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Abstract
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes

on complex networks, and are often the only accessible way to explore their behavior. The

development of fast algorithms is paramount to allow large-scale simulations. The Gillespie

algorithm can be used for fast simulation of stochastic processes, and variants of it have

been applied to simulate dynamical processes on static networks. However, its adaptation

to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm

that solves this problem. Our method is applicable to general Poisson (constant-rate) pro-

cesses on temporal networks, stochastically exact, and up to multiple orders of magnitude

faster than traditional simulation schemes based on rejection sampling. We also show how

it can be extended to simulate non-Markovian processes. The algorithm is easily applicable

in practice, and as an illustration we detail how to simulate both Poissonian and non-Mar-

kovian models of epidemic spreading. Namely, we provide pseudocode and its implementa-

tion in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and

Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with

non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is

here typically from 10 to 100 times faster than rejection sampling.

Author Summary

When studying how e.g. diseases spread in a population, intermittent contacts taking place
between individuals—through which the infection spreads—are best described by a time-
varying network. This object captures both their complex structure and dynamics, which cru-
cially affect spreading in the population. The dynamical process in question is then usually
studied by simulating it on the time-varying network representing the population. Such sim-
ulations are usually time-consuming, especially when they require exploration of different
parameter values. We here show how to adapt an algorithm originally proposed in 1976 to
simulate chemical reactions—the Gillespie algorithm—to speed up such simulations. Instead
of checking at each time-step if each possible reaction takes place, as traditional rejection
sampling algorithms do, the Gillespie algorithm determines what reaction takes place next
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and at what time. This offers a substantial speed gain by doing away with the many rejected
trials of the traditional methods, with the added benefit of giving stochastically exact results.
In practice this new temporal Gillespie algorithm is tens to hundreds of times faster than the
current state-of-the-art, opening up for thorough characterization of spreading phenomena
and fast large-scale applications such as the simulation of city- or world-wide epidemics.

This is a PLoS Computational BiologyMethods paper.

Introduction
Networks have emerged as a natural description of complex systems and their dynamics [1],
notably in the case of spreading phenomena, such as social contagion, rumor and information
spreading, or epidemics [1–3]. The dynamics of contagion processes occurring on a network
are usually complex, and analytical results are attainable only in special cases [3, 4]. Further-
more, such results almost systematically involve approximations [3, 4]. Numerical studies
based on stochastic simulations are therefore necessary, both to verify analytical approxima-
tions, and to study the majority of cases for which no analytical results exist. The development
of fast algorithms is thus important for the characterization of contagion phenomena, and for
large-scale applications such as simulations of world-wide epidemics [2, 5].

The Doob-Gillespie algorithm [6–11] (also known as Gillespie’s Stochastic Simulation Algo-
rithm—SSA or Gillespie’s direct method), originally proposed by David Kendall in 1950 for sim-
ulating birth-death processes and made popular by Daniel Gillespie in 1976 for the simulation
of coupled chemical reactions, offers an elegant way to speed up such simulations by doing
away with the many rejected trials of traditional Monte Carlo methods. Instead of checking at
each time-step if each possible reaction takes place, as rejection sampling algorithms do, the
Gillespie algorithm draws directly the time elapsed until the next reaction takes place and what
reaction takes place at that time. It is readily adapted to the simulation of Poisson processes on
static networks [12–16] and can be generalized to non-Markovian processes [17].

Systems in which spreading processes take place, e.g., social, technological, infrastructural,
or ecological systems, are not static though. Individuals create and break contacts at time-scales
comparable to the time-scales of such processes [18–20], and the dynamics of the networks
themselves thus profoundly affect dynamical processes taking place on top of them [21–27].
This means that one needs to take the network’s dynamics into account, e.g., by representing it
as a time-varying network (also known as a time-varying graph, temporal network, or dynam-
ical network) [28]. The dynamical nature of time-varying networks makes the adaptation of
the Gillespie algorithm to such systems non-trivial.

The main difficulty in adapting the Gillespie algorithm to time-varying networks is taking
into account the variation of the set of possible transitions and of their rates at each time step.
We show that by normalizing time by the instantaneous cumulative transition rate, we can
construct a temporal Gillespie algorithm that is applicable to Poisson (constant rate) processes
on time-varying networks. We give pseudocode and C++ implementations for its application
to simulate the paradigmatic Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-
Recovered (SIR) models of epidemic spreading, for both homogeneous and heterogeneous [29]
populations. We verify the accuracy of the temporal Gillespie algorithm numerically by
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comparison with a classical rejection sampling algorithm, and we show that it is up to* 500
times faster for the processes and the parameter ranges investigated here.

While Poissonian models are of widespread use, real contagion phenomena show memory
effects, i.e., they are non-Markovian. Notably, for realistic infectious diseases, the rate at which
an infected individual recovers is not constant over time [30, 31]. Social contagion may also
show memory effects, e.g., one may be more (or less) prone to adopt an idea the more times
one has been exposed to it. To treat this larger class of models, we show how the temporal Gil-
lespie algorithm can be extended to non-Markovian processes. We give in particular an algo-
rithm for simulating SIR epidemic models with non-constant recovery rates.

Results
The following subsections present the main results of the article. Section 1: “Stochastic processes
on time-varying networks” defines the stochastic processes which can be simulated using the
temporal Gillespie algorithm, and describes the class of compartmental models for contagion
phenomena on networks—the class we will use in examples throughout this paper. Section 2:
“Rejection sampling for Monte Carlo simulations” gives a quick overview of the traditional
rejection sampling algorithms. Section 3: “Gillespie algorithm on static networks” outlines a der-
ivation of the static Gillespie algorithm. Section 4: “Temporal Gillespie algorithm” derives the
temporal Gillespie algorithm for Poisson (constant-rate) processes. In Section 5: “Comparison
of Gillespie and rejection sampling algorithms” we validate the temporal Gillespie algorithm
through numerical comparison with a rejection sampling algorithm; we also compare their
speeds for simulating SIR and SIS processes on both synthetic and empirical time-varying net-
works. Section 6: “Non-Markovian processes” shows how the temporal Gillespie algorithm can
be extended to simulate non-Markovian processes; the approach is verified numerically and the
speed of the non-Markovian temporal Gillespie algorithm is compared to rejection sampling.

Tables listing the notation used in the manuscript, details on howMonte Carlo simulations
were performed, and pseudocode for application of the temporal Gillespie algorithm are given
in the Methods section.

1 Stochastic processes on time-varying networks
We define in this section the type of stochastic processes for which the temporal Gillespie algo-
rithm can be applied. At the time of writing, the main domain of application of the algorithm
is the class of compartmental models for contagion processes on time-varying networks, which
we introduce below. For definiteness, algorithms detailing the application of the temporal Gil-
lespie algorithm will concern this class of stochastic processes.

In general, we consider a system whose dynamics can be described by a set of stochastic tran-
sition events. We assume that the system can be modeled at any point in time by a set,O(t), of
M(t) independent stochastic processesm, which we term transition processes; the rate at which
the transitionm takes place is denoted λm. The setO(t) thus defines the possible transition events
at time t and in general changes over time, depending on both external factors and the evolution
of the system itself; the number of possible transitions,M(t), thus also generally changes over
time, while λmmay or may not vary over time. For the classic “static”Gillespie algorithm to be
applicable,O(t) is allowed to change only when a transition (or chemical reaction in the context
of Gillespie’s original article) takes place. For processes taking place on time-varying networks,
the medium of the process—the network—also changes with time. As these changes may allow
or forbid transitions,O(t) is not only modified by every reaction, but also by every change in the
network. This is the domain of the temporal Gillespie algorithm, which only requires that the
number of points in whichO(t) changes be finite over a finite time-interval [32].
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The assumption that the transition processes are independent is essential to the validity of
the Gillespie algorithm, as it allows the calculation of the distribution of waiting times between
consecutive transitions. This assumption is not overly restrictive, as it only requires a transition
process to be independent of the evolution of the other simultaneous transition processes. A
transition process may depend on all earlier transitions, and the current and past states of all
nodes. As such, Gillespie algorithms can notably be applied to models of cooperative infections
and other non-linear processes such as threshold models [17], and has even been applied to
model the dynamics of ant battles [33].

Compartmental models of contagion. In a network-based description of the population
in which a contagion process takes place, an individual is modeled as a node i (Fig 1A). A con-
tact between two individuals taking place at time t is represented by an edge (i, j)t in the graph
describing the population at the instant t (Fig 1A). In a compartmental model, each node is in
a certain state, which belongs to a fixed, finite set of q different states (compartments) [3]. A
random variable xiðtÞ 2 fX 1;X 2; . . . ;X qg specifies the state of the node i at time t (i.e. to

which compartment it belongs). Nodes may stochastically transition between states, governed
by the set O(t) of transition processes. One is usually interested in the evolution of the number
of nodes in each state, which we denote X1, X2, . . ., Xq.

As an example, we consider the classic SIR model of epidemic spreading with constant tran-
sition rates in a homogeneous population (rates are the same for all individuals) (Fig 1B). Here
nodes can be in one of three states: susceptible, infected, and recovered, fS; I ;Rg. Two differ-
ent transition types let nodes change state: (i) a node i in the S state switches to the I state with
rate state with rate kIðtÞb (an S ! I reaction), where kIðtÞ is the number of contacts i has
with nodes in the I state at time t (Fig 1A); (ii) a node i in the I state switches to theR state at
rate μ (an I ! R reaction).

In general, the transition processes can be divided into three types:

1. spontaneous transitions, which only depend on the current state of the node, xi(t) (Fig 1C)
—e.g. an infected node recovers spontaneously in the SIR model (Fig 1B);

2. contact-dependent transitions, which may take place only when the node i is in contact with
other nodes in a given state; it thus depends on the states xj of the nodes j currently in con-
tact with i (Fig 1D)—e.g. a susceptible node may be infected upon contact with an infectious
node in the SIR model (Fig 1B).

3. mixed transitions, which take place spontaneously, but may depend on the node’s past and
current contacts (Fig 1E)—e.g. in rumor spreading, an individual may learn on his own that
a rumor is false (spontaneous) or may be convinced by another individual who knows the
rumor is false (contact-dependent).

This division is important for practical application of the temporal Gillespie algorithm as
transition processes of type a need only be updated after a transition has taken place, and pro-
cesses of type c need only be updated whenever a relevant contact takes place, but not at each
time-step. Using this distinction is crucial to obtaining the large speed-increase that the tempo-
ral Gillespie algorithm offers over rejection sampling, as discussed below (Secs. 4: “Temporal
Gillespie algorithm” and 5: “Comparison of Gillespie and rejection sampling algorithms”).

2 Rejection sampling for Monte Carlo simulations
A straightforward way to simulate a stochastic process is to use a rejection sampling algorithm,
akin to the classical Metropolis algorithm. Here one divides the time-axis in small time-steps Δt,
where Δt should be chosen sufficiently small such that this discretization does not influence the
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outcome of the process significantly; on time-varying networks, the choice of Δt often comes
naturally as the time-resolution at which the network is measured or simulated (Fig 1A).

At each time-step t = 0, Δt, 2Δt, . . ., we test whether each possible transitionm 2 O(t) takes
place or not. In practice this is done by drawing a random number rm that is uniformly distrib-
uted on [0, 1) for eachm and comparing it to λmΔt: if rm < λmΔt the reaction takes place, if rm
� λmΔt nothing happens [Fig 2 (Transitions)]. (Note that one should technically compare rm
to 1 − exp(λmΔt) to ensure that λm defines a proper transition rate for finite Δt. However, the
two procedures are equivalent in the limit Δt! 0.)

From the design of the rejection sampling algorithm we see that the proportion of trials that
are rejected is equal to a weighted average over {1 − λmΔt}m. Thus, since we require λmΔt� 1

Fig 1. Schematic representation of a compartmental contagion process on a network. (A) Illustration of
a contagion process evolving on a time-varying network. Nodes’ colors correspond to their current state;
edges denote current contacts between nodes; edge colors correspond to: black: no contagion may take
place over the edge, red: contagion takes place during the present time-step, and red-to-blue gradient:
contagion is possible but does not take place. (B) Example: reaction types in the SIR model. (C)
Spontaneous reaction: a node imay spontaneously transition from its current state xi to x0

i with rate λm. (D)
Contact-dependent reaction: a node imay transition from its current state xi to x0i with rate λm upon contact
with the node j in state xj. (E) Mixed transition: a node imay spontaneously transition from its current state xi
to another state, x0

i with rate λm; contact with another node j, in state xj, may alter the transition rate ofm,
lm ! l0

m. After the contact (i, j)t ends, the transition rate may revert to λm, remain unchanged, or change to a
third value.

doi:10.1371/journal.pcbi.1004579.g001
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Fig 2. Example of how the temporal Gillespie algorithm works for an SIR process on a time-varying network.We consider the time-varying network of
Fig 1A (Network)—time evolves along the vertical axis; a rejection sampling algorithm considers each transition process at each time-step individually
(Transitions); the temporal Gillespie algorithm considers the integrated cumulative transition rate of all transition processes, Lðt; 0Þ, and compares it with the
random normalized waiting times t0l (Normalized time). A transition takes place whenever Lðt; 0Þ ¼Pq

l¼0 t
0
l for any q 2 N. The temporal Gillespie algorithm

works as follows. (A) The first normalized waiting time t01 is drawn from an exponential distribution with unit rate [t01 � Expð1Þ] (Normalized time). From the
state of the network at the first time-step, the set of possible transitionsΩ(0) is found (Transitions), and from this the cumulative transition rate Λ(0) is
calculated. The integrated cumulative transition rate, LðDt; 0Þ ¼ Lð0ÞDt is compared to t01. If, as in the present example, Lð0ÞDt < t01 the algorithm is
advanced to the next time-step. (B) and (C) The set of possible transitionsΩ(tn) and the cumulative transition rate Λ(tn) is updated at each following time-step
n; if Lðtn; 0Þ ¼ Dt

Pn�1

l¼0 LðtlÞ is still smaller than t01, the algorithm is advanced to the next time-step. (D) During the first time-step n** where Lðtn�� ; 0Þ � t01, a

Temporal Gillespie Algorithm
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in order to avoid discretization errors, the vast majority of trials are rejected and the rejection
sampling algorithm is computationally inefficient.

3 Gillespie algorithm on static networks
The Gillespie algorithm lets us perform stochastically exact Monte Carlo simulations without
having to reject trials. For Poisson processes on static networks, it works by recognizing that
the waiting time between two consecutive transitions is exponentially distributed, and that
each transition happens with a probability that is proportional to its rate.

Specifically, the (survival) probability that the transitionm has not taken place after a time τ
since the last transition event is

SmðtÞ ¼ e�lmt : ð1Þ

Since each transition takes place independently, the probability that no event takes place during
the interval τ since the last event is

SðtÞ ¼
Y
m

SmðtÞ ¼ e�Lt ; ð2Þ

where L ¼PM
m¼1 lm is the cumulative transition rate. The above result is obtained by using the

fact that while O andM do depend on t, they only change when an event takes place and not
in-between. They can thus be treated as constant for the purpose of calculating the waiting
time between events. The distribution of the waiting times τ is then given by the probability
density p(τ) = Λe − Λτ, while the probability density for the reactionm being the next reaction
that takes place and that it takes place after exactly time τ is equal to pm(τ) = λm e − Λτ

The static Gillespie algorithm thus consists in drawing the waiting time τ* Exp (Λ)
until the next transition and then drawing which transitionm takes place with probability
πm = λm/Λ. [Here τ* Exp (Λ) is short for: τ is exponentially distributed with rate Λ.]

4 Temporal Gillespie algorithm
For processes taking place on time-varying networks however, the set of transition process, O
(t), changes with time independently of the transition events, e.g., for the case of an SIR process
nodes may become infected only when in contact with an infected individual (Fig 1A). This
means that the survival probability does not reduce to a simple exponential as in Eq (1); it is
instead given by

Smðt; t�Þ ¼ exp �
Z t��

t�
ImðtÞlmdt

� �
; ð3Þ

where t� is the time at which the last transition took place, t�� = t� + τ is the time when the
next transition takes place, and Im(t) is an indicator function that is equal to one when the pro-
cessmmay take place, e.g., when two given nodes are in contact, and zero whenmmay not
take place. The meaning of Im is exemplified in Fig 1A: the node imay be infected by the infec-
tious node j only when the two nodes are in contact; if we letm denote this transition process,
Im(t) is then one for t = Δt, 3Δt, 4Δt and zero for t = 0, 2Δt.

transition takes place. The exact time of this transition, t**, is given by Eq (12) and the transitionm that takes place is chosen among the possible transitions
in the given time-step with probability proportional to its transition rate λm [Transitions and Eq (10)]. (E) The transition changes the system (Network) and
consequently the set of possible transitions,Ω(t**), (Transitions); thusΩ(t**) and Λ(t**) must be updated, which in turn changes the remainder of Lðtn�� ; 0Þ
(Normalized time). A new normalized waiting time is then drawn, t02 � Expð1Þ; if Lðtn�� ; 0Þ < t01 þ t02, no further transitions takes place during the time-step and
the algorithm is advanced to the next time-step (note that multiple transitions may occur during the same time-step). (F) The above procedure is reiterated.

doi:10.1371/journal.pcbi.1004579.g002
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Note that for processes taking place on adaptive time-varying networks, whose changes
only depend on the process itself, Im(t) only changes when a transition takes place and Eq (3)
reduces to Eq (1). This means that from the point of view of the algorithm, such networks are
effectively static and the classic “static” Gillespie algorithm may simply be used there [14, 16].

We now consider the general case where O(t) may change independently of the processes
evolving on the network (described in Sec. 1: “Stochastic processes on time-varying networks”).
Using, as in the previous section, that transition processes are independent, we can write the
probability that no event takes place during an interval τ (the waiting time survival function):

Sðt; t�Þ ¼
Y
m2O

Smðt; t�Þ

¼ exp �
X
m2O

Z t��

t�
ImðtÞlmdt

 !
; ð4Þ

where O denotes the set of all possible transitions (transition processes) on the interval between
two transition events, (t�, t��], i.e., O is the union over O(t) for t 2 (t�, t��], andM is the total
number of transition processes on the same interval (the size of O). We switch the sum and the
integral in Eq (4) to obtain

Sðt; t�Þ ¼ exp �
Z t��

t�

X
m2O

ImðtÞlmdt
 !

: ð5Þ

Finally, using that Im(t) = 0 for allm =2 O(t), we may write

Sðt; t�Þ ¼ exp �
Z t��

t�
LðtÞ dt

� �
; ð6Þ

where

LðtÞ ¼
X
m2OðtÞ

lm ð7Þ

is the cumulative transition rate at time t.
The dynamics of empirical time-varying networks is highly intermittent and we cannot

describe O(t) analytically. This means that we cannot perform the integral of Eq (6) to find the
waiting time distribution directly. We may instead normalize time by the instantaneous cumu-
lative transition rate, Λ(t): We define a unitless normalized waiting time between two consecu-
tive transitions, τ0, as

t0 ¼ Lðt��; t�Þ ¼
Z t��

t�
LðtÞdt ; ð8Þ

i.e., equal to the cumulative transition rate integrated over (t�, t��]. The survival function of τ0
has the following simple form:

Sðt0Þ ¼ exp ð�t0Þ : ð9Þ

The time t�� when a new transition takes place is given implicitly by Lðt��; t�Þ ¼ t0, while the
probability thatm is the transition that takes place at time t = t�� is given by:

pmðtÞ ¼ ImðtÞlm=LðtÞ : ð10Þ

Temporal Gillespie Algorithm
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This lets us define a Gillespie-type algorithm for time-varying networks by first drawing a
normalized waiting time τ0 until the next event from a standard exponential distribution [i.e.
with unit rate, τ0 * Exp (1)], and second, solving Lðt; t�Þ ¼ t0 numerically to find t��. In prac-
tice, since Λ(t) only changes when a transition takes place or at tn = nΔt with n 2 N, we need
only compare τ0 to

Lðtnþ1; t
�Þ ¼ ðtn�þ1 � t�ÞLðt�Þ þ Dt

Xn
i¼n�þ1

LðtiÞ ; ð11Þ

for each time-step n (Fig 2A–2C). Here n� is the time-step during which the last transition
took place, and Λ(t�) is the cumulative transition rate at t�, immediately after the last transi-
tion has taken place. The first term of Eq (11) is the cumulative transition rate integrated over
the remainder of the n�th time-step left after the last transition; the second term is equal to
Lðtnþ1; tn�þ1Þ. A new transition takes place during the time-step n�� where Lðtn��þ1; t

�Þ � t0 (Fig
2D); the precise time of this new transition is

t�� ¼ tn�� þ
t0 � Lðtn�� ; t�Þ

Lðtn�� Þ
; ð12Þ

the reactionm that takes place is drawn with probability given by Eq (10) (Fig 2D). We then

update O and Λ to O(t��) and Λ(t��) (Fig 2E), draw a new waiting time, τ0 * Exp (1), and
reiterate the above procedure (Fig 2F).

The algorithm can be implemented for contagion processes on time-varying networks as
follows (see Methods for pseudocode for specific contagion models and S1 Files for implemen-
tation in C++):

1. Draw a normalized waiting time until the first event from a standard exponential distribu-
tion, τ0 * Exp (1) (Fig 2A).

2. At each time-step tn = nΔt, with n = 0, 1, 2, . . ., let O� O(tn) and Λ � Λ(tn); here, only
contact-dependent processes (type b, Sec. 1: “Stochastic processes on time-varying net-
works”) and mixed (type c) processes that depend on contacts taking place at tn or tn − 1

need to be updated—an important point, as it lets the temporal Gillespie algorithm be
much faster than rejection sampling (see Discussion in the following section). Then, com-
pare τ0 to ΛΔt:

if ΛΔt� τ0 Subtract ΛΔt from τ0, continue to next time-step and repeat 2 (Fig 2A–2C) [34].

if ΛΔt> τ0 Let the reactionm take place, chosen from O with probability πm = λm/Λ. The frac-
tion that is left of the time-step when the transition takes place is ξ = 1 − τ0/(ΛΔt) and the
precise time of the transition is t�� = tn + τ0/Λ (Fig 2D and 2F). Next, update O and Λ (Fig
2E); this time all transition processes should be updated, as spontaneous processes (type a)
may change, emerge, or disappear when a transition takes place. Then:

(a) draw a new normalized waiting time, τ0 * Exp (1) (Fig 2F);

(b) compare τ0 to ξΛΔt:

if τ0 � ξΛΔt subtract ξΛΔt from τ0, continue to the next time-step and repeat 2 (Fig 2F).

if τ0 < ξΛΔt Another transition takes place during the present time-step (at time t��� = t�� + τ0/Λ,
where t�� is the time of the last transition during the same time-step): choosem fromO with
probability πm = λm/Λ; let ξ! ξ − τ0/ΛΔt, and updateO andΛ. Repeat a) and b).

Temporal Gillespie Algorithm
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By construction, the above procedure produces realizations of a stochastic process for which
the waiting times for each transition follow exactly their correct distributions. The temporal
Gillespie algorithm is thus what we term stochastically exact: all distributions and moments of
a stochastic process evolving on a time-varying network obtained through Monte Carlo simu-
lations converge to their exact values. Rejection based sampling algorithms are stochastically
exact only in the limit λmΔt! 0.

A large literature exists on the related problem of simulating coupled chemical reactions
under externally changing conditions (e.g., time-varying temperature or volume) [35–40].
Most of these methods consider only external perturbations that can be described by an analyt-
ical expression. In this case the problem reduces to that of defining a static, yet non-Markovian,
algorithm. Some methods, and notably themodified next reaction method developed by Ander-
son [37], can be adapted to a completely general form of the external driving and thus, in prin-
ciple, to simulate dynamical processes taking place on time-varying networks. These methods
are based on a scheme that is conceptually similar to Gillespie’s direct algorithm, the next reac-
tion method, proposed by Gibson and Bruck [35]. The next reaction method draws a waiting
time for each reaction individually and chooses the next reaction that happens as the one with
the shortest corresponding waiting time. It then updates the remaining waiting times, draws
new waiting times (if applicable), and reiterates. To generalize the next reaction method to pro-
cesses with non-exponential waiting times, Anderson introduced the concept of the internal
time for each transition process [37]. In the notation used in the present article it is defined as

TmðtÞ ¼
R t

0
ImðtÞlmdt and is thus equivalent to the normalized time, Lðt; 0Þ, only for an indi-

vidual transition process.
By construction, the next reaction method needs to draw only one random number per

transition event, where the Gillespie algorithm draws two. However, this reduction in the num-
ber of required random variables comes at a price: one must draw a random number for each
individual transition process and keep track of, compare, and update each of the individual
waiting times. For chemical reactions, where the number of different chemical reactions is
small (it scales with the number of chemical species), this tradeoff favors the next reaction
method. However, for contagion processes on networks, each individual is unique (if not
intrinsically, at least due to its position in the network). The number transition processes thus
scales with the number of nodes and contacts, which favors the Gillespie algorithm as it does
not need to keep track of each of them individually [17].

On time-varying networks (or for time-varying external driving) one must furthermore
update relevant internal times each time the network structure (external conditions) changes
in the next reaction method. Chemically reacting systems are usually close to being adiabatic,
i.e., the external driving changes slowly compared to the time-scales of chemical reactions.
Thus, the additional overhead related to updating individual internal times is practically negli-
gible. However, the dynamics of temporal networks is highly intermittent and the time-scale of
network change is typically smaller than the time-scales of relevant dynamical processes. Here
one must thus update the internal times many times between each transition event, inducing a
substantial overhead. Since the temporal Gillespie algorithm operates with a single global nor-
malized waiting time, it handles these updates more efficiently.

Finally, the modified next reaction method may in principle be extended to non-Markovian
processes taking place on time-varying networks (as treated in Sec. 6: “Non-Markovian pro-
cesses” using the temporal Gillespie algorithm). However, such an approach would, for each
single transition, require solving numerically Eq. (13) of [37] for the internal waiting time of
each individual transition process, taking into account the time-varying network structure,
finding the shortest corresponding waiting time in real time, and then updating the internal
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waiting times of all the other reactions, rendering the next reaction method even more ineffi-
cient in this general case.

5 Comparison of Gillespie and rejection sampling algorithms
Numerical validation. We compare the outcome of SIR and SIS processes on activity-

driven time-varying networks [41] simulated using the temporal Gillespie algorithm to the out-
come of simulations using traditional rejection sampling. For sufficiently small λmΔt, the out-
comes are indistinguishable (Fig 3, see also S1 Fig for an empirical network of face-to-face
contacts in a high school), confirming the validity of the temporal Gillespie algorithm. Note
that rejection sampling is only expected to be accurate for λmΔt� 1, while the temporal Gilles-
pie algorithm is stochastically exact for all λmΔt; the results of the two algorithms thus differ
when the assumption λmΔt� 1 does not hold (S2 Fig).

Comparison of simulation speed. Next, we compare the speeds of the temporal Gillespie
and the rejection sampling algorithms for SIR and SIS processes (see Methods for details on
how simulations were performed). Fig 4 shows that the temporal Gillespie algorithm is up to
multiple orders of magnitude faster than traditional rejection sampling. These results are con-
firmed by simulations on empirical time-varying networks of face-to-face contacts (Fig 5,

Fig 3. Comparison of numerical results from temporal Gillespie and rejection sampling algorithms. (A) Mean number of nodes in each state of the
SIR model as function of time. (B) Distribution of final epidemic sizes (number of recovered nodes when I = 0) in the SIR model. (C) Mean number of nodes in
each state of the SIS model as function of time. (D) Distribution of the number of infected nodes in the stationary state (t!1) of the SIS model. All
simulations were performed 1 000 000 times with the root node chosen at random on an activity driven network [41] consisting of N = 100 nodes, with
activities ai = ηzi, where η = 0.1 and zi � z�3:2

i for zi 2 [0.03, 1), and a node formed two contacts when active. Parameters of the epidemic processes were
βΔt = 10−2 and μΔt = 10−4.

doi:10.1371/journal.pcbi.1004579.g003
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Table 1). The speed gain is higher for larger systems (compare N = 1 000 to N = 100 in Fig 4)
We also see that the speed gain is larger the sparser the network is. This is because the calcula-
tion of the contacts between susceptible and infected nodes at each time-step, necessary to
determine the possible S ! I transitions, is the performance limiting step of the temporal Gil-
lespie algorithm (see below). In the extreme case of a contagion model where all transitions are
contact-dependent (type b, Sec. 1: “Stochastic processes on time-varying networks”), such as
the classic Maki-Thompson model of rumor spreading [42], the temporal Gillespie algorithm
is approximately a factor two faster than the rejection sampling algorithm.

Expected time complexity of the algorithms. We may gain insight into the performance
of the algorithms by considering their time-complexity, i.e., how their running time scales with
the input parameters of the simulated system. Since the algorithms are used for Monte Carlo
simulations, it is most interesting to consider the expected complexity given a set of parameters,
i.e., the mean running time of an algorithm averaged over an ensemble of simulations, not the
worst-case complexity which is usually considered for deterministic algorithms.

The expected running time of the rejection sampling algorithm scales as

YRS ¼ O EðtÞnsimu

� �
þO MðtÞnsimu

� �
; ð13Þ

whereOðxÞ denotes a term that is of order x, EðtÞ¼ NkðtÞ=2 is the mean number of contacts

per time-step,MðtÞis the mean number of possible transitions at any instant, and nsimu is the
number of time-steps simulated. For comparison, the expected running time of the temporal

Fig 4. Comparison of the speed of the temporal Gillespie and the rejection sampling algorithms.Ratio between computational timesΘRS andΘTGA

per single realization of a spreading process using rejection sampling and the temporal Gillespie algorithm, respectively: (A) for a SIR process and (B) for a
SIS process on networks with different mean degree, kðtÞ([for empirical contact networks, kðtÞ	 0:004� 0:07 (Table 1)]. Networks consisted of N = 100 or
N = 1000 nodes, with activities ai = ηzi and zi � z�3:2

i for zi 2 [0.03, 1); a node formed two contacts each time it was active. For Δt = 20 s (as for the empirical
data), μΔt	 3
10−5 corresponds to a recovery time of roughly one week, typical of flu-like diseases. The infection rate was β = 103 μ for networks with
kðtÞ¼ 0:002, β = 102 μ for networks with kðtÞ¼ 0:02, and β = 10μ for networks with kðtÞ¼ 0:2. (Details on how simulations were performed are found in
Methods.)

doi:10.1371/journal.pcbi.1004579.g004
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Gillespie algorithm is given by

YTGA ¼ O EðtÞnsimu

� �
þO QðtÞnsimu

� �
; ð14Þ

where QðtÞis the mean number of transitions that take place per time-step.
The first term of the r.h.s. of Eqs (13) and (14) correspond to the time needed for looking

through the set of contacts at each time-step to determine the set of possible infections and are
thus similar for the rejection sampling and temporal Gillespie algorithms (with the temporal
Gillespie algorithm incurring a small additional overhead related to calculating the cumulative
transition rate and keeping track of of the normalized waiting time left till the next transition).
For rejection sampling [Eq (13)], the second term corresponds to the determination of whether
each of the possible transitions takes place at each time-step; for the temporal Gillespie algo-
rithm [Eq (14)], the second term corresponds to drawing inter-event waiting times and which
transitions that take place. For the SIR and SIS processes considered above,

Fig 5. Comparison of the speed of the temporal Gillespie and rejection sampling algorithms on empirical time-varying networks.RatioΘRS /ΘTGA

between the time per realization of a single simulation using rejection sampling and the temporal Gillespie algorithm on empirical face-to-face contact
networks in different social settings (Table 1): (A) for a SIR process, without (TGA) and with (TGA + CR) contact removal; (B) for a SIS process. Simulations
were performed with β = 1 000μ for the workplace and β = 100μ for the other networks. (Details on how simulations were performed are found in Methods.)

doi:10.1371/journal.pcbi.1004579.g005

Table 1. Summary statistics for empirical face-to-face contact networks from the SocioPatterns collaboration [45]: social setting; number of nodes
in the network,N; total duration of measurements, T; average instantaneous degree, kðtÞ.
Setting N T kðtÞ Reference

Workplace 92 11 days 0.004 [46]

Hospital 80 4 days 0.064 [47]

High school 327 4 days 0.063 [48]

Conference 399 32 hours 0.070 [49]

doi:10.1371/journal.pcbi.1004579.t001
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MðtÞ¼ MS!IðtÞþ IðtÞ, whereMS!IðtÞis mean the number of possible S! I transitions per

time-step, and IðtÞis the mean number of infected nodes.
Empirically relevant networks are sparse and transition rates are small, so typically

QðtÞ� EðtÞ� MðtÞ. (The first inequality is a consequence of transition rates being small com-

pared to 1/Δt; the second inequality follows by noting that IðtÞ� N � EðtÞ.) This means that
the performance of the rejection sampling algorithm is limited by the rejection sampling step
[second term of Eq (13)], while the performance of the temporal Gillespie algorithm is limited by
the iteration over the set of contacts in order to updateO(t) [first term in Eq (14)]; this explains
why the difference in performance decreases with the mean instantaneous degree of the network.
This also hints at how we may improve the speed of the temporal Gillespie algorithm: by render-
ing the identification of relevant contacts during each time-step faster. One such approach which
may be applied to processes with an absorbing state (e.g. anR state) is explored below.

Improving performance by removing obsolete contacts. Empirical networks describing
human contact differ from simulated networks in a number of ways. For example, their struc-
ture and dynamics are more complex [25, 46–49] but perhaps most importantly in the perspec-
tive of optimizing simulations, they are of finite length. One is often interested in long-time
behavior or slowly evolving processes compared to the length of available data. To overcome
this limitation, one usually loops over the data set. This means that if a node enters an inactive
absorbing state such as the recovered (R) state in the SIR model, one may remove all following
contacts to this node from the data, thus reducing the number of contacts that one must go
through during the following loop. Furthermore, since the I ! R transition is independent of
the network, one may also remove all contacts between two infected nodes.

Pseudocode for an algorithm that removes obsolete contacts is given in Methods and
C++ code is given in S1 Files. Fig 5A compares the speed gain of the temporal Gillespie algo-
rithm relative to rejection sampling with and without contact removal for simulations of a
constant-rate SIR process on empirical networks of face-to-face contacts (Table 1). Depend-
ing on the parameters of the simulated process, removing obsolete contacts may induce both
a significant gain or loss in speed; for processes that are fast compared to the length of the
data set, the data is not repeated or only repeated few times during a simulation and the addi-
tional overhead involved in identifying and removing the obsolete contacts renders the algo-
rithm slower; for slow processes the data is looped many times and removing the obsolete
contacts makes the algorithm faster. Fig 5A suggests an empirically determined rule-of-
thumb: if the slowest time-scale of the simulated process (here* 1/μ) is longer than the
length of the data, T, removing obsolete contacts pays off, if it is shorter, one should not
remove obsolete contacts.

Slow network dynamics. For time-varying networks of face-to-face contacts, which are rel-
evant for simulating epidemic spreading in a population, network dynamics are typically much
faster than the time-scales of the dynamical process that is simulated (compare the 20 s time-
resolution of the empirical data of Table 1 to typical 1/β* 1 hour and 1/μ* 1 week for flu-like
diseases). In the opposite case, i.e., if the network evolves much slower than the dynamical pro-
cess, the temporal Gillespie algorithm simply works like a static Gillespie algorithm in-between
changes in the network structure while taking the changes changes into account exactly when
they occur. The performance of the temporal Gillespie algorithm then approaches that of a static

Gillespie algorithm in this case. Note that since QðtÞ� EðtÞin this limit, the second term domi-
nates in Eq (14), which means that the speed of the algorithm is limited by the selection of wait-
ing times and transitions that take place, and care should be taken to optimize these steps, e.g.,
by organizing the transition processes in a heap or a priority queue [37]. Note finally that to
obtain reliable results using a rejection sampling algorithm one must use a time-step for
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simulations ΔtRS which is much smaller than the time-step Δt of network change. Thus the
expected time complexity of rejection sampling scales with Δt/ΔtRS nsimu� nsimu in this case.

6 Non-Markovian processes
For real-world contagion processes, transition rates are typically not constant but in general
depend on the history of the process [30, 31]. Such processes are termed non-Markovian. The
survival probability for a single non-Markovian transition process taking place on a time-vary-
ing network is given by:

Sm t;F ðmÞ
t

� � ¼ exp �
Z t��

t�
ImðtÞlmðt;F ðmÞ

t Þdt
� �

: ð15Þ

HereF ðmÞ
t is a filtration for the processm, i.e., all information relevant to the transition process

available up to and including time t; typically,F ðmÞ
t will be its starting time and relevant contacts

that have taken place since. As above, t� is the time of the last transition and t�� = t� + τ is the time
of the next. [Note that since λm now depends explicitly on t, we may absorb Im in λm; however, to
underscore the analogy with the Poissonian case, we keep the factor Im explicitly in Eq (15).]

We use again that the transition processes are independent, to write the waiting time sur-
vival probability:

S t;F tð Þ ¼ exp �
Z t��

t�
Lðt;F tÞdt

� �
; ð16Þ

with

Lðt;F tÞ ¼
X
m2OðtÞ

lm t;F ðmÞ
t

� �
; ð17Þ

and where F t is the union over F ðmÞ
t form 2 O.

For a static network, Eq (6) reduces to the result found in [17]. This can be seen by noting

thatM(t) =M and O(t) = O are then constant, and thus that lmðt;F ðmÞ
t Þ ¼

�½dSmðt;F ðmÞ
t Þ=dt�=Smðt;F ðmÞ

t Þ ¼ df ln ½1=Smðt;F ðmÞ
t Þ�g=dt and

Smðt;F ðmÞ
t Þ ¼ Smðt þ tm;F

ðmÞ
t Þ=Smðtm;F ðmÞ

t Þ, yielding directly Eq. (7) of [17].
As in the Poissonian case (Sec. 4: “Temporal Gillespie algorithm”) we define the normalized

waiting time, τ0, as

t0 ¼ Lðt��; t�;F tÞ ¼
Z t��

t�
Lðt;F tÞdt : ð18Þ

This gives us the same simple form as above for the survival function of the normalized waiting

time, τ0,
Sðt0Þ ¼ exp ð�t0Þ ; ð19Þ

and the probability thatm is the transition that takes place at t = t��,

pmðt;F tÞ ¼ ImðtÞ
lm t;F ðmÞ

t

� �
Lðt;F tÞ

: ð20Þ

Until now our approach and results are entirely equivalent to the Poissonian case consid-
ered above. However, since λm(t) in general depend continuously on time, the transition time
t�� is not simply found by linear interpolation as in Eq (12). Instead, one would need to solve
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the implicit equation Lðt��; t�Þ ¼ t0 numerically to find t�� exactly. To keep things simple and
speed up calculations, we may approximate Λ(t) as constant over a time-step. This assumes
that ΔΛ(t)Δt� 1, where ΔΛ(t) is the change of Λ(t) during a single time-step. It is a more
lenient assumption than the assumption that Λ(t)Δt� 1 which rejection sampling relies on, as
can be seen by noting that in general ΔΛ(t)/Λ(t)� 1. The same assumption also lets us calcu-
late Lðtnþ1; t

�Þ as in the Poissonian case:

Lðtnþ1; t
�;F tÞ ¼ ðtn�þ1 � t�ÞLðt�Þ þ Dt

Xn
i¼n�þ1

Lðti;F tÞ ; ð21Þ

and the time, t��, at which the next transition takes place:

t�� ¼ tn�� þ
t0 � Lðtn�� ; t�;F tÞ

Lðtn�� ;F tÞ
: ð22Þ

Using the above equations, we can now construct a temporal Gillespie algorithm for non-Mar-
kovian processes.

This algorithm updates all λm(t) that depend on time at each time-step, where for the Poisso-
nian case we only had to initialize new processes, i.e., contact-dependent processes (type b and c,
Sec. 1: “Stochastic processes on time-varying networks”). This means the algorithm is only roughly
a factor two faster than rejection sampling [compare dotted lines (� = 0) in Fig 6]. To speed up
the algorithm, we may employ a first-order cumulant expansion of Sðt;F tÞ around τ = 0, as pro-
posed in [17, 38] for static non-Markovian Gillespie algorithms. It consists in approximating

Fig 6. Comparison of the speed of the temporal Gillespie and the rejection sampling algorithms: non-Markovian SIR process.RatioΘRS/ΘTGA

between the time per realization of a single simulation of an SIR process with Weibull distributed recovery times using rejection sampling and the temporal
Gillespie algorithm on activity driven networks of different average degree kðtÞ [for empirical contact networks, kðtÞ	 0:004� 0:07 (Table 1)]: (A) for networks
consisting of N = 100 nodes and (B) of N = 1 000 nodes. The parameter � controls the accuracy of the temporal Gillespie algorithm: for � = 0, where λm(t) is
approximated as constant over a single time-step, it is most accurate; for �!1, where λm is approximated as constant between two consecutive transition
events, it is the least accurate. Node activities were given by ai = ηzi with zi � z�3:2

i for zi 2 [0.03, 1); a node formed two contacts each time it was active. The
recovery rate of an infected node was given by Eq (23) with γ = 1.5. The infection rate was β = 103 μ0 for networks with kðtÞ¼ 0:002, β = 102 μ0 for networks
with kðtÞ¼ 0:02, and β = 10μ0 for networks with kðtÞ¼ 0:2m0. (See Methods for details on how simulations were performed.)

doi:10.1371/journal.pcbi.1004579.g006
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lmðt;F ðmÞ
t Þ by the constant lmðt�;F ðmÞ

t Þ for t� < t< t�� and gives a considerable speed increase of
the algorithm [full (�!1) in Fig 6]. However, the approximation is only valid whenM(t)� 1
[43], which is not always the case for contagion processes. Notably, at the beginning and end of an
SIR process, and near the epidemic threshold for an SIS process,M is small and the approximation
breaks down; the approximate algorithm for example overestimates the peak number of infected
nodes in a SIR process with recovery rates that increase over time [compare full black line (�!
1) to the quasi-exact full red line (� = 0) in Fig 7A]. An intermediate approach, which works
when the number of transition processes is small, but is not too slow to be of practical relevance, is
needed. We propose one such approach below [44].

Efficient non-Markovian temporal Gillespie algorithm. As discussed above, we neither
want to update all transition rates at each time-step as this makes the temporal Gillespie algo-
rithm slow, nor do we want to only update them when a transition event takes place as this
makes the algorithm inaccurate.

An intermediate approach is found by looking at the relevant physical time-scales of the
transition processes: the average waiting time before they take place, hτ(m)i. If the time elapsed
since we last updated λm(t) is small compared to hτ(m)i, we do not make a large error by treat-
ing it as constant over the interval; however, if the elapsed time is comparable to or larger than
hτ(m)i, the error may be considerable. Thus, instead of updating λm at each time-step, we may
update it only after a time t> �hτ(m)i has elapsed since it was last updated. Here � controls the
precision of the algorithm.

Below, we use this approach to simulate a non-Markovian SIR process, where the recovery
times of infected nodes follow a Weibull distribution (see Methods for an algorithm written in
pseudocode and S1 Files for implementation in C++). The recovery rate of an infected node is
here given by

mðt; tðmÞÞ ¼ gmg
0ðt � tðmÞÞg�1

; ð23Þ

where μ0 sets the scale, t
(m) is time when the node was infected, and γ is a shape parameter of

the distribution. For γ = 1, we recover the constant-rate Poissonian case with μ(t;t(m)) = μ0. For

Fig 7. Comparison of the outcome of non-Markovian SIR processes for different values of the parameter �. (A) Average number of infected nodes, hIi,
as function of time for a SIR process with Weibull distributed recovery times. (B) Distribution of the numbers of recovered nodes after the infection has died
out (i.e. when I = 0). For � = 0 the temporal Gillespie algorithm is quasi-exact (see S3 Fig for comparison with rejection sampling); for �!1, corresponding to
a first-order cumulant expansion of Lðt;F tÞ around t = t* (see main text), it is least accurate. As � is decreased, both hIi(t) and p(R) rapidly approach the
quasi-exact result obtained for � = 0. Simulations were performed on an activity-driven network consisting ofN = 100 nodes with activities ai = zi/10, where
zi � z�3:2

i ; nodes’ recovery times followed Eq (23) with γ = 1.5 and μ0 = 10−4 Hz; the length of a time-step was Δt = 1 s and the infection rate β = 100μ0 = 10−2

Hz.

doi:10.1371/journal.pcbi.1004579.g007
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realistic modeling of infections, γ> 1; here μ(t;t(m)) is zero at t = t(m) and grows with time. In
this case, we thus update the recovery rates μ(t;t(m)) whenever the time elapsed since a transi-
tion last took place exceeds hτ(m)i = Γ(1 + 1/γ)/μ0.

The parameter � lets us control the precision of the non-Markovian temporal Gillespie algo-
rithm: the smaller � is, the more precise the algorithm is, on the other hand, the larger � is, the
faster the algorithm is (Fig 8). At � = 0, the temporal Gillespie algorithm is maximally accurate,
but also slowest, corresponding to the quasi-exact approximation that Lðt;F tÞ stays constant
over a single time-step. Letting �!1 corresponds to the first order cumulant expansion of
[17], and is the fastest, but least accurate. Intermediate � gives intermediate accuracy and
speed, and permits one to obtain the desired accuracy without sacrificing performance. In the
case of the SIR process with Weibull-distributed recovery times, � = 0.1 gives an error of no
more than a few percent (Figs 8A–8D and 7)—which is usually acceptable as the discrepancy
between model and reality can be expected to be larger—with an almost optimal computation
time (Figs 8E and 6).

Discussion
We have presented a fast temporal Gillespie algorithm for simulating stochastic processes on
time-varying networks. The temporal Gillespie algorithm is up to multiple orders of magnitude
faster than current algorithms for simulating stochastic processes on time-varying networks.
For Poisson (constant-rate) processes, where it is stochastically exact, its application is particu-
larly simple. The algorithm is also applicable to non-Markovian processes, where a control
parameter lets one choose the desired accuracy and performance in terms of simulation speed.
We have shown how to apply it to compartmental models of contagion in human contact net-
works. The scope of the temporal Gillespie algorithm is more general than this, however, and it
may be applied e.g. to diffusion-like processes or systems for which a network description is
not appropriate.

Methods
The following four subsections contain supporting information to the manuscript: the first
subsection lists notation used in the article (Notation); the second details how Monte Carlo
simulations were performed (Details on howMonte Carlo simulations were performed) the
third gives pseudocode for application of the temporal Gillespie algorithm to specific contagion
processes on time-varying networks (Algorithms for simulating specific contagion models).
Finally, in the fourth subsection we give pseudocode for further optimization of the algorithm
for empirical networks by removal of obsolete contacts (Removing obsolete contacts for an SIR
process on empirical networks).

Notation
Tables 2 and 3 list the notation used in the manuscript. Table 2 gives notation pertaining to the
temporal Gillespie algorithm, and Table 3 lists notation pertaining to time-varying networks
and compartmental contagion processes.

Details on how Monte Carlo simulations were performed
All simulations for comparing the speed of algorithms were performed sequentially on a HP
EliteBook Folio 9470m with a dual-core (4 threads) Intel Core i7-3687U CPU @ 2.10 GHz. The
system had 8 GB 1 600 MHz DDR3 SDRAM and a 256 GB mSATA Solid State Drive. Code
was compiled with TDM GCC 64 bit using g++ with the optimization option -O2. Speedtests
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Fig 8. Accuracy and speed of the non-Markovian temporal Gillespie algorithm as function of �. (A)–(D)
Different measures of the difference in outcome of simulations between algorithms with � > 0 and � = 0 (quasi-
exact). (A) Difference, Dimax ¼ imaxð�Þ � imaxð0Þ, in the peak average fraction of infected nodes, imax ¼ Imax=N.
(B) Difference Δtmax between the times at which this peak takes place, normalized by μ0. (C) Difference, Dr1,
in the average fraction of nodes affected by the infection—the average attack rate. (D) Kullback-Leibler
divergence, KL[p(r1)], between the distributions of attack rates (E) Time per simulation of the process.
Simulations were performed on an activity-driven network withN = 100 nodes and activities ai = zi/10 with zi �
z�3:2
i for zi 2 [0.03, 1); nodes’ recovery times followed Eq (23) with γ = 1.5, μ0 = 10−4 Hz, and Δt = 1 s.

doi:10.1371/journal.pcbi.1004579.g008
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were also performed using -O3 and -Ofast, but -O2 gave the fastest results, both for rejec-
tion sampling and temporal Gillespie algorithms.

For SIR processes simulations were run until I = 0; for SIS processes simulations were run
for 20/(μΔt) time-steps (as in Fig 3) or until I = 0, whichever happened first. Between 100 and
10 000 independent realizations were performed for each data point depending on μΔt (100 for
low μΔt and 10 000 for high μΔt). For simulations on empirical contact data, data sets were
looped if necessary.

Algorithms for simulating specific contagion models
We here give pseudocode for the application of the temporal Gillespie algorithm to three spe-
cific models: the first subsection treats the Poissonian SIR process, the second treats the Poisso-
nian SIS process, and the third treats a non-Markovian SIR process with recovery times
following a general distribution.

We assume in the following that the time-varying network is represented by a list of lists of
individual contacts taking place during each time-step. An individual contact, termed

Table 2. Notation pertaining to the temporal Gillespie algorithm. The row “First appearance(s)” points to
where where the notation is introduced in the Results section.

Symbol Description First appearance
(s)

t Real time. Sec. 1

Δt Duration of a time-step. Sec. 2

n Time-step number. Sec. 4

tn Time at beginning of time-step n: tn = nΔt. Sec. 4

m Possible transition / transition process. Sec. 1

λm Transition rate for m. Sec. 1

Im(t) Function indicating if the transition m may take place at time t. Sec. 4

Ω(t) Set of transition processes at time t. Secs. 1, 4

M(t) Number of transition processes at time t. Secs. 1, 4

Ω Set of total possible transitions between two consecutive transition
events.

Secs. 1, 4

M Number of total possible transitions between two consecutive
transition events.

Secs. 1, 4

Λ, Λ(t) Cumulative transition rate (at time t): Λ(t) = ∑m 2 Ω(t) λm. Secs. 3, 4

Lðt; t�Þ Integrated cumulative transition rate (from t* to t). Sec. 4

τ Waiting time between two consecutive transitions. Sec. 3

S(τ) Waiting time survival function. Sec. 3

t*, t** Times when the last/next transition took/takes place, respectively. Sec. 4

n*, n** Time-steps during which the last/next transition took/takes place,
respectively.

Sec. 4

τ0 Normalized waiting time between two consecutive transition events. Sec. 4

S(τ0) Normalized waiting time survival function. Sec. 4

τ0 * Exp (1) τ0 is exponentially distributed with unit rate. Sec. 4 (Sec. 3)

ΘRS Time per simulation for the rejection sampling algorithm. Sec. 5

ΘTGA Time per simulation for the temporal Gillespie algorithm. Sec. 5

OðxÞ Term of order x, i.e., OðxÞ ¼ a x for a given constant a. Sec. 5

F ðmÞ
t

Filtration for the transition process m. Sec. 6

F t Union of all F ðmÞ
t . Sec. 6

doi:10.1371/journal.pcbi.1004579.t002
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contact, is represented by a tuple of nodes, i and j. The list contactLists[t] gives the
contacts taking place during a single time-step, t, for t = 0, 1, . . ., T_simulation-1,
where T_simulation is the desired number of time-steps to simulate. The state of each
node is given by the vector x, where the entry x[i] 2 {S, I, R} gives the state of node i.

As one may always normalize time by the duration of a time-step, Δt, we have in the following
set Δt = 1. Note that beta and mu in the code then corresponds to βΔt and μΔt, respectively.

SIR process. The classical SIR model with constant infection and recovery rates is the sim-
plest epidemic model where individuals can gain immunity. As discussed in the main text,
nodes may be in one of three states: susceptible (S), infectious (I ), or recovered (R). Two dif-
ferent transition types let the nodes switch state: a spontaneous I ! R transition which takes
place with rate μ, and a contact-dependent S ! I transition which takes place with rate β
upon contact with an infectious node. Pseudocode 1 shows how the temporal Gillespie algo-
rithm may be implemented for an SIR process on a time-varying contact network.

Table 3. Notation pertaining to compartmental contagionmodels and time-varying networks. The row
“First appearance(s)” points to where where the notation is introduced in the Results section.

Symbol Description First
appearance

i, j Node. Sec. 1

N Number of nodes in network. Sec. 1

(i, j)t Contact taking place at time t between nodes i and j. Sec. 1

kI ðtÞ Number of infected nodes in contact with i at time t Sec. 1

kðtÞ Average degree (number of contacts per node) of network at time
t.

Fig 4

xi(t) Random variable specifying the state (compartment) of node i at
time t.

Sec. 1

X 2 fX 1;X 2 . . .X qg Possible node states (compartments). Sec. 1

Xp Number of nodes in state X p. Sec. 1

S, I , R Possible node states in SIS and SIR models of epidemic
spreading.

Sec. 1

S, I, R Number of nodes in each of the states S, I , and R, respectively. Sec. 1

β Rate of S ! I transition of a susceptible node in contact with an
infectious node.

Sec. 1

μ Rate of spontaneous I ! R or I ! S transition of an infectious
node.

Sec. 1

EðtÞ Mean number of contacts during a single time-step. Sec. 5

MðtÞ Mean number of transition processes per single time-step. Sec. 5

QðtÞ Mean number of transitions that take place per time-step. Sec. 5

MS!IðtÞ Mean number of S–I contacts during a single time-step. Sec. 5

IðtÞ Mean number of infectious nodes. Sec. 5

T Length of a data set describing a time-varying network (in time). Sec. 5

nsimu Number of time-steps that are simulated during a single
realization.

Sec. 5

ΔtRS Time-step used for rejection sampling when λmΔt are large,
ΔtRS �Δt.

Sec. 5

μ0 Scale parameter of the Weibull distribution. Sec. 7

γ Shape parameter of the Weibull distribution. Sec. 7

t(m) Starting time for transition process m (e.g. the time when a node
was infected).

Sec. 7

doi:10.1371/journal.pcbi.1004579.t003
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Pseudocode 1: Pseudocode for an SIR process with constant and homogeneous
transition rates. C++ code for homogeneous and heterogeneous populations is
given in S1 Files.

//Initialize:
01 FOR i = 1,. . .,N
02 x[i] = S //set node states to S
03 ENDFOR
04 x[root] = I //set state of root node to I
05 m_I = [root] //list of infected nodes
06 N_I = 1 //number of infected nodes
07 N_R = 0 //number of recovered nodes
08 Mu = mu //cumulative recovery rate
09 tau = randexp(1) //draw tau Exp(1)

//Run through the time-steps:
10 FOR t = 0,1,. . .,T_simulation-1

//Update list of possible S->I transitions:
11 CLEAR m_SI //S nodes in contact with I nodes
12 FOR contact in contactLists[t]
13 (i,j) = contact
14 IF (x[i],x[j])==(S,I)
15 APPEND i to m_SI
16 ELSE IF (x[i],x[j])==(I,S)
17 APPEND j to m_SI
18 ENDIF
19 ENDFOR
20 M_SI = length of m_si
21 Beta = beta�M_SI //cumulative infection rate
22 Lambda = Mu + Beta //cumulative transition rate

//Check if a transition takes place:
23 IF Lambda<tau //no transition
24 tau -= Lambda
25 ELSE //at least one transition
26 xi = 1. //remaining fraction of time-step
27 WHILE xi�Lambda>=tau
28 DRAW z uniformly from [0,Lambda)
29 IF z<Beta //S->I transition
30 DRAW m at random from m_SI
31 x[m] = I
32 APPEND m to m_I
33 N_I += 1
34 Mu += mu
35 ELSE //I->R transition
36 DRAW m at random from m_I
37 x[m] = R
38 REMOVE m from m_I
39 N_I -= 1
40 N_R += 1
41 Mu -= mu
42 ENDIF
43 xi -= tau/Lambda //update remaining fraction

//Update list of S->I transitions and rates:
44 REDO lines 11–22
45 tau = randexp(1) //draw new tau
46 ENDWHILE
47 ENDIF

Temporal Gillespie Algorithm
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//Read out the desired quantities:
48 WRITE N_I, N_R, . . .
49 ENDFOR

SIS process. In the SIS model, nodes can be in one of two states: susceptible (S) or infec-
tious (I ). As for the SIR model, two different transition types let the nodes switch state: a spon-
taneous I ! S transition which takes place with rate μ, and a contact-dependent S ! I
transition which takes place with rate β upon contact with an infectious node.

The SIS model is implemented in a manner very similar to the SIR model; an implementa-
tion can be found by using the code of Pseudocode 1 with lines 07 and 40 removed and line
37 replaced by x[m] = S. C++ code is given in S1 Files for both homogeneous and heteroge-
neous populations.

Non-Markovian SIR process. We consider in the main text (Sec. 6: “Non-Markovian pro-
cesses”) an SIR model with non-constant recovery rates; instead of being exponentially distrib-
uted (as in the constant-rate SIR model), the individual recovery times, τ(m), are here Weibull
distributed,

tðmÞ � gm0 m0t
ðmÞð Þg�1

e�m0t
ðmÞ

: ð24Þ

As for the classical SIR model, nodes may be in one of three states: susceptible (S), infectious
(I ), or recovered (R). Two different transition types let the nodes switch state: a contact-
dependent S ! I transition with constant rate β upon contact with an infectious node, and a
spontaneous I ! R transition which takes place with rate μ(t;t(m)), given by Eq (23).

The implementation of the SIR model with non-exponentially distributed waiting times
requires some extension of the code for the constant-rate SIR model to account for the heteroge-
neous and time-dependent recovery rates. To this end, we introduce the following variables:
t_inf lists the times at which each node was infected (if applicable); t� is the exact time at
which the last transition took place; mu is a function of time that is called as mu(t-t_inf[m]) to
return the instantaneous recovery rate of m at time t; mu_avg is the expected recovery time of an
infected node and is used together with the precision control parameter epsilon in the approxi-
mate simulation scheme discussed in Section 6: “Non-Markovian processes”. Pseudocode 2 shows
pseudocode for an implementation of such a SIR model with non-constant recovery rates.

Pseudocode 2: Pseudocode for a non-Markovian SIR process with non-constant
recovery rates. The function returns the instantaneous recovery rate as
function of (t − t�); for Weibull distributed recovery times, is given by Eq
(23). C++ code is given in S1 Files.

//Initialize:
01 FOR i = 1,. . .,N
02 x[i] = S //set nodes states to S
03 ENDFOR
04 x[root] = I //set state of root node to I
05 t_inf[root] = 0 //time of infection = 0
06 m_I = [root] //list of infected nodes
07 mus = [mu(0)] //list of recovery rates
08 Mu = mu(0) //cumulative recovery rate
09 N_I = 1 //number of infected nodes
10 N_R = 0 //number of recovered nodes
11 tau = randexp(1) //draw tau Exp(1)

//Run through the time-steps:
12 FOR t = 0,1,. . .,T_simulation-1

//Update mus if t-t�>=epsilon�mu_avg:
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13 IF t-t�>=epsilon�mu_avg
14 CLEAR mus
15 FOR m in m_I
16 APPEND mu(t-t_inf[m]) to mus
17 ENDFOR
18 Mu = sum of mus
19 ENDIF

//Update list of possible S->I transitions:
20 CLEAR m_SI //S nodes in contact with I nodes
21 FOR contact in contactLists[t]
22 (i,j) = contact
23 IF (x[i],x[j])==(S,I)
24 APPEND i to m_SI
25 ELSE IF (x[i],x[j])==(I,S)
26 APPEND j to m_SI
27 ENDIF
28 ENDFOR
29 M_SI = length of m_si
30 Beta = beta�M_SI //cumulative infection rate
31 Lambda = Mu + Beta //cumulative transition rate

//Check if transition takes place:
32 IF Lambda<tau //no transition
33 tau -= Lambda
34 ELSE //at least one transition
35 xi = 1. //remaining fraction of time-step
36 t� = t //for calculating transition times
37 WHILE xi�Lambda>=tau
38 t� += tau/Lambda //transition time
39 DRAW z uniformly from [0,Lambda)
40 IF z<Beta //S->I transition
41 DRAW m at random from m_SI
42 x[m] = I
43 t_inf[m] = t�

44 APPEND m to m_I
45 N_I += 1
46 ELSE //I->R transition
47 DRAW m from m_I with weight mus[m]
48 x[m] = R
49 REMOVE m from m_I
50 N_I -= 1
51 N_R += 1
52 ENDIF
53 xi -= tau/Lambda //update remaining fraction

//Update mus:
54 CLEAR mus
55 FOR m in m_I
56 APPEND mu(t�-t_inf[m]) to mus
57 ENDFOR
58 Mu = sum of mus

//Update list of S->I transitions and rates:
59 REDO lines 20–31
60 tau = randexp(1) //draw new tau
61 ENDWHILE
62 ENDIF

//Read out the desired quantities:
63 WRITE N_I, N_R, . . .
64 ENDFOR

Temporal Gillespie Algorithm
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Removing obsolete contacts for an SIR process on empirical networks
When simulations are carried out on data which are looped due to their finite length, the speed
of the temporal Gillespie algorithm may be further increased for processes with an absorbing
state, such as the SIR process, by removing obsolete contacts to nodes that have entered such a
state. Pseudocode 3 shows pseudocode for removing obsolete contacts; its replaces lines 11 to
19 of Pseudocode 1.

Pseudocode 3: Pseudocode for counting possible S ! I transitions with
removal of outdated contacts. C++ code is given in S1 Files.
01 CLEAR m_SI //S nodes in contact with I nodes
02 FOR contact in contactLists[t]
03 (i,j) = contact
04 IF x[i]==S
05 IF x[j]==I
06 APPEND i to m_SI
07 ELSE IF x[j]==R //remove if x[j]==R
08 REMOVE contact from contactLists[t]
09 ENDIF
10 ELSE IF x[i]==I
11 IF x[j]==S
12 APPEND j to m_SI
13 ELSE //remove if (x[i],x[j])==I or x[i]==R
14 REMOVE contact from contactLists[t]
15 ENDIF
16 ELSE //remove if x[i]==R
17 REMOVE contact from contactLists[t]
18 ENDIF
19 ENDFOR

Supporting Information
S1 Fig. Numerical results from temporal Gillespie and rejection sampling algorithms for
contagion processes taking place on empirical networks. (A)–(D) for a SIR process and (E)–
(H) a SIS process. (A),(B),(E), and (F) for βΔt = 10−2 and μΔt = 10−4; (C),(D),(G), and (H) for
βΔt = 10−1 and μΔt = 10−3. (A),(C) Mean number of nodes in each state of the SIR model as
function of time. (B),(D) Distribution of final epidemic size (number of recovered nodes when
I = 0) in the SIR model. (E),(G) Mean number of nodes in each state of the SIS model as func-
tion of time. (F),(H) Distribution of the number of infected nodes in the stationary state (t!
1) of the SIS model. All simulations were performed 1 000 000 times with the root node cho-
sen at random on a face-to-face contact network recorded in a high school (Table 1).
(PDF)

S2 Fig. Comparison of numerical results from temporal Gillespie and rejection sampling
algorithms for high transition probability per time-step. (A)–(D) for a SIR process and (E)–
(H) a SIS process. (A),(B),(E), and (F) for βΔt = 10−1 and μΔt = 10−3; (C),(D),(G), and (H) for
βΔt = 1 and μΔt = 10−2. (A),(C) Mean number of nodes in each state of the SIR model as func-
tion of time. (B),(D) Distribution of final epidemic size (number of recovered nodes when
I = 0) in the SIR model. (E),(G) Mean number of nodes in each state of the SIS model as func-
tion of time. (F),(H) Distribution of the number of infected nodes in the stationary state (t!
1) of the SIS model. All simulations were performed 1 000 000 times with the root node cho-
sen at random on an activity driven network consisting of N = 100 nodes, with activities ai =
ηzi, where η = 0.1 and zi � z�3:2

i for zi 2 [0.03,1), and a node formed two contacts when active.
(PDF)
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S3 Fig. Comparison of numerical results from temporal Gillespie and rejection sampling
algorithms for a non-Markovian SIR process. (a),(c) Mean number of nodes in each state as
function of time in the SIR model with Weibull distributed recovery times (Sec. 6: “Non-Mar-
kovian processes”); the parameter controlling the precision of the temporal Gillespie algorithm
was set to � = 0 (quasi-exact). (b),(d) Distribution of final epidemic size (number of recovered
nodes when I = 0). (a),(b) βΔt = 10−2 and μΔt = 10−4; (c),(d) βΔt = 10−1 and μΔt = 10−3. The
outcome of the rejection sampling algorithm approaches that of the temporal Gillespie algo-
rithm as βΔt and μΔt become smaller. All simulations were performed 100 000 times with the
root node chosen at random on an activity driven network consisting of N = 100 nodes, with
activities ai = ηzi, where η = 0.1 and zi � z�3:2

i for zi 2 [0.03,1), and a node formed two contacts
when active. Nodes’ recovery times followed Eq (20) with γ = 1.5 and the length of a time-step
was Δt = 1 s.
(PDF)

S1 Files. C++ code for implementations of the temporal Gillespie algorithm to examples of
epidemic processes on time-varying networks. Specifically, we provide the following pro-
grams: (SIR-Poisson-homogeneous.cpp) constant-rate SIR process in a homogeneous popula-
tion, i.e., same infection/recovery rates for all nodes; (SIR-Poisson-homogeneous-
contactRemoval.cpp) constant-rate SIR process in a homogeneous population where obsolete
contacts are removed from the contact data as they occur; (SIR-Poisson-heterogeneous.cpp)
constant-rate SIR process in a heterogeneous population, i.e., infection/recovery rates may dif-
fer between nodes; (SIR-nonMarkovian.cpp) non-Markovian SIR process with Weibull distrib-
uted recovery times of individual nodes; (SIS-Poisson-homogeneous.cpp) constant-rate SIS
process in a homogeneous population, i.e., same infection/recovery rates for all nodes; (SIS--
Poisson-heterogeneous.cpp) constant-rate SIS process in a heterogeneous population, i.e.,
infection/recovery rates may differ between nodes.
(ZIP)
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