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Abstract

We extend a formula for the computation of the shape derivative of an integral
cost functional with respect to a class of convex domains, using the so called support
functions and gauge functions to express it. This is a priori a formula in shape opti-
mization theory. However, the result also happens to be an extension of a well known
formula from the Brunn-Minkowski theory of convex bodies.

1 Introduction

This work is a continuation of that undertaken in [2]. There, motivated by numerical ap-

plications in shape optimization, we proved a formula for the computation of the shape

derivative for an integral cost functional with respect to a class of convex domains, using

what is called support functions in convex analysis to express such a derivative. To be more

precise, let us define our set of admissible domains by

O = {Ω ⊂ Rn ; Ω is open, non empty, bounded and convex } ,

and let us consider the functional J defined on O by

J(Ω) =

∫
Ω

f dx (1)

where f is a fixed function defined in Rn. In [2], we proved the following :
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Theorem If Ω0,Ω ∈ O, Ω0 is of class C2 and the function f is in the Sobolev space
W 1,1
loc (Rn), that is, f is a locally integrable function whose distributional (or weak) partial

derivatives are also locally integrable in Rn, then, we have the following limits

lim
ε→0+

J((1− ε)Ω0 + εΩ)− J(Ω0)

ε
=

∫
∂Ω0

f(x) (PΩ(ν0(x))− PΩ0(ν0(x))) dσ(x), (2)

lim
ε→0+

J(Ω0 + εΩ)− J(Ω0)

ε
=

∫
∂Ω0

f(x)PΩ(ν0(x)) dσ(x), (3)

where ν0(x) denotes the exterior unit normal vector to ∂Ω0 at x, and PΩ0 , PΩ are the support
functions of the domains Ω0, Ω, respectively.

See Section 2 for the notion of support function of a convex set. This result was an
extension of a similar one proved by A. Niftiyev and Y. Gasimov in [1] under the assumptions
that Ω0,Ω ∈ O are of class C2 and the function f is of class C1, and where only the first limit
was considered. The theorem gives formulas for the computation of the shape derivative of
J with respect to convex domains, using the support functions of the domains to express it,
and our interest in such formulas came first from numerical considerations as we already said.
In fact, we believe that, in the context of convexity and numerical implementation in shape
optimization, the use of support functions is more advantageous than that of vectors fields.
For more details, we refer to [2] where we also gave an example of application. Note also
that, in the above statement, we used two deformations of Ω0. The first one, (1− ε)Ω0 + εΩ,
was the one considered by A. Niftiyev and Y. Gasimov and was suggested by the convexity
context and the applications considered in [1]. This is why we studied it first. Afterwards,
we discovered that a formula similar to (2) was known in the classical Brunn-Minkovski
theory of convex bodies since a long time for f = 1 and when one uses the usual deformation
Ω0 + εΩ of Ω0. See [9], [6] or [11], for example. This of course gave us a further motivation
to study such formulas.

In this paper, we consider again these formulas and extend them yet by removing the
assumption on the regularity of Ω0, that is, we establish the above formulas for all domains
in O. This is the main result of this work. Besides, as a byproduct of the proof, we obtain
other formulas that express the limits in question. We believe that they may be of interest in
numerical applications at least because they use an integration domain which is independent
of Ω0 and Ω (see Section 3). Now, let us give an idea on our method of proof. First of
all, we have not been able to extend the proof given in [2]. Even if we take again some
arguments from that paper (by the bye, not part (iii) of Lemma 8 which is false, see [3]), the
spirit is different. We begin by approximating both domains by smooth ones and then work
with the approximating sequences and use polar coordinates to transform the main integral.
The advantage in doing so is to let the integral depend on the sets only via their gauge
functions and only via a one-dimensional integral. By the way, this proof makes a heavy use
of gauge functions (see Section 2). To pass to the limit, the main issue is to obtain some
compactness. This is solved by means of some fine analysis of the gauge functions : Radon
measures, interpolation and BV functions. The result of all that is a limit which is expressed
as an integral on Sn−1 and the last step consists in performing a change of variables to obtain
an integral on ∂Ω0.

The outline of the paper is as follows. In Section 2, we recall some facts about convex
sets. In Section 3, we state the main result of the paper and also some corollaries. Section
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4 is devoted to the proof of the main result. The last section is an appendix where an
interpolation lemma is proved.

Thanks are due to Professor C. Kiselman for confirming us a result about the regularity
of the Minkowski sum of convex bodies.

2 Preliminaries

Let us recall briefly some notions and facts about convex sets that we shall use in the
sequel. For more details or proofs, we refer for example to [9], [4], [6], or [8].

We shall denote by C the set of closed convex bounded subsets of Rn.
Let us start by recalling the operations of addition and multiplication by non-negative

numbers in C. If A and B are in C and λ ≥ 0, then,

A+B = {x+ y; x ∈ A, y ∈ B}

and λA = {λx; x ∈ A}

are also in C. However, C is not a linear space.
Instead of it, C is a metric space if it is equipped with what is called the Hausdorff

distance dH . This is defined by

dH(A,B) = inf{δ; δ > 0, A ⊂ B +B(0, δ) and B ⊂ A+B(0, δ)},

where the notation B(x, r) is for the open ball with center x and radius r. One can indeed
show that dH is a distance on C. One can even show that, provided with the Hausdorff
distance, C is a complete metric space which is also locally compact.

If A ∈ C, we shall use its support function PA defined in Rn by

PA (x) = sup
y∈A

x.y ,

where x.y = xy denotes the standard scalar product in Rn. One can easily see that the
support function PA is continuous, convex and positively homogeneous of degree 1, that is,
PA (λx) = λPA (x) , λ > 0. Conversely, for each continuous convex positively homogeneous
function P on Rn, there exists a unique closed convex bounded set A, such that P = PA.
In fact, the set A ∈ C is reconstructed as a subdifferential of the function P at the origin
x = 0, that is,

A = ∂P (0) = {y ∈ Rn : P (x) ≥ x.y, ∀x ∈ Rn} .

Thus, we have a one-one correspondance between C and the set of all continuous convex
positively homogeneous functions P on Rn.

The support functions have other remarkable properties. For all A,B ∈ C and λ ≥ 0,
one can easily prove that

PA+B = PA + PB and PλA = λPA. (4)

An important formula that we shall need and which relates elements of C with their support
functions via the Hausdorff distance is the following :

sup
Sn−1

|PA − PB| = dH(A,B), A,B ∈ C. (5)
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We shall also use what is called the gauge or distance function. This is another function
which is associated to a convex set and characterizes it. Let U be an open convex bounded
subset of Rn that contains 0. Then, its gauge function is defined by

FU(x) = inf{t > 0 ; x ∈ tU}.

The following proposition summarizes the main properties of a gauge function.

Proposition 1 If U is an open convex bounded neighbourhood of 0, then, FU is a non
negative continuous convex positively homogeneous function of degree 1. More precisely, we
have the following properties :

(i) FU(0) = 0, FU(x) > 0, ∀x 6= 0.
(ii) FU(λx) = λFU(x), ∀λ > 0, ∀x ∈ Rn.
(iii) FU(x+ y) ≤ FU(x) + FU(y), ∀x, y ∈ Rn.
(iv) U = {x ∈ Rn; FU(x) < 1} and ∂U = {x ∈ Rn; FU(x) = 1}.
Conversely, any function F which satisfies (i), (ii) and (iii), is the gauge function of the

open convex set defined by U = {F < 1}.

Thus, when U is symmetric with respect to 0, FU is just the norm whose open unit ball is
U . For a proof of this proposition, we refer for example to [6].

One can also show that the regularity of U is equivalent to that of FU , that is, U is a Ck

domain if and only if FU is of class Ck in Rn\{0}. A proof of this fact is given in [2].
The analogue of (5) for gauge functions is merely an inequality and we shall need it. This

is

Proposition 2 If A and B are convex, compact and contain the ball B(0, r), r > 0, we
have the inequality

sup
Sn−1

|FA − FB| ≤
1

r2
dH(A,B). (6)

We shall also crucially need the following result which essentially says that one can
estimate derivatives of a gauge function by the function itself.

Proposition 3 Let U be an open convex bounded neighbourhood of 0 and FU its gauge
function. Then,

(i) ∇FU exists almost everywhere in Rn and in the sense of distributions and is in
L∞(Rn). More precisely, we have almost everywhere

|∇FU(x)| ≤
√
n sup
Sn−1

FU .

(ii) The second partial distributional derivatives of FU are Radon measures that we can
estimate for any bounded open subset D of Rn as follows :

|〈∂i∂jFU , ϕ〉| ≤ CD sup
D′
FU ‖ϕ‖L∞ , 1 ≤ i, j ≤ n ,

for all smooth functions φ with compact support in D (notation : ϕ ∈ D (D)), where the
constant CD depends only on the set D and D′ is a domain which is slightly larger than D.
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Proof : (i) By Rademacher’s theorem, it suffices to show that FU is a Lipschitz function
and to estimate the Lipschitz constant. By Proposition 1, we have

FU(x) = FU(x− y + y)] ≤ FU(x− y) + FU(y) ≤ |x− y| sup
Sn−1

FU + FU(y),

for all x, y ∈ Rn. This yields :

|FU(x)− FU(y)| ≤ C |x− y|, x, y ∈ Rn,

with C = supSn−1 FU , which implies the result.
(ii) It follows from the convexity of the function FU that its distributional hessian F ′′U is a

non negative Radon measure in Rn, that is, for all h ∈ Rn and all non negative ϕ ∈D (Rn),
we have

〈thF ′′Uh, ϕ〉 ≥ 0.

This extends the usual property that says that the hessian of a convex function of class C2 in
a non negative matrix. See [7], Theorem 2, page 239. Moreover, the norm on a compact set
of such a non negative Radon measure can be estimated simply by the value of the measure
on a test function χ which is 1 on the compact set, that is,

|〈thF ′′Uh, ϕ〉| ≤ 〈thF ′′Uh, χ〉 ‖ϕ‖L∞ , (7)

for all ϕ ∈D (Rn), supp(ϕ) ⊂ K, K is a compact set in Rn and χ ∈D (Rn), χ ≥ 0, χ = 1
on K. See [7], Corollary 1, page 53. Denoting by ei, 1 ≤ i ≤ n, the canonical basis vectors
of Rn, we can write ∂i∂jFU = (t(ei + ej)F

′′
U(ei + ej)−teiF ′′Uei −tejF ′′Uej) /2. Then, it follows

from (7) applied with K = D that

|〈∂i∂jFU , ϕ〉| ≤ 〈∂2
i FU + ∂i∂jFU + ∂2

jFU , χ〉 ‖ϕ‖L∞ = 〈FU , ∂2
i χ+ ∂i∂jχ+ ∂2

jχ〉 ‖ϕ‖L∞ ,

for all ϕ ∈D (D). Hence,

|〈∂i∂jFU , ϕ〉| ≤ CD sup
D′
FU ‖ϕ‖L∞ ,

with CD = ‖∂2
i χ+ ∂i∂jχ+ ∂2

jχ‖L1 .

3 Statement of the results

Recall that O is the set of non empty bounded convex open subsets of Rn. If Ω ∈ O, its
closure Ω is in C and its support function PΩ is well-defined. Since supy∈Ω xy = supy∈Ω xy
and in order to simplify, we shall use the notation PΩ instead of PΩ. We can now state the
main result of this paper. It concerns the derivative of the shape functional

J(Ω) =

∫
Ω

f dx (8)

and reads as follows.
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Theorem 1 For all f ∈ W 1,1
loc (Rn) and Ω0,Ω ∈ O, we have the limit

lim
t→0+

J(Ω0 + tΩ)− J(Ω0)

t
=

∫
∂Ω0

f(x)PΩ(ν0(x)) dσ(x), (9)

and, if Ω0 is a neighbourhood of 0, we also have

lim
t→0+

J(Ω0 + tΩ)− J(Ω0)

t
=

∫
Sn−1

f

(
ω

FΩ0(ω)

)
PΩ(∇FΩ0(ω))

dω

FΩ0(ω)n
, (10)

where ν0(x) denotes the exterior unit normal vector to ∂Ω0 at x, PΩ is the support function
of Ω and FΩ0 is the gauge function of Ω0.

Recall that, as a convex domain, Ω0 is a Lipschitz domain and this implies that ν0(x)
exists on ∂Ω0 almost everywhere with respect to the usual boundary measure.

Note also that in the above statement we consider only the limit with respect to the
standard deformation Ω0 + tΩ, the limit (2) being in fact considered in Corollary 2 below.
Instead, in Theorem 1, we have given two expressions for the limit. What happened is
that the method of proof gives first the second one (10) and the first one is then obtained
by a change of variables. Our opinion is that this (more or less) new expression may be
useful in numerical analysis, even if we have not yet tested it, because of the fixed domain of
integration and because of the dependance on the domains which occurs only via the support
and gauge functions.

The proof of Theorem 1 will be given in next section. Before, let us state and prove
two corollaries. The first one may also be regarded as an extension of it. This is the case
where the function f itself depends on the parameter t, a situation which is frequent in the
applications.

Corollary 1 Let Ω0,Ω ∈ O and let Ωt stands for Ω0 + tΩ, 0 ≤ t ≤ 1. Let ft, 0 ≤ t ≤ 1, be
a family of functions in L1

loc(Rn) such that f0 ∈ W 1,1
loc (Rn) and assume that the limit

g = lim
t→0+

ft − f0

t

exists in L1
loc(Rn) or, at least, in L1(D), where D is a bounded open set in Rn which contains

all the Ωt. Then, the (right) derivative at 0 of I(t) =
∫

Ωt
ft dx exists and is equal to

I ′(0) =

∫
Ω0

g(x) dx+

∫
∂Ω0

f0(x)PΩ(ν0(x)) dσ(x),

and, if Ω0 is a neighbourhood of 0, it is also equal to∫
Ω0

g(x) dx+

∫
Sn−1

f0

(
ω

FΩ0(ω)

)
PΩ(∇FΩ0(ω))

dω

FΩ0(ω)n
. (11)

Proof of Corollary 1 : The proof follows the same arguments as that of Corollary 1 of
[2], so we refer to it. Of course, to get (11), we have just to use the expression (10) instead
of (9) in the proof.

The second corollary concerns the case where one uses the deformation considered by [1],
that is, (1− t)Ω0 + tΩ, and treats at the same time the case where the function f depends
on the parameter t.
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Corollary 2 Let Ω0,Ω ∈ O and let Ωt stands for (1−t)Ω0+tΩ, 0 ≤ t ≤ 1. Let ft, 0 ≤ t ≤ 1,
be a family of functions in L1

loc(Rn) such that f0 ∈ W 1,1
loc (Rn) and assume that the limit

g = lim
t→0+

ft − f0

t

exists in L1
loc(Rn) or, at least, in L1(D), where D is a bounded open set in Rn which contains

all the Ωt. Then, the (right) derivative at 0 of I(t) =
∫

Ωt
ft dx exists and is equal to

I ′(0) =

∫
Ω0

g(x) dx+

∫
∂Ω0

f0(x) (PΩ(ν0(x))− PΩ0(ν0(x))) dσ(x),

and, if Ω0 is a neighbourhood of 0, it is also equal to∫
Ω0

g(x) dx+

∫
Sn−1

f0

(
ω

FΩ0(ω)

)
[PΩ(∇FΩ0(ω))− PΩ0(∇FΩ0(ω))]

dω

FΩ0(ω)n
. (12)

Proof of Corollary 2 : By the same argument as that used to prove Corollary 1, it is
sufficient to consider the case where ft = f0 does not depend on t.

We can write Ωt = (1 − t)(Ω0 + sΩ) with s = t/(1 − t), so that, by an obvious change
of variables,

J(Ωt)− J(Ω0)

t
=

1 + s

s

(∫
Ω0+sΩ

fs dx−
∫

Ω0

f0 dx

)
where fs(x) = f0

(
x

1 + s

)(
1

1 + s

)n
.

Now, as s→ 0, we have

fs − f0

s
−→ −nf0(x)− f ′0(x)x = −div(f0(x)x) in L1

loc.

Indeed, this follows from the application of the following more or less known lemma :

Lemma 1 Let (Φt)|t|≤ε0 be a family of C1 diffeomorphisms from Rn onto Rn such that
Φ0(x) = x and (t, x) 7→ Φt(x) and (t, y) 7→ Φ−1

t (y) are of class C1 in [−ε0, ε0] × Rn. Then,
for all f ∈ W 1,1

loc (Rn), the limit limt→0(f(Φt(x)) − f(x))/t exists in L1
loc(Rn) and is equal to

f ′(x). d
dt

Φt(x)|t=0.

For a proof of this lemma, see [5], Chapter 5. Then, applying Corollary 1 yields the formula

lim
t→0+

J(Ωt)− J(Ω0)

t
=

∫
∂Ω0

f0(x)PΩ(ν0(x)) dσ(x)−
∫

Ω0

div(f0(x)x) dx

=

∫
∂Ω0

f0(x)(PΩ(ν0(x))− PΩ0(ν0(x)) dσ(x),

where the last equality is obtained by applying the divergence formula and by noting that
x ν0(x) = PΩ0(ν0(x)). To get (12), one can for example apply the change of variables used
at the end of proof of Theorem 1 which transforms an integral on ∂Ω0 into an integral on
Sn−1 (see section 4).
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4 Proof of Theorem 1

Let f ∈ W 1,1
loc (Rn), Ω0,Ω ∈ O and let Ωt stands for Ω0 + tΩ where t ∈ [0, 1]. The proof relies

on an analysis using heavily the gauge functions of Ω0, Ω and Ωt which we shall denote by
F0, F and Ft respectively. This assumes that Ω0 and Ω are neighborhoods of 0, but this is
not a restriction of generality. Indeed, assume that Theorem 1 is proved in this case, then,
if a, b ∈ Rn, we have, by obvious changes of variables,

(J(a+ Ω0 + t(b+ Ω))− J(a+ Ω0))/t = (J(a+ tb+ Ωt)− J(a+ Ω0))/t

=
1

t

(∫
Ωt

f(a+ tb+ x) dx−
∫

Ω0

f(a+ x) dx

)
.

It follows then from Lemma 1 that

f(x+ a+ tb)− f(x+ a)

t
−→ f ′(x+ a).b = div(f(x+ a)b) in L1

loc(Rn)

as t→ 0+, and from Corollary 1 that

lim
t→0+

J(a+ Ω0 + t(b+ Ω)− J(a+ Ω0)

t
=

∫
∂Ω0

f(x+a)PΩ(ν0(x)) dσ(x)+

∫
Ω0

div(f(x+a)b)dx.

Now, it remains to apply the divergence formula to get

lim
t→0+

J(a+ Ω0 + t(b+ Ω)− J(a+ Ω0)

t
=

∫
∂Ω0

f(x+ a)PΩ(ν0(x)) dσ +

∫
∂Ω0

f(x+ a) b.ν0(x) dσ

=

∫
∂Ω0

f(x+ a)Pb+Ω(ν0(x)) dσ

=

∫
∂(a+Ω0)

f(x)Pb+Ω(νa+Ω0(x)) dσ,

where νa+Ω0 is the exterior unit normal vector to ∂(a+Ω0) at x, which establishes the formula
in the case where the domains are not necessarily neighbourhoods of 0.

The first idea in the actual proof of Theorem 1 is to compute the derivative of t 7→ Ft.
We shall see later on how this can be exploited. The proof uses part of the construction
made in [2] and we refer to it for more details.

Lemma 2 Assume that Ω0 and Ω are smooth and that Ω is strongly convex. Then, the
function (t, x) 7→ Ft(x) is smooth at least in [0, 1]× (Rn \ 0) and we have

d

dt
Ft(x) = −Ft(x)PΩ(∇Ft(x)),

where PΩ is the support function of Ω.

Proof : Under the assumptions of the lemma, it follows from the construction done in [2]
that, at least for small t, there exists a Lipschitz homeomorphism Φt : Rn → Rn which is
smooth away from 0 and such that Φt(Ω0) = Ωt. Moreover, Φt has the form Φt(x) = x+t a(x)
where a : Rn → Rn is homogeneous of degree 1. We remark here that even if the deformation
Ωt = Ω0 + tΩ is not exactly that used in [2], that is, Ωt = (1 − t)Ω0 + tΩ, the construction
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works as well with obvious modifications. It is then easy to see that Ft(x) = F0(Φ−1
t (x)).

Since x 7→ Φt(x) is a proper map (at least for small t), then (t, x) 7→ Φ−1
t (x) is continuous

and it is also smooth for small t and x 6= 0. Hence, (t, x) 7→ Ft(x) is also smooth and we can
compute the wanted derivative by using the identity F0(x) = Ft(Φt(x)). Indeed, taking the
derivative with respect to t of both members of this equality, we get

0 =

(
d

dt
Ft

)
(Φt(x)) +∇Ft(Φt(x))

d

dt
Φt(x) =

(
d

dt
Ft

)
(Φt(x)) +∇Ft(Φt(x)) a(x).

Hence,
d

dt
Ft(x) = −∇Ft(x) a(Φ−1

t (x)).

In particular, d
dt
Ft(x)|t=0 = −∇F0(x) a(x). Now, it follows from Lemma 1 of [2] that

PΩ(ν0(x)) = ν0(x) a(x) for all x ∈ ∂Ω0, where ν0 is the outward unit normal vector field
to Ω0. Since ν0(x) = ∇F0(x)/|∇F0(x)|, this implies

d

dt
Ft(x)|t=0 = −|∇F0(x)|PΩ(ν0(x)) = −PΩ(∇F0(x)), x ∈ ∂Ω0.

Now, if x 6= 0, then x/F0(x) is on ∂Ω0, and since x 7→ d
dt
Ft(x) is homogeneous of degree 1,

we obtain
d

dt
Ft(x)|t=0 = −F0(x)PΩ(∇F0(x)).

To get the formula for t > 0, note that Ωt+h = Ωt + hΩ by convexity of Ω (with h > 0), and
that Ωt is also smooth since Ω is strongly convex. Therefore, since Ft+h is obtained from Ft
like Ft is obtained from F0, we get

d

dt
Ft(x) =

d

dh
Ft+h(x)|h=0 = −Ft(x)PΩ(∇Ft(x)).

The next step is to remove the smoothness assumptions made on Ω0 and Ω in the above
lemma and it will be the longest and most important step in the proof of Theorem 1. This
is done by approximation.

Lemma 3 If Ω0,Ω ∈ O and are neighborhoods of 0, then, for all t ∈ [0, 1] and almost every
x ∈ Sn−1, we have

Ft(x)− F0(x) = −
∫ t

0

Fs(x)PΩ(∇Fs(x)) ds. (13)

Proof : It is a classical fact that one can approximate a convex body by smooth and strongly
convex ones in the sense of the Hausdorff distance dH . See for example [9] or [6]. So, let
(Ωk

0) and (Ωk) be sequences in O such that, for all k, Ωk
0 and Ωk are of class C2, and Ωk

is strongly convex, and such that dH(Ωk
0,Ω0) → 0 and dH(Ωk,Ω) → 0 as k → ∞. Let Ωk

t

stands for Ωk
0 + tΩk and let F k

0 , F k and F k
t denote the gauge functions of Ωk

0, Ωk and Ωk
t

respectively, t ∈ [0, 1]. It follows from Lemma 1 that, for all k ∈ N, t ∈ [0, 1] and x ∈ Rn, we
have

d

dt
F k
t (x) = −F k

t (x)PΩk(∇F k
t (x)),
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so that

F k
t (x)− F k

0 (x) = −
∫ t

0

F k
s (x)PΩk(∇F k

s (x)) ds. (14)

Of course, we wish to pass to the limit when k →∞ in this expression.
Let us first deal with the left hand side of (14). Note that it is easy to take all the sets

Ω0, Ω, Ωk
0, Ωk, Ωt and Ωk

t such that they contain the same (may be small) fixed ball B(0, r),
r > 0. Hence, it follows from (6), (5) and (4) that

sup
Sn−1

|F k
t −Ft| ≤

1

r2
dH(Ωk

t ,Ωt) =
1

r2
sup
Sn−1

|PΩk
t
−PΩt| ≤

1 + t

r2

(
dH(Ωk

0,Ω0) + dH(Ωk,Ω)
)
. (15)

This means that, when k → ∞, F k
t (x) converges to Ft(x) uniformly when (t, x) is in a

compact set. Thus, F k
t (x)− F k

0 (x) converges uniformly on compact sets to Ft(x)− F0(x).
The right hand side of (14) needs a finer and more elaborate analysis. We are concerned

with the convergence of the sequence of gradients (∇F k
t ) and the problem is that, a priori,

what is available is just some weak convergence and, in particular, the convergence in the
sense of distributions, a convergence which we can not compose with PΩk . However, by
exploiting the full strength of the convexity, we are going to highlight a quite satisfying
property of convergence for that sequence which will allow us to conclude.

In fact, let us show that the sequence (∇F k
t ) is relatively compact in the space E =

C([0, 1], L1(D)), where D is a large bounded domain which contains all the sets under study :
Ω0, Ω, Ωk

0, Ωk, Ωt and Ωk
t ; for example, D = B(0, R) with a large enough R. This will be

done by means of Ascoli-Arzela’s theorem. To begin, let us establish some uniform estimates.
First, applying (6), (5) and (4), we have the estimate

|F k
t1

(x)− F k
t2

(x)| ≤ |x|
r2
dH(Ωk

t1 ,Ω
k
t2) =

|x|
r2

sup
Sn−1

|PΩk
t1
− PΩk

t2
| = |x|

r2
|t1 − t2| sup

Sn−1

PΩk . (16)

Hence,

|F k
t1

(x)− F k
t2

(x)| ≤ |x|
r2
|t1 − t2| sup

Sn−1

PD , x ∈ Rn, t1, t2 ∈ [0, 1]. (17)

On the other hand, it follows from part (ii) of Proposition 2 that, for 1 ≤ i, j ≤ n,

|〈∂i∂j(F k
t1
− F k

t2
), ϕ〉| ≤ CD sup

D′
(F k

t1
+ F k

t2
)‖ϕ‖L∞ ≤ 2CD sup

D′
FB(0,r)‖ϕ‖L∞ ,

where D′ is slightly larger than D, so that,

|〈∂i∂j(F k
t1
− F k

t2
), ϕ〉| ≤ C ′D,r ‖ϕ‖L∞ , ϕ ∈D (D), t1, t2 ∈ [0, 1]. (18)

We need now the following interpolation lemma whose proof is postponed to the appendix.

Lemma 4 Let T be a tempered distribution in Rn which satisfies the estimates

|〈T, ϕ〉| ≤ C1 ‖ϕ‖L∞ ,

|〈∂i∂jT, ϕ〉| ≤ C2 ‖ϕ‖L∞ ,
for all ϕ ∈ D (Rn), 1 ≤ i, j ≤ n. Then, there exists a constant C which depends only on
the dimension n such that

|〈∂jT, ϕ〉| ≤ C
√
C1C2 ‖ϕ‖L∞ , ϕ ∈D (Rn), 1 ≤ j ≤ n.
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Obviously, (17) implies

|〈F k
t1
− F k

t2
, ϕ〉| ≤ C ′′D,r |t1 − t2| ‖ϕ‖L∞ , ϕ ∈D (D), t1, t2 ∈ [0, 1], (19)

and, of course, we would like to apply the above lemma to the tempered distribution F k
t1
−F k

t2
.

In fact, we apply it to T = ψ(F k
t1
− F k

t2
), where ψ ∈D (D′) is such that ψ = 1 on D and D′

is a domain slightly larger than D and, clearly, (19) and (18) also hold in D′. The result is
that we have, for all ϕ ∈D (D), t1, t2 ∈ [0, 1], 1 ≤ i ≤ n,

|〈∂i(F k
t1
− F k

t2
), ϕ〉| ≤ C(C ′D,rC

′′
D,r|t1 − t2|)1/2 ‖ϕ‖L∞ , (20)

from which we can deduce that∫
D

|∂i(F k
t1
− F k

t2
)|dx ≤ C ′|t1 − t2|1/2, t1, t2 ∈ [0, 1], 1 ≤ i ≤ n, (21)

where C ′ does not depend on k. Of course, (21) is a continuity estimate for ∇F k
t . More

precisely, it says that t 7→ ∇F k
t is Hölder continuous, and since the Hölder constant C ′ does

not depend on k, the sequence (∇F k
t ) is equicontinuous in E.

It remains to show that, for all t ∈ [0, 1], the sequence (∇F k
t ) is relatively compact in

L1(D). It follows from Proposition 2 that

‖∇F k
t ‖L1(D) ≤ meas(D) sup

Sn−1

F k
t ≤ meas(D) sup

Sn−1

FB(0,r) =
meas(D)

r
(22)

and that, for all ϕ ∈D (D), 1 ≤ i, j ≤ n,

|〈∂i∂jF k
t , ϕ〉| ≤ CD sup

D
F k
t ‖ϕ‖L∞ ≤ CD sup

D
FB(0,r) ‖ϕ‖L∞ =

C ′D
r
‖ϕ‖L∞ ,

which shows that the sequence (∇F k
t ) is bounded in the space BV (D) of functions of bounded

variation in D. It follows then from a well known result (see [7], Theorem 4, page 174) that
(∇F k

t ) is relatively compact in L1(D).
Now, by virtue of Ascoli-Arzela’s theorem, the sequence of functions (t, x) 7→ ∇F k

t (x) is
relatively compact in E. So, we can find a subsequence which is convergent to some Gt(x) in
E. Since we already know that, for all t, the sequence converges in the distributional sense
(in Rn) to ∇Ft, we deduce that Gt(x) = ∇Ft(x).

Finally, we are able to pass to the limit in the right hand side of (14). Indeed, we already
know that the factor F k

s (x) converges uniformly, say on [0, 1]×D, to Fs(x). As for the other
factor, we have

|PΩk(∇F k
s )− PΩ(∇Fs)| ≤ |(PΩk − PΩ)(∇F k

s )|+ |PΩ(∇F k
s )− PΩ(∇Fs)|

≤ |∇F k
s | dH(Ωk,Ω) + C |∇F k

s −∇Fs|

≤ 1

r
dH(Ωk,Ω) + C |∇F k

s −∇Fs|

which implies that, for all t ∈ [0, 1], when k →∞,∫ t

0

|PΩk(∇F k
s )− PΩ(∇Fs)| ds −→ 0

11



in L1(D) and hence, in L1(Sn−1) by homogeneity. We obtain in fine, for all t ∈ [0, 1] and
almost every x ∈ Sn−1,

Ft(x)− F0(x) = −
∫ t

0

Fs(x)PΩ(∇Fs(x)) ds. (23)

End of proof of Theorem 1 : We are concerned with the limit when t → 0+ of the
expression

It =
1

t

(∫
Ωt

f(x) dx−
∫

Ω0

f(x) dx

)
.

Using polar coordinates, we can write

It =
1

t

∫
Sn−1

∫ 1/Ft(ω)

0

f(%ω)%n−1d%dω − 1

t

∫
Sn−1

∫ 1/F0(ω)

0

f(%ω)%n−1d%dω =

∫
Sn−1

gt(ω)dω

where

gt(ω) =
1

t

∫ 1/Ft(ω)

1/F0(ω)

f(%ω)%n−1d%.

It follows from the assumption and Fubini’s theorem that % 7→ f(%ω)%n−1 is in W 1,1
loc (R)

(which is contained in C(R)) for a.e. ω ∈ Sn−1 and from the fundamental theorem of
calculus that

lim
h→0

1

h

∫ σ+h

σ

f(%ω)%n−1d% = f(σω)σn−1,

for a.e. ω ∈ Sn−1. The idea is to apply such a formula to gt(ω) which has a similar form. In
fact, one can write

gt(ω) =
F0(ω)− Ft(ω)

t

1

F0(ω)Ft(ω)

1

ht(ω)

∫ 1/Ft(ω)

1/F0(ω)

f(%ω)%n−1d%,

=
1

F0(ω)Ft(ω)

∫ 1

0

Fst(ω)PΩ(∇Fst(ω))ds
1

ht(ω)

∫ 1/Ft(ω)

1/F0(ω)

f(%ω)%n−1d%

where ht(ω) = 1
Ft(ω)

− 1
F0(ω)

and we have applied (13). Now, we would like to pass to the

limit when t → 0+ by using the Lebesgue’s dominated convergence theorem. Clearly, for
a.e. ω ∈ Sn−1, as t→ 0+, gt(ω) tends to(

1

F0(ω)

)2

F0(ω)PΩ(∇F0(ω)) f

(
ω

F0(ω)

)(
1

F0(ω)

)n−1

= PΩ(∇F0(ω)) f

(
ω

F0(ω)

)(
1

F0(ω)

)n
.

We have to say that for the factor
∫ 1

0
Fst(ω)PΩ(∇Fst(ω))ds the convergence holds may be

only for a sequence tj → 0+ because of the continuity of t 7→ ∇Ft with values in L1(Sn−1),
but this does not matter. As for the domination condition, we can check it as follows :

|gt(ω)| ≤ 1

t

∣∣∣∣ 1

Ft(ω)
− 1

F0(ω)

∣∣∣∣ sup
1

F0(ω)
≤%≤ 1

Ft(ω)

|f(%ω) %n−1| ≤ |Ft(ω)− F0(ω)|
t F0(ω)Ft(ω)

sup
α≤%≤β

|f(%ω) %n−1|,
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where α and β are positive constants. In fact, we have B(0, r) ⊂ Ωt ⊂ D for all t ∈ [0, 1],
so that 1

FB(0,r)
≤ 1

Ft
≤ 1

FD
, and we can take α = infSn−1 (1/FB(0,r)) and β = supSn−1 (1/FD).

Now, if we pass to the limit when k →∞ in (17), we get

|Ft(ω)− F0(ω)| ≤ t

r2
sup
Sn−1

PD , t ∈ [0, 1].

Hence,

|gt(ω)| ≤ β2

r2
sup
Sn−1

PD sup
α≤%≤β

|f(%ω) %n−1|.

It remains just to apply the following (well known) lemma whose proof is left to the reader :

Lemma 5 For all ϕ ∈ W 1,1
loc (R) and all bounded intervals I ⊂ R, we have

‖ϕ‖L∞(I) ≤
1

|I|

∫
I

|ϕ(t)| dt+

∫
I

|ϕ′(t)| dt,

where |I| is the length of I.

The application of this lemma yields

|gt(ω)| ≤ C
β2

r2
sup
Sn−1

PD

∫ β

α

(|f(%ω)|+ |∇f(%ω)|) %n−1 d%,

where the constant C only depends on (α, β). Since f ∈ W 1,1
loc (Rn), it follows from Fubini’s

theorem that the function ω 7→
∫ β
α

(|f(%ω)|+ |∇f(%ω)|) %n−1 d% is in L1(Sn−1). Therefore,
by Lebesgue’s theorem, we can conclude that

lim
t→0+

It =

∫
Sn−1

PΩ(∇F0(ω)) f

(
ω

F0(ω)

)
1

F0(ω)n
dω. (24)

The last step in the proof of Theorem 1 is to perform a change of variables to transform
the integral on Sn−1 into an integral on ∂Ω0. Consider the map Φ defined by Φ(0) = 0 and

Φ(x) =
F0(x)

|x|
x, x ∈ Rn, x 6= 0.

It is easy to check that it is a bi-Lipschitz homeomorphism from Rn onto itself whose inverse
Ψ is defined by Ψ(0) = 0 and

Ψ(y) =
|y|
F0(y)

y, y ∈ Rn, y 6= 0.

It is also clear that Φ(Ω0) = B(0, 1) and Φ(∂Ω0) = Sn−1. Let us denote by I0 the integral
given by (24) and let us perform the change of variables ω = Φ(x) in it. See for example [7]
or [12] for Lipschitz changes of variables. We get

I0 =

∫
∂Ω0

PΩ(∇F0(x)) f(x)
|x|n

F0(x)2n
JacT (Φ)(x) dσ(x),
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where JacT (Φ) is what is called the tangential Jacobian of Φ. It is defined by

JacT (Φ)(x) = |tΦ′(x)−1ν0(x)| |det(Φ′(x))|.

Recall that ν0(x) is the exterior unit normal vector to ∂Ω0 at x and that it is given a.e. on
∂Ω0 by ∇F0(x)/|∇F0(x)|. Now, let us compute this tangential Jacobian. First, note that
Φ′(x)−1 = Ψ′(y) with y = Φ(x); so, we have

tΦ′(x)−1 = tΨ′(y) =
|y|
F0(y)

Id+
1

|y|F0(y)
y ty − |y|

F0(y)2
∇F0(y) ty

and

tΦ′(x)−1ν0(x) =
|y|
F0(y)

ν0(x) +
1

|y|F0(y)
y ty ν0(x)− |y|

F0(y)2
∇F0(y) ty ν0(x)

=
|x|
F0(x)

ν0(x) +
1

|x|F0(x)
x tx ν0(x)− |x|

F0(x)2
∇F0(x) tx ν0(x)

=
|x|
F0(x)

ν0(x) +
1

|x||∇F0(x)|
x− |x|

F0(x)
ν0(x) =

1

|x||∇F0(x)|
x

since tx ν0(x) = tx∇F0(x)/|∇F0(x)| = F0(x)/|∇F0(x)|, thanks to Euler’s relation. Hence,

|tΦ′(x)−1ν0(x)| = 1

|∇F0(x)|
.

On the other hand, we have

det(Φ′(x)) = det

(
F0(x)

|x|
Id− F0(x)

|x|3
x tx+

1

|x|
x t∇F0(x)

)
=

(
F0(x)

|x|

)n
det

(
Id− x tx

|x|2
+
x t∇F0(x)

F0(x)

)
=

(
F0(x)

|x|

)n
det
(
Id+ x tz

)
where z = − x

|x|2 + ∇F0(x)
F0(x)

. Applying the more or less known formula

det
(
Id+ x tz

)
= 1 + tx z , (25)

we get

det(Φ′(x)) =

(
F0(x)

|x|

)n(
1−

tx x

|x|2
+

tx∇F0(x)

F0(x)

)
=

(
F0(x)

|x|

)n
.

Hence,

JacT (Φ)(x) =
F0(x)n

|∇F0(x)| |x|n
.

Finally,

I0 =

∫
∂Ω0

PΩ(∇F0(x)) f(x)
|x|n

F0(x)2n

F0(x)n

|∇F0(x)| |x|n
dσ(x) =

∫
∂Ω0

PΩ(ν0(x)) f(x) dσ(x),

since F0 = 1 on ∂Ω0, and this achieves the proof of Theorem 1.
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5 Appendix

Proof of Lemma 3 : We shall use the Fourier transformation F and denote by ξ the
variable which is dual to x, that is, in the Fourier side. We use both notations F (T ) and T̂
for the Fourier transform of T .

Let us first remark that, by density of D (Rn) in S (Rn), the estimates satisfied by T
and ∂i∂jT hold also for ϕ ∈ S (Rn). If λ is an arbitrary positive number, we can write,
using the Parseval-Plancherel formula,

〈∂jT, ϕ〉 = (2π)−n〈iξjT̂ , ϕ̂(−ξ)〉 = (2π)−n〈(λ+ λ−1ξ2)T̂ , (λ+ λ−1ξ2)−1iξjϕ̂(−ξ)〉
= −〈(λ− λ−1∆)T, (λ− λ−1∆)−1∂jϕ〉 = −λ〈T, Pλ(ϕ)〉+ λ−1〈∆T, Pλ(ϕ)〉

where ∆ is the Laplace operator and Pλ = (λ − λ−1∆)−1∂j. Then, it follows from the
assumptions that, for all ϕ ∈D (Rn),

|〈∂jT, ϕ〉| ≤ (λC1 + λ−1nC2)‖Pλ(ϕ)‖L∞ .

Assume for a moment that the operator Pλ satisfies the inequality

‖Pλ(ϕ)‖L∞ ≤ C3‖ϕ‖L∞ , (26)

for all ϕ ∈D (Rn), where C3 is a constant that depends only on the dimension n. We can
then finish the proof as follows. For all ϕ ∈D (Rn) and all λ > 0, we have the inequality

|〈∂jT, ϕ〉| ≤ (λC1 + λ−1nC2)C3 ‖ϕ‖L∞ .

Now, by taking the infimum on λ > 0, we obtain

|〈∂jT, ϕ〉| ≤ 2C3

√
nC1C2 ‖ϕ‖L∞ = C

√
C1C2 ‖ϕ‖L∞ .

It remains to show (26). In fact, we have

F (Pλ(ϕ))(ξ) = Ĝ(λ−1ξ)ϕ̂(ξ) with Ĝ(ξ) =
iξj

1 + ξ2
.

Since (see for example [10], page 132)

F −1

(
1

1 + ξ2

)
=

1

4π

∫ ∞
0

e−πx
2/te−t/4πt−n/2dt,

we have in fact

G(x) =
1

4π
∂xj

∫ ∞
0

e−πx
2/te−t/4πt−n/2dt =

1

4π

∫ ∞
0

e−πx
2/t

(
−2πxj

t

)
e−t/4πt−n/2dt.

Now, it is easy to see that G ∈ L1(Rn), and since we can write

Pλ(ϕ) = Gλ ? ϕ with Gλ(x) = λnG(λx),

it follows from young’s inequality that

‖Pλ(ϕ)‖L∞ ≤ ‖Gλ‖L1‖ϕ‖L∞ = ‖G‖L1‖ϕ‖L∞ = C3‖ϕ‖L∞ ,

which achieves the proof of Lemma 3.
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