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2 Dipartimento di Energetica, Università di Firenze and INFM, via S. Marta, 3, 50139 Firenze, Italy

(Dated: April 10, 2015)

We investigate a model of globally coupled conservative oscillators. Two different algebraic poten-
tials are considered that display in the canonical ensemble either a second (φ4) or both a second and
a first order phase transition separated by tricritical points (φ6). The stability of highly clustered
states appearing in the low temperature/energy region is studied both analytically and numerically
for the φ4-model. Moreover, long-lived out-of-equilibrium states appear close to the second order
phase transition when starting with “water-bag” initial conditions, in analogy with what has been
found for the Hamiltonian Mean Field (HMF) model. The microcanonical simulations of the φ6-
model show strong hysteretic effects and metastability near the first-order phase transition and a
narrow region of negative specific heat.

I. INTRODUCTION

The treatment of long-range interacting systems remains a challenging issue in thermodynamics and statistical
mechanics [1]. Serious theoretical difficulties arise because internal energy, entropy and other thermodynamic quan-
tities are no longer additive, i.e. a part of a system has not the same thermodynamic properties of the whole. This
originates unusual effects, like negative specific heat and the inequivalence of statistical ensembles even in the limit
of infinite number of particles (See Ref. [2] for a recent review emphasizing different examples such as gravitation,
plasmas, fluid mechanics,. . . ). Relevant physical examples displaying such anomalies are known in Newtonian gravity
but also in plasma physics (although in the latter case the screening of attractive and repulsive Coulomb interactions
may mitigate them).
As usual in theoretical physics, the study of simple toy models proves to be of major importance to attack more

complex and realistic systems. In particular, simple mean-field models with infinite-range interactions turned out to
be extremely useful. In spite of the fact that they are constantly used in statistical mechanics to describe cooperative
phenomena, it is somehow singular that violation of additivity has hardly been recognized in the past. A reason for that
lies perhaps in the fact that the thermodynamic limit is performed resorting to saddle-point techniques, which puts
the Hamiltonian in the explicitly decoupled form, thus hiding the difficulties inherent in the long-range interaction.
Indeed, ensemble inequivalence (for example between microcanonical and canonical ensemble) has been observed,
producing effects like negative specific heats, which are the counterparts of the ones known in the gravitational
context [1].
The advantage of such models is that their canonical thermodynamics can be exactly derived by performing the

mean-field limit (the infinite N limit at fixed volume), which is a reasonable surrogate of the thermodynamic limit
(the infinite N limit at fixed density). Contrary to the usual belief, an exact microcanonical solution is also feasible
for such non trivial Hamiltonians, using large deviations techniques [3], but the results will be presented elsewhere [4].
Here, for what concerns the microcanonical ensemble, we will mainly limit ourselves to show the result of numerical
simulations, which, because of the mean-field nature of the interaction, require only O(N) codes (instead of the usual
O(N2)). Moreover, further insight can be gained from solving the one-dimensional collisionless Boltzmann-Poisson
equation for the single-particle distribution function, which becomes exact in the N → ∞ limit (at all finite times) [5].
In the present paper, we investigate, both analytically and numerically, two simple mean-field models which we

denote as “φ4” and “φ6”, which display respectively second (φ4) and first and second order phase transitions separated
by tricritical points (φ6) in the canonical ensemble. Of the former model, we investigate in addition the dynamical
formation of clustered states at low temperatures and we study their destabilization. The presence of quasi-stationary
out-of-equilibrium states is moreover revealed close to the second order phase transition, in analogy with what is
found for the Hamiltonian-Mean-Field (HMF) model (see [6] for a recent review). Concerning the φ6-model, we study
the phase diagram in the canonical ensemble and we report numerical simulations of hysteretic effects near first-order
phase transitions. We point out the existence of a narrow region of negative specific heat.

∗Also at INFN Sezione di Firenze.
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II. THE MEAN-FIELD φ4 MODEL

Let us first consider the following Hamiltonian

H =

N
∑

i=1

[

p2i
2

− (1 − θ)
q2i
2

+
q4i
4

]

− θ

2N

N
∑

i,j=1

qiqj , (1)

where pi is the conjugate momentum of the variable qi, which defines the position of the i-th particle on a line. This is
a mean field model since all particles are connected to all others, and the summation in the last term is not restricted
to neighboring particles. Notice that positive (resp. negative) values of the parameter θ correspond to attractive
(resp. repulsive) mean-field interactions. All variables are adimensional and, for the sake of comparison, we have used
the same parametrization introduced in Ref. [7] (which can be shown to be minimal by conveniently rescaling the
variables and time). The local potential displays a double well for θ < 1 and a single well otherwise. The ground-state
energy per particle is e0 = −1/4 for positive θ (all particles in a single cluster) and e0 = −1/4 + θ/2 in the repulsive
case (double cluster).

A. Dynamics of the Magnetization: The generation of clusters.

Introducing the time-dependent magnetization

M =
1

N

N
∑

i=1

qi , (2)

we are therefore interested in the following equations of motion

q̈i = (1 − θ)qi − q3i + θM . (3)

We study the dynamics of particle released with a water bag [8] initial condition where positions and momenta are
uniformly distributed at random in the intervals [q0 − wq/2, q0 + wq/2] and [−wp/2,+wp/2], respectively. We have
adopted the symplectic 6th-order Yoshida’s algorithm [9], with a time step dt = 0.05, which allows us to obtain an
energy conservation with a relative accuracy ∆E/E ranging from 10−7 to 10−10.
Fig. 1 shows the result: a coherent oscillating cluster self-consistently moving in the self-generated potential. The

data are obtained for an initial condition with a small velocity dispersion, i.e. q0 = 1.1, wq = 0.05, wp = 0.0001.
Besides the oscillation of the center, the particles display a rotating motion around it, which creates a spiral structure
(see Figs. 2), as frequently encountered in long range systems; we have found this coherent behavior for a very large
collection of initial states. Notice that the spiral structure in the center is responsible for the very large peaks in
the single particle density (right panels in Figs. 2). A similar phenomenon has been described successfully for the
antiferromagnetic HMF model in terms of shock waves [10, 11] by considering the associated Vlasov equation valid
in the N → ∞ limit.

We will therefore rely on a Vlasov-like approach. Denoting by f(q, p, t) the one particle distribution function, we
have here

∂f

∂t
+ p

∂f

∂q
+
∂f

∂p

[

(1− θ) q − q3 +

∫ +∞

−∞

du

∫ +∞

−∞

dα f(α, u, t) α

]

= 0 . (4)

Introducing a density field ρ and a velocity field v, as follows

ρ(q, t) =

∫ +∞

−∞

f(q, p, t)dp (5)

ρ(q, t)v(q, t) =

∫ +∞

−∞

pf(q, p, t)dp (6)

and neglecting velocity dispersion, we have recently shown [10] how to reduce this problem to appropriate hydrody-
namical equations. A short-time analysis, performed for the HMF model, led us finally to a dissipativeless spatially
forced Burgers equation. We expect that a similar treatment can be developed for the current model and that similar
techniques could be applied. A well known property of the Burgers equation without viscosity, is that the solution
becomes multi-stream after a finite time: the appearance of shock waves in the velocity profile corresponds indeed to
singular points in the density profile (see Figs. 2). In the original discrete model, this phenomenon would correspond
to particle crossing; after some time, fast particles will eventually catch slow ones downstream creating the so-called
spiral dynamics exemplified in the left panels of Figs. (2).
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FIG. 1: Dynamics of the cluster. Evolution of the density ρ(q) of formula (5) in grey scale for short times. The darker the
grey, the bigger the density. Space is horizontal, whereas the vertical downward direction corresponds to time. One notices the
periodic motion with the characteristic time scale ω−1

M , defined in the text. In this simulation N = 4096, θ = 0.5.
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FIG. 2: Phase space snapshots of the cluster and the corresponding density ρ(q) of formula (5) at two different times. In this
simulation N = 1024, e = −0.2387,θ = 0.5

B. Stability analysis

To understand the origin of this cluster and its stability , we will first consider the simplest case of a fully clustered
state where qi =M . In this simple case, the collective motion is ruled by the equation

M̈ = M −M3 , (7)

which can be easily solved using elliptic functions [12]. Integrating Eq. (7), between the initial time, when the cluster
is released without kinetic energy at the position q = a > 1, and time t, we get

M = a dn

(

at√
2
, k

)

, (8)

where dn is the elliptic delta amplitude function and k =
√

2− 2/a2 the modulus of Jacobi elliptic functions. We
remind that this solution is periodic, with the amplitude-dependent period given in terms of the complete elliptic
integral of the first kind 2K(k); the magnetization M will thus oscillate with a frequency ωM = πa/

√
2K, which will

be the main timescale of the problem. One notices immediately that the modulus k and the frequency ωM are both
functions of the same parameter, namely the amplitude a, related to the energy per particle e = E/N through the



4

FIG. 3: Critical energy as a function of the parameter θ. The solid line corresponds to the results given by the stability
charts derived analytically (or, alternatively, using the Floquet analysis), whereas the diamonds correspond to the results of
microcanonical simulations for an ensemble of N = 1024 particles.

relation a2 = 1 +
√
1 + 4e. This solution is interesting in its own, since explicit analytical solutions are not common for

nonlinear non-integrable systems of oscillators, but one should of course study its stability in order to understand why
this coherent oscillating cluster emerges spontaneously. Using the equations of motion (3) for the qi and introducing
ξi = qi −M , we obtain up to first order

ξ̈i + (θ − 1 + 3M2) ξi = 0 . (9)

Introducing the new variable u = at/
√
2, we obtain the Lamé equation in its canonical form

d2ξi
du2

+
[

α− ν(ν + 1)k2 sn2 (u, k)
]

ξi = 0 , (10)

with α = 6+2(θ−1)/a2 and ν = 2. For integer values of ν, many rigorous results are known [13, 14] and in particular
it is established that there are only ν+1 instability regions in the (α, k) plane. The stability charts could be explicitly
constructed [15] by observing that Eq. (10) has the following five periodic solutions

y = 1− α
2
sn2(u, k) with α = 2

[

1 + k2 ± (k4 − k2 + 1)1/2
]

(11)

y = cn(u, k)dn(u, k) with α = 1 + k2 (12)

y = sn(u, k)dn(u, k) with α = 1 + 4k2 (13)

y = sn(u, k)cn(u, k) with α = 4 + k2 . (14)

Thus the above curves α = α(k2) define the boundary curves of the three (ν + 1) non-degenerate instability regions.
Theses curves are presented in the plane (θ, e) in Fig. (3).
One can also investigate the linear stability of this cluster solution with a standard Floquet analysis, i.e. computing

the eigenvalues of the 2N × 2N matrix of the tangent map. Here, contrary to usual lattice systems with coupling
between neighbors, Eq. (9) shows that we obtain N identical second order equations; this is a direct consequence
of the mean field character of Hamiltonian (1). Consequently, we obtain two different N times degenerate Floquet
eigenvalues and the periodic solution is linearly stable when the eigenvalues lie on the unit circle in the complex plane.
At this stage, one derives numerically the linear stability threshold by considering the numerical evolution of two

different initial conditions (1,0) and (0,1) for the vector (ξ, ξ̇). The dynamics is solved by a standard 4th order Runge-
Kutta algorithm for the time integration of Eq. (9), where the magnetization M is either directly integrated using
Eq. (7) or implemented with the help of Eq. (8). For a given value of θ, an energy threshold exists, above which the
largest Floquet multiplier is greater than unity, and therefore the solution is unstable. The solid line in Fig. 3 shows
the evolution of this threshold as a function of the parameter θ. The analytical calculations were directly compared
with the numerical thresholds obtained by considering a water bag with very small but finite width, i.e. wq ≪ q0 and
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wp ≪ 1, to make a direct comparison with the above analytical results. Checking on Fig. 3, one gets, apart from a
slight underestimate, a good agreement between numerics and theory. It should however be remarked that, for the
finite N systems, stability persists only for a finite time, which presumably diverges as N increases, as it happens for
the HMF model [6, 11].

C. Equilibrium Statistical Mechanics

The partition function can be computed by means of a standard Hubbard-Stratonovich transformation. Indeed, for
a Hamiltonian of the general form

H =

N
∑

i=1

[

pi
2

2

+ V (qi)

]

− θ

2N

(

N
∑

i=1

qi

)2

, (15)

the partition function is

Z =

∫ +∞

−∞

N
∏

ℓ=1

dpℓ dqℓ e
−βH = ZKZV = (2π/β)

N/2
ZV , (16)

where the configurational partition function is

ZV =

∫ +∞

−∞

N
∏

ℓ=1

dqℓ e
−βV (qℓ) e

βθ

2N

(

N
∑

i=1

qi

)2

. (17)

We use at this point the Hubbard-Stratonovich trick, i.e. we consider the identity

eµx
2

=
1√
π

∫ +∞

−∞

dy e−y
2 + 2

√
µxy . (18)

Defining

ψ(x, β) = ln

[
∫ +∞

−∞

dq e−βV (q) + xq
]

, (19)

after some algebra one gets

ZV =

√

N

2βθπ

∫ +∞

−∞

dx e−NβfL(x, β) (20)

βfL =
x2

2βθ
− ψ(x, β) (21)

where fL is the configurational Landau free energy. In the thermodynamic limit, one can evaluate the above integral
by means of the saddle point approximation. The saddle point is determined by the condition x = βθ ψx(x, β), (where
ψx denotes the derivative with respect to x) and can be evaluated numerically in a self-consistent manner. Notice
that x = 0 is always a solution if the potential V is even.
Finally, we can thus express the configurational partition function as

ZV =
1

√

βθψxx(x, β)− 1
exp

[

N

(

ψ(x, β)− x2

2βθ

)]

. (22)

Up to terms of order O (1/N), the relevant equilibrium observables can be expressed accordingly as a function of x,
using the following formulæ:

βf = − 1

N
lnZ = −1

2
ln (2π/β)− ψ(x, β) +

x2

2βθ
(23)

M =

〈

1

N

N
∑

i=1

qi

〉

=
x

βθ
(24)

e =
∂βf

∂β
=

1

2β
− ψβ(x, β)−

x2

2β2θ
=

1

2β
− ψβ(x, β)−

θ

2
M2 . (25)
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In the disordered phase, when M = 0, the system reduces to an ensemble of independent anharmonic oscillators.
In the ferromagnetic case (θ > 0), as presented in Fig. 4, the model displays a second-order transition in the canonical

ensemble, in full agreement with previous results based on the Fokker-Planck approach [7]. The magnetization vanishes

as (Tc−T )
1

2 in the subcritical regime and the specific heat has a finite jump at Tc. Conversely, in the antiferromagnetic
case (θ < 0), no transition occurs, and x = 0 is the only solution of the consistency equation for any value of the
temperature. The free energy and the internal energy are always given by the above formulæ, with zero magnetization.
As this behavior is clearly reminiscent of the HMF model, that we have already studied in the past [10, 16,

17], and where the presence of long-lived out-of-equilibrium states was surprisingly discovered, it was natural to
suspect that they also appear in the present model. We have therefore performed two types of numerical simulations:
microcanonical ones with a symplectic algorithm (sixth order Yoshida or fourth-order McLachlan-Atela [18]) and
canonical ones with a Nosé-Hoover thermostat [19] (fourth-order Runge-Kutta algorithm). No appreciable deviations
are observed between the two types of simulations for initial conditions close to equilibrium, see Fig. 4.
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FIG. 4: Comparison of ensembles for the φ4 model, θ = 0.5, N = 512: caloric (panel a) curve and magnetization (panel
b). Squares and triangles refer to microcanonical and canonical simulations, respectively, while the solid lines are the exact
canonical solutions given by Eqs. (25) and (24). The critical point is located at Tc = 0.264 (eC = 0.132). In both cases the
initial conditions were qi(0) = 1 and pi(0) chosen randomly with a gaussian distribution.

However, a region with clear differences is found for “water-bag” initial conditions: see an example for q0 = 0 in
Fig. 5. This is strongly reminiscent of similar observations made on the HMF model [16, 20]. The fact that some
points lie on the branch with vanishing magnetization also in the subcritical region (see Fig. 5b) indicates that this is
a metastable state in the microcanonical ensemble. On the contrary, let us notice that triangles below the theoretical
curve in Fig. 4b are due to finite size effects and would disappear for larger N values. A careful study of the numerical
results for very large integration times shows a systematic tendency of these points to converge towards the equilibrium
state indicated in Fig. 4 by the solid line. This attests the metastable character of these states.
Series of microcanonical runs for the repulsive case have shown that metastable states may possibly exist also

in this case, and we suspect that they may be related to the existence of a stable cluster in the energy region
−1/4 < e <∼ −0.097. This metastability is thus of dynamical rather than of thermodynamical origin.
Summarizing, the φ4 model has emphasized the striking appearence of a cluster and also dynamical differences

between microcanonical and canonical ensembles, presumably related to slow relaxation towards the final Boltzmann-
Gibbs equilibrium state; ensemble inequivalence appears only in a transient. Indeed, it has been recently reported
in spin systems [21], that true ensemble inequivalence occurs in regions of first order phase transitions. It would be
therefore very interesting to exhibit a dynamical mean field model of the polynomial class with a first order phase
transition. This is the purpose of the next section.

III. THE MEAN-FIELD φ6 MODEL

The simplest generalization of the previous model is

H =

N
∑

i=1

[

p2i
2

+ r
q2i
2

− q4i
4

+
q6i
6

]

− D

2N

N
∑

i,j=1

qiqj , (26)
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FIG. 5: Microcanonical results obtained using molecular dynamics simulations for the ferromagnetic φ4 model: θ = 0.5,
N = 104 and water bag initial conditions q0 = 1, wq = 10−4.

whereD and r are two independent parameters (also in this case it can be shown that this parametrization is minimal).
The main interest of model (26) lies in the fact that it may exhibit a first-order phase transition for a proper choice
of the parameters, and therefore possibly ensemble inequivalence. This can be realized by first considering the zero
temperature limit, where equilibrium states are given by the minima of the function

Veff =
r −D

2
x2 − x4

4
+
x6

6
. (27)

For 0 < r − D < 1/4, such polynomial admits three minima located at x = 0 and x = ±x+ and two maxima at
x = ±x− where

x2± =
1

2
± 1

2

√

1− 4(r −D) . (28)

A first-order transition can thus be expected within this parameter region. Furthermore, in order to have a first-order
phase transition at T = 0 we must impose that the two minima attain the same value (equal to zero). This conditions
holds for r − D = 3/16 and we can at least hope that close to this parameter values the transition persists also at
nonzero temperature. We checked that this is indeed the case by computing the free energy in a self-consistent way,
as explained in the previous section. The transition exists in a very narrow region below r −D = 3/16.
It is useful to consider the expansion up to sixth order of the Landau free energy of the φ6-model in order to

determine the critical line of second order transitions and the tricritical point. We obtain

βfL(x, β) =
x2

2βD
− ψ(x, β) = const.+

ax2

2
+
bx4

4
+
cx6

6
+O(x8) , (29)

where

a(β, r,D) =
1

βD
− 〈q2〉 , (30)

b(β, r,D) = −
(

〈q4〉 − 3〈q2〉2
)

6
, (31)

with

〈qm〉 =
∫

qm exp(−βV (q))dq
∫

exp(−βV (q))dq
. (32)

The numerical solution of a = 0 yields the critical line of second order transitions, see Fig. 6. The tricritical point,
separating first and second order phase transition, is determined by the more restrictive condition a = b = 0. Table I
presents some values of the tricritical point as a function of the parameter D.
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FIG. 6: Panel (a) shows the phase diagram of the φ6 model for different values of the coupling constant D. The solid
(respectively dashed) line marks the second (resp. first) order critical line, and the full dots the tricritical points. Panels (b)
present the Landau free energy at a first order transition close to the tricritical point Ttr and at a second order transition
occurring on the line a = 0, Tc = 0.205.

The canonical thermodynamics in the case of a first-order transition is further illustrated in Fig. 7. Three branches
of solutions (two stable and one unstable) exist from T = 0 up to T = T ′ where a saddle-node bifurcation occurs.
The m = 0 branch is stable at all temperatures, while the stable (upper branch in Fig. 7) and unstable (lower branch
in Fig. 7) m 6= 0 solutions meet and collide at T = T ′. Notice that this is at variance with the Blume-Emery-Griffiths
model [21] (BEG), where the three branches do not extend down to zero temperature.
We have performed some simulations in the canonical ensemble to check this caloric curve. The results are in

agreement with the theory and, as expected, display a marked metastability around the transition point (hysteretic
effects). More specifically, three different initial conditions were adopted: (i) all qi = 0 (ii) all qi = x+ (iii) random
distribution between qi = 0 and qi = x+. In all cases, the pi were initially chosen according to a random gaussian
distribution. Some microcanonical data are reported in Fig. 7 for an initial condition of type (ii).
A peculiarity of this model appears in some region of the parameters, when one considers the caloric curves. Indeed

one notes in Fig. 7a that the m = 0 line (full) crosses the magnetized curve (dashed) to the left of T ′, the temperature
corresponding to the saddle node bifurcation shown in Fig. 7b. This leads to the impossibility of applying the usual
Maxwell construction. However, this is not always the case and, for example, D = 1, r = 1.157 > rtr leads to the usual
features of a crossing to the right of T ′. This confirms that in the interval r ∈ [rtr, 1.157], the mean field φ6 model has
a narrow region of negative specific heat, where the transition will be first order in the canonical ensemble and second
order in the microcanonical. Unfortunately, the points near T ′ are extremely difficult to obtain because of numerical
inaccuracies, and we are therefore unable to report a clear determination of negative specific heat. In conclusion, this
model shows a scenario similar to the BEG model [21], in the case of a dynamical Hamiltonian. Meanwhile, similar
results have been published for some extensions of the HMF model [22].

IV. CONCLUSION

The Blume-Emery-Griffiths mean-field model was shown to be an excellent benchmark to discuss relations between
canonical and microcanonical ensembles in long range interacting systems [21]. Indeed, this model is exactly solvable
in both ensembles and is, at the same time, sufficiently rich to display such interesting features as negative specific heat
and temperature jumps in the microcanonical ensemble. However, it has no dynamics and only the thermodynamical
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FIG. 7: Thermodynamics of the φ6 model in the region of the first-order transition (r = 1.18, D = 1.0): Panel (a) presents the
caloric curve and panel (b) the magnetization as a function of the energy. The critical temperature is Tc = 0.0156 < Ttr. Data
obtained with microcanonical simulations, N = 1024 t = 1.25 106.

behavior can be investigated. This is why we need to study models that displays all these interesting thermodynamical
effects, but for which one would also dispose of an Hamiltonian dynamics. This point was already addressed in the
framework of the HMF model and in particular in its two-dimensional version (see [6] for a review). Having access to
dynamics, one can moreover study non equilibrium features.
The mean-field models that we have considered in this paper are exactly solvable in the canonical ensemble by

a Hubbard-Stratonovich transformation. The data in the microcanonical ensemble were obtained using molecular
dynamics simulations. We have shown that these models have first and second order phase transitions and tricritical
points. Their phase diagram allows to test the presence of ensemble inequivalence near canonical first order phase
transitions and we have also studied spontaneously generated out-of-equilibrium structures.
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