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Abstract

We extend a formula for the computation of the shape derivative of an integral
cost functional with respect to a class of convex domains, using the so called support
functions and gauge functions to express it. This is a priori a formula in shape opti-
mization theory. However, the result also happens to be an extension of a well known
formula from the Brunn-Minkowski theory of convex bodies.

1 Introduction

This work is a continuation of that undertaken in [2]. There, motivated by numerical ap-
plications in shape optimization, we proved a formula for the computation of the shape
derivative for an integral cost functional with respect to a class of convex domains, using
what is called support functions in convex analysis to express such a derivative. To be more

precise, let us define our set of admissible domains by
O ={Q CR"; Qis open, non empty, bounded and convex },

and let us consider the functional J defined on O by
9@ = [ fdo 1)
Q

where f is a fixed function defined in R™. In [2], we proved the following :



Theorem If Qy,Q € O, Qq is of class C? and the function f is in the Sobolev space
WL (R™), that is, f is a locally integrable function whose distributional (or weak) partial

derivatives are also locally integrable in R™, then, we have the following limits

tig S =0 FTED ZIO) [y (pouy(a) - Poy(wo(e)) doe),  (2)

e—0t £ 900

i 0+ 2) = J() () Po(vo(z)) do(x), (3)

e—0t 15 00

where vy(x) denotes the exterior unit normal vector to 0€) at x, and Py, Po are the support
functions of the domains ), ), respectively.

See Section 2 for the notion of support function of a convex set. This result was an
extension of a similar one proved by A. Niftiyev and Y. Gasimov in [1] under the assumptions
that Qg, Q € O are of class C? and the function f is of class C!, and where only the first limit
was considered. The theorem gives formulas for the computation of the shape derivative of
J with respect to convex domains, using the support functions of the domains to express it,
and our interest in such formulas came first from numerical considerations as we already said.
In fact, we believe that, in the context of convexity and numerical implementation in shape
optimization, the use of support functions is more advantageous than that of vectors fields.
For more details, we refer to [2] where we also gave an example of application. Note also
that, in the above statement, we used two deformations of €y. The first one, (1 —&)Q +£€2,
was the one considered by A. Niftiyev and Y. Gasimov and was suggested by the convexity
context and the applications considered in [1]. This is why we studied it first. Afterwards,
we discovered that a formula similar to (2) was known in the classical Brunn-Minkovski
theory of convex bodies since a long time for f = 1 and when one uses the usual deformation
Qo + 2 of Q. See [9], [6] or [11], for example. This of course gave us a further motivation
to study such formulas.

In this paper, we consider again these formulas and extend them yet by removing the
assumption on the regularity of €2y, that is, we establish the above formulas for all domains
in O. This is the main result of this work. Besides, as a byproduct of the proof, we obtain
other formulas that express the limits in question. We believe that they may be of interest in
numerical applications at least because they use an integration domain which is independent
of Qp and 2 (see Section 3). Now, let us give an idea on our method of proof. First of
all, we have not been able to extend the proof given in [2]. Even if we take again some
arguments from that paper (by the bye, not part (iiz) of Lemma 8 which is false, see [3]), the
spirit is different. We begin by approximating both domains by smooth ones and then work
with the approximating sequences and use polar coordinates to transform the main integral.
The advantage in doing so is to let the integral depend on the sets only via their gauge
functions and only via a one-dimensional integral. By the way, this proof makes a heavy use
of gauge functions (see Section 2). To pass to the limit, the main issue is to obtain some
compactness. This is solved by means of some fine analysis of the gauge functions : Radon
measures, interpolation and BV functions. The result of all that is a limit which is expressed
as an integral on S™~! and the last step consists in performing a change of variables to obtain
an integral on 0€).

The outline of the paper is as follows. In Section 2, we recall some facts about convex
sets. In Section 3, we state the main result of the paper and also some corollaries. Section



4 is devoted to the proof of the main result. The last section is an appendix where an
interpolation lemma is proved.

Thanks are due to Professor C. Kiselman for confirming us a result about the regularity
of the Minkowski sum of convex bodies.

2 Preliminaries

Let us recall briefly some notions and facts about convex sets that we shall use in the
sequel. For more details or proofs, we refer for example to [9], [4], [6], or [8].

We shall denote by C the set of closed convex bounded subsets of R"™.

Let us start by recalling the operations of addition and multiplication by non-negative
numbers in C. If A and B are in C and A\ > 0, then,

A+B={zx+y, x€ A, ye B}

and AA = {)\z; x € A}

are also in C. However, C is not a linear space.
Instead of it, C is a metric space if it is equipped with what is called the Hausdorff
distance d. This is defined by

d”(A,B) =inf{6; § >0, AC B+ B(0,0) and B C A+ B(0,6)},

where the notation B(z,r) is for the open ball with center x and radius . One can indeed
show that d is a distance on C. One can even show that, provided with the Hausdorff
distance, C is a complete metric space which is also locally compact.

If A € C, we shall use its support function P, defined in R™ by

Py () = sup 2.y,
yeA

where z.y = zy denotes the standard scalar product in R™. One can easily see that the
support function P, is continuous, convex and positively homogeneous of degree 1, that is,
Pa(Az) = APs(x), A > 0. Conversely, for each continuous convex positively homogeneous
function P on R", there exists a unique closed convex bounded set A, such that P = P4,.
In fact, the set A € C is reconstructed as a subdifferential of the function P at the origin
x = 0, that is,

A=0P(0)={yeR": P(z) > 2.y, Vo € R"}.

Thus, we have a one-one correspondance between C and the set of all continuous convex
positively homogeneous functions P on R".

The support functions have other remarkable properties. For all A, B € C and A > 0,
one can easily prove that

PA+B:PA+PB and Pya = AP, (4)

An important formula that we shall need and which relates elements of C with their support
functions via the Hausdorff distance is the following :

sup |Py — Pg| = d"(A,B), A, BeC. (5)
Sn—1



We shall also use what is called the gauge or distance function. This is another function
which is associated to a convex set and characterizes it. Let U be an open convex bounded
subset of R™ that contains 0. Then, its gauge function is defined by

Fy(xz) =inf{t > 0; x € tU}.
The following proposition summarizes the main properties of a gauge function.

Proposition 1 If U is an open convex bounded neighbourhood of 0, then, Fy is a non
negative continuous convex positively homogeneous function of degree 1. More precisely, we
have the following properties :

(1) Fy(0)=0, Fy(x)>0, Vo#£0.

(17) Fy(Ax) = AFy(x), YA>0, VreR™

(iti) Fy(x +vy) < Fy(x)+ Fy(y), Yo,y € R™

(iv) U={xeR™ Fy(z) <1} and OU = {xz € R"; Fy(x) = 1}.

Conversely, any function F' which satisfies (i), (i) and (iii), is the gauge function of the
open convex set defined by U = {F' < 1}.

Thus, when U is symmetric with respect to 0, Fy is just the norm whose open unit ball is
U. For a proof of this proposition, we refer for example to [6].

One can also show that the regularity of U is equivalent to that of Fy;, that is, U is a C*
domain if and only if Fys is of class C* in R™\{0}. A proof of this fact is given in [2].

The analogue of (5) for gauge functions is merely an inequality and we shall need it. This
is

Proposition 2 If A and B are convex, compact and contain the ball B(0,7), r > 0, we
have the inequality
1
sup |Fa — Fp| < — d" (A, B). (6)
Sn—1 T
We shall also crucially need the following result which essentially says that one can
estimate derivatives of a gauge function by the function itself.

Proposition 3 Let U be an open convex bounded neighbourhood of 0 and Fy; its gauge
function. Then,

(1) VFy exists almost everywhere in R" and in the sense of distributions and is in
L*>*(R™). More precisely, we have almost everywhere

|VFy(x)| < v/n sup Fy .
Sn—1

(11) The second partial distributional derivatives of Fy; are Radon measures that we can
estimate for any bounded open subset D of R™ as follows :

’<aiajFU>90>‘ SCD SupFUHQDHL"O’ 1§i7j§n’
D/

for all smooth functions ¢ with compact support in D (notation : ¢ € Z/(D)), where the
constant C'p depends only on the set D and D’ is a domain which is slightly larger than D.



Proof : (i) By Rademacher’s theorem, it suffices to show that Fy is a Lipschitz function
and to estimate the Lipschitz constant. By Proposition 1, we have

Fy(z) = Fy(z —y +y)] < Fy(r —y) + Fu(y) < |z -y sup Fyy + Fu(y),
Snf

for all x,y € R™. This yields :
[Fu(z) = Fu(y)| < Cle—yl, =,y eR",

with C' = supgn-1 Fy, which implies the result.
(i7) It follows from the convexity of the function Fy; that its distributional hessian F is a
non negative Radon measure in R”, that is, for all A € R™ and all non negative ¢ € Z/(R"),

we have
(*hFgh, ) > 0.

This extends the usual property that says that the hessian of a convex function of class C? in
a non negative matrix. See [7], Theorem 2, page 239. Moreover, the norm on a compact set
of such a non negative Radon measure can be estimated simply by the value of the measure
on a test function y which is 1 on the compact set, that is,

[("hEGh, @) < (hEGh,x) ol , (7)

for all p € Z/(R™), supp(p) C K, K is a compact set in R® and xy € Z(R"), x >0, xy =1
on K. See [7], Corollary 1, page 53. Denoting by e;, 1 < i < n, the canonical basis vectors
of R", we can write 9;0;Fy = ({e; + ¢;) Fyj(ei + e;) —'eiFyie; —'ejFyie;) /2. Then, it follows
from (7) applied with K = D that

(00 Fu, )| < (07 Fy + 0i0;Fy + 03 Fuy, X) |@lle = (Fu, 97 x + 8:05x + 93x) el 1o,
for all p € &/(D). Hence,

(00,0, )| < Co supF ¢l

with Cp = [|02x + 8;0;x + 0%x|| 1. .

3 Statement of the results

Recall that O is the set of non empty bounded convex open subsets of R". If 2 € O, its
closure 2 is in C and its support function Pg is well-defined. Since SUDyeq LY = SUD,cq TY
and in order to simplify, we shall use the notation F, instead of Py. We can now state the
main result of this paper. It concerns the derivative of the shape functional

1@) = [ o ®)

and reads as follows.



Theorem 1 For all f € W,2!(R") and Q, 2 € O, we have the limit

iy TEEEIZIE) [ ) Poua(o)) doa), o
—0 800

and, if £y is a neighbourhood of 0, we also have

lim J(Qo +tQ2) — J(Q) :/ f(
gn-1

t—0t+ t

)%WRMMH#%W, (10)

FQO (w)

where vy(z) denotes the exterior unit normal vector to 0€)y at x, Py is the support function
of Q) and Fy,, is the gauge function of ).

Recall that, as a convex domain, {2y is a Lipschitz domain and this implies that vy(x)
exists on 0y almost everywhere with respect to the usual boundary measure.

Note also that in the above statement we consider only the limit with respect to the
standard deformation g + ¢€2, the limit (2) being in fact considered in Corollary 2 below.
Instead, in Theorem 1, we have given two expressions for the limit. What happened is
that the method of proof gives first the second one (10) and the first one is then obtained
by a change of variables. Our opinion is that this (more or less) new expression may be
useful in numerical analysis, even if we have not yet tested it, because of the fixed domain of
integration and because of the dependance on the domains which occurs only via the support
and gauge functions.

The proof of Theorem 1 will be given in next section. Before, let us state and prove
two corollaries. The first one may also be regarded as an extension of it. This is the case
where the function f itself depends on the parameter ¢, a situation which is frequent in the
applications.

Corollary 1 Let 0,2 € O and let €; stands for Qy+tQ, 0 <t < 1. Let f;, 0 <t <1, be
a family of functions in L}, (R") such that fo € W' (R") and assume that the limit

loc

o

t—0+ t

L (R™) or, at least, in L'(D), where D is a bounded open set in R" which contains
all the €. Then, the (right) derivative at 0 of I(t) = th firdx exists and is equal to

exists in L}

I'(O):/Q g(x)dx + ., fo(z) Po(vo(x)) do(x),

and, if Qy is a neighbourhood of 0, it is also equal to

g@ drt [ o ) Pa(VFa () (11)
% g1\ o (w) Fo,(w)

Proof of Corollary 1 : The proof follows the same arguments as that of Corollary 1 of
2], so we refer to it. Of course, to get (11), we have just to use the expression (10) instead
of (9) in the proof. u

The second corollary concerns the case where one uses the deformation considered by [1],
that is, (1 — ¢)Qo + t€2, and treats at the same time the case where the function f depends
on the parameter ¢.



Corollary 2 Let Q, Q2 € O and let €, stands for (1—1)Q+t2,0 <t < 1. Let f;, 0 <t <1,
be a family of functions in L}, (R") such that f, € W,>!(R") and assume that the limit

)
oc

exists in L}, (R™) or, at least, in L'(D), where D is a bounded open set in R" which contains

all the Q. Then, the (right) derivative at 0 of I(t) = th fidx exists and is equal to

I'(O)Z/Q g(x)dx + o Jo(x) (Pa(n(x)) = Po,(v(x))) do(x),

and, if §y is a neighbourhood of 0, it is also equal to

/Q 0 g(x) dz + /S fo(%) [Po(VEqy(w) = Pay(VFo, (w))] Fﬂj&)n. (12)

Proof of Corollary 2 : By the same argument as that used to prove Corollary 1, it is
sufficient to consider the case where f; = fy does not depend on t.

We can write Q; = (1 —1)(Q + sQ) with s = t/(1 — t), so that, by an obvious change
of variables,

J(Q) = J() 1+ _ x 1 \"
! I (meﬂdz_[%hda Wmmf*w_ﬂ«ﬁ+s>(l+s)'

Now, as s — 0, we have

fs_f(l

S

— —nfo(z) — fi(x)r = —div(fo(z)z) in L,
Indeed, this follows from the application of the following more or less known lemma :

Lemma 1 Let (®;)y<., be a family of C diffeomorphisms from R™ onto R™ such that
Oo(z) = x and (t,x) — ®(x) and (t,y) — ®; ' (y) are of class C* in [—eg, €g] x R™. Then,
for all f € WoH(R™), the limit lim; ,o(f(®;(z)) — f(x))/t exists in L}, (R™) and is equal to
f'(@)- 5 Pe()]i=o-

For a proof of this lemma, see [5], Chapter 5. Then, applying Corollary 1 yields the formula

Tin J<Qt>;J(QO) _ Fol@) Po(wo(@)) do(z) — / div(fo(z)z) do
—0 800 Q0
_ / fol@) (Pa(vo()) — Pay (volx)) do (),
00

where the last equality is obtained by applying the divergence formula and by noting that
x () = Po,(vo(z)). To get (12), one can for example apply the change of variables used
at the end of proof of Theorem 1 which transforms an integral on 02y into an integral on
S (see section 4). u



4 Proof of Theorem 1

Let [ € VVli)Cl(R"), Q0,2 € O and let € stands for Qy + 2 where t € [0, 1]. The proof relies
on an analysis using heavily the gauge functions of €2, 2 and €2; which we shall denote by
Fy, F and F; respectively. This assumes that €2y and €2 are neighborhoods of 0, but this is
not a restriction of generality. Indeed, assume that Theorem 1 is proved in this case, then,

if a,b € R™, we have, by obvious changes of variables,

(J(a+Q+tb+ Q) —J(a+Q))/t = (J(a+tb+ Q) — J(a+Q))/t

:%( fla+th+x)dx — f(a—f—x)dw)-
Q

Qo
It follows then from Lemma 1 that

flx+a+1tb)— f(zr+a)
t

— f(x+a).b=div(f(zr +a)b) in L, (R")

as t — 0T, and from Corollary 1 that

Qo +t(b+ Q) — Q
lim 20O+ = Tat D) [P e(a)) da(x)+/ div(f(a+a)b)da.
t—0+ t BIoN Qo
Now, it remains to apply the divergence formula to get

Q Q) — Q
lim Ja+ S+ 1(b+) = J(a+ Q) = f(xz + a)Po(v(x)) do + f(x+a)buy(x)do
t—0+ t 800 800

= f(@+ a)Pora(vo(x)) do
o

_ / F(@) Prra(vasa, (1)) do,
9(a+Q0)

where v, g, is the exterior unit normal vector to d(a+€)) at z, which establishes the formula
in the case where the domains are not necessarily neighbourhoods of 0.

The first idea in the actual proof of Theorem 1 is to compute the derivative of t — Fj.
We shall see later on how this can be exploited. The proof uses part of the construction
made in [2] and we refer to it for more details.

Lemma 2 Assume that €y and §2 are smooth and that () is strongly convex. Then, the
function (t,z) — Fy(x) is smooth at least in [0,1] x (R™\ 0) and we have
d

%Ft(m) = —F(2) Po(VF(z)),

where Pq, is the support function of 2.

Proof : Under the assumptions of the lemma, it follows from the construction done in [2]
that, at least for small ¢, there exists a Lipschitz homeomorphism ®; : R” — R"™ which is
smooth away from 0 and such that ®,(€Qg) = ;. Moreover, ®; has the form ®,(z) = z+t a(z)
where a : R®™ — R" is homogeneous of degree 1. We remark here that even if the deformation
0y = Qo + tQ is not exactly that used in [2], that is, ; = (1 — t)Q + €2, the construction

8



works as well with obvious modifications. It is then easy to see that Fy(z) = Fy(®; ' (x)).
Since x ++ ®,(x) is a proper map (at least for small ), then (,2) — ®;'(x) is continuous
and it is also smooth for small ¢ and x # 0. Hence, (¢, x) — Fi(z) is also smooth and we can
compute the wanted derivative by using the identity Fy(z) = F(P4(x)). Indeed, taking the
derivative with respect to ¢t of both members of this equality, we get

0= (%F) (D4(2)) + vm(@(a:»%@t(x) = (%F> (®i(2)) + VE(Pi(x)) afz).
Hence, p
EFt(:c) = —VF(z)a(®; ' (x)).
In particular, £F(z)li=0 = —VFy(z)a(x). Now, it follows from Lemma 1 of [2] that

Po(vo(z)) = vo(z)a(x) for all x € 09y, where vy is the outward unit normal vector field
to Q. Since vy(x) = VFy(z)/|VFo(z)|, this implies

d

EFt(x”t:O = —|VFy(z)| Pa(w(x)) = —Pa(VEy(z)), x € 9.

Now, if z # 0, then z/Fy(x) is on 9y, and since z — £ F(x) is homogeneous of degree 1,
we obtain

d
aFt(ﬂmt:O = —Fy(2) Po(VEFy(x)).

To get the formula for ¢t > 0, note that €y, = ; + hQ2 by convexity of Q (with A > 0), and
that €2; is also smooth since € is strongly convex. Therefore, since F},, is obtained from F}
like F; is obtained from Fj, we get

%Ft(x) - %th(x”ho = —Fi(2) Po(VE(2)).

The next step is to remove the smoothness assumptions made on {2y and €2 in the above
lemma and it will be the longest and most important step in the proof of Theorem 1. This
is done by approximation.

Lemma 3 If Qy, Q) € O and are neighborhoods of 0, then, for all t € [0, 1] and almost every
x € S ! we have

Fy(x) — Fox) = - / Fy(2) Po(V () ds. (13)

Proof : It is a classical fact that one can approximate a convex body by smooth and strongly
convex ones in the sense of the Hausdorff distance d. See for example [9] or [6]. So, let
() and (£2%) be sequences in O such that, for all k, QF and QF are of class C?, and QF
is strongly convex, and such that d*(QF, Qg) — 0 and d”(Q%, Q) — 0 as k — oo. Let QF
stands for QF + tQF and let F}, F* and F} denote the gauge functions of Qf, Q% and QF
respectively, ¢t € [0, 1]. Tt follows from Lemma 1 that, for all k € N, t € [0,1] and x € R", we

have d
%Ftk(m) = —Ftk(x)PQk(VFtk(:E)),



so that
Fi@) = Fi(@) = = | P Pw(FS @) ds (14)

Of course, we wish to pass to the limit when k& — oo in this expression.

Let us first deal with the left hand side of (14). Note that it is easy to take all the sets
O, Q, QF, OF Q, and QF such that they contain the same (may be small) fixed ball B(0,r),
r > 0. Hence, it follows from (6), (5) and (4) that

_ 1 1+t
sup | FF—F)| < —dH(fo,Q )= 735 [Pog—Po,| < %(dﬂ(@fg,@o) +d"(OF, Q)). (15)

Sn—1

This means that, when & — oo, FF(x) converges to Fi(z) uniformly when (¢,z) is in a
compact set. Thus, FF(z) — F}(z) converges uniformly on compact sets to Fy(z) — Fy(x).

The right hand side of (14) needs a finer and more elaborate analysis. We are concerned
with the convergence of the sequence of gradients (VFF) and the problem is that, a priori,
what is available is just some weak convergence and, in particular, the convergence in the
sense of distributions, a convergence which we can not compose with Por. However, by
exploiting the full strength of the convexity, we are going to highlight a quite satisfying
property of convergence for that sequence which will allow us to conclude.

In fact, let us show that the sequence (VE}F) is relatively compact in the space E =
C([0,1], L*(D)), where D is a large bounded domain which contains all the sets under study :
Do, Q, QF, OF O, and QF; for example, D = B(0, R) with a large enough R. This will be
done by means of Ascoli-Arzela’s theorem. To begin, let us establish some uniform estimates.
First, applying (6), (5) and (4), we have the estimate

x
|F£(I) ( )< = | | dH(Qfl,sz) u sup |PQk — PQk | = | | |t1 —752|§up1 Por . (16)

Hence,
|Ff (z) — FE(2)] < % |t1 — to] S}Ll_pl Pp, x€R" t,ty €[0,1]. (17)
On the other hand, it follows from part (i7) of Proposition 2 that, for 1 < 1,5 < n,
00,(F; = FE). )] < Cosup(Fs + F)llellu= < 200 sup Fion el

where D’ is slightly larger than D, so that,
(0:0;(F); = Fy,), o)l < Cp, Mgl w € D(D), ti,tz € [0,1]. (18)
We need now the following interpolation lemma whose proof is postponed to the appendix.
Lemma 4 Let T be a tempered distribution in R™ which satisfies the estimates
(T o) < Crllellze

(00, T, )| < Ca [l ,

for all p € Z/(R"), 1 < i,5 < n. Then, there exists a constant C which depends only on
the dimension n such that

(O;T, )| < CVC1Chllpllr~, ¢ € DR, 1<j<n,

10



Obviously, (17) implies
(EE = FL o) < Cp It = tal @l s ¢ € D(D), th,ts €[0,1], (19)

and, of course, we would like to apply the above lemma to the tempered distribution Ft'i —Ft’;.
In fact, we apply it to T' = ¢(FF — F}), where ¢y € &/(D’) is such that ¢» = 1 on D and D’
is a domain slightly larger than D and, clearly, (19) and (18) also hold in D’. The result is
that we have, for all p € Z/(D), t1,ty € [0,1], 1 <i < n,

(O(F, — F,), @) < C(Ch, Ch,lt = 1) ol (20)

from which we can deduce that

/ 0:(FF — Ff)|de < Oty — |2, t1,t2 €[0,1], 1 <i <, (21)

where C’ does not depend on k. Of course, (21) is a continuity estimate for VEF. More
precisely, it says that t — VEF is Holder continuous, and since the Holder constant C” does
not depend on k, the sequence (VFF) is equicontinuous in E.

It remains to show that, for all ¢t € [0,1], the sequence (VFF) is relatively compact in
LY (D). Tt follows from Proposition 2 that

meas(D)

IV ES || 21(py < meas(D) sup Ff < meas(D) sup Fp,) = ———— (22)
Sn—1 Sn—1 T
and that, for all p € (D), 1 <1i,j < n,
C/

(0,0;F}, )] < Cp S%thk lellzee < Cp Slll)PFB(o,r) lollpe = =2 ||90||L°°

which shows that the sequence (VFF) is bounded in the space BV (D) of functions of bounded
variation in D. It follows then from a well known result (see [7], Theorem 4, page 174) that
(VEF) is relatively compact in LY(D).

Now, by virtue of Ascoli-Arzela’s theorem, the sequence of functions (¢,z) — VEF(z) is
relatively compact in E. So, we can find a subsequence which is convergent to some Gy(x) in
E. Since we already know that, for all ¢, the sequence converges in the distributional sense
(in R") to VF;, we deduce that Gy(z) = VE(z).

Finally, we are able to pass to the limit in the right hand side of (14). Indeed, we already
know that the factor F¥(x) converges uniformly, say on [0,1] x D, to F,(z). As for the other
factor, we have

|Por(VES) = Pa(VE)| < [(Por = Pa)(VES)| + | Pa(VES) = Pa(VE))
< |VFFd?(QF Q)+ C|VEF — VF,|
< %dH(W,ﬁ) +C|VFF —VE,|

which implies that, for all ¢ € [0, 1], when k£ — oo,
t
/ | Por (VFF) — Po(VF,)|ds — 0
0

11



in L'(D) and hence, in L'(S™!) by homogeneity. We obtain in fine, for all ¢ € [0,1] and
almost every x € S™ 1,

Fi(z) — Fo(x) = —/0 Fy(x)Po(VFy(z))ds. (23)

End of proof of Theorem 1 : We are concerned with the limit when ¢ — 07 of the

expression
1

Ii=+ ( | f@)de— | f(@) da:) .

Using polar coordinates, we can write

1 1/Fy(w) . 1 1/Fp(w) .
I, = _/ / flow)o™ “dodw — —/ / flow)o™ “dodw :/ gt (w)dw
t Sn—1 0 t Sn—1 0 Sn—1

where

1 1/Fy(w) .

gr(w) = ;/ flow)o™  do.
1/Fo(w)

It follows from the assumption and Fubini’s theorem that o — f(ow)e" ! is in I/Vlicl (R)

(which is contained in C'(R)) for a.e. w € S™ ! and from the fundamental theorem of

calculus that
5 1
hlg(l) h

o+h
/ Flow)e™"do = f(ow)o™ ™,

for a.e. w € S"7'. The idea is to apply such a formula to g;(w) which has a similar form. In
fact, one can write

Fo(w) — Fy(w) 1 1 /I/Ft(w) n-1
gilw) = flow)e"™ " do,
() t Fo(w)Fi(w) he(w) J1/pyw) (o)
b [ FopaEaes o [ st
= — | Fu(w)Po(VFEy(w ds—/ ow)e" do
Fy(w)Fi(w) Jo ' ' hi(w) 1/Fo(w)
where hy(w) = ﬁ - m and we have applied (13). Now, we would like to pass to the

limit when ¢ — 0" by using the Lebesgue’s dominated convergence theorem. Clearly, for
ae. we S ast — 0", g(w) tends to

(i) Pomorens (555) (i) - (585) ()

We have to say that for the factor fol Fy(w)Po(VFs(w))ds the convergence holds may be
only for a sequence t; — 07 because of the continuity of ¢ — VF; with values in L*(S™™1),
but this does not matter. As for the domination condition, we can check it as follows :

1 1

1
9 < ¢ | 775 -

| Fi(w) — Fo(w)] n—1
Fw) Fow) sup |f(ow) 0",

n—1 < 0
sup [ f(ew) 0" < t Fo(w)Fy(w)  a<e<p

_1 _1
Fo@) SOSF ()

12



where o and B are positive constants. In fact, we have B(0,r) C Q, C D for all ¢ € [0, 1],

so that FB(Or) < I}% < F , and we can take o = infgn-1 (1/Fp(o,) and S = supgn-1 (1/FDp).

Now, if we pass to the limit when k& — oo in (17), we get

t
| Fi(w) — Fo(w)] <—§gQPD, te[0,1].

Hence,
2

B
l9:(w)| < — 7 S Pp sup |[f(ow)o
a<p<p

n— 1|‘

[t remains just to apply the following (well known) lemma whose proof is left to the reader :

Lemma 5 For all o € W,"'(R) and all bounded intervals I C R, we have

loc

1
lellm < o7 / o(t)] dt + / ()] dt.
I I

where |I| is the length of I.

The application of this lemma yields

2

8
|g:(w)| < C% sup PD/ (1f(ew)] + [V few)]) ¢" " do,

where the constant C' only depends on (a, B). Since f € W,oH(R™), it follows from Fubini’s

theorem that the function w f (1f(ow)| + |V f(ow)]) 0"t do is in L}(S™™1). Therefore,
by Lebesgue’s theorem, we can conclude that

lim 7, = /S  Pa(VEw)) f( F()‘E’w)) " (l)n dw. (24)

The last step in the proof of Theorem 1 is to perform a change of variables to transform
the integral on S"~! into an integral on 9€). Consider the map ® defined by ®(0) = 0 and

Folz)
]

O(x) = x, xe€R"x#0.

It is easy to check that it is a bi-Lipschitz homeomorphism from R" onto itself whose inverse
U is defined by ¥(0) = 0 and

ly|
(y) = R™ 0.
(y) Row Y eR", y #

It is also clear that ®(£) = B(0,1) and ®(9€) = S™~!. Let us denote by I, the integral
given by (24) and let us perform the change of variables w = ®(x) in it. See for example [7]
or [12] for Lipschitz changes of variables. We get

[

I = /a  Pa(VR() J(0) g s e (9)(2) (),

13



where Jacr(®) is what is called the tangential Jacobian of ®. It is defined by
Jacr(®)(x) = ['®'(2) " o ()] [det(®'(x))].

Recall that vy(x) is the exterior unit normal vector to 9§y at x and that it is given a.e. on
00 by VFy(z)/|VFy(z)|. Now, let us compute this tangential Jacobian. First, note that
P'(z)~t = V'(y) with y = ®(x); so, we have

1
V(o) = ) = Ty - Ry

- Fly) Y| Fo(y) Fo(y)
and
t/—lyx:kylyx 1 tyx—|y| ty o (2
()" wo(x) F?(l’/) o(z) + |y|Ff(y)Z/ yvo(z) F0|(y|)2 VFy(y) "y vo(z)
— Fole) vo(x) 25 ) x'rvy(x) — Fo(a)? VEy(z) 'z vy(x)

T — wr)= —————=
FAVR@ T R@ Y T RVAD)
since 'z vy(x) = ' VFy(x)/|VEy(2)| = Fo(z)/|VFy(x)|, thanks to Euler’s relation. Hence,

tw/ fly )| = 1

On the other hand, we have

F Fi 1
det(®'(z)) = det <(|)7(T) Id— |(;(|‘§) xtr + ] 2V Fy(x)
Fo(x))n < zlx xtVFo(x)> (Fg(x))n .
det | Id — + = det (Id+z"z
("F oF * Rl o ) et ()
where z = —ﬁ + VFI;‘EJ(:)"). Applying the more or less known formula
det (ld+z'z) =1+ 'z z, (25)
we get
Fo(z)\" trx 'z VEF(x) Fo(x)\"
det(d'(2)) = 1— = :
i) =(57) (-5 R B
Hence,
Fo(z)"
Jacp(®)(x) = ——————.
@) = SR@IRE
Finally,

_ . . |x|™ Fo(z)™ () — L ot
Iy = / Pa(VF)) F(0) (o oo T ©7) / Pa(vo(e)) f(x) do(x).

since Fy = 1 on 0§, and this achieves the proof of Theorem 1. [ ]
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5 Appendix

Proof of Lemma 3 : We shall use the Fourier transformation .7 and denote by & the
variable which is dual to z, that is, in the Fourier side. We use both notations .7 (T') and T'
for the Fourier transform of 7.

Let us first remark that, by density of &7 (R") in .%(R"), the estimates satisfied by T'
and 9;0,T hold also for ¢ € Z(R"). If \ is an arbitrary positive number, we can write,
using the Parseval-Plancherel formula,

OiT, ) = (2m)™i&T, 3(—€)) = 2m) (A + A71E)T, (A + A71e2)hig; 5(—¢€))
= —((A=ATA)T, (A= XTTA)T1050) = —NT, Pa(g)) + A AT, PA(¢))

where A is the Laplace operator and Py = (A — A"*A)719;. Then, it follows from the
assumptions that, for all p € &7 (R"),

{OiT, @) < (ACL + A™'nCo) || PA(9)| o=
Assume for a moment that the operator P, satisfies the inequality
[1PA() [ < Cslle] Lo, (26)

for all ¢ € &7 (R"), where Cj3 is a constant that depends only on the dimension n. We can
then finish the proof as follows. For all p € &7 (R") and all A > 0, we have the inequality

(0T, )| < (AC1 + A"'nC2)Cy ||| oo
Now, by taking the infimum on A > 0, we obtain

(0;T, )| < 2C3/nC1Cs ||@]|Le = C/C1Cy ||l -

It remains to show (26). In fact, we have

i&;
1+&

FPA@)(€) = GATOB(E) with G(¢) =

Since (see for example [10], page 132)

!7771 ( 1 2) _ i /OO efﬂxQ/teft/47rtfn/2dt’
14+¢ 4 Jo

we have in fact

1 - 1 [~ I
G(LE) = 4— axj / efﬂxQ/teft/ﬁlﬁt*n/Zdt — 4_ / efﬂmz/t (_ WQ}]) eft/477t*n/2dt'
T 0 T Jo ¢

Now, it is easy to see that G € L'(R"), and since we can write
P\(p) =Grxp with Gy(z) = \"G(\x),
it follows from young’s inequality that
[PA(@)lle < IGallerllplle = Gl ll@lle = Csllel] e,

which achieves the proof of Lemma 3. (]

15



References

1]

2]

[11]

[12]

Niftiyev, A.A.; Gasimov Y.S. Control by boundaries and eigenvalue problems with vari-
able domains, Publishing House of Baku State University, (in Russian), 2004.

Boulkhemair, A.; Chakib, A., On a shape derivative formula with respect to convex
domains, Journal of Convex Analysis, Volume 21 (2014), No. 1, 67-87.

Boulkhemair, A.; Chakib, A., Erratum : On a shape derivative formula with respect to
convex domains, submitted to Journal of Convex Analysis.

Demyanov, V.P.; Rubinov, A.M., Bases of non-smooth analysis and quasi-differential
calculus, Nauka, Moscow, (in Russian), 1990.

Henrot, A.; Pierre, M., Variation et optimisation de formes. Une analyse géométrique,
Mathematics and Applications, 48, Springer, Berlin, 2005.

Hormander, L., Notions of convexity, Progress in Mathematics, 127. Birkhauser Boston,
Inc., Boston, MA, 1994.

Evans, L.; Gariepy, R., Measure theory and fine properties of functions, CRC Press,
1992.

Webster, L., Convexity, Oxford Science Publications, 1994.

Schneider, R., Convexr bodies : The Brunn-Minkowsk: theory, Cambridge University
Press, 1993.

Stein, E. M., Singular integrals and differentiability properties of functions, Princeton
University Press, 1970.

Burago, Y.D., Zalgaller, V.A., Geometric inequalities, Transl. by A.B. Sossinsky,
Springer-Verlag, 1988.

Droniou, J., Quelques Résultats sur les Espaces de Sobolev, Polycopié de ’Ecole Doc-
torale de Maths-Info de Marseille, (in french), 2001, available at

http://users.monash.edu.au/ jdroniou/travaux-en.html#publisautres

16



