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Abstract

Several previous clinical or preclinical studies using computerized texture analysis
of MR Images have demonstrated much more clinical discrimination than visual
image analysis by the radiologist. In muscular dystrophy, a discriminating power has
been already demonstrated with various methods of texture analysis of magnetic
resonance images (MRI-TA). Unfortunately, a scale gap exists between the spatial
resolutions of histological and MR images making a direct correlation impossible.
Furthermore, the effect of the various histological modifications on the grey level
of each pixel is complex and cannot be easily analyzed. Consequently, clinicians will
not accept the use of MRI-TA in routine practice if TA remains a “black box” without
clinical correspondence at a tissue level. A goal therefore of the multicenter European
COST action MYO-MRI is to optimize MRI-TA methods in muscular dystrophy and to
elucidate the histological meaning of MRI textures.
Review
Several methods of image post-processing have been developed for Texture Analysis of

Magnetic Resonance images (MRI-TA) and have already demonstrated stimulating re-

sults in a large range of pre-clinical or clinical applications [1]; MRI-TA usually pro-

vides much more clinical discrimination than visual analysis of MR images by the

radiologist [2]; visual analysis (about 100 grey level can be discriminated) is ten times

less sensitive to fine and local grey level changes than computer analysis (about 1000

grey level by using computer detection). There is presently no well-established consensus

concerning the limits of texture visual perception but it is clear that texture represented

by higher orders statistics can only be discriminated by computerized image analysis.

In normal versus dystrophic muscles, a discriminating power at an early stage and

during disease evolution has been demonstrated with various MRI-TA methods: some

MRI texture parameters in healthy or diseased skeletal muscle have previously been

related to fat infiltration [3,4] to the loss of orientation of muscle fibers [3], to the dis-

turbance of perimysium [3], to the mean size of necrotic and regeneration foci [5], to

the proportion of oxidative myofibers [5], to the endomysal fibrosis [5] and collagen

content [4] or to the heterogeneity of myofiber size [5].
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Unfortunately, a scale gap exists between the spatial resolutions of histological and

MR images making a direct correlation impossible. Furthermore, the effect of the vari-

ous histological modifications on the grey level of each pixel is complex and cannot be

easily analyzed. Consequently, clinicians will not accept the use of MRI-TA in routine

practice if TA remains a “black box” without clinical correspondence at a tissue level.

The goal of this paper is then to try and present an early analysis of MRI-TA in relation

to histological changes. Golden Retriever Muscular Dystrophy (GRMD) is the only ani-

mal model with relevance to human Duchenne muscular dystrophy (DMD): it has been

selected for MRI-TA tests under the auspices of the European COST action MYO-MRI

aiming to optimize TA methods and to try to elucidate the histological meaning of

MRI textures.
Perception of visual textures

To Rosentholtz [6] a visual texture is the consequence of the reflection of a surface that

leads to variations of the light that reaches our eyes. Typically these variations are con-

sidered a visual texture when they create a visual stimulus defined by repeated patterns.

They can be regular (textiles, brick walls, honeycomb), random (forest floor) or in be-

tween (wood grain) [7]. Although a human observer has the ability to recognize tex-

tures with multiple properties, it is often difficult to define them. In fact the ability to

recognize textures is a very important part of the visual system recognition mechanism.

Moreover, the visual system easily performs the perceptual organization (definition of

different regions, objects and structures of an image) using multiple visual cues. Tex-

ture similarity plays an important role on defining this segmentation process [8,9]. The

earlier work on texture perception of Julesz [10] considers that human observers could

only discriminate textures which differ on the first and second-order pixels statistics.

However, Julesz himself later opposed that conjecture [11] and considered that some

third [12] or forth [13] order pixel statistics could also be discriminated.

Sufficiently rich statistical models can capture texture structures up to a certain level.

In fact, the most recent models of texture analysis are based on multiscale filtering

models rather than higher-order pixels statistics [14], suggesting that the local pro-

cesses used by human observers to compare textures might be more appropriate for

texture detection [15]. As an example, Heeger and Bergen [16] defined a descriptor

based on first order statistics of the outputs of multiscale filters, either with or without

orientation. This work was extended by Portilla and Simoncelli [17] by adding second

order statistics (joint statistics) of the multi scale responses. The successor of this

model demonstrates that a multidimensional set of image statistics results in the cap-

ture of texture information that might be lost on the visual representation.

These theories all try to do texture segmentation with similar mechanisms to those

that exist in the early vision. However, according to Rosenholtz [6] the visual system

identifies texture boundaries in an intelligent way, not in the early vision system.

Hence, texture identification is the result of statistical differences. The perception of

different textures can be the result of different mean texture orientations, or because of

the orientation variances. The perception of two different textures with the same mean

and variance becomes typically difficult for human observers. This can happen for in-

stance if one of the textures is unimodal and the other is bimodal [18]. This limitation
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results from the fact that texture segmentation involves local statistics instead of global

statistics [19]. Tests using significance differences in mean orientation, mean contrast,

orientation variance, and contrast variance reveal that the observers could define differ-

ent regions. Rosenholtz even suggests that the human brain might have a mechanism

comparable to a statistical test when defining a texture boundary. In fact the human brain

might perform an earlier preprocessing of the information similar to the preprocessing of

the texture image using a set of proper of multiscale filters. However, this processing step

shall be complemented with sufficiently rich statistical models that provide the informa-

tion for the detection of different textures and to define the image structure.
The “scale gap” between histology and MRI

Spatial resolution in MRI is limited by the NMR signal intensity depending on the

number of detectable nuclear spins N(H) into the voxel, the magnetic field B0 and the

number of excitations NEX. Increasing the voxel size decreases the texture information

into the image; fortunately, as muscle fibers are longitudinally oriented in skeletal mus-

cles, 2D-MRI slice thickness can be increased without drastic loss of in-plane informa-

tion when MRI is performed in the transverse plane with reference to the muscle fibers

orientation. However, in 3D MRI-TA the voxel has to be isometric. The signal to noise

ratio (SNR) increases with the static magnetic field with the relation SNR = f(B0
3/2);

however to increase B0 also increases the number of artifacts such as the susceptibility

artifact. SNR also depends on NEX with the relation SNR = f(NEX1/2). Therefore the

optimization of the SNR can only be a compromise between these different parameters;

for instance, if we increase B0, we increase SNR but the longitudinal relaxation time T1

is longer and then the repetition time TR has to be increased and NEX has to be de-

creased for the same total acquisition time. This subtle compromise between B0 field,

voxel size and NEX has presently induced an increase of the B0 field of the marketed

MRI devices up to 3T in clinical routine and 4 to 8 Tesla in research; the in-plane reso-

lution is usually around 1mm2 in clinical routine and up to a few hundred μm2 in

research. For instance, previous muscle 2D MRI-TA studies have used rather similar voxel

sizes: the pixel size was 0.8 × 0.8 mm2 with a slice thickness of 3 mm [20] or 6 mm [21] at

1.5T, or 0.7 × 0.7 mm2 with a slice thickness of 4 mm at 3T [22]. For the only one previous

study on muscle 3D MRI-TA, the voxel size was 1mm × 1mm × 1mm [23]. Therefore in

order to increase spatial resolution and contrast-to-noise ratio, MRI devices are often

selected with a high magnetic field strength though field cycling experiments have

demonstrated that the T1 contrast between different tissues usually decreases from 1

to 100 MHz. However, if the T1 contrast between muscle and fat mainly determines

the MRI texture, then it has been demonstrated that there is a better result at high

field as shown in Table 1.

There remains a large scale gap between MRI and histology, even when using a high

field MRI device, because the resolution of MRI in routine practice cannot be suffi-

ciently increased.
Table 1 Frequency dependence of T1 contrast between muscle and fat (calculated from
the ex-vivo data collected by P.A.Bottomley et al. [24])

NMR frequency 20 MHz 40 MHz 60 MHZ 80 MHz 100 MHz

T1 contrast: (muscle-fat)/muscle 0.50 0.60 0.68 0.70 0.74
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What MRI factors dictate the pixel grey level?

Several tissue NMR parameters determine the grey level in each voxel: the spin–lattice

relaxation time T1, the spin-spin relaxation time T2, the spin density N(H) and the spin

displacements (flow and diffusion). For instance, in the classical spin-echo (SE) pulse

sequence, the MRI signal intensity I for solid tissues is given by:

I ¼ f kνο
1=3N Hð Þ 1 – e‐TR=T1

� �
e‐TE=T2

h i

where:

k is a parameter related to the MRI device

νο is the resonance frequency, varying from around 20 MHz (low field MRI devices)

to around 90 MHz in current routine clinical usage and up to 350 MHz in pre-clinical

and clinical research.

TR is the repetition time between two pulse sequences (i.e. the time for relaxing spin

system).

TE is the echo time.

What are the values of T1 and T2 in human skeletal muscle and what is their

frequency dependence? Mean T1 and T2 data collected from 13 MRI units clearly

demonstrate a highly different field dependence between T1 and T2 measured in-vivo

(Table 2). This in-vivo T1 field dependence is rather similar to the theoretical fits calcu-

lated from ex-vivo data by Fischer, Bottomley or Escanye (for review, see [25]).

Research conducted over the last forty years has shown that the T1 and T2 variations

are related to the ratio between lipids and bound or free water in the tissues. Protons

presenting very short relaxation times (for instance protons from proteins or from

highly bound water) do not contribute to the MRI signal. Each one of these parameters

is specifically more sensitive to some tissue modifications at a molecular level: for in-

stance, fibrosis, corresponding to an increase of collagen fibers with an increase of asso-

ciated bound water, decreases the T2; an oedema resulting from an increase of free

water induces a T1 increase, etc. These specific effects of histological changes on T1,

T2 and N(H) are not always in the same direction inducing a global result also depend-

ing on the amount of each histological variation; a previous study correlating quantita-

tive histology with ex-vivo relaxometry in human lung tumours has clearly illustrated

the difficulty in discussing NMR parameters with respect to histology [27].

Furthermore, the speed of exchange between bound and free water determines if

there is a mean relaxation time or two or more separately detectable relaxation times:

in healthy muscle, it has been established that two spin-spin relaxation times can be

separately identified expressing a slow exchange between different water phases [28,29].
Table 2 T1 and T2 frequency dependence of human skeletal muscle in-vivo measured on
13 MRI units after correction resulting from a preliminary quality assessment using
Eurospin TO5 test object [26]

NMR frequency 4.3 MHz 11.9 MHz 21 MHz 63 MHz

Number of in-vivo measurements 70 12 330 162

Mean T1 (ms) 223 +/− 31 557 +/− 26 557 +/− 41 1183 +/− 136

Mean T2 (ms) 34 +/− 3 42 +/− 2 34 +/− 4 33 +/− 5
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All these considerations clearly demonstrate that the interpretation of voxel grey level

is highly complex and must be prudently related to histological changes. The challenge

is therefore to develop a pulse sequence potentially able to differentiate histological

changes [30].
What texture parameters are mainly used in MR images analysis?

The first-order features are based only on the distribution of pixel grey levels and do

not consider the relationships between neighboring pixels. They could contain some

useful information in terms of tissue differentiation. They provide knowledge on the most

frequent and the least frequently occurring grey levels, on the concentration of the grey

levels around their average, or on the degree of asymmetry in their distribution.

When a MR image is suspected to contain a plurality of strips or beam-like struc-

tures, a method for its texture characterization seems to be the run-length matrix-

based approach [31] (Figure 1 left). In such a method, the parameters are determined

by the presence, the length, and the orientation of pixel runs (strings), composed of

pixels with quite similar grey levels. With a certain adjustment of the method, it is pos-

sible to obtain the parameters that enhance (or not) a particular orientation of pixel

runs (horizontal, vertical, or oblique, with θ = 45° or θ = 135°). It is also possible to de-

cide which differences in pixel grey levels within a single run are to be ignored. The

run-length matrix-based features could emphasize the incidence of relatively short (or

relatively long) runs, measure the non-uniformity of grey levels (or run lengths), or give

the information about the fraction of image in runs.

Very important information could also be extracted with the co-occurrence matrix-

based method [32] (Figure 1, right). This method analyses the co-occurrences of pairs

of pixels, spaced apart a specified distance, d, and aligned with a given direction, θ. All

the possible signed differences in grey levels of pixels are considered. A similar method,

based on grey-level difference matrices [33], considers only the unsigned differences.

With a properly chosen distance for pixel pairs (the parameter d of both methods) one
Figure 1 Illustration of the pixel relationship considered by the Run-length matrix approach (left)
and the Cooccurrence matrix method (right).
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can obtain the features sensitive to the presence or absence of different image elements

(primitives). If certain texture structures appear in the image, or change their size, with

the disease development, the features based on the pixel grey level difference matrices will

also change (if the distance parameter, d, is constant). If two textures are characterized by

different co-occurrence matrix-based parameters, it could be highly probable, that they

correspond to different stages of the disease. As the parameter d depends on the image

scale and the size of texture primitives, it is worthwhile to fix it experimentally.

Several texture parameters can be derived from the co-occurrence matrix with a

given pair of parameters: (d,θ). Among them it is worth mentioning: energy or angular

second moment (a measure of homogeneity of pixel grey levels, relatively high for

homogeneous textures, and of small values for heterogeneous ones), contrast or inertia

(with a quite large value for heterogeneous regions, characterized by a strong contrast,

and quite small value for homogeneous regions), local homogeneity, and entropy (that

quantifies the degree of randomness of pixel grey levels).

The ripples can also be extracted with a method based on image transformations

using the Laws’ filters. During the transformation, each image pixel is assigned a value

that is a linear combination of initial grey levels of pixels belonging to the neighbor-

hood of a transformed pixel. Typically neighborhoods of 3 × 3 or 5 × 5 pixels are con-

sidered. Weights of grey levels of neighboring pixels are determined by one of the

Laws’ masks. The masks are designed in order to detect different texture elements: rip-

ples, edges, spots… The frequency rate of such elements determines the feature values

calculated from the transformed image.

Another group of features, that could be used to indicate the presence of edges are

those derived from the gradient matrices [34]. The grey-level gradient at a given image

point depends on the differences between the grey levels of its neighboring pixels,

located on lines (vertical and horizontal) intersecting at a point. The gradient matrix

contains the values of the absolute gradient at each point of the image region consid-

ered. Based on the gradient matrix several first order statistics can be calculated. Apart

of being edge-sensitive, such statistics allow us to draw conclusions about the uniform-

ity (homogeneity) or the roughness of the texture. These latter texture properties are

closely related to changes in the muscular tissue that occur during the development of

the disease.

Moments, either continuous or discrete, rely on a very rich theory and encompass a

wide family (Legendre, Zernike, Tchebichef, Racah, etc. [35]). They have been used in a

large variety of problems including segmentation, pattern recognition, image recon-

struction, watermarking. Although not often applied to texture analysis, they offer

several interesting and unique properties among which their applicability to high

dimensional space, their capability to capture low and high frequency components

according to the selected order and the possibility to deal with noise and blurring.

They not only allow the analysis of images but also allow the reconstruction of

them using the computed moment values and thus permit the identification of the

information they captured. Moment invariants to geometric transform (translation,

rotation, scale) can be derived too [36,37] with a good stability to non-rigid and

small local deformations.

Combining texture descriptors is a way to improve their discriminative power and

can offer a tool to characterize a lesion.
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Previous results in muscle MRI-TA

Sikio et al. [20] used co-occurrence matrix parameters on T2 weighted images such as

the angular second moment, the inverse difference moment, the entropy and the differ-

ence entropy to describe the muscle tissue structure and the effect of different types of

exercise. By mean of the Mann–Whitney statistical test, the study revealed exercise-

load-associated differences in MRI textures of thigh soft tissues between various athlete

groups and non-athletes. For each muscle of the thigh, each texture parameter was

considered individually and the non-athletes group was compared to each of the five

groups of athletes. The result showed that large variation in tests significance were ob-

served depending on the muscle, the texture parameter used and the comparison per-

formed. The authors did not show how the texture parameters evolve for athletes when

compared to the non-athletes one, however they related the changes in texture descrip-

tors to the change of the muscle architecture according to the type of exercise as well

as the type of the muscle.

In the same way, Nketiah et al. [38] have detected texture differences in MRI of hip

muscles associated with different level of long term exercise loading in female athletes

(jumpers) and controls.

In pathological cases, texture analysis of MRI data can be a valuable tool to monitor

the changes that occur to the muscle tissue. For instance, Skoch et al. [21] were inter-

ested in the classification of calf muscle of patients with different pathology. They

scanned 93 volunteers (20 healthy and 73 with three types of pathology) and extracted

texture parameters from T1 weighted images using MaZda software [39]. For dimen-

sionality reduction, the author used Principal Component Analysis (PCA) to extract a

group of features that best characterized each muscle. The projection on the two first

principal components showed that no difference existed between control groups and

healthy ones with hypertonic parents. In opposition, the healthy group and the patients

with diabetes mellitus group could be linearly separated. Considering that different

pathology had different impact on the muscle appearance, four groups scored by radiol-

ogists were created: 1) muscles without any visible signs of pathology, 2) muscles with

mild pathological or nonspecific changes, 3) muscles with marked pathological or nonspe-

cific changes such as apparent muscle atrophy or fat infiltration, 4) muscles with severe

pathological changes or muscles almost complete replacement by fat. The projection of

the different muscle on the two main axis of the PCA showed that the 4th muscle group is

well separated from the others and PCA should be performed in subgroups 1, 2 and 3 to

obtain better discrimination between muscles with moderate infiltration. The results ob-

tained in the paper suggested that TA can be used as an objective tool for MR images

evaluation and the results correlated well with the clinical status of patients.

Following almost the same scheme, a study carried out by Herlidou et al. [2] com-

pared TA techniques to the assessment of several radiologists, on a set of data obtained

from patients with muscular dystrophy and healthy volunteers. The texture descriptors

such as histogram, co-occurrence matrix, gradient matrix and run length matrix, were

extracted from T1 weighted images. In parallel, the radiologists were asked to characterize

each ROI by rating the contrast, the texture coarseness, the texture complexity, the

strength and the fat infiltration. The analysis of the texture parameters was achieved using

Correspondence Factorial Analysis (CFA) resulting in an healthy and patient volunteer

automatical classification with sensitivity of 70% and specificity of 86%. Visual inspection
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by radiologists that were blinded to clinical information provided less accurate classifica-

tion (sensitivity of 56% and specificity of 71%). In addition to that, very significant differ-

ences were observed between the radiologist’s assessments of texture features. Besides a

large intra-observer variability was noted. All these studies confirm that TA can offer an

objective and reliable tool for tissue characterization though the interpretation of the data

still remains speculative. This is why the MYO-MRI European COST action recently has

started a multicentre study based on a data set of MR images of Golden Retriever Muscu-

lar Dystrophy (GRMD) dogs.
Histological changes during the GRMD course

Duchenne Muscular Dystrophy (DMD) is a human muscular disease caused by muta-

tions in dystrophin genes and characterized by a progressive muscle atrophy and weak-

ness. GRMD dog is the commonly used animal model of human DMD with similar

clinical and pathological disease evolution [40]. Necrosis, inflammation, fat infiltration

and fibrosis progressively occur. The histological expression of the disease follows the

clinical evolution up to death [41] (Figure 2).

From birth to 3 months of age, GRMD skeletal muscles displayed hypercontracted

and degenerating isolated fibers [42]. Up to 3 months, these fibers are rather low in

number, specially in extensor muscles, and are associated with many large clusters of

regenerating fibers. After this first regenerative period, another period begins from

about 3 to 6 months of age and is marked by a dramatic increase in the number of de-

generating necrotic fibers, sometimes appearing in clusters [43,44]. This degenerative

phase is associated with a low regenerative activity [45]. At this stage, skeletal muscle

tissue displays early evidences of endomysial oedema and mild fibrosis with some min-

imal to mild infiltration by inflammatory cells. The last period begins from 6 months of

age, and is a rather slow evolution period. Degeneration and regeneration still occurs at

a lower level and intensity of fibrosis and fat tissue infiltration progressively increases [46]

although some authors do not confirm this result. Scattered calcification foci may be

present but their frequency strongly differs between GRMD dogs. When present, these

mineral deposits elicit a strong local inflammatory response (Table 3). Clinically a dra-

matic decrease of muscular functions is observed from about 2 to 6 months of age corre-

sponding to the tissue degenerative period and precedes a period of paradoxical stability

during the next months until some major digestive or respiratory complications occurs.
How histological changes during GRMD disease modify NMR parameters?

As the histological variations (inflammation, fibrosis, necrosis, fat infiltration…) do not

modify relaxation times in the same way, in the same proportion and at the same time,

the final result (i.e. the pixel grey level) is rather difficult to be strictly interpreted in

terms of histology, especially when two simultaneous tissue changes modify a relax-

ation time in opposite directions.

During GRMD disease evolution, T1 is first increased due to an increase of muscle

free water concentration related to muscle degeneration-regeneration and inflamma-

tion. Later T1 decreases in relation to fibrosis and fat infiltration. T2 is longer in nec-

rotic but also in fatty and connective tissue. Therefore the distinction between necrosis,

fat infiltration or fibrosis cannot be easily performed. As the dystrophic process results



Figure 2 Typical histopathological presentation of skeletal muscles of GRMD dogs, 3, 6 and 12
month-old. Changes are mild at 3 months (A) with only some hypercontracted hyaline fibers, and a diffuse
increase in cell number mainly due to a regenerative activity. At 6 months, degenerative and necrotic
changes are more severe, focally associated with some inflammatory cell infiltration (*). At 12 months,
fibrotic (black arrowhead) and fat tissues (open arrowhead) are proeminent. (A-C) Hemalun eosin saffron
and (E-F) Picrosirius red stainings for fibrotic tissue. Bars = 100 μm (A-B, D-E) and 200 μm (C and F).
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in a muscle tissue disorganization, heterogeneous signal distribution within diseased

muscle is expected, leading to the potential interest in MRI TA. This has been better

observed in T2 weighted images.

Then, if the image grey level is rather difficult to analyze in terms of histology, it can

be expected that the tissue texture can be more informative with MRI-TA. MRI texture

results from the contrast between different parts of the tissue (for instance fibrosis, fat

infiltration, inflammation, etc.), this contrast itself resulting from the effect of histo-

logical parameters on NMR parameters.

To illustrate the scale gap between histology and MRI, Figure 3 represent the same

three histological images (Hemalun eosin saffron staining) at an MRI scale by addition

of pixels fsrom the histological images.
MRI-TA results on GRMD dogs

The simplest texture parameter was the standard deviation or the heterogeneity param-

eter introduced by Thibaud et al. [22] in T2 weighted images. The authors compared the

tissue heterogeneity between healthy and GRMD dogs at different age group (from 2
Table 3 Histological evolution during GRMD disease

Period Regenerative Degenerative Slowly evolutive

Age (months) 2-3 5-6 9-12

Hyalin fibers mild marked to severe marked

Necrosis mild marked to severe marked

Regeneration marked mild minimal

Centronucleated fibers minimal mild marked

Inflammation none inconstant mild

Fibrosis none mild to marked marked to severe

Adiposis none minimal mild



Figure 3 Typical histopathological presentation of skeletal muscles of GRMD dogs, 3, 5 and 12
month-old and corresponding images at an MRI scale. Progressive tissue changes characteristic of the
disease evolution elicited some heterogeneity in the tissue aspect. This heterogeneity increases with age as
the disease progress and the muscle tissue is replaced by fibrosis and some adipose tissue infiltration. (A-C)
Hemalun eosin saffron and (D-F) Mean grey level of the histological images A, B and C were transformed
to images D, E and F at an MRI resolution. Mean value was sampled using region of interest of 320 pixels
(A-B) or 648 pixels (C) and consecutively converted to greyscale. Bars = 100 μm (A-B) and 200 μm (C).
Pixel size = 0.91 μm (A-B) and 0.78 μm (C) for histological images, 290 μm (D-E) and 500 μm (F) for
MRI-simulated corresponding images.
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months to 9 months). Comparison of groups was made using statistical tests to check if

there were significant differences between them. The results showed that GRMD hetero-

geneity indices were significantly higher than in healthy dogs by at least 40% at all ages.

First order texture parameters such as mean grey levels, kurtosis or skewness clearly

differ in histological Figure 3A, B and C and then are suspected to also differ in MRI-

TA during the three steps of the GRMD disease as illustrated by the simulated MR im-

ages 3D, 3E and 3F.

Fan et al. [47] studied GRMD at 6 months of disease evolution: first order texture de-

scriptor like entropy as well as higher order descriptors like the run length matrix were

calculated using T2 weighted images to characterize the muscle tissue. The Mann–

Whitney-Wilcoxon test showed that for all ages (3, 6 and 9–12 months), all texture fea-

tures were significantly higher in GRMD when compared to healthy dogs. In addition

to that, a linear discriminant analysis was performed where each NMR biomarker, in-

cluding texture parameters, were used in addition with age as input variables and the

group (GRMD or normal) as a response. The results showed that texture parameters

extracted from the run length matrix had in average a better discriminant power than

other NMR biomarkers such as the fat content and the relaxation time T2 that can be

seen as an indicator of an inflammatory process. The best discriminant parameters

were the ones related to muscle morphology. The entropy was not a good discriminant

between healthy and GRMD dogs. For some muscles, a correlation between NMR bio-

markers and histopathology indices (fibrosis, fiber number, fiber size etc.) was per-

formed but texture parameters did not show a significant correlation with them; this

lack of correlation has been explained by the scale difference because texture analysis
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was done at the macro level (minimal unit of voxel is 1 × 1 × 1 mm3), while histopatho-

logical data are represented at micro level (a scale of around 50 μm for fiber diameter).

In spite of the encouraging results obtained with a first order parameter, it is very im-

portant to consider other texture descriptors that provide information about the spatial

organization of the tissue. Preliminary results on GRMD dogs from MYO-MRI COST

action have already established that some texture methods discriminate early disease

stages while others are more interesting for later phases of disease evolution. The MRI-

TA study from Duda et al. [Differentiation based on MRI texture analysis between

GRMD and healthy dogs at different phases of the disease evolution, in preparation] on

GRMD dogs using textural features derived from different approaches (statistical,

filtering-, and model-based) have demonstrated an early detection at 2–3 months with

a percentage of correctly recognized cases reaching even nearly 99%. In this study, 8

methods for texture analysis were tested, including: grey-level histograms, autocorrel-

ation coefficients, gradients, co-occurrence matrices, run length matrices, grey level

difference matrices, factional Brownian motion model, and Laws’ texture energy mea-

sures. In addition, a feature selection was performed, in order to assess the relative im-

portance of each feature, in terms of the classification accuracies. The results differed

between different types of muscles. Nevertheless, the application of some groups of

features very often led to obtain satisfactory results. Among the top methods were: the

co-occurrence matrix-based, grey-level differences matrix-based, gradient-based,

histogram-based, Laws’ filtering, and run-length matrix-based. The features from the

co-occurrence matrices were top ranked for the early stage of GRMD development,

while the run length-based method ensured the best tissue recognition for the final

stage of canine life.

Conversely, another MRI-TA study of GRMD dogs from Yang et al. [Differentiation

based on MRI texture analysis between GRMD and healthy dogs at different phases of the

disease evolution, submitted], using orthogonal moments has not differentiated the early

stage (2–3 months) but appeared efficient for disease follow-up during later stages.

Snezhko et al. [48], on the same set of GRMD image data, have extracted 313 texture

features from MaZda software: a combination of several selected texture features have,

for instance, have allowed an early (month 2) detection of the disease with an accuracy

of 97% using cross-validation with leave-one-out strategy. For larger muscles, the effi-

ciency of all the features was better than for smaller muscles. It was likely due to the

size (number of voxels) of the available ROI.

The preliminary choice of TA methods and features should be done taking into ac-

count not only the particular development of GRMD-related pathological changes (de-

tected on histological or MR images), but also other, not texture-related constraints. As

regards the regions of interest, defined on GRMD muscles, they could be very small, in

particular for the first stage of canine life. Moreover, they are usually thin and narrow.

This excludes the use of many methods and parameters that have proven to be reliable

in other texture-based classification tasks. For example, the run-length matrix-based

method could be less useful for the small, tiny ROIs that have only few pixels of length

or width. The larger is the ROI, the more useful will be the parameters based on pixel

runs. This could explain why the run-length matrix-based features turned out to be re-

liable for tissue differentiation at the final stage of canine life. The same comments also

apply to the co-occurrence matrix-based or grey level difference matrix-based methods
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with a parameter d of a large value. Here, a good solution would be to set a d param-

eter to 1 or, maximum, to 2 pixels. Finally, the first-order features, derived from the

grey-level histograms, could be calculated for ROIs of any size.

As the ROI size could differ from one case to another, especially when it is deter-

mined by the age of the canine, an important task is the choice of features independent

of ROI size. Admittedly, it can be predicted, that features obtained for a relatively large

d will not be suitable to characterize small ROIs. It could even be problematic to calcu-

late them. However, among the features considered potentially useful, some may be

too unstable (dependent on the ROI size and/or position) to consider them as reliable

texture descriptors [49]. Experimental analysis of the features stability, performed on

MR images or phantoms, should therefore precede the classification experiments, in

order to exclude a priori the features that could not really contribute to a muscular tis-

sue recognition.
Conclusion
The MRI contrasts, depending on the incidence of histological components on relax-

ation parameters and spin density, determines the MRI texture. Then, two key prob-

lems have still to be more deeply discussed: i) How histological components modify

MRI contrasts and then texture? and ii) How texture at the MRI scale can be related to

histological texture at a very different scale? These two questions corresponds to the

shared goals of our multicentre research group under the auspices of the European

Union COST MYO-MRI action and is undoubtedly a prerequisite for a larger diffusion

of clinical MRI-TA.

The way to bridge the scale gap should be based on the correlation of MRI-TA and

the histological changes seen on the biopsies. However, a direct correlation between

MRI and biopsy at the histological scale is probably not a reachable challenge. This

complex comparison only would be possible under two premises. First, it will be neces-

sary to use exactly the same samples for both analyses, requiring a stereotactic biopsy.

Secondly, the histological analysis should be precise, objective and quantitative. Re-

cently, a new computer based image analysis method has been developed to improve

the evaluation of muscle biopsies [50,51]. This approach not only extracts important

geometric parameters such as the size of the slow and fast fibers or the content of col-

lagen, but also captures the organization of the tissue. The images are converted in a

graph of fiber to fiber contacts. In this way it is possible to obtain certain global fea-

tures that are relevant to objectively evaluate human muscular dystrophies. The quanti-

fication of the changes of these selected features will be a key to compare these images

with their corresponding MRI-TA.
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