
HAL Id: hal-01140134
https://hal.science/hal-01140134v1

Preprint submitted on 9 Apr 2015 (v1), last revised 2 Nov 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Gillespie algorithm: Fast simulation of
contagion processes on time-varying networks

Christian L. Vestergaard, Mathieu Génois

To cite this version:
Christian L. Vestergaard, Mathieu Génois. Temporal Gillespie algorithm: Fast simulation of contagion
processes on time-varying networks. 2015. �hal-01140134v1�

https://hal.science/hal-01140134v1
https://hal.archives-ouvertes.fr


Temporal Gillespie algorithm: Fast simulation of contagion processes on time-varying
networks

Christian L. Vestergaard1, ∗ and Mathieu Génois1

1Aix Marseille Université, Université de Toulon,
CNRS, CPT, UMR 7332, 13288 Marseille, France

(Dated: April 7, 2015)

Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on
complex networks, and are often the only accessible way to explore their behavior. The development
of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used
for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical
processes on static networks. However, its adaptation to temporal networks remains non-trivial. We
here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to
general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to
orders of magnitude faster than traditional simulation schemes based on rejection sampling. We
also show how it can be extended to simulate non-Markovian processes. The algorithm is easily
applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-
Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation
in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-
Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates.

I. INTRODUCTION

Networks have emerged as a natural description of
complex systems and their dynamics [1], notably in the
case of spreading phenomena, such as social contagion,
rumor and information spreading, or epidemics [1–3].
The dynamics of contagion processes occurring on a net-
work are usually complex, and analytical results are at-
tainable only in special cases [3, 4]. Furthermore, such re-
sults almost systematically involve approximations [3, 4].
Numerical studies based on stochastic simulations are
therefore necessary, both to verify analytical approxima-
tions, and to study the majority of cases for which no
analytical results exist. The development of fast algo-
rithms is thus important for the characterization of con-
tagion phenomena, and for large-scale applications such
as simulations of world-wide epidemics [2, 5].

The Doob-Gillespie algorithm [6–11], originally pro-
posed by David Kendall in 1950 for simulating birth-
death processes and made popular by Daniel Gillespie
in 1976 for the simulation of coupled chemical reactions,
offers an elegant way to speed up such simulations by
doing away with the many rejected trials of traditional
Monte Carlo methods. Instead of checking at each time-
step if each possible reaction takes place, as rejection-
sampling algorithms do, the Gillespie algorithm draws
directly the time elapsed until the next reaction takes
place and what reaction takes place at that time. It is
readily adapted to the simulation of Poisson processes
on static networks [12] and can be generalized to non-
Markovian processes [13].

Systems in which spreading processes take place, e.g.,
social, technological, infrastructual, or animal systems,

∗ cvestergaard@gmail.com

are not static though. Individuals create and break con-
tacts at time-scales comparable to the time-scales of such
processes [14–16], and the dynamics of social networks
themselves profoundly affect dynamical processes taking
place on top of them [17–23]. One thus needs to take
the network’s dynamics into account, e.g., by represent-
ing it as a time-varying network [24] (also known as a
time-varying graph, temporal network, or dynamical net-
work). The dynamical nature of time-varying networks
makes the adaptation of the Gillespie algorithm to such
systems non-trivial.

The main difficulty in adapting the Gillespie algo-
rithm to time-varying networks is taking into account
the variation of the set of possible transitions at each
time step. We show that by renormalizing time by the
instantaneous cumulative transition rate, we can con-
struct a temporal Gillespie algorithm that is applica-
ble to Poisson (constant rate) processes on time-varying
networks. We give pseudocode and C++ implementa-
tions for its application to simulate the paradigmatic
Susceptible-Infected-Susceptible (SIS) and Susceptible-
Infected-Recovered (SIR) models of epidemic spreading,
for both homogeneous and heterogeneous [25] popula-
tions. We verify the accuracy of the temporal Gillespie
algorithm numerically by comparison with a classical re-
jection sampling algorithm, and we show that it is up to
orders of magnitude faster.

While Poissonian models are of widespread use, real
contagion phenomena show memory effects, i.e., they are
non-Markovian. Notably, for realistic infectious diseases,
the rate at which an infected individual recovers is not
constant over time [26, 27]. Social contagion may also
show memory effects, e.g., one may be more (or less)
prone to adopt an idea the more times one has been ex-
posed to it. To treat this larger class of models, we show
how the temporal Gillespie algorithm can be extended
to non-Markovian processes. We give in particular an

ar
X

iv
:1

50
4.

01
29

8v
1 

 [
q-

bi
o.

Q
M

] 
 3

 A
pr

 2
01

5



2

algorithm for simulating SIR epidemic models with non-
constant recovery rates.

The manuscript is organized as follows. Section II de-
fines the stochastic processes which can be simulated us-
ing the temporal Gillespie algorithm, and describes the
class of compartmental models for contagion phenomena
on networks, the class we will use in examples through-
out this paper. Section III gives a quick overview of
the traditional rejection-sampling algorithms. Section IV
outlines a derivation of the static Gillespie algorithm.
Section V derives the temporal Gillespie algorithm for
Poisson (constant-rate) processes. In Section VI we vali-
date the temporal Gillespie algorithm through numerical
comparison with a rejection-sampling algorithm; we also
compare their speeds for simulating SIR and SIS pro-
cesses on synthetic time-varying networks. Section VII
shows how the temporal Gillespie algorithm can be ex-
tended to simulate non-Markovian processes; the ap-
proach is verified numerically and the speed of the non-
Markovian temporal Gillespie algorithm is compared to
rejection sampling. Section VIII concludes.

Four short appendices provide supporting information:
Appendix A lists notation used in the article. Ap-
pendix B gives pseudocode for application of the tem-
poral Gillespie algorithm to specific contagion processes
on time-varying networks. Appendix C details how
Monte Carlo simulations were performed. Finally, in Ap-
pendix D we apply the temporal Gillespie algorithm to
empirical time-varying networks of face-to-face contacts,
confirming the results obtained on synthetic networks;
we also discuss an approach for further optimization of
the algorithm for empirical networks.

II. STOCHASTIC PROCESSES ON
TIME-VARYING NETWORKS

We define in this section the type of stochastic pro-
cesses to which the temporal Gillespie algorithm can be
applied. At the time of writing, the main domain of ap-
plication of the algorithm is the class of compartmental
models for contagion processes on time-varying networks,
which we introduce below. For definiteness, algorithms
detailing the application of the temporal Gillespie algo-
rithm will concern this class of stochastic processes.

In general, we consider a system whose dynamics can
be described by a set of stochastic transition events. We
assume that the system can be modeled at any point in
time by a set, Ω(t), of M(t) independent stochastic pro-
cesses m, which we term transition processes; the rate at
which the transition m takes place is denoted λm. The
set Ω(t) in general changes over time, and λm may or
may not vary over time. For the classic “static” Gille-
spie algorithm to be applicable, Ω(t) can change only
when a transition (or chemical reaction in the context of
Gillespie’s original article) takes place. For processes tak-
ing place on time-varying networks, the medium of the
process—the network—also changes with time. As these

changes may allow or forbid transitions, Ω(t) is not only
modified by every reaction, but also by every change in
the network. This is the domain of the temporal Gille-
spie algorithm, which only requires that the number of
points in which Ω(t) changes be finite over a finite time-
interval [28].

The assumption that the transition processes are in-
dependent is essential to the validity of the Gillespie al-
gorithm, as it allows the calculation of the distribution
of waiting times between consecutive transitions. This
assumption is not overly restrictive, as it only requires
a transition process to be independent of the evolution
of the other simultaneous transition processes. A tran-
sition process may depend on all earlier transitions, and
the current and past states of all nodes. As such, Gille-
spie algorithms can notably be applied to models of co-
operative infections and other non-linear processes such
as threshold models [13], and even the dynamics of ant
battles [29].

A. Compartmental models of contagion

In a network based description of the population in
which a contagion process takes place, an individual is
modeled as a node i [Fig. 1(a)]. A contact between two
individuals taking place at time t is represented by an
edge (i, j)t in the graph describing the population at the
instant t [Fig. 1(a)]. In a compartmental model, each
node is in a certain state, which belongs to a fixed, finite
set of q different states (compartments) [3]. A random
variable xi(t) ∈ {X1,X2, . . . ,Xq} specifies the state of the
node i at time t (i.e. to which compartment it belongs).
Nodes may stochastically transition between states, gov-
erned by the set Ω(t) of transition processes. One is usu-
ally interested in the evolution of the number of nodes in
each state, which we denote X1, X2, . . . , Xq.

As an example, we consider the classic SIR model of
epidemic spreading with constant transition rates in a
homogeneous population (rates are the same for all indi-
viduals) [Fig. 1(b)]. Here nodes can be in one of three
states: susceptible, infected, and recovered, {S, I,R}.
Two different transition types let nodes change state: i)
a node i in the S state switches to the I state with rate
kI(t)β (an S → I reaction), where kI(t) is the number
of infected neighbors i has at time t, i.e., the number of
contacts i has with nodes in the I state [Fig. 1(a)]; ii) a
node i in the I state switches to the R state at rate µ
(an I → R reaction).

In general, the transition processes can be divided into
three types:

a. spontaneous transitions, which only depend on the
current state of the node, xi(t) [Fig. 1(c)]—e.g. an
infected node recovers spontaneously in the SIR
model [Fig. 1(b)];

b. contact-dependent transitions, which may take
place only when the node i is in contact with other



3

(a)

N i(t) i

(b)

Si Ii Ri

Ij

β µ

(c)

xi x′
i

λm

(d)

x′
ixi

xj

λm

(e)

xi x′
i

λm
x′
ixi

xj

λ′
m

FIG. 1. Schematic representation of a compartmental
contagion process on a network. (a) Snapshot of a con-
tagion process on a sample network where the colors of nodes
correspond to their current state; edges denote a current con-
tact between nodes; Ni(t) denotes the set of nodes in contact
with i at time t—i’s neighborhood. (b) Example: reaction
types in the SIR model. (c) Spontaneous reaction: a node i
may spontaneously transition from its current state xi to x′i
with rate λm. (d) Contact-dependent reaction: a node i may
transition from its current state xi to x′i with rate λm upon
contact with the node j in state xj . (e) Mixed transition: a
node i may spontaneously transition from its current state xi
to another state, x′i with rate λm; contact with another node
j, in state xj , may alter the transition rate of m, λm → λ′m.
After the contact (i, j)t ends, the transition rate may revert
to λm or change to a third value.

nodes in a given state; it thus depends on the states
of the node’s current contacts, xj for j ∈ Ni(t)
(where Ni(t) is the neighborhood of i, i.e., the
nodes j in contact with i at time t) [Fig. 1(d)]—
e.g. a susceptible node may be infected upon con-
tact with an infectious node in the SIR model

[Fig. 1(b)].

c. mixed transitions, which take place spontaneously,
but may depend on the node’s past and current
contacts [Fig. 1(e)]—e.g. in rumor spreading, an
individual may learn on his own that a rumor is
false (spontaneous) or may be convinced by another
individual who knows the rumor is false (contact-
dependent).

This division is important for practical application of the
temporal Gillespie algorithm as transition processes of
type a need only be updated after a transition has taken
place, and processes of type c need only be updated when-
ever a relevant contact takes place, but not at each time-
step. Using this distinction is crucial to obtaining large
speed-increase that the temporal Gillespie algorithm of-
fers over rejection sampling, as discussed below (Secs. V
and VI).

III. REJECTION SAMPLING FOR MONTE
CARLO SIMULATIONS

A straightforward way to simulate a stochastic process
is to use a rejection sampling algorithm, akin to the clas-
sical Metropolis algorithm. Here one divides the time-
axis in small time-steps ∆t, where ∆t should be chosen
sufficiently small such that this discretization does not in-
fluence the outcome of the process significantly; on time-
varying networks, the choice of ∆t often comes naturally
as the time-resolution at which the network is measured
or simulated [Fig. 2(a)].

At each time-step t = 0,∆t, 2∆t, . . ., we test whether
each possible transition m ∈ Ω(t) takes place or not. In
practice this is done by drawing a random number rm
that is uniformly distributed on [0, 1) for each m and
comparing it to λm∆t: if rm < λm∆t the reaction takes
place, if rm ≥ λm∆t nothing happens [Figs. 2(b) and
2(c)]. (Note that one should technically compare rm to
1−exp(λm∆t) to ensure that λm defines a proper transi-
tion rate for finite ∆t. However, the two procedures are
equivalent in the limit ∆t→ 0.)

From the design of the rejection sampling algorithm we
see that the proportion of trials that are rejected is equal
to a weighted average over {1−λm∆t}m. Thus, since we
require λm∆t� 1 in order to avoid discretization errors,
the vast majority of trials are rejected and the rejection
sampling algorithm is computationally inefficient.

IV. GILLESPIE ALGORITHM ON STATIC
NETWORKS

The Gillespie algorithm lets us perform stochastically
exact Monte Carlo simulations without having to reject
trials. For Poisson processes on static networks, it works
by recognizing that the waiting time between two consec-
utive transitions is exponentially distributed, and that



4

(a) (b)

(c)

(d)

(e)

(f)

FIG. 2. How the temporal Gillespie algorithm works
for the example of an SIR process on a time-varying
network. (a) Representation of a simple time-varying net-
work consisting of 3 nodes. Rastered grey areas between the
timelines of two nodes indicate that the nodes are in contact
during the given time-step. Colored rectangles on the time-
line of a node indicate that the node may undergo a transition
from one state [S (blue), I (red), R (green)] to another during
that time-step. Transitions that do take place are outlined in
black. (b) The probability that an S → I or I → R transition
takes place is given by the “area” β∆t or µ∆t, respectively.
(c) Possible reactions during each time-step. A rejection sam-
pling algorithm decides individually whether each transition
takes place. (d) Representation of the possible transitions
on the renormalized timeline. The renormalization can be
thought of as an area-conserving transformation of the rect-
angles of (b) and (c), which represent the probability of each
transition. (Note that the drawing is not to scale since in
general λm∆t � 1.) A transition takes place when the inte-
grated cumulative transition rate, L(t; t∗) [Eq. (7)], is equal
to the renormalized waiting time, τ ′1. (e) A transition that
takes place immediately modifies the set of possible transi-
tions which, in turn, modifies the cumulative transition rate
Λ. The length of the remaining part of the time-step, mea-
sured in renormalized time, is modified accordingly. (f) A
new renormalized waiting time τ ′2 is drawn and the process is
repeated.

each transition happens with a probability that is pro-

portional to its rate.
Specifically, the (survival) probability that the transi-

tion m has not taken place after a time τ since the last
transition event is

Sm(τ) = e−λmτ . (1)

Since each transition takes place independently, the prob-
ability that no event takes place during the interval τ
since the last event is

S(τ) =
∏
m

Sm(τ) = e−Λτ , (2)

where Λ =
∑M
m=1 λm is the cumulative transition rate.

The above result is obtained by using the fact that while
Ω and M do depend on t, they only change when an event
takes place and not in-between. They can thus be treated
as constant for the purpose of calculating the waiting
time between events. The distribution of the waiting
times τ is then p(τ) = Λe−Λτ , while the probability that
reaction m is the next reaction that takes place and that
it takes place after exactly time τ is equal to pm(τ) =
λme

−Λτ

The static Gillespie algorithm thus consists in drawing
the waiting time τ ∼ Exp(Λ) until the next transition
and then drawing which transition m takes place with
probability πm = λm/Λ. (Here τ ∼ Exp(Λ) is short for:
τ is exponentially distributed with mean 1/Λ.)

V. TEMPORAL GILLESPIE ALGORITHM

For processes taking place on time-varying networks
however, Ω(t) changes with time independently of the
transition events, e.g., for the case of an SIR process
nodes may become infected only when in contact with
an infected individual [Figs. 2(a) and 2(c)]. This means
that the survival probability does not reduce to a simple
exponential as in Eq. (1); it is instead given by

Sm(τ) = exp

(
−
∫ t∗∗

t∗
Im(t)λmdt

)
, (3)

where t∗ is the time at which the last transition took
place, t∗∗ = t∗ + τ is the time when the next transition
takes place, and Im(t) is an indicator function that is
equal to one when the process m may take place, e.g.,
when two given nodes are in contact, and zero when m
may not take place. The meaning of Im is exemplified in
Fig. 2(a): the node i may transition from the S to the
I state when in contact with the infected node j; if we
let m denote this transition process, Im(t) is then one for
t = ∆t, 3∆t, 4∆t and zero for t = 0, 2∆t.

Using, as in the previous section, that transition pro-
cesses are independent, we can write the probability that
no event takes place during an interval τ (the waiting



5

time survival function):

S(τ) =
∏
m∈Ω

Sm(τ)

= exp

(
−
∑
m∈Ω

∫ t∗∗

t∗
Im(t)λmdt

)
, (4)

where Ω is the set of all transition processes on the inter-
val (t∗, t∗∗], i.e., Ω is the union over Ω(t) for t ∈ (t∗, t∗∗].
We finally use that

∑
m∈Ω Im(t)fm(t) =

∑
m∈Ω(t) fm(t),

for any fm(t), to write

S(τ) = exp

(
−
∫ t∗∗

t∗
Λ(t) dt

)
, (5)

where

Λ(t) =
∑

m∈Ω(t)

λm (6)

is the cumulative transition rate at time t. The dynamics
of empirical time-varying networks is highly intermittent
and we cannot describe Ω(t) analytically. This means
that we cannot perform the integral of Eq. (5) directly.
We may instead renormalize time by the instantaneous
cumulative transition rate, Λ(t): We define the renormal-
ized waiting time between two consecutive transitions, τ ′,
as

τ ′ = L (t∗∗; t∗) =

∫ t∗∗

t∗
Λ(t)dt , (7)

i.e., equal to the cumulative transition rate integrated
over (t∗, t∗∗]. The survival function of τ ′ has the following
simple form:

S(τ ′) = exp(−τ ′) . (8)

The time t∗∗ when a new transition takes place is given
implicitly by L(t∗∗; t∗) = τ ′, while the probability that
m is the transition that takes place at time t = t∗∗ is, as
above, given by:

πm = λm/Λ(t) . (9)

This lets us define a Gillespie-type algorithm for time-
varying networks by first drawing a renormalized waiting
time until the next event τ ′ ∼ Exp(1). Second, we may in
theory compare L(t; t∗) numerically to τ ′ for each t and
let a transition take place when L(t; t∗) = τ ′ [Fig. 2(d)].
In practice, since Λ(t) only changes when a transition
takes place or at tn = n∆t with n ∈ N, we may instead
compare τ ′ to

L[(n+1)∆t; t∗] = [(n∗+1)∆t−t∗]Λ(t∗)+∆t

n∑
i=n∗+1

Λ(i∆t) .

(10)
Here n∗ is the time-step during which the last transition
took place, and Λ(t∗) is the cumulative transition rate at

t∗, immediately after the last transition has taken place.
The first term of Eq. (10) is the cumulative transition
rate integrated over the remainder of the n∗th time-step
left after the last transition; the second term is equal to
L[(n + 1)∆t; (n∗ + 1)∆t]. A new transition takes place
during the time-step n∗∗ where L[(n∗∗ + 1)∆t; t∗] ≥ τ ′

[Fig. 2(d)]; the precise time of this new transition is

t∗∗ = n∗∗∆t+
τ ′ − L(n∗∗∆t; t∗)

Λ(n∗∗∆t)
, (11)

while the reaction m that takes place is drawn with
probability given by Eq. (9). We then update Ω and
Λ as Ω(t∗∗) and Λ(t∗∗) [Figs. 2(e)], draw a new waiting
time, τ ′ ∼ Exp(1), and reiterate the above procedure
[Fig. 2(f)].

The algorithm can be implemented for contagion pro-
cesses on time-varying networks as follows (see Ap-
pendix B for pseudocode for specific contagion models
and Supplemental Files for implementation in C++) [30]:

1. Draw a renormalized waiting time until the first
event, τ ′ ∼ Exp(1).

2. At each time-step tn = n∆t, with n = 0, 1, 2, . . .,
let Ω ≡ Ω(tn) and Λ ≡ Λ(tn); here, only
contact-dependent processes (type b, Sec. II A) and
mixed (type c, Sec. II A) processes that depend
on contacts taking place at tn or tn−1 need to be
updated—an important point, as it lets the tem-
poral Gillespie algorithm be orders of magnitude
faster than rejection sampling (see discussion in
Sec. VI). Then, compare τ ′ to Λ∆t:

if Λ∆t ≤ τ ′: Subtract Λ∆t from τ ′, continue to
next time-step and repeat 2.

if Λ∆t > τ ′: Let the reaction m take place, chosen
from Ω with probability πm = λm/Λ. The
fraction that is left of the time-step when the
transition takes place is ξ = 1 − τ ′/(Λ∆t)
and the precise time of the transition is t∗∗ =
tn + τ ′/Λ. Next, update Ω and Λ; this time
all transition processes should be updated, as
spontaneous processes (type a, Sec. II A) may
change, emerge, or disappear when a transi-
tion takes place. Then:

(a) draw a new renormalized waiting time,
τ ′ ∼ Exp(1);

(b) compare τ ′ to ξΛ∆t:

if τ ′ ≥ ξΛ∆t: subtract ξΛ∆t from τ ′,
continue to next time-step and repeat
2.

if τ ′ < ξΛ∆t: Another transition takes
place during the present time-step (at
time t∗∗∗ = t∗∗ + τ ′/Λ, where t∗∗ is
the time of the last transition during
the same time-step): choose m from
Ω with probability πm = λm/Λ; let
ξ → ξ − τ ′/Λ∆t, and update Ω and
Λ. Repeat a) and b).



6

By construction, the above procedure produces realiza-
tions of a stochastic process for which the waiting times
for each transition follow exactly their correct distribu-
tions. The temporal Gillespie algorithm is thus what we
term stochastically exact: all distributions and moments
of a stochastic process evolving on a time-varying net-
work obtained through Monte Carlo simulations using
the algorithm converge to their exact values. Rejection
based sampling algorithms are stochastically exact only
in the limit λm∆t→ 0.

VI. COMPARISON OF GILLESPIE AND
REJECTION SAMPLING ALGORITHMS

A. Numerical validation

We compare the outcome of SIR and SIS processes
on activity-driven time-varying networks [31] simulated
using the temporal Gillespie algorithm to simulations us-
ing traditional rejection sampling. For sufficiently small
λm∆t, the outcomes are indistinguishable (Fig. 3), con-
firming the validity of the temporal Gillespie algorithm.
Note that rejection sampling is only expected to be ac-
curate for λm∆t � 1, while the temporal Gillespie al-
gorithm is stochastically exact for all λm∆t; the results
of the two algorithms thus differ when the assumption
λm∆t� 1 does not hold (Supplemental Fig. 1) [32].

B. Comparison of simulation speed

Next, we compare the speeds of the temporal Gille-
spie and the rejection sampling algorithms for SIR and
SIS processes (see Appendix C for details on how sim-
ulations were performed). Figures 4 and 5 show that
the temporal Gillespie algorithm is up to multiple orders
of magnitude faster than traditional rejection sampling.
These results are confirmed by simulations on empirical
time-varying networks (Appendix D). The speed gain is
higher for larger systems (compare N = 1 000 to N = 100
in Figs. 4 and 5) We also see that the speed gain is larger
the sparser the network is. This is because the calcu-
lation of the contacts between susceptible and infected
nodes at each time-step, necessary to determine the pos-
sible S → I transitions, is the performance limiting step
of the temporal Gillespie algorithm. In the extreme case
of a contagion model where all transitions are contact-
dependent (type b, Sec. II A), such as the classic Maki-
Thompson model of rumor spreading, the temporal Gille-
spie algorithm is approximately a factor two faster than
the rejection sampling algorithm.

VII. NON-MARKOVIAN PROCESSES

For real-world contagion processes, transition rates are
typically not constant but in general depend on the his-

tory of the process [26, 27]. Such processes are termed
non-Markovian. The survival probability for a single
non-Markovian transition process taking place on a time-
varying network is given by:

Sm

(
τ ;F (m)

t

)
= exp

(
−
∫ t∗∗

t∗
Im(t)λm

(
t;F (m)

t

)
dt

)
.

(12)

Here F (m)
t is a filtration for the process m, i.e., all infor-

mation relevant to the transition process available up to

and including time t; typically, F (m)
t will be its starting

time and relevant contacts that have taken place since.
As in Sec. V, t∗ is the time of the last transition and
t∗∗ = t∗ + τ is the time of the next.

We use again that the transition processes are inde-
pendent, to write the waiting time survival probability:

S (τ ;Ft) = exp

(
−
∫ t∗∗

t∗
Λ (t;Ft) dt

)
, (13)

with

Λ (t;Ft) =
∑

m∈Ω(t)

λm

(
t;F (m)

t

)
, (14)

and where Ft is the union over F (m)
t for m ∈ Ω.

For a static network Eq. (13) reduces to the result
found in [13, Eq. (7)]. This can be seen by noting
that M(t) = M and Ω(t) = Ω are then constant, and

that λm(t;F (m)
t ) = −[dSm(t;F (m)

t )/dt]/Sm(t;F (m)
t ) =

d{ln[1/Sm(t;F (m)
t )]}/dt and Sm(t;F (m)

t ) = Sm(t +

tm;F (m)
t )/Sm(tm;F (m)

t ).
As in the Poissonian case (Sec. V) we define the renor-

malized waiting time, τ ′, as

τ ′ = L(t∗∗; t∗,Ft) =

∫ t∗∗

t∗
Λ(t;Ft)dt . (15)

This gives us the same simple forms as above for the
survival function of the renormalized waiting time, τ ′,

S(τ ′) = exp(−τ ′) , (16)

and the probability that m is the transition that takes
place at t = t∗∗,

πm(t;Ft) =
λm

(
t;F (m)

t

)
Λ (t;Ft)

. (17)

Until now our approach and results are entirely equiv-
alent to the Poissonian case of Section V. However, since
λm(t) in general depend continuously on time, the transi-
tion time t∗∗ is not simply found by linear interpolation as
in Eq. (11). Instead, one would need to solve the implicit
equation L(t∗∗; t∗) = τ ′ numerically to find t∗∗ exactly.
To keep things simple and speed up calculations, we may
approximate Λ(t) as constant over a time-step. This as-
sumes that ∆Λ(t)∆t � 1, where ∆Λ(t) is the change of



7

0 50000 100000 150000 200000

t (∆t)

0

20

40

60

80

100
〈 X〉

Rejection sampling

Temporal Gillespie

S

I

R

(a)

0 20 40 60 80 100

R

101

102

103

104

105

106

p
(R

)

Rejection sampling

Temporal Gillespie

(b)

0 50000 100000 150000 200000

t (∆t)

0

20

40

60

80

100

〈 X〉

Rejection sampling

Temporal Gillespie

S

I

(c)

0 20 40 60 80 100

I

100

101

102

103

104

105

106

p
(I

)

Rejection sampling

Temporal Gillespie

(d)

FIG. 3. Comparison of numerical results from temporal Gillespie and rejection sampling algorithms. (a) Mean
number of nodes in each state of the SIR model as function of time. (b) Distribution of final epidemic size (number of recovered
nodes when I = 0) in the SIR model. (c) Mean number of nodes in each state of the SIS model as function of time. (d)
Distribution of the number of infected nodes in the stationary state (t→∞) of the SIS model. All simulations were performed
1 000 000 times with the root node chosen at random on an activity driven network [31] consisting of N = 100 nodes, with
activities ai = ηzi, where η = 0.1 and zi ∼ z−3.2

i for zi ∈ [0.03, 1), and a node formed two contacts when active. Parameters of
the epidemic processes were β∆t = 10−2 and µ∆t = 10−4.

Λ(t) during a single time-step. It is a more lenient as-
sumption than the assumption that Λ(t)∆t � 1 which
rejection sampling relies on, as can be seen by noting
that in general ∆Λ(t)/Λ(t) � 1. The same assumption
also lets us calculate L[(n+1)∆t; t∗] as in the Poissonian
case:

L[(n+1)∆t; t∗,Ft] = [(n∗+1)∆t−t∗]+∆t

n∑
i=n∗+1

Λ(i∆t;Ft) ,

(18)
and the time, t∗∗, at which the next transition takes
place:

t∗∗ = n∗∗∆t+
τ ′ − L(n∗∗∆t; t∗,Ft)

Λ(n∗∗∆t;Ft)
. (19)

Using the above equations, we can now construct a tem-
poral Gillespie algorithm for non-Markovian processes.

This algorithm updates all λm(t) that depend on time
at each time-step, where for the Poissonian case we only
had to initialize new processes, i.e., contact-dependent
processes (type b and c, Sec. II A). This means the algo-
rithm is less than a factor two faster than rejection sam-
pling [compare dotted red/blue lines (Temporal Gillespie,

ε = 0) to full black (Rejection Sampling) lines in Fig. 6].
To speed up the algorithm, we may employ a first-order
cumulant expansion of S(τ ;Ft) around τ = 0, as pro-
posed in [13] for a static non-Markovian Gillespie algo-

rithm. It consists in approximating λm(t;F (m)
t ) by the

constant λm(t∗;F (m)
t ) for t∗ < t < t∗∗ and gives a con-

siderable speed increase of the algorithm [full red/blue
lines (Temporal Gillespie, ε → ∞) in Fig. 6]. However,
the approximation is only valid when M(t) � 1, which
is not always the case for contagion processes. Notably,
at the beginning and end of an SIR process, and near the
epidemic threshold for an SIS process, M is small and the
approximation breaks down; the approximate algorithm
for example overestimates the peak number of infected
nodes in a SIR process with recovery rates that increase
over time [compare full black line (ε→∞) to the quasi-
exact full red line (ε = 0) in Fig. 7(a)]. An intermediate
approach, which works when the number of transition
processes is small, but is not too slow to be of practi-
cal relevance, is needed. We propose one such approach
below.



8

N = 100 N = 1000

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101
T
im

e
/s

im
u
la

ti
o
n
 (

s)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(a)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(b)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

Rejection sampling

Temporal Gillespie

(c)

FIG. 4. Comparison of the speed of the temporal Gille-
spie and the rejection sampling algorithms: SIR pro-
cess. Time per realization of a single SIR process on an ac-
tivity driven network: (a) for an average instantaneous degree

of the network of k(t) = 0.002, (b) for k(t) = 0.02, and (c)

for k(t) = 0.2 [for empirical contact networks, k(t) ≈ 0.002–
0.03 (Appendix D)]. Networks consisted of N = 100 (left)
or N = 1000 (right) nodes, with activities ai = ηzi and
zi ∼ z−3.2

i for zi ∈ [0.03, 1); a node formed two contacts each
time it was active. Simulations were run for 20 000, 200 000,
or 2 000 000 time-steps for µ∆t equal to 10−3, 10−4 or 10−5,
respectively, or until I = 0; for ∆t = 20 s (as for the empirical
data treated in Appendix D), µ∆t ≈ 3 · 10−5 corresponds to
a recovery time of roughly one week, typical of flu-like dis-
eases. The infection rate was β = 103µ for networks with
k(t) = 0.002, β = 102µ for networks with k(t) = 0.02, and

β = 10µ for networks with k(t) = 0.2.

A. Efficient non-Markovian temporal Gillespie
algorithm

As discussed above, we neither want to update all tran-
sition rates at each time-step as this makes the temporal
Gillespie algorithm slow, nor do we want to only update
them when a transition event takes place as this makes
the algorithm inaccurate.

An intermediate approach is found by looking at the

N = 100 N = 1000

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(a)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(b)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

10-5 10-4 10-3

µ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

Rejection sampling

Temporal Gillespie

(c)

FIG. 5. Comparison of the speed of the temporal Gille-
spie and the rejection sampling algorithms: SIS pro-
cess. Time per realization of a single SIS process on an activ-
ity driven network: (a) for an average instantaneous degree

of the network of k(t) = 0.002, (b) for k(t) = 0.02, and (c)

for k(t) = 0.2 [for empirical contact networks, k(t) ≈ 0.002–
0.03 (Appendix D)]. Networks consisted of N = 100 (left)
or N = 1000 (right) nodes, with activities ai = ηzi and
zi ∼ z−3.2

i for zi ∈ [0.03, 1); a node formed two contacts each
time it was active. Simulations were run for 20 000, 200 000,
or 2 000 000 time-steps for µ∆t equal to 10−3, 10−4 or 10−5,
respectively, or until I = 0; for ∆t = 20 s (as for the empirical
data treated in Appendix D), µ∆t ≈ 3 · 10−5 corresponds to
a recovery time of roughly one week, typical of flu-like dis-
eases. The infection rate was β = 103µ for networks with
k(t) = 0.002, β = 102µ for networks with k(t) = 0.02, and

β = 10µ for networks with k(t) = 0.2.

relevant physical time-scales of the transition processes:
the average waiting time before they take place, 〈τ (m)〉.
If the time elapsed since we last updated λm(t) is small
compared to 〈τ (m)〉 we do not make a large error by treat-
ing it as constant over the interval; however, if the elapsed
time is comparable to or larger than 〈τ (m)〉, the error may
be considerable. Thus, instead of updating λm at each
time-step, we may update it only after a time t > ε〈τ (m)〉
has elapsed since it was last updated. Here ε controls the



9

N = 100 N = 1000

10-5 10-4 10-3

µ0 ∆t

10-5

10-4

10-3

10-2

10-1

100

101
T
im

e
/s

im
u
la

ti
o
n
 (

s)

10-5 10-4 10-3

µ0 ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(a)

10-5 10-4 10-3

µ0 ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

10-5 10-4 10-3

µ0 ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(b)

10-5 10-4 10-3

µ0 ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

Rejection sampling

Temporal Gillespie

10-5 10-4 10-3

µ0 ∆t

10-5

10-4

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

ε=0

ε=0.1

ε→∞

(c)

FIG. 6. Comparison of the speed of the temporal
Gillespie and the rejection sampling algorithms: non-
Markovian SIR process. Time per realization of a sin-
gle simulation of an SIR process with Weibull distributed
recovery times (Sec. VII A) on an activity driven network:
(a) for an average instantaneous degree of the network of

k(t) = 0.002, (b) for k(t) = 0.02, and (c) for k(t) = 0.2 [for

empirical contact networks, k(t) ≈ 0.002–0.03 (Appendix D)].
The parameter ε controls the accuracy of the temporal Gille-
spie algorithm: for ε = 0, approximating λm(t) as constant
over a single time-step, it is most accurate; for ε → ∞, ap-
proximating the λm as constant between two consecutive tran-
sition events, it is the least accurate. Networks consisted of
N = 100 (left) or N = 1000 (right) nodes, with activities
ai = ηzi and zi ∼ z−3.2

i for zi ∈ [0.03, 1); a node formed two
contacts each time it was active. The recovery rate of an in-
fected node was given by Eq. (20) with k = 1.5. Simulations
were run for 20 000, 200 000, or 2 000 000 time-steps for µ0∆t
equal to 10−3, 10−4 or 10−5, respectively, or until I = 0. The
infection rate was β = 103µ0 for networks with k(t) = 0.002,

β = 102µ0 for networks with k(t) = 0.02, and β = 10µ for

networks with k(t) = 0.20.

precision of the algorithm.
We use below this approach to simulate a non-

Markovian SIR process, where the recovery times of
infected nodes follows a Weibull distribution (see Ap-
pendix B for an algorithm written in pseudocode and

0 50000 100000 150000 200000

t (∆t)

0

5

10

15

20

25

〈 I〉

ε→∞
ε=1

ε=0.1

ε=0.01

ε=0

(a)

0 20 40 60 80 100

R

10-5

10-4

10-3

10-2

10-1

100

p
(R

)

ε→∞
ε=1

ε=0.1

ε=0.01

ε=0

(b)

FIG. 7. Comparison of the outcome of non-Markovian
SIR processes for different values of the parameter ε.
(a) Average number of infected nodes, 〈I〉, as function of time
for an SIR process with Weibull distributed recovery times
(Sec. VII A). (b) Distribution of the numbers of recovered
nodes after the infection has died out (i.e. when I = 0). For
ε = 0 the temporal Gillespie algorithm is quasi-exact (see Sup-
plemental Fig. 2 for comparison with rejection sampling) [32];
for ε→∞, corresponding to a first-order cumulant expansion
of Λ(t;Ft) around t = t∗ (see main text), it is least accurate.
As ε is decreased, both 〈I〉(t) and p(R) rapidly approach the
quasi-exact result obtained with ε = 0. Simulations were per-
formed on an activity-driven network consisting of N = 100
nodes with activities ai = zi/10, where zi ∼ z−3.2

i ; nodes’ re-
covery times followed Eq. (20) with k = 1.5 and µ0 = 10−4 Hz;
the length of a time-step was ∆t = 1 s and the infection rate
β = 100µ0 = 10−2 Hz.

Supplemental Files for implementation in C++) [30].
The recovery rate of an infected node is here given by

µ(t; t(m)) = kµk0

(
t− t(m)

)k−1

, (20)

where µ0 sets the scale, t(m) is time when the node was
infected, and k is a shape parameter of the distribution.
For k = 1, we recover the constant-rate Poissonian case
with µ(t; t(m)) = µ0. For realistic modeling of infections,
k > 1; here µ(t; t(m)) is zero at t = t(m) and grows with
time. In this case, we thus update the recovery rates
µ(t; t(m)) whenever the time elapsed since a transition
last took place exceeds 〈τ (m)〉 = Γ(1 + 1/k)/µ0.

The parameter ε lets us control the precision of the



10

non-Markovian temporal Gillespie algorithm: the smaller
ε is, the more precise the algorithm is, on the other hand,
the larger ε is, the faster the algorithm is (Fig 8). At
ε = 0, the temporal Gillespie algorithm is maximally ac-
curate, but also slowest, corresponding to the quasi-exact
approximation that Λ(t;Ft) stays constant over a single
time-step. Letting ε → ∞ corresponds to the first or-
der cumulant expansion of [13], and is the fastest, but
least accurate. Intermediate ε gives intermediate accu-
racy and speed, and permits one to obtain the desired
accuracy without sacrificing performance. In the case of
the SIR process with Weibull-distributed recovery times,
ε = 0.1 gives an error of no more than a few percent
[Figs. 8(a)–8(d) and 7]—which is usually acceptable as
the discrepancy between model and reality can be ex-
pected to be larger—with an almost optimal computa-
tion time [Figs. 8(e) and 6].

VIII. CONCLUSION

We have presented a fast temporal Gillespie algorithm
for simulating stochastic processes on time-varying net-
works. The temporal Gillespie algorithm is up to mul-
tiple orders of magnitude faster than current algorithms
for simulating stochastic processes on time-varying net-
works. For Poisson (constant-rate) processes, where it is
stochastically exact, its application is particularly sim-
ple. The algorithm is also applicable to non-Markovian
processes, where a control parameter lets one choose the
desired accuracy and performance in terms of simulation
speed. We have shown how to apply it to compartmen-
tal models of contagion in human contact networks. The
scope of the temporal Gillespie algorithm is more gen-
eral than this, however, and it may be applied e.g. to
diffusion-like processes or systems for which a network
description is not appropriate.

ACKNOWLEDGEMENT

The authors thank Alain Barrat for helpful discussions
and critical reading of the manuscript and Thomas L.
Vestergaard for help with debugging and code review.
The authors also thank the SocioPatterns collaboration
for privileged access to data sets. C.L.V. is supported by
the EU FET project Multiplex 317532 and M.G. by the
French ANR project HarMS-flu (ANR-12-MONU-0018).

Appendix A: Notation

Tables I and II list the notation used in the manuscript.
Table I gives notation pertaining to the temporal Gille-
spie algorithm, and Table II lists notation pertaining
to time-varying networks and compartmental contagion
processes.

10-3

10-2

10-1

100

∆
ī m

ax

10-3 10-2 10-1 100 101

ε

0.0

0.5

1.0

1.5

2.0

µ
0
·∆
t m

ax

(a)

(b)

10-3

10-2

10-1

100

∆
r̄ ∞

10-3 10-2 10-1 100 101

ε

10-4

10-3

10-2

10-1

100

101

K
L
[p

(r
∞

)]

(c)

(d)

10-3 10-2 10-1 100 101

ε

10-4

10-3

10-2

10-1

T
im

e
/s

im
u
la

ti
o
n
 (

s)

βk/µ0 ≈0.6

βk/µ0 ≈2

βk/µ0 ≈6

(e)

FIG. 8. Accuracy and speed of the non-Markovian
temporal Gillespie algorithm as function of ε. (a)–(d)
Different measures of the difference in outcome of simulations
between algorithms with ε > 0 and ε = 0 (quasi-exact). (a)
Difference, ∆imax = imax(ε) − imax(0), in the peak average
fraction of infected nodes, imax = Imax/N . (b) Difference
∆tmax between the times at which this peak takes place, nor-
malized by µ0. (c) Difference, ∆r∞, in the average fraction of
nodes affected by the infection—the average attack rate. (d)
Kullback-Leibler divergence, KL[p(r∞)], between the distri-
butions of attack rates (e) Time per simulation of the process.
Simulations were performed on an activity-driven network
with N = 100 nodes and activities ai = zi/10 and zi ∼ z−3.2

i ,
for zi ∈ [0.03, 1); nodes’ recovery times followed Eq. (20) with
k = 1.5, µ0 = 10−4 Hz, and ∆t = 1 s.



11

TABLE I. Notation pertaining to the temporal Gillespie algorithm.

Symbol Description First appearance(s)

t Real time. Sec. II

∆t Duration of a time-step. Sec. III

n Time-step number. Sec. V

m Possible transition / transition process. Sec. II

λm Transition rate for m. Sec. II

Im(t) Function indicating whether the transition m may take place at time t. Sec. V

Ω(t) Set of transition processes at time t. Secs. II,V

M(t) Number of transition processes at time t. Secs. II,V

Ω Set of total possible transitions between two consecutive transition events. Secs. II,V

M Number of total possible transitions between two consecutive transition events. Secs. II,V

Λ, Λ(t) Cumulative transition rate (at time t): Λ(t) =
∑

m∈Ω(t) λm. Secs. IV,V

L(t; t∗) Integrated cumulative transition rate (from t∗ to t). Sec. V

τ Waiting time between two consecutive transitions. Sec. IV

S(τ) Waiting time survival function. Sec. IV

t∗, t∗∗ Times when the last/next transition took/takes place, respectively. Sec. V

n∗, n∗∗ Time-steps during which the last/next transition took/takes place, respectively. Sec. V

τ ′ Renormalized waiting time between two consecutive transition events. Sec. V

S(τ ′) Renormalized waiting time survival function. Sec. V

τ ′ ∼ Exp(1) τ ′ is exponentially distributed with unit mean. Sec. V (Sec. IV)

F (m)
t Filtration for the transition process m. Sec. VII

Ft Union of all F (m)
t . Sec. VII

TABLE II. Notation pertaining to compartmental contagion models and time-varying networks.

Symbol Description First appearance

i, j Node. Sec. II A

N Number of nodes in network. Sec. II A

(i, j)t Contact taking place at time t between nodes i and j. Sec. II A

Ni(t) Neighborhood of i: set of nodes in contact with i at time t. Sec. II A

kI(t) Number of infected nodes in contact with i at time t Sec. II A

k(t) Average degree (number of contacts per node) of network at time t. Fig. 4

xi(t) Random variable specifying the state (compartment) of node i at time t. Sec. II A

X ∈ {X1,X2 . . .Xq} Possible node states (compartments). Sec. II A

Xp Number of nodes in state Xp. Sec. II A

S, I, R Possible node states in SIS and SIR models of epidemic spreading. Sec. II A

S, I, R Number of nodes in each of the states S, I, and R, respectively. Sec. II A

β Rate of S → I transition of a susceptible node in contact with a single infectious node. Sec. II A

µ Rate of spontaneous I → R or I → S transition of an infectious node. Sec. II A

µ0 Scale parameter of the Weibull distribution. Sec. VII A

k Shape parameter of the Weibull distribution. Sec. VII A

t(m) Starting time for transition process m (e.g. the time when a node got infected). Sec. VII A

Appendix B: Algorithms for simulating specific
contagion models

We here give pseudocode for the application of the tem-
poral Gillespie algorithm to three specific models: sec-
tion B 1 treats the Poissonian SIR process, section B 2
treats the Poissonian SIS process, and section B 3 treats

a non-Markovian SIR process with Weibull distributed
recovery times.

We assume in the following that the time-varying net-
work is represented by a list of lists of individual con-
tacts taking place during each time-step. An individ-
ual contact, termed contact, is represented by a tu-
ple of nodes, i and j. The list contactLists[t] gives



12

the contacts taking place during a single time-step, t,
for t=0,1,...,T_simulation-1, where T_simulation is
the desired number of time-steps to simulate. The state
of each node is given by the vector x, where the entry
x[i]∈ {S,I,R} gives the state of node i.

As one may always renormalize time by the duration
of a time-step, ∆t, we have in the following set ∆t = 1.
Note that beta and mu in the code then corresponds to
β∆t and µ∆t, respectively.

1. SIR process

The classical SIR model with constant infection and
recovery rates is the simplest epidemic model where in-
dividuals can gain immunity. As discussed in the main
text, nodes may be in one of three states: susceptible
(S), infectious (I), or recovered (R). Two different tran-
sition types let the nodes switch state: a spontaneous
I → R transition which takes place with rate µ, and a
contact-dependent S → I transition which takes place
with rate β upon contact with an infectious node. Fig-
ure 9 shows how the temporal Gillespie algorithm may
be implemented for an SIR process on a time-varying
contact network.

2. SIS process

In the SIS model, nodes can be in one of two states:
susceptible (S) or infectious (I). As for the SIR model,
two different transition types let the nodes switch state:
a spontaneous I → S transition which takes place with
rate µ, and a contact-dependent S → I transition which
takes place with rate β upon contact with an infectious
node.

The SIS model is implemented in a manner very sim-
ilar to the SIR model; an implementation can be found
by using the code of Figure 9 with lines 07 and 40 re-
moved and line 37 replaced by x[m] = S. C++ code is
given in Supplemental Files [30] for both homogeneous
and heterogeneous populations.

3. Non-Markovian SIR process

We consider in the main text (Sec. VII) an SIR model
with non-constant recovery rates; instead of being expo-
nentially distributed (as in the constant-rate SIR model),
the individual recovery times, τ (m), are here Weibull dis-
tributed,

τ (m) ∼ kµ0

(
µ0τ

(m)
)k−1

e−µ0τ
(m)

. (B1)

As for the classical SIR model, nodes may be in one of
three states: susceptible (S), infectious (I), or recovered
(R). Two different transition types let the nodes switch

//Initialize:

01 FOR i=1,...,N

02 x[i] = S //set node states to S

03 ENDFOR

04 x[root] = I //set state of root node to I

05 m_I = [root] //list of infected nodes

06 N_I = 1 //number of infected nodes

07 N_R = 0 //number of recovered nodes

08 Mu = mu //cumulative recovery rate

09 tau = randexp(1) //draw tau ~ exp(1)

//Run through the time-steps:

10 FOR t=0,1,...,T_simulation-1

//Update list of possible S->I transitions:

11 CLEAR m_SI //S nodes in contact with I nodes

12 FOR contact in contactLists[t]

13 (i,j) = contact

14 IF (x[i],x[j])==(S,I)

15 APPEND i to m_SI

16 ELSE IF (x[i],x[j])==(I,S)

17 APPEND j to m_SI

18 ENDIF

19 ENDFOR

20 M_SI = length of m_si

21 Beta = beta*M_SI //cumulative infection rate

22 Lambda = Mu+Beta //cumulative transition rate

//Check if a transition takes place:

23 IF Lambda<tau //no transition

24 tau -= Lambda

25 ELSE //at least one transition

26 xi = 1. //remaining fraction of time-step

27 WHILE xi*Lambda>=tau

28 DRAW z uniformly from [0,Lambda)

29 IF z<Beta //S->I transition

30 DRAW m at random from m_SI

31 x[m] = I

32 APPEND m to m_I

33 N_I += 1

34 Mu += mu

35 ELSE //I->R transition

36 DRAW m at random from m_I

37 x[m] = R

38 REMOVE m from m_I

39 N_I -= 1

40 N_R += 1

41 Mu -= mu

42 ENDIF

43 xi -= tau/Lambda //update remaining fraction

//Update list of S->I transitions and rates:

44 REDO lines 11-22

45 tau = randexp(1) //draw new tau

46 ENDWHILE

47 ENDIF

//Read out the desired quantities:

48 WRITE N_I, N_R, ...

49 ENDFOR

FIG. 9. Pseudocode for an SIR process with constant
and homogeneous transition rates. C++ code for ho-
mogeneous and heterogeneous populations is given in Supple-
mental Files [30].



13

//Initialize:

01 FOR i=1,...,N

02 x[i] = S //set nodes states to S

03 ENDFOR

04 x[root] = I //set state of root node to I

05 t_inf[root] = 0 //time of infection = 0

06 m_I = [root] //list of infected nodes

07 mus = [mu(0)] //list of recovery rates

08 Mu = mu(0) //cumulative recovery rate

09 N_I = 1 //number of infected nodes

10 N_R = 0 //number of recovered nodes

11 tau = randexp(1) //draw tau ~ exp(1)

//Run through the time-steps:

12 FOR t=0,1,...,T_simulation-1

//Update mus if t-t*>=epsilon*mu_avg:

13 IF t-t*>=epsilon*mu_avg

14 CLEAR mus

15 FOR m in m_I

16 APPEND mu(t-t_inf[m]) to mus

17 ENDFOR

18 Mu = sum of mus

19 ENDIF

//Update list of possible S->I transitions:

20 CLEAR m_SI //S nodes in contact with I nodes

21 FOR contact in contactLists[t]

22 (i,j) = contact

23 IF (x[i],x[j])==(S,I)

24 APPEND i to m_SI

25 ELSE IF (x[i],x[j])==(I,S)

26 APPEND j to m_SI

27 ENDIF

28 ENDFOR

29 M_SI = length of m_si

30 Beta = beta*M_SI //cumulative infection rate

31 Lambda = Mu+Beta //cumulative transition rate

//Check if transition takes place:

32 IF Lambda<tau //no transition

33 tau -= Lambda

34 ELSE //at least one transition

35 xi = 1. //remaining fraction of time-step

36 t* = t //for calculating transition times

37 WHILE xi*Lambda>=tau

38 t* += tau/Lambda //transition time

39 DRAW z uniformly from [0,Lambda)

40 IF z<Beta //S->I transition

41 DRAW m at random from m_SI

42 x[m] = I

43 t_inf[m] = t*

44 APPEND m to m_I

45 N_I += 1

46 ELSE //I->R transition

47 DRAW m from m_I with weight mus[m]

48 x[m] = R

49 REMOVE m from m_I

50 N_I -= 1

51 N_R += 1

52 ENDIF

53 xi -= tau/Lambda //update remaining fraction

//Update mus:

54 CLEAR mus

55 FOR m in m_I

56 APPEND mu(t*-t_inf[m]) to mus

57 ENDFOR

58 Mu = sum of mus

//Update list of S->I transitions and rates:

59 REDO lines 20-31

60 tau = randexp(1) //draw new tau

61 ENDWHILE

62 ENDIF

//Read out the desired quantities:

63 WRITE N_I, N_R, ...

64 ENDFOR

FIG. 10. Pseudocode for a non-Markovian SIR process with non-constant recovery rates. The function mu returns
the instantaneous recovery rate as function of (t − t∗); for Weibull distributed recovery times, mu is given by Eq. (20). C++
code is given in Supplemental Files [30].

state: a contact-dependent S → I transition with con-
stant rate β upon contact with an infectious node, and
a spontaneous I → R transition which takes place with
rate µ(t; t(m)), given by Eq. (20).

The implementation of the SIR model with Weibull
distributed waiting times requires some extension of the
code for the constant-rate SIR model to account for the
heterogeneous and time-dependent recovery rates. To
this end, we introduce the following variables: t_inf
lists the times at which each node was infected (if ap-
plicable); t* is the exact time at which the last transi-
tion took place; mu is a function of time that is called
as mu(t-t_inf[m]) to return the instantaneous recov-
ery rate of m at time t; mu_avg is the expected recovery
time of an infected node and is used together with the
precision control parameter epsilon in the approximate
simulation scheme discussed in Sec. VII. Figure 10 shows
pseudocode for an implementation of the SIR model with

Weibull distributed recovery times.

Appendix C: Details on how Monte Carlo
simulations were performed

All simulations for comparing the speed of algorithms
were performed sequentially on a HP EliteBook Folio
9470m with a dual-core (4 threads) Intel Core i7-3687U
CPU @ 2.10 GHz. The system had 8 GB 1 600 MHz
DDR3 SDRAM and a 256 GB mSATA Solid State Drive.
Code was compiled with TDM GCC 64 bit using g++ with
the optimization option -O2. Speedtests were also per-
formed using -O3 and -Ofast, but -O2 gave the fastest
results, both for rejection sampling and temporal Gille-
spie algorithms.



14

TABLE III. Summary statistics for empirical face-to-face con-
tact networks from the SocioPatterns collaboration [33]: so-
cial setting; number of nodes in the network, N ; total duration
of measurements, T ; average instantaneous degree, k(t).

Setting N T k(t) Reference

Conference 399 32 hours 0.035 [34]

High school 327 4 days 0.032 [35]

Hospital 80 4 days 0.032 [36]

Workplace 92 11 days 0.002 [37]

Appendix D: Empirical time-varying networks

Empirical networks describing human contact differ
from simulated networks in a number of ways, for ex-
ample, their structure and dynamics are more complex,
but perhaps most importantly in the perspective of op-
timizing simulations, they are of finite length. One is
often interested in long-time behavior or slowly evolving
processes compared to the length of available data. To
overcome this limitation,one usually loops over the data
set. This means that if a node enter an absorbing state
(compartment) such as the recovered (R) state in the
SIR model, one may remove all following contacts to this
node from the data, thus reducing the number of contacts
that one must go through during the following loop. Fur-
thermore, since the I → R transition is independent of
the network, one may also remove all contacts between
two infected nodes.

01 FOR t=0,1,...,T_simulation-1

//Update list of possible S->I transitions:

02 CLEAR m_SI //S nodes in contact with I nodes

03 FOR contact in contactLists[t]

04 (i,j) = contact

05 IF x[i]==S

06 IF x[j]==I

06 APPEND i to m_SI

07 ELSE IF x[j]==R //remove if x[j]==R

08 REMOVE contact from contactLists[t]

09 ENDIF

10 ELSE IF x[i]==I

11 IF x[j]==S

12 APPEND j to m_SI

13 ELSE //remove if (x[i],x[j])==I or x[i]==R

14 REMOVE contact from contactLists[t]

15 ENDIF

16 ELSE //remove if x[i]==R

17 REMOVE contact from contactLists[t]

18 ENDIF

19 ENDFOR

.

.

.

XX ENDFOR

FIG. 11. Pseudocode for counting possible S → I tran-
sitions with removal of outdated contacts.

10-7 10-6 10-5 10-4

µ (Hz)

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(a)

10-7 10-6 10-5 10-4

µ (Hz)

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(b)

10-7 10-6 10-5 10-4

µ (Hz)

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

RS

TGA

TGA+CR

(c)

10-7 10-6 10-5 10-4

µ (Hz)

10-3

10-2

10-1

100

101

T
im

e
/s

im
u
la

ti
o
n
 (

s)

(d)

FIG. 12. Comparison of the speed of the tempo-
ral Gillespie algorithm, with (TGA+CR) and with-
out (TGA) contact removal, and the rejection sam-
pling algorithm (RS): empirical time-varying net-
works. Time per realization of a single simulation on em-
pirical face-to-face contact networks: (a) at a scientific con-

ference, N = 396, T = 5 750 ∆t, and k(t) ≈ 0.03; (b) in a

hospital ward, N = 80, T = 17 382 ∆t, and k(t) ≈ 0.03; (c)

in a high school, N = 327, T = 18 179 ∆t, and k(t) ≈ 0.03;

(d) at a workplace, N = 92, T = 49 382 ∆t, and k(t) ≈ 0.002
(Table III). Simulations were performed with β = 100µ in
A–C and β = 1 000µ in D.

Pseudocode for an algorithm that removes obsolete
contacts is given in Fig. 11. Figure 12 compares the
speed of the temporal Gillespie algorithm with and with-
out contact removal for simulations of constant-rate SIR
process on empirical networks of face-to-face contacts
(Table III); the computation speed is also compared to
rejection sampling. The simulations on empirical data
(Fig. 12) confirm the speed gain obtained by using the
temporal Gillespie algorithm found for synthetic net-
works (Fig. 4). Comparison between algorithms with
and without contact removal, however, reveal no clear
gain in removing obsolete contacts; for short datasets
a small speed gain may be obtained [Fig. 12(a)], while
for longer datasets contact removal makes the algorithm
slower [Fig. 12(d)] due to the added overhead involved in
identifying and removing obsolete contacts.



[1] Barrat, A., Barthélemy, M. & Vespignani, A. Dynamical
Processes on Complex Networks (Cambridge University
Press, 2008).

[2] Balcan, D. et al. Multiscale mobility networks and the
spatial spreading of infectious diseases. Proc. Natl. Acad.
Sci. USA 106, 21484–21489 (2009).

[3] Pastor-Satorras, R., Castellano, C., Van Mieghem, P. &
Vespignani, A. Epidemic processes in complex networks.
arXiv:1408.2701 .

[4] Ferreira, S. C., Castellano, C. & Pastor-Satorras, R. Epi-
demic thresholds of the susceptible-infected-susceptible
model on networks: a comparison of numerical and the-
oretical results. Phys. Rev. E 86, 041125 (2012).

[5] Tizzoni, M. et al. Real-time numerical forecast of global
epidemic spreading: case study of 2009 A/H1N1pdm.
BMC Med. 10, 165 (2012).

[6] Doob, J. L. Topics in the theory of Markoff chains. T.
Am. Math. Soc. 52, 37–64 (1942).

[7] Doob, J. L. Markoff chains—denumerable case. T. Am.
Math. Soc. 58, 455–473 (1945).

[8] Kendall, D. G. An artificial realization of a simple
”birth-and-death” process. J. R. Stat. Soc. Ser. B Stat.
Methodol. 12, 116–119 (1950).

[9] Bartlett, M. S. Stochastic processes or the statistics of
change. J. R. Stat. Soc. Ser. C Appl. Stat. 2, 44–64
(1953).

[10] Gillespie, D. T. A general method for numerically simu-
lating the stochastic time evolution of coupled chemical
reactions. J. Comput. Phys. 22, 403–434 (1976).

[11] Gillespie, D. T. Exact stochastic simulation of cou-
pled chemical reactions. J. Phys. Chem. 81, 2340–2361
(1977).

[12] Holme, P. Model versions and fast algorithms for network
epidemiology. arXiv:1403.1011v1 .

[13] Boguña, M., Lafuerza, L., Toral, R. & Serrano, M. A.
Simulating non-Markovian stochastic processes. Phys.
Rev. E 90, 042108. (2014).

[14] Onnela, J.-P. et al. Structure and tie strengths in mobile
communication networks. Proc. Natl. Acad. Sci. USA
104, 7332–7336 (2007).

[15] Rybski, D., Buldyrev, S. V., Havlin, S., Liljeros, F. &
Makse, H. A. Scaling laws of human interaction activity.
Proc. Natl. Acad. Sci. USA 106, 12640–12645 (2009).

[16] Cattuto, C. et al. Dynamics of person-to-person interac-
tions from distributed RFID sensor networks. PLoS One
5, e11596 (2010).

[17] Vázquez, A., Rácz, B., Lukács, A. & Barabási, A.-L.
Impact of non-Poissonian activity patterns on spreading
processes. Phys. Rev. Lett. 98, 158702 (2007).

[18] Miritello, G., Moro, E. & Lara, R. Dynamical strength
of social ties in information spreading. Phys. Rev. E 83,
045102 (2011).

[19] Karsai, M. et al. Small but slow world: how network
topology and burstiness slow down spreading. Phys. Rev.

E 83, 025102 (2011).
[20] Panisson, A. et al. On the dynamics of human proximity

for data diffusion in ad-hoc networks. Ad Hoc Networks
10, 1532–1543 (2012).

[21] Gauvin, L., Panisson, A., Cattuto, C. & Barrat, A. Ac-
tivity clocks: spreading dynamics on temporal networks
of human contact. Sci. Rep. 3, 3099 (2013).

[22] Holme, P. & Liljeros, F. Birth and death of links control
disease spreading in empirical contact networks. Sci. Rep.
4, 4999 (2014).

[23] Karsai, M., Perra, N. & Vespignani, A. Time varying
networks and the weakness of strong ties. Sci. Rep. 4,
4001 (2014).

[24] Holme, P. & Saramäki, J. Temporal networks. Phys.
Rep. 1–28 (2012).

[25] Cai, C.-R., Wu, Z.-X. & Guan, J.-Y. Behavior of
susceptible-vaccinated-infected-recovered epidemics with
diversity in the infection rate of individuals. Phys. Rev.
E 88, 062805 (2013).

[26] Ferguson, N. M. et al. Strategies for mitigating an in-
fluenza pandemic. Nature 442, 448–452 (2006).

[27] Lloyd, A. L. Realistic distributions of infectious periods
in epidemic models: changing patterns of persistence and
dynamics. Theor. Popul. Biol. 60, 59–71 (2001).

[28] Note that while the principal field of application of the al-
gorithm is time-varying networks, the algorithm may also
be applied to systems where a network-based description
is not appropriate.

[29] Martelloni, G., Santarlasci, A., Bagnoli, F. & Santini,
G. Modeling ant battles by means of a diffusion-limited
Gillespie algorithm. arXiv:1503.06094v1 .

[30] C++ code for implementations of the tem-
poral Gillespie algorithm can be found at
github.com/CLVestergaard/TemporalGillespieAlgorithm

[31] Perra, N., Gonçalves, B., Pastor-Satorras, R. & Vespig-
nani, A. Activity driven modeling of time varying net-
works. Sci. Rep. 2, 469 (2012).

[32] Supplemental figures are found at the end of the
manuscript.

[33] www.sociopatterns.org.
[34] Stehlé, J. et al. Simulation of an SEIR infectious disease

model on the dynamic contact network of conference at-
tendees. BMC Med. 9, 87 (2011).

[35] Fournet, J. & Barrat, A. Contact patterns among high
school students. PLoS One 9, e107878 (2014).

[36] Vanhems, P. et al. Estimating potential infection trans-
mission routes in hospital wards using wearable proximity
sensors. PLoS One 8, e73970 (2013).

[37] Génois, M., Vestergaard, C. L., Cattuto, C. & Barrat, A.
Data on face-to-face contacts in an office building sug-
gests a low-cost vaccination strategy based on community
linkers. Network Science FirstView, 1–22 (2015).



SUPPLEMENTAL FIGURES



17

0 50000 100000 150000 200000

t (∆t)

0

20

40

60

80

100
〈 X〉

Rejection sampling

Temporal Gillespie

S

I

R

(a)

0 20 40 60 80 100

R

101

102

103

104

105

106

p
(R

)

Rejection sampling

Temporal Gillespie

(b)

0 5000 10000 15000 20000

t (∆t)

0

20

40

60

80

100

〈 X〉

Rejection sampling

Temporal Gillespie

S

I

(c)

0 20 40 60 80 100

I

100

101

102

103

104

105

106

p
(I

)

Rejection sampling

Temporal Gillespie

(d)

0 5000 10000 15000 20000

t (∆t)

0

20

40

60

80

100

〈 X〉

Rejection sampling

Temporal Gillespie

S

I

R

(e)

0 20 40 60 80 100

R

100

101

102

103

104

105

106

p
(R

)

Rejection sampling

Temporal Gillespie

(f)

0 5000 10000 15000 20000

t (∆t)

0

20

40

60

80

100

〈 X〉

Rejection sampling

Temporal Gillespie

S

I

(g)

0 20 40 60 80 100

I

100

101

102

103

104

105

106

p
(I

)

Rejection sampling

Temporal Gillespie

(h)

Supplemental FIG. 1. Comparison of numerical results from temporal Gillespie and rejection sampling algorithms
for high transition probability per time-step. (a)–(d) β∆t = 10−1 and µ∆t = 10−3; (e)–(h) β∆t = 1 and µ∆t = 10−2.
(a),(e) Mean number of nodes in each state of the SIR model as function of time. (b),(f) Distribution of final epidemic size
(number of recovered nodes when I = 0) in the SIR model. (c),(g) Mean number of nodes in each state of the SIS model as
function of time. (d),(h) Distribution of the number of infected nodes in the stationary state (t → ∞) of the SIS model. All
simulations were performed 1 000 000 times with the root node chosen at random on an activity driven network consisting of
N = 100 nodes, with activities ai = ηzi, where η = 0.1 and zi ∼ z−3.2

i for zi ∈ [0.03, 1), and a node formed two contacts when
active.



18

0 50000 100000 150000 200000

t (∆t)

0

20

40

60

80

100
〈 X〉

Rejection sampling

Gillespie-based

S

I

R

(a)

0 20 40 60 80 100

R

10-5

10-4

10-3

10-2

10-1

100

p
(R

)

Rejection sampling

Gillespie-based

(b)

0 5000 10000 15000 20000

t (∆t)

0

20

40

60

80

100

〈 X〉

Rejection sampling

Gillespie-based

S

I

R

(c)

0 20 40 60 80 100

R

10-5

10-4

10-3

10-2

10-1

100

p
(R

)

Rejection sampling

Gillespie-based

(d)

Supplemental FIG. 2. Comparison of numerical results from temporal Gillespie and rejection sampling algorithms
for a non-Markovian SIR process. (a),(c) Mean number of nodes in each state as function of time in the SIR model with
Weibull distributed recovery times (Sec. VII A); the parameter controlling the precision of the temporal Gillespie algorithm
was set to ε = 0 (quasi-exact). (b),(d) Distribution of final epidemic size (number of recovered nodes when I = 0). (a),(b)
β∆t = 10−2 and µ∆t = 10−4; (c),(d) β∆t = 10−1 and µ∆t = 10−3. The outcome of the rejection sampling algorithm
approaches that of the temporal Gillespie algorithm as β∆t and µ∆t become smaller. All simulations were performed 100 000
times with the root node chosen at random on an activity driven network consisting of N = 100 nodes, with activities ai = ηzi,
where η = 0.1 and zi ∼ z−3.2

i for zi ∈ [0.03, 1), and a node formed two contacts when active. Nodes’ recovery times followed
Eq. (20) with k = 1.5 and the length of a time-step was ∆t = 1 s.


