ∩
C1(R, H−1(R)×H−1(R)).

Let (T n) be an increasing sequence of times such that T n → +∞ as n →
+∞. Let (un

1 , u
n
2 ) be the sequence of solutions to (NLS) defined by solving (NLS)

backward on (−∞, T n] with final data (un
1 , u

n
2 )(T

n) =
(
R1, R2

)
(T n). The proof of

Theorem 1 then relies on the following two ingredients.
First, we have uniform estimates on the distance between the sequence

(
un
1 , u

n
2

)

and the multi-speed solitary wave profile
(
R1, R2

)
.
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Proposition 3 (Uniform estimates). There exist T0 > 0, n0 ∈ N such that, for all
n > n0 and for all t ∈ [T0, T

n] we have
∥∥∥∥
(
un
1

un
2

)
(t)−

(
R1

R2

)
(t)

∥∥∥∥
H1×H1

6 e−
√
ω∗v∗t,

where, as in Theorem 1, ω∗ = 1
2304 min{ω1, ω2} and v∗ = |v1 − v2|.

The proof of Proposition 3 is rather involved and we postpone it to Section 3.
The next ingredient is a compactness result on the initial data

(
un
1 , u

n
2

)
(T0).

This result was already present in this form in [17] and we recall it without proof.

Proposition 4 (Compactness). There exists
(
u0
1, u

0
2

)
∈ H1(R)×H1(R) such that,

up to a subsequence,
(
un
1 , u

n
2

)
(T0) converges strongly towards

(
u0
1, u

0
2

)
in Hs(R) ×

Hs(R) for all s ∈ [0, 1).

With these two ingredients in hand, we can now conclude the proof of Theorem 1.

Proof of Theorem 1. Let (u1, u2) be the solution on R of the Cauchy problem (NLS)
with initial data (u0

1, u
0
2) at t = T0. By H1(R) × H1(R) boundedness and local

well-posedness of the Cauchy problem in Hs(R) × Hs(R) for all s ∈ [0, 1), we
have weak convergence in H1(R)×H1(R) of (un

1 , u
n
2 )(t) towards (u1, u2)(t) for any

t ∈ R. Combined with the uniform estimates of Proposition 3, this implies for all
t ∈ [T0,+∞) that
∥∥∥∥
(
u1

u2

)
(t)−

(
R1

R2

)
(t)

∥∥∥∥
H1×H1

6 lim inf
n→+∞

∥∥∥∥
(
un
1

un
2

)
(t)−

(
R1

R2

)
(t)

∥∥∥∥
H1×H1

6 Ce−
√
ω∗v∗t.

This concludes the proof of Theorem 1. �

3. Uniform estimates

This section is devoted to the proof of Proposition 3. In all this section, T n and(
un
1 , u

n
2

)
are given as in the beginning of Section 2.

3.1. The bootstrap argument. We first reduce the proof of Proposition 3 to the
proof of the following bootstrap result.

Proposition 5 (Bootstrap argument). There exist T0 > 0 and n0 ∈ N such that
for all n > n0 and for any t0 ∈ [T0, T

n] the following property is satisfied. If for all
t ∈ [t0, T

n] we have
∥∥∥∥
(
un
1

un
2

)
(t)−

(
R1

R2

)
(t)

∥∥∥∥
H1×H1

6 e−
√
ω∗v∗t, (7)

then for all t ∈ [t0, T
n] we have
∥∥∥∥
(
un
1

un
2

)
(t)−

(
R1

R2

)
(t)

∥∥∥∥
H1×H1

6
1

2
e−

√
ω∗v∗t. (8)

The proof of Proposition 5 will occupy us for most of the rest of this section.
We divided it into several steps. We first perform a geometrical decomposition of
the sequence (un

1 , u
n
2 ) onto the manifold of multi-speed solitary waves in order to

obtain orthogonality conditions. We then introduce an action-like functional, which
turns out to be coercive due to our orthogonality conditions. This functional is not
a conserved quantity, but since it is made with localized conservations laws it is
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almost conserved. Using that property and a control on the geometrical modulation
parameters, we are able to conclude the proof of Proposition 5.

Before going on with the details of the proof of Proposition 5, let us show how
it implies Proposition 3.

Proof of Proposition 3. Since we have (un
1 , u

n
2 )(T

n) = (Rn
1 , R

n
2 )(T

n) at the final
time T n, by continuity there exists a minimal time t0 such that for all t ∈ [t0, T

n]
we have ∥∥∥∥

(
un
1

un
2

)
(t)−

(
R1

R2

)
(t)

∥∥∥∥
H1×H1

6 e−
√
ω∗v∗t. (9)

We prove that t0 = T0 by contradiction. Assume that t0 > T0. By Proposition 5,
for all t ∈ [t0, T

n] we have
∥∥∥∥
(
un
1

un
2

)
(t)−

(
R1

R2

)
(t)

∥∥∥∥
H1×H1

6
1

2
e−

√
ω∗v∗t.

Therefore by continuity there exists t00 < t0 such that on [t00, T
n] estimate (9) is

satisfied. This however contradicts the minimality of t0. Hence t0 = T0 and this
concludes the proof. �

For the rest of Section 3, T0 > 0 and n0 ∈ N will be large enough fixed numbers,
and we assume the existence of t0 > T0 such that for all t ∈ [t0, T

n] the bootstrap
assumption (7) is verified, i.e. we have

∥∥∥∥
(
un
1

un
2

)
(t)−

(
R1

R2

)
(t)

∥∥∥∥
H1×H1

6 e−
√
ω∗v∗t. (10)

Our final goal is now to prove that in fact (8) holds for all t ∈ [t0, T
n].

3.2. Modulation. Let us start with a decomposition lemma for our sequence of
approximated multi-speed solitary waves.

Lemma 6 (Modulation). There exist C > 0 and C1 functions

ω̃j : [t0, T
n] → (0,+∞), x̃j : [t0, T

n] → R, γ̃j : [t0, T
n] → R, j = 1, 2,

such that if for j = 1, 2 we denote by R̃j the modulated wave

R̃j(t, x) = ei(
1

2
vj ·x+γ̃j(t)) 1

√
µj

Qω̃j(t)(x− x̃j(t)), (11)

then for all t ∈ [t0, T
n] the functions defined by

(
ε1
ε2

)
(t) =

(
un
1

un
2

)
(t)−

(
R̃1

R̃2

)
(t)

satisfy for j = 1, 2 and for all t ∈ [t0, T
n] the orthogonality conditions

(
εj(t), R̃j(t)

)
2
=
(
εj(t), iR̃j(t)

)
2
=
(
εj(t), ∂xR̃j(t)

)
2
= 0. (12)

Moreover, for all t ∈ [t0, T
n], we have

2∑

j=1


|∂tω̃j(t)|2 + |∂tx̃j(t)− vj |2 +

∣∣∣∣∣∂tγ̃j(t) +
v2j
4

− ω̃j(t)

∣∣∣∣∣

2



6 C

∥∥∥∥
(
ε1
ε2

)
(t)

∥∥∥∥
2

H1×H1

+ Ce−3
√
ω

∗
v∗t. (13)
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Remark 7. It is to be noticed that estimate (13) clearly implies that, for T0 large
enough, for j = 1, 2, and for all t ∈ [t0, T

n], we have

x̃j(t) >
v∗

2
√
2
t > 2L and ω̃j(t) > 1152ω∗.

Moreover, a better estimate can be obtained for ω̃j and will be stated later on in
Lemma 12.

This type of modulation result is classical in the literature dealing with solitary
waves of nonlinear dispersive equations (see e.g. the fundamental paper of We-
instein [30] for an early version or [24] for a recent approach). Its proof consists
essentially in the application of the implicit function theorem combined with the use
of the evolution equation to find equation (13) for the evolution of the modulation
parameters. We refer to the appendix for the details of the proof.

3.3. Energy estimates and coercivity. In this subsection, we analyze the dif-
ferent quantities that are conserved or almost-conserved in our coupled-vectorial
problem. Remember that in the case of the scalar equation (5) the energy, mass
and momentum, defined as follows, are conserved along the flow of (5):

E(u, µj) :=
1

2
‖∂xu‖2L2 −

µj

4
‖u‖4L4 , M(u) :=

1

2
‖u‖2L2 , P (u) :=

1

2
Im

∫

R

u∂xudx.

The solution Qω we chose of equation (2) is known to be the unique positive radial
ground state of the action S := E(·, 1)+ωM . Consequently, each soliton Rj defined
by (4) is a critical point of the scalar functional Sj defined by

Sj := E(·, µj) +

(
ωj +

v2j
4

)
M + vjP. (14)

Coercivity properties of linearizations of Sj-like functionals are the key tool of the
analysis of multi-solitons interaction (see for example [17, 23]).

In the vectorial case we are interested in here, the coupled system (NLS) admits
its own conservation laws. In particular, the mass of each component is preserved, as
in the scalar case. However, the coupling does not preserve conservation of the scalar
energy and momentum for each component and we only have conservation of the
total energy (made of individual energies plus a coupling term) and total momentum
(sum of the scalar momenta). More precisely, total energy, total momentum, and
scalar masses of the whole system (defined as follows) are conserved quantities for
the flow of system (NLS):

E
(
u1

u2

)
:= E(u1, µ1) + E(u2, µ2)−

β

2

∫

R

|u1|2|u2|2dx,

P
(
u1

u2

)
:= P (u1) + P (u2), Mj

(
u1

u2

)
:= M(uj), j = 1, 2.

In order to use the conservation of the momentum as in the scalar case, we here
need to localize the momentum of each soliton, as was done in [12, 13] for the scalar
mass and momentum. Note that this was not needed for the analysis in [17]. Let
us define the cut-off functions

χ1
L(x) = χ

(x
L

)
, χ2

L = 1− χ1
L,
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where L > 0 is arbitrary but fixed and χ is a C3 function such that

0 6 χ 6 1 on R, χ(x) = 0 for x 6 −1, χ(x) = 1 for x > 1, χ′
> 0 on R,

and satisfies, for some positive constant C and for all x ∈ R the estimates

(χ′(x))2 6 Cχ(x), (χ′′(x))2 6 Cχ′(x).

Localized momenta Pj
loc are defined by:

Pj
loc

(
u1

u2

)
=

1

2
Im

∫

R

(
u1∂xu1 + u2∂xu2

)
χj
Ldx, j = 1, 2.

Remark that P = P1
loc + P2

loc. Note that since we are assuming (6) the momenta
above defined are localized around each composing solitary wave of the profile. The
advantage of having made assumption (6) is that the cut-off does not depend on
time. This will simplify our next calculations.

In the sequel, we are interested in the following global action:

S
(
u1

u2

)
= E

(
u1

u2

)
+
∑

j=1,2

(
ω̃j(t) +

v2j
4

)
Mj

(
u1

u2

)
+
∑

j=1,2

vjPj
loc

(
u1

u2

)

+ C1(β, v1)M2

(
u1

u2

)
+ C2(β, v2)M1

(
u1

u2

)
, (15)

where Cj(β, vj) are positive constants depending only on β and vj and whose exact
values will be decided later on. Note that the action implicitly depends on t via
ω̃j. It is to be noted that, in this work, we have the freedom to add these two
coupled-mass terms that do not appear in the usual definition of S-like functionals.
This is a key point in our analysis.

Let us now state in the following lemma several estimates related to the local-
ization of R̃1 and R̃2 and which will be of great use in the sequel.

Lemma 8. For j = 1, 2, if T0 is large enough, then for all t ∈ [t0, T
n] and for all

x ∈ R we have(
|R̃j(t, x)|+ |∂xR̃j(t, x)|

)
χ3−j
L (x) 6 C(1 + |vj |)e−3

√
ω∗v∗te−

√
ω∗|x|, (16)

∏

k=1,2

(
|R̃k(t, x)|+ |∂xR̃k(t, x)|

)
6 C(1 + |v1|+ |v2|)2e−3

√
ω∗v∗te−

√
ω∗|x|. (17)

Lemma 8 follows from the support properties of the cut-off function and the
exponential localization of the solitons profiles. Indeed, recall that in fact, the
profile Q = Q1 is explicitly known

Q(x) = 2 sech(x),

and it follows that Q and its derivatives are exponentially decaying, i.e. for any
η < 1 we have

|Qxx|+ |Qx|+ |Q| 6 Cηe
−η|x|.

Proof of Lemma 8. We prove only (16), the proof of (17) following from similar
(simpler) arguments. For simplicity in notation, assume j = 1, the case j = 2 being
perfectly symmetric. Due to the exponential decay of the soliton profiles, we have

|R̃1(t, x)| 6 Ce−
3

4

√
ω̃1|x−x̃1|
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The cut-off function χ2
L is supported on (−∞, L], and since for T0 large enough

x̃1 > 2L, for x ∈ (−∞, L] we have (we recall here Remark 7)

|x− x̃1| > |x|, and |x− x̃1| >
1

2
|x̃1|.

As a consequence, we have

|R̃1(t, x)|χ2
L(x) 6 Ce−

1

4

√
ω̃1|x̃1|e−

1

4

√
ω̃1|x|.

In addition, as noticed in Remark 7, we have

x̃1 >
v∗

2
√
2
t, and ω̃1 > 1152ω∗,

which implies
|R̃1(t, x)|χ2

L(x) 6 Ce−3
√
ω∗v∗te−

√
ω∗|x|.

The derivative ∂xR̃1 is treated in the same way, with the only difference that |v1|
now appears in the estimate, due to the term ei

1

2
v1·x in the definition (11) of R̃1.

This finishes the proof. �

Lemma 9 (Expansion of the global action S). For all t ∈ [t0, T
n] we have

S
(
u1

u2

)
= S

(
R̃1

R̃2

)
+H

(
ε1
ε2

)
+O(e−3

√
ω∗v∗t), (18)

H
(
ε1
ε2

)
= Hfree

(
ε1
ε2

)
+Hcoupled

(
ε1
ε2

)
,

with

Hfree

(
ε1
ε2

)
=
∑

j=1,2

(
1

2
‖∂xεj‖2L2 +

1

2

(
ω̃j +

v2j
4

)
‖εj‖2L2 − µj

∫

R

|εj |2|R̃j |2dx

− µj

2
Re

∫

R

ε2j R̃
2
jdx+

1

2
vj Im

∫

R

εj∂xεjχ
j
Ldx

)

and

Hcoupled

(
ε1
ε2

)
= C1(β, v1)‖ε2‖2L2 + C2(β, v2)‖ε1‖2L2

− β

2

∫

R

(
|ε1|2|R̃2|2 + |ε2|2|R̃1|2

)
dx

+
1

2
v1Im

∫

R

ε2∂xε2χ
1
Ldx+

1

2
v2Im

∫

R

ε1∂xε1χ
2
Ldx.

Proof of Lemma 9. First note that, according to the definition (15) of S,

S
(
u1

u2

)
=
∑

j=1,2

S̃j(uj) + vj ·
(
Pj
loc

(
u1

u2

)
− P (ui)

)

+ C1(β, v1)M(u1) + C2(β, v2)M(u2)−
β

2

∫

R

|u1|2|u2|2dx, (19)

where S̃j denote the same functional as Sj (see the definition (14)) with ω̃j instead

of ωj . For j = 1, 2, let us expand uj(t) = R̃j(t) + εj(t) in the expression of S̃j . A
simple computation leads to:

S̃j(R̃j + εj) = S̃j(R̃j) + S̃′
j(R̃j)εj +

〈
S̃′′
j (R̃j)εj , εj

〉
+O(‖εj‖3H1)
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Now, as R̃j is a critical point of the scalar functional S̃j , we have

S̃′
j(R̃j) = 0,

and thus

S̃j(R̃j + εj) = S̃j(R̃j) +
〈
S̃′′
j (R̃j)εj , εj

〉
+O(‖εj‖3H1 ), (20)

where

〈
S̃′′
j (R̃j)εj , εj

〉
=

1

2
‖∂xεj‖2L2 +

1

2

(
ω̃j +

v2j
4

)
‖εj‖2L2 +

1

2
vjIm

∫

R

εj∂xεjdx

− µj

2
Re

∫

R

ε2j R̃
2
jdx− µj

∫

R

|εj|2|R̃j |2dx. (21)

Let us now develop the remaining terms in (19). As far as the momentum part is
concerned, we write the expansion for j = 1 for simplicity:

P1
loc

(
R̃1 + ε1
R̃2 + ε2

)
− P (R̃1 + ε1)

= −Im

∫

R

R̃1∂xR̃1χ
2
Ldx+ Im

∫

R

R̃2∂xR̃2χ
1
Ldx

− Im

∫

R

(
R̃1∂xε1 + ε1∂xR̃1

)
χ2
Ldx+ Im

∫

R

(
R̃2∂xε2 + ε2∂xR̃2

)
χ1
Ldx

− Im

∫

R

ε1∂xε1χ
2
Ldx+ Im

∫

R

ε2∂xε2χ
1
Ldx. (22)

Concerning the β coupling part in (19), we get:
∫

R

|R̃1 + ε1|2|R̃2 + ε2|2dx

=

∫

R

|R̃1|2|R̃2|2dx+ 2Re

∫

R

(
|R̃1|2R̃2ε2 + |R̃2|2R̃1ε1

)
dx

+

∫

R

(
|ε1|2|R̃2|2 + |ε2|2|R̃1|2 + 4Re(ε1R̃1)Re(ε2R̃2)

)
dx

+ 2

∫

R

(
|ε2|2Re(ε1R̃1) + |ε1|2Re(ε2R̃2)

)
dx+

∫

R

|ε1|2|ε2|2dx. (23)

Finally, the extra-masses terms in (19) expand into

M(R̃j+εj) =
1

2
‖R̃j+εj‖2L2 = M(R̃j)+

(
R̃j , εj

)
2
+M(εj) = M(R̃j)+M(εj), (24)

where we have used the orthogonality conditions (12) to obtain the last equality.
In (22) and (23), all terms containing a product of solitons or cut-off functions with
different indices/exponents are of order O(e−3

√
ω∗v∗t) by Lemma 8. The terms

containing a degree 3 or higher term in (ε1, ε2) are also of order O(e−3
√
ω∗v∗t) by

the bootstrap assumption (10). Therefore, gathering (19)-(20)-(21)-(22)-(23)-(24)
together gives:

S
(
R̃1 + ε1
R̃2 + ε2

)
= S

(
R̃1

R̃2

)
+Hfree

(
ε1
ε2

)
+Hcoupled

(
ε1
ε2

)
+O(e−3

√
ω∗v∗t).

This concludes the proof. �
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Lemma 10 (Coercivity of H). There exists λ > 0 such that, for any t0 ∈ [T0, T
n]

and for all t ∈ [t0, T
n]:

Hfree

(
ε1
ε2

)
> 2λ

(
‖ε1‖2H1 + ‖ε2‖2H1

)
, (25)

Hcoupled

(
ε1
ε2

)
> λ

(
‖ε1‖2L2 + ‖ε2‖2L2

)
− λ

(
‖∂xε1‖2L2 + ‖∂xε2‖2L2

)
, (26)

and thus:

H
(
ε1
ε2

)
> λ

∥∥∥∥
(
ε1
ε2

)∥∥∥∥
2

H1×H1

. (27)

Proof. The proof of (25) is classical (see for example [17, 23]) and we omit it. It
remains to prove (26). It is readily seen that for Cj(β, vj) large enough, we have

C1(β, v1)‖ε2‖2L2 + C2(β, v2)‖ε1‖2L2 −
β

2

∫

R

(
|ε1|2|R̃2|2 + |ε2|2|R̃1|2

)
dx

>
1

2

(
C1(β, v1)‖ε2‖2L2 + C2(β, v2)‖ε1‖2L2

)
.

As far as the momentum parts of Hcoupled are concerned, for example for j = 1:

v1
2
Im

∫

R

ε1∂xε1χ
2
Ldx > −v1

2

∫

R

|ε1∂xε1χ2
L|dx

> −v1
2
‖ε1‖2‖∂xε1‖2

> − v21
4λ

‖ε1‖2L2 − λ‖∂xε1‖2L2 .

For C(β, vj), j = 1, 2 large enough, i.e such that

∑

j=1,2

(
1

2
C(β, vj)−

v2j
4λ

)
> λ,

we thus have:

Hcoupled

(
ε1
ε2

)
> λ

(
‖ε1‖2L2 + ‖ε2‖2L2

)
− λ

(
‖∂xε1‖2L2 + ‖∂xε2‖2L2

)
.

Combining estimates (25) and (26) on Hfree and Hcoupled finally gives (27). �

3.4. Almost-conservation of the localized momentum. In this section, we
investigate the conservation of the localized momentum and, inspired by [23], we
state the following lemma:

Lemma 11. There exists C > 0 (independent of L) such that if L and T0 are large
enough then for all t ∈ [t0, T

n] and for j = 1, 2 we have
∣∣∣∣P

j
loc

(
u1

u2

)
(t)− Pj

loc

(
u1

u2

)
(T n)

∣∣∣∣ 6
C

L
e−2

√
ω∗v∗t. (28)

Proof of Lemma 11. Let us prove the lemma in the case j = 1, the case j = 2 being
perfectly similar. We first compute the time derivative of P1

loc:

d

dt
P1
loc(t) =

1

2
Im

∫

R

∂tu1∂xu1χ
( x
L

)
dx+

1

2
Im

∫

R

u1∂x,tu1χ
( x
L

)
dx. (29)
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Let us call term A and B respectively the first and the second term of the right
hand side in equality (29):

A =
1

2
Im

∫

R

∂tu1∂xu1χ
( x
L

)
dx, B =

1

2
Im

∫

R

u1∂x∂tu1χ
( x
L

)
dx.

Using the fact that u(t) =

(
u1(t)
u2(t)

)
is a solution to (NLS), we readily get (formally,

but this will be justified when integrating):

∂tu1∂xu1 = i∂xxu1∂xu1 + iµ1|u1|2u1∂xu1 + iβ|u2|2u1∂xu1 (30)

∂x∂tu1 = −i∂xxxu1 − iµ1∂x

(
|u1|2u1

)
− iβ∂x

(
|u2|2u1

)
. (31)

About term A: Equation (30) provides us with the following decomposition of term
A:

A =
1

2
Re

∫

R

∂xxu1∂xu1χ
( x
L

)
dx+

1

2
µ1Re

∫

R

|u1|2u1∂xu1χ
(x
L

)
dx

+
1

2
βRe

∫

R

|u2|2u1∂xu1χ
( x
L

)
dx.

Integrating by part in each term of A finally gives:

A = − 1

4L

∫

R

|∂xu1|2χ′
( x
L

)
dx− 1

8L
µ1

∫

R

|u1|4χ′
( x
L

)
dx

+
1

2
βRe

∫

R

|u2|2u1∂xu1χ
( x
L

)
dx. (32)

About term B: Equation (31) provides us with the following decomposition of term
B:

B = −1

2
Re

∫

R

u1∂xxxu1χ
( x
L

)
dx− 1

2
µ1Re

∫

R

u1∂x

(
|u1|2u1

)
χ
( x
L

)
dx

− 1

2
βRe

∫

R

u1∂x

(
|u2|2u1

)
χ
( x
L

)
dx.

As for the A term, integrating by parts (several times if necessary) in each term
finally leads to:

B = − 3

4L

∫

R

|∂xu1|2χ′
( x
L

)
dx+

1

4L3

∫

R

|u1|2χ′′′
( x
L

)
dx

+
3

8L
µ1

∫

R

|u1|4χ′
( x
L

)
dx

+
1

2
βRe

∫

R

|u2|2u1∂xu1χ
(x
L

)
dx+

1

2L
βRe

∫

R

|u2|2|u1|2χ′
( x
L

)
dx. (33)

Combining (32) and (33), and using the fact that χ′ and χ′′′ are supported on
[−L,L] lead to the following estimate:
∣∣∣∣
d

dt
P1
loc(t)

∣∣∣∣ 6
C

L

∫ L

−L

(
|∂xu1|2 + |u1|2 + |u1|4

)
dx+C

∫

R

|u2|2
(
|u1|2 + |∂xu1|2

)
χ1
L(x)dx.

(34)
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Note that for x ∈ [−L,L], T0 large enough, and using (13) we have (see Lemma 8
for similar arguments)

|∂xRj(t, x) +Rj(t, x)| 6 Ce−
√

ω̃j |x−x̃j| 6 Ce−
1

2

√
ω̃j |x̃j| 6 Ce−3

√
ω∗v∗t.

Note that C here depends on vj . Expanding now uj = R̃j + εj , in (34), using the
above estimate and Lemma 8, we obtain

∣∣∣∣
d

dt
P1
loc(t)

∣∣∣∣ 6
C

L

∥∥∥∥
(
ε1
ε2

)∥∥∥∥
2

H1×H1

+O(e−3
√
ω∗v∗t).

The result follows integrating in time between t and T n and using the bootstrap
assumption (10). �

3.5. Control of the modulation parameters. We now give an estimate of the
variations of ω̃1 with respect to time. This estimate is better than (13) given by
the modulation lemma.

Lemma 12 (Variations of ω̃j(t)). For j = 1, 2 and for all t ∈ [t0, T
n], we have

|ω̃j(t)− ωj| 6 C‖εj(t)‖2L2 .

Proof. This estimate is due to the choice of the modulation orthogonality condition(
εj(t), R̃j(t)

)
2
= 0, and the conservation of the mass of each component:

0 = ‖uj‖22 − ‖Rj‖22 = ‖R̃j‖22 − ‖Rj‖22 + ‖εj‖22
= (ω̃j − ωj)

∂

∂ω |ω=ωj

‖Qω‖22 +O(|ω̃j − ωj|2) + ‖εj‖22.

Since ∂
∂ω |ω=ωj

‖Qω‖22 < 0, this concludes the proof. �

3.6. Conclusion. With the elements of the previous subsections in hand, we can
now conclude the proof of Proposition 5.

End of the proof of Proposition 5. Recall that we have made the bootstrap assump-
tion (10) and that our goal is to prove that for all t ∈ [t0, T

n] we have in fact the
better estimate ∥∥∥∥

(
un
1

un
2

)
−
(
R1

R2

)∥∥∥∥
H1×H1

6
1

2
e−

√
ω∗v∗t. (35)

Let us first expand

∥∥∥∥
(
un
1 (t)

un
2 (t)

)
−
(
R1(t)
R2(t)

)∥∥∥∥
H1×H1

6

∥∥∥∥
(
un
1 (t)

un
2 (t)

)
−
(
R̃1(t)

R̃2(t)

)∥∥∥∥
H1×H1

+

∥∥∥∥
(
R̃1(t)

R̃n
2 (t)

)
−
(
R1(t)
R2(t)

)∥∥∥∥
H1×H1

6

∥∥∥∥
(
ε1(t)
ε2(t)

)∥∥∥∥
H1×H1

+ C
∑

j=1,2

|ω̃j − ωj |+
∑

j=1,2

O(|ω̃j − ωj |2).

By Lemma 12, the part involving |ω̃j − ωj| is controlled by the ε-part. Hence to
finish the proof it is sufficient to control ε. Using successively the coercivity of H
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given in (27), the expansion (18) of the global action S, the conservation of energy
and mass, and the almost conservation of localized momenta (28), we obtain

∥∥∥∥
(
ε1(t)
ε2(t)

)∥∥∥∥
2

H1×H1

6 CH
(
ε1(t)
ε2(t)

)

6 S
(
u1(t)
u2(t)

)
− S

(
R̃1(t)

R̃2(t)

)
+O(e−3

√
ω∗v∗t) 6

C

L
e−2

√
ω∗v∗t.

Therefore, choosing L large enough we obtain the required estimate (35). This
concludes the proof of Proposition 5. �

4. Numerical schemes

We describe here the numerical methods that we will be using in the next section.

4.1. The time-splitting spectral method. We start by the time-splitting spec-
tral method that we use to solve (NLS) numerically. The equations are solved on a
bounded interval I = (−a, a). We use a uniform spatial grid with mesh size h > 0
and grid points xk = x0 + kh, k = 0, . . . ,K, where K + 1 ∈ N is the (odd) number
of grid points. Then h = 2a/K. The time grid is given by tn = t0 + nτ , n ∈ N0,
where τ > 0 is the time step size and t0 the initial time. We set (uj)

n
k := uj(tn, xk),

where j = 1, 2, k = 0, . . . ,K, and n ∈ N0. We split the system (NLS) into the two
subsystems

i∂tuj = −µj |uj|2uj − β|u3−j |2uj, j = 1, 2, (36)

i∂tuj = −1

2
∂xxuj, j = 1, 2, (37)

considered on [tn, tn+1] and subject to some initial data. These subsystems are
solved as follows.

Step 1: Computing the evolution of (36) we observe that the quantities |uj|2
remain unchanged. Therefore, we “freeze” these values at time tn and solve
the resulting linear ODEs exactly in the interval [tn, tn + τ/2], giving at
time tn + τ/2:

(u1)
∗
k = exp

(
i
τ

2

(
µ1|(u1)

n
k |2 + β|(u2)

n
k |2
))

(u1)
n
k ,

and analogously for (u2)
∗
k.

Step 2: We solve (37) for j = 1, 2 in the interval [tn, tn + τ ], discretized in
space by the Fourier spectral method and solved exactly in time:

(uj)
∗∗
k =

1

K + 1

K/2∑

m=−K/2

exp
(
−iτ ν2m

)
(ûj)

∗
m exp

(
iνm(xk − x0)

)
, j = 1, 2,

where νm = 2πm/(xK − x0) and

(ûj)
∗
m =

K∑

l=0

(uj)
∗
l exp (−iνm(xl − x0)) , m = −K

2
, . . . ,

K

2
.

Step 3: We solve (36) on [tn + τ/2, tn+1] using the discretization of Step 1
with (uj)

∗∗
k instead of (uj)

n
k and obtain (uj)

n+1
k .
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4.2. The normalized gradient flow. We will also need to compute the ground
state solution of the following elliptic system with fixed masses

{
−∂xxφ1 + ω1φ1 − µ1φ

3
1 − βφ2

2φ1 = 0,

−∂xxφ2 + ω2φ2 − µ2φ
3
2 − βφ2

1φ2 = 0.
(38)

To that purpose, we use the normalized gradient flow. The problem can also be
viewed as a nonlinear eigenvalue problem with ω1, ω2 being the eigenvalues, which
can be computed from the corresponding eigenfunctions (j = 1, 2):

ωφ
j =

∫

R

(
−|∂xφj |2 + µjφ

4
j + βφ2

1φ
2
2

)
dx

∫

R

φ2
jdx

.

We solve (38) by normalized gradient flow with given (a1, a2), such that:
∫

R

φ2
1dx = a21 and

∫

R

φ2
2dx = a22.

The standard gradient flow with discrete normalization consists in introducing an
imaginary time in the nonlinear Schrödinger equations, thus looking at the imag-
inary time propagation (t → −it) and after every step project the solutions such
that the L2-norms are equal to (a21, a

2
2). In [6] the authors present the normalized

gradient flow, prove it is energy diminishing, and propose numerical methods to dis-
cretize it. Hereafter we adapted the normalized gradient flow for the given system
and discretized it by a semi-implicit Backward Euler finite differences scheme. For
(φj)

n
k = φj(t

n, xk) being the discrete solution, xk = x0 + k · h the grid points with
k = 0, 1, . . . ,K − 1,K and the time sequence 0 < t1 < t2 < · · · < tn < tn+1 < . . .
with τ = tn+1 − tn we have the following discretization of the normalized gradient
flow:

Step 1: We first solve on [tn, tn+1] with initial data φj(tn, xk):

(φj)
∗
k − (φj)

n
k

τ
=

(φj)
∗
k+1 − 2(φj)

∗
k + (φj)

∗
k−1

h2
+ µj |(φj)

n
k |2(φj)

∗
k + β|(φ3−j)

n
k |2(φj)

∗
k

with j = {1, 2}. As solution we get (φj)
∗
k.

Step 2: (φj)
∗
k is then normalized to get finally (φj)

n+1
k

(φj)
n+1
k =

ak(φj)
∗
k

‖(φj)∗k‖L2

.

For t → +∞ we obtain the ground state solution (φ1, φ2) of (38) with L2-norms

equal to (a21, a
2
2) and frequency parameters (ωφ1

1 , ωφ2

2 ).

5. Numerical experiments

Our ansatz for the initial data in the next experiments is the following.

uj(t0, x) = ei(ωjt0−v2

j t/4+vjx/2)Qωj
(x− vjt0 − xj) j = 1, 2 (39)

with Qω defined in (3). Without loss of generality, we may assume that 0 < v1 =
−v2 (Galilean invariance), hence the soliton on the first component will be traveling
to the right and the soliton on the second component will be traveling to the left.
We will also assume that x1 = x2 = 0 (invariance by translation in time and space)
and to guarantee that our solitons on the first and second components are positioned
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on the left and on the right respectively and at a sufficiently large distance, we will
chose the initial time to be t0 = −10.

5.1. Purely elastic interaction. The integrable case has been studied in depth in
the book [1]. In particular, in that case the system is completely integrable via the
inverse scattering transform and explicit solutions may be exhibited. For example,
there exists a solution U = (u1, u2) of (NLS) which has the following behavior. At
time t → −∞,

u1(t, x) ∼ ei(
1

2
v1x+(ω1− 1

4
|v1|2)t)√ω1Q (

√
ω1 (x− v1t)) , (40)

u2(t, x) ∼ ei(
1

2
v2x+(ω2− 1

4
|v2|2)t)√ω2Q (

√
ω2 (x− v2t)) ,

whereas at time t → +∞ the two components have interacted and the outcome are
solitons of same speed and frequency but with a shift in phase and translation:

u1(t, x) ∼ φ̂1(t, x) := eiθ1ei(
1

2
v1x+(ω1− 1

4
|v1|2)t)√ω1Q (

√
ω1 (x− v1t− τ1)) , (41)

u2(t, x) ∼ φ̂2(t, x) := eiθ2ei(
1

2
v2x+(ω2− 1

4
|v2|2)t)√ω2Q (

√
ω2 (x− v2t− τ2)) ,

where the shift parameters are given by the formulas

τ1 = − ln(|χ1|)√
ω1

, τ2 =
ln(|χ2|)√

ω2
, θ1 =

χ1

|χ1|
, θ2 =

χ2

|χ2|
,

χ1 =
v1 − v2 + i2(

√
ω1 +

√
ω2)

v1 − v2 + i2(
√
ω1 −

√
ω2)

, χ2 =
v1 − v2 + i2(

√
ω1 +

√
ω2)

v1 − v2 − i2(
√
ω1 −

√
ω2)

.

Note that since the speeds and amplitudes of the solitons are not modified the
interaction is considered elastic. Note also that we have a pure two-speeds solitary
wave at both ends of the time line, without any appearance of dispersion despite
the interaction. This is a characteristic feature of completely integrable systems.

The parameters are chosen as follows: µ1 = µ2 = β = 1, ω1 = 5, ω2 = 1,
v1 = 1, v2 = −1, and x1 = x2 = 0, thus we start with two solitons located at
±10, respectively, which move to each other and observe them until tfinal = 10.
Furthermore, the integration domain is I = (−20, 20) with K = 1024 spatial grid
points and τ = 10−3.
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Figure 1. Purely elastic interaction: Position densities
|u1(t, x)|2 and |u2(t, x)|2 as functions of space and time for µ1 =
µ2 = 1 and β = 1
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We plot the solution (u1, u2) to (NLS) and observe that the two solitons remain
unchanged after the interaction, excepting a shift in phase and translation. The
shift in translation can be observed in Figure 1. Our numerical experiments are in
good line with the theoretically predicted behavior. We have compared pointwise
the numerical solution |u1|2 obtained by taking (40) as initial data at t = −10 and

the theoretical outcome |φ̂1|2 given by (41). The results are shown in Figure 2.

a)
0 5 10 15 20

0

2

4

6

8

10

12
|u1(10, x)|

2, |φ1(x)|
2

x b) 0 5 10 15 20

−4

−2

0

2

4x 10
−4

Figure 2. a) Plots of |u1(10, x)|2 (’-’ line) and |φ̂1(x)|2 (’.’ line).

b) Difference of |u1(10, x)|2 − |φ̂1(x)|2

5.2. Symmetric collision. In this experiment the outcome are still multi-speed
solitary waves. After the collision we observe a small part of the soliton moving
along with the soliton of the other component. We see that at the final time
the solution fits well the ground state solution obtained by minimizing the system
with fixed masses. Here we choose µ1 = µ2 = 1 and β = 3. We have solved
the system (NLS) in the interval (−200, 200) with periodic boundary conditions,
initial time t0 = −10 and initial condition (39) and the parameters ω1 = ω2 = 1,
v1 = 2, v2 = −2, and x1 = x2 = 0, thus we start with two solitons located at ±10,
respectively, which move to each other and observe them till tfinal = 40. Moreover,
we use K = 4096 in space and time step τ = 10−3.

Here the interaction parameter β is greater than in the first experiment and after
the interaction at time zero we see in each component a small part going with the
other component, respectively (Figure 3).

At the final time t = 40 we look at the left side part of each component u−
j =

uj · χ[−∞,0], and compute the L2-norms

a2j =

∫

R

|u−
j (40, x)|2dx.

Note that the mass of each component Mj(t) = 1
2

∫
R
|uj(t, x)|2dx is conserved,

Mj(0) = Mj(t) for j = 1, 2 and for all t ∈ [−10, 40]. At t = 40 we obtain (a1 =√
3.893, a2 =

√
0.069).

Finally we compute the ground state solution (φ1(x), φ2(x)) of the elliptic sys-
tem (38) by the gradient flow with constraints (3.893, 0.069) and compare it to
(u−

1 (40, x), u
−
2 (40, x)). In Figure 4 we first shift φ1(x+ x1) (with x1 corresponding

to max |u1|2) and φ2(x+x2) (with x2 corresponding to max |u2|2) and then compare
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Figure 3. Symmetric collision: Position densities |u1(t, x)|2
and |u2(t, x)|2 as functions of space and time for µ1 = µ2 = 1 and
β = 3
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Figure 4. Symmetric collision: a) Plots of |u−
1 (40, x)|2 (’-

’ line) and |φ1(x + x1)|2 (’.’ line) b) Plots of |u−
2 (40, x)|2 and

|φ2(x + x2)|2, where xj is the x corresponding to the max |uj|2,
with j = 1, 2.

the position density pointwise to the position density of the final solution located
on the left of the origin (u−

1 (40, x), u
−
2 (40, x)) and realize that they fit very well.

In this case, the interaction result into a new repartition of the mass and of the
energy so as to approximate a ground state profile.

5.3. Dispersive inelastic interaction. In this experiment we observe a loss of
energy, mass and momentum in a small dispersive part located at the interaction
place and a small dispersive part moving to the boundaries. Here we have solved
the system (NLS) with β = −1 and µ1 = µ2 = 1 in the interval (−500, 500) with
8192 grid points for the spatial discretization, with periodic boundary conditions,
initial time t0 = −10 and initial condition (39) with the following parameters
v1 = −v2 = 2.7, ω1 = ω2 = 1 , and x1 = x2 = 0.

Figure 5 shows the evolution of the waves. In Figure 6 we see the position density
of the initial soliton u1(0, x) and the one of the final soliton at t = 90, with lost
mass and energy.
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Figure 5. Dispersive inelastic interaction: Plots of |u1(t, x)|2
(left) and |u2(t, x)|2 (right) as functions of space and time
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Figure 6. Dispersive inelastic interaction: Plots of
|u1(0, x)|2 (left) and |u1(90, x)|2 (right)

5.4. Reflexion. In this experiment we observe a change of the sign of the speeds,
thus the solitons are reflected after interaction. Here we have the same parameter
as in the case of a dispersive interaction, β = −1 and µ1 = µ2 = 1, but the initial
velocity is smaller, precisely we have the initial condition (39) with the following
parameters v1 = −v2 = 0.5, ω1 = ω2 = 1, and x1 = x2 = 0. Since the velocity is not
so large, and we observe the soliton until tfinal = 10, we solve (NLS) on (−20, 20)
with 1024 spatial grid points, periodic boundary conditions and time step equal to
τ = 10−3.

In Figure 7 we see the reflexion of the two solitons after interaction, thus only
the velocities changed sign. In Figure 8 we compare point wise the solution at the
final time to the initial solution, and observe that it remains unchanged.

These were various examples of the possible outcomes of multi-speeds solitary
waves interactions. The above described situations may not be the only possibles
and we do not claim comprehensiveness.
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Figure 7. Reflexion: Plots of |u1(t, x)|2 (left) and |u2(t, x)|2
(right) as functions of space and time
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Figure 8. Reflexion: Plots of |u1(−10, x− x1)|2 (’−’ line) and
|u1(10, x)|2 (’.’ line), where x1 is the translation such that we can
compare the two solitons

Appendix A. Proof of the modulation lemma

Proof of Lemma 6. The proof of the modulation lemma is inspired from [23] and
relies on the implicit function theorem.

Let us define F : H1(R)× R+ × R× R −→ R3 by

F (u, ω, γ, y) =




(u−R(ω, γ, y), R(ω, γ, y))2
(u−R(ω, γ, y), iR(ω, γ, y))2
(u−R(ω, γ, y), ∂xR(ω, γ, y))2




where, for the sake of simplicity, we removed the i indexes and R(ω, γ, y) denotes

the soliton R(ω, γ, y) = ei(
1

2
v·x+γ) 1√

µQω(x− y). Note that,

∀(ω, γ, y) ∈ R+ × R× R, F (R(ω, γ, y), ω, γ, y) = 0.

The key idea here is to apply the implicit function theorem to function F at
point (R(ω, γ, y), ω, γ, y) for fixed (ω, γ, y) ∈ R+ × R × R. Simple computations
due to properties of Qω, mainly the fact that Qω is radial and even, lead to
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∇F (R(ω, γ, y), ω, γ, y) diagonal with diagonal terms a, b, c given by:

a =
1

µ
Re

∫

R

∂ωQω(x− y)Qω(x− y)dx < 0

b = − (∂γR(ω, γ, y), iR(ω, γ, y))2 =
−1

µ
Re

∫

R

Qω(x− y)2dx < 0

c =
−1

µ
‖∂kQω‖2L2 < 0.

Implicit function theorem finally gives the existence of parameters ω̃j, γ̃j , x̃j as
functions of time. To prove that these functions are actually of class C1, a stan-
dard regularization argument is needed. We refer to [22] for more details on that
argument.

Now, in order to be more readable, we prove estimate (13) for j = 1. In that
purpose, let us write the equation of evolution satisfied by ε1, namely:

i∂tε1 + L(ε1, ε2) +N (ε1, ε2)

= −(ω̃1 −
v21
4

− ∂tγ̃1)R̃1 − i∂tω̃1∂ωQω̃1
ei(

1

2
v1·x+γ̃1) − i(v1 − ∂tx̃1)∂xQω̃1

. (42)

where

L(ε1, ε2) = ∂xxε1 +
(
µ1|R̃1|2 + β|R̃2|2

)
ε1 + 2µ1Re(R̃1ε̄1)R̃1 + 2βRe(R̃2 ε̄2)R̃1

and

N (ε1, ε2) = µ1|ε1|2ε1 + β|ε2|2ε1 +
(
µ1|ε1|2 + β|ε2|2

)
R̃1

+
(
2µ1Re(R̃1ε1) + 2βRe(R̃2 ε̄2)

)
ε1.

It is to be noticed that the modulation terms ω̃1− v2

1

4 −∂tγ̃1, ∂tω̃1, and v1−∂tx̃1

appear in the right hand side of this evolution equation. The main idea of the
proof is to take in (42) the scalar products of both sides of the equation with

respectively R̃1, iR̃1 and ∂xR̃1. We then use the orthogonality conditions (12) as
well as properties on Qω̃1

. In the left hand side, we transfer the derivatives acting on
ε1 on the other side of the scalar product thanks to the modulation conditions (12)
(for the time derivatives) and integrations by parts (for the space derivatives). We

finally use the equation at hand on R̃1:

i∂tR̃1 + ∂xxR̃1 + µ1|R̃1|2R̃1 =
(
ω̃1 +

v21
4

− ∂tγ̃1

)
R̃1+

j√
µ1

ei(
1

2
v1·x+γ̃1)∂tω̃1∂ωQω̃1

+i
v1 − ∂tx̃1

µ1
ei(

1

2
v1·x+γ̃1)∂xQω̃1

.

(43)

For more simplicity, we only develop the computations for the scalar product
with R̃1, the other cases are obtained using the same arguments.
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Taking the scalar product with R̃1 in equation (42) leads to:

(
i∂tε1 + L(ε1, ε2) +N (ε1, ε2), R̃1

)
2
= −

(
ω̃1 −

v21
4

− ∂tγ̃1

)
‖R̃1‖2

− ∂tω̃1Re

∫

R

iei(
1

2
v1·x+γ̃1)∂ωQω̃1

R̃1dx

− (v1 − ∂tx̃1)Re

∫

R

iei(
1

2
v1·x+γ̃1)∂xQω̃1

R̃1dx (44)

Right hand side of (44): First, using equation (11) leads to:

Re

∫

R

iei(
1

2
v1·x+γ̃1)∂ωQω̃1

R̃1dx =
1√
µ1

Im

∫

R

∂ωQω̃1
(x)Qω̃1

(x− x̃1)dx = 0

and

Re

∫

R

iei(
1

2
v1·x+γ̃1)∂xQω̃1

R̃1dx =
1√
µ1

Im

∫

R

∂xQω̃1
(x)Qω̃1

(x− x̃1)dx = 0.

Thus, (44) reduces to:

(
i∂tε1 + L1(ε1, ε2) +N (ε1, ε2), R̃1

)
2
= −

(
ω̃1 −

v21
4

− ∂tγ̃1

)
‖R̃1‖2. (45)

Left hand side of (45):

First, deriving modulation condition
(
ε1, R̃1

)
2
= 0 with respect to time gives:

(
i∂tε1, R̃1

)
2
=
(
ε1, i∂tR̃1

)
2
.

Let us now develop
(
L(ε1, ε2), R̃1

)
2
:

(
L(ε1, ε2), R̃1

)
2
=
(
ε1, ∂xxR̃1 + 3µ1|R̃1|2R̃1 + β|R̃2|2R̃1

)
2
+ 2β

(
ε2, |R̃1|2R̃2

)
2
.

Finally,
(
N (ε1, ε2), R̃1

)
2
read:

(
N (ε1, ε2), R̃1

)
2
=
(
µ1|ε1|2ε1 + β|ε2|2ε1, R̃1

)
2
+
(
(µ1|ε1|2 + β|ε2|2)R̃1, R̃1

)
2

+
((

2µ1Re(R̃1ε1) + 2βRe(R̃2ε2)
)
ε1, R̃1

)
2

Equation (45) thus leads to the left hand side term:
(
ε1, i∂tR̃1 + ∂xxR̃1 + µ1|R̃1|2R̃1

)
2
+ β

(
ε1, |R̃2|2R̃1

)
2
+ 2µ1

(
ε1, |R̃1|2R̃1

)
2

+ 2β
(
ε2, |R̃1|2R̃2

)
2
+
(
N (ε1, ε2), R̃1

)
2
.

Now, using equation (43) satisfied by R̃1 gives:
(
ε1, i∂tR̃1 + ∂xxR̃1 + µ1|R̃1|2R̃1

)
2

= (ω̃1 −
v21
4

− ∂tγ̃1)
(
ε1, R̃1

)
2
+ ∂tω̃1

(
ε1,

i√
µ1

ei(
1

2
v1·x+γ̃1)∂ωQω̃1

)

2

+ (v1 − ∂tx̃1)

(
ε1,

i√
µ1

ei(
1

2
v1·x+γ̃1)∂xQω̃1

)

2

.
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Finally, modulation condition
(
ε1, R̃1

)
2
= 0 leads to

(ω̃1 −
v21
4

− ∂tγ̃1)‖R̃1‖2 + ∂tω̃1

(
ε1,

i√
µ1

ei(
1

2
v1·x+γ̃1)∂ωQω̃1

)

2

+ (v1 − ∂tx̃1)

(
ε1,

i√
µ1

ei(
1

2
v1·x+γ̃1)∂xQω̃1

)

2

= −2µ1

(
ε1, |R̃1|2R̃1

)
2
−β
(
ε1, |R̃2|2R̃1

)
2
−2β

(
ε2, |R̃1|2R̃2

)
2
−
(
N (ε1, ε2), R̃1

)
2
.

(46)

Thanks to Lemma 8, it is readily seen that most terms in this equation are of order
O(‖ε‖2). Finally, (46) can be re-written in a simpler way:

(
‖R̃1‖2 + a1(t)

)
(ω̃1 −

v21
4

− ∂tγ̃1) + a2(t)∂tω̃1 + a3(t)(v1 − ∂tx̃1) = b1(t)

where, for all t ∈ [t0, T
n], |a1(t)|+ |a2(t)|+ |a3(t)|+ |b1(t)| 6 C‖ε(t)‖2.

With the same kind of arguments, taking in (42) scalar product with iR̃1 and

i∂xR̃1 respectively, we get two other equations that can be re-written as a linear

system solved by the ”modulation vector” Mod(t) =



ω̃1(t)− v2

1

4 − ∂tγ̃1(t)
∂tω̃1(t)

v1 − ∂tx̃1(t)..




This linear system takes the following form:

(Γ(t) +A(t))Mod(t) = B(t)

where

Γ(t) =




‖R̃1‖ 0 0
0

∫
R
∂ωQω̃1

(x)Qω̃1
(x− x̃1(t))dx 0

v1
2 ‖R̃1‖ 0 −‖∂xQω̃1

‖22




and, with the help of Lemma 8, for all t ∈ [t0, T
n], ‖A(t)‖, ‖B(t)‖ 6 C‖ε‖2, and

hence (13). �

References

[1] M. J. Ablowitz, B. Prinari, and A. D. Trubatch. Discrete and continuous nonlinear
Schrödinger systems, volume 302 of London Mathematical Society Lecture Note Series. Cam-
bridge University Press, Cambridge, 2004.

[2] G. Agrawal. Nonlinear fiber optics. Optics and Photonics. Academic Press, 2007.
[3] A. Ambrosetti and E. Colorado. Standing waves of some coupled nonlinear Schrödinger equa-

tions. J. Lond. Math. Soc. (2), 75(1):67–82, 2007.
[4] X. Antoine, W. Bao, and C. Besse. Computational methods for the dynamics of the nonlinear

Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun., 184(12):2621–2633, 2013.
[5] W. Bao. Ground states and dynamics of multicomponent Bose-Einstein condensates. Multi-

scale Model. Simul., 2:210–236, 2004.
[6] W. Bao and Q. Du. Computing the ground state solution of Bose-Einstein condensates by a

normalized gradient flow. SIAM J Sci. Comput., 25:1674–1697, 2003.
[7] W. Bao, D. Jaksch, and P. Markowich. Numerical solution of the Gross-Pitaevskii equation

for Bose-Einstein condensates. Journal of Computartional Physics, 187:318–342, 2003.

[8] T. Bartsch and Z.-Q. Wang. Note on ground states of nonlinear Schrödinger systems. J.
Partial Differential Equations, 19(3):200–207, 2006.

[9] J. Bellazzini, M. Ghimenti, and S. Le Coz. Multi-solitary waves for the nonlinear Klein-
Gordon equation. Comm. Partial Differential Equations, 39(8):1479–1522, 2014.



MULTI-SPEED SOLITARY WAVES OF NONLINEAR SCHRÖDINGER SYSTEMS 25
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H. Poincaré Anal. Non Linéaire, 23(6):849–864, 2006.
[24] Y. Martel, F. Merle, and T.-P. Tsai. Stability in H

1 of the sum of K solitary waves for some
nonlinear Schrödinger equations. Duke Math. J., 133(3):405–466, 2006.

[25] F. Merle. Construction of solutions with exactly k blow-up points for the Schrödinger equation
with critical nonlinearity. Comm. Math. Phys., 129(2):223–240, 1990.

[26] E. Montefusco, B. Pellacci, and M. Squassina. Energy convexity estimates for non-degenerate
ground states of nonlinear 1D Schrödinger systems. Commun. Pure Appl. Anal., 9(4):867–
884, 2010.

[27] M. Ohta. Stability of solitary waves for coupled nonlinear Schrödinger equations. Nonlinear
Anal., 26(5):933–939, 1996.

[28] B. Sirakov. Least energy solitary waves for a system of nonlinear Schrödinger equations in
Rn. Comm. Math. Phys., 271(1):199–221, 2007.

[29] Z. Wang and S. Cui. Multi-speed solitary wave solutions for a coherently coupled nonlinear
schrödinger system. Journal of Mathematical Physics, 56(2):1089–7658, 2015.

[30] M. I. Weinstein. Modulational stability of ground states of nonlinear Schrödinger equations.
SIAM J. Math. Anal., 16:472–491, 1985.

(Fanny Delebecque and Stefan Le Coz) Institut de Mathématiques de Toulouse, Univer-
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