
HAL Id: hal-01140099
https://hal.science/hal-01140099

Submitted on 7 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architectural Model and Planification Algorithm for the
Self-Management of Elastic Cloud Applications

Loic Letondeur, Xavier Etchevers, Thierry Coupaye, Fabienne Boyer, Noël de
Palma

To cite this version:
Loic Letondeur, Xavier Etchevers, Thierry Coupaye, Fabienne Boyer, Noël de Palma. Architectural
Model and Planification Algorithm for the Self-Management of Elastic Cloud Applications. Inter-
national Conference on Cloud and Autonomic Computing (CAC 2014), Sep 2014, London, France.
�10.1109/ICCAC.2014.29�. �hal-01140099�

https://hal.science/hal-01140099
https://hal.archives-ouvertes.fr


Architectural Model and Planification Algorithm for
the Self-Management of Elastic Cloud Applications

Loı̈c Letondeur,
Xavier Etchevers,
Thierry Coupaye

Orange Labs
28, chemin du vieux Chêne
F-38243 Meylan - France

Email: {firstname.lastname}@orange.com

Fabienne Boyer,
Noël De Palma

Université Joseph Fourier
BP 53

F-38041 Grenoble Cedex 9 - France
Email: fabienne.boyer@imag.fr, noel.depalma@ujf-grenoble.fr

Abstract—This paper introduces a generic approach for man-
aging automatically applications elasticity. The proposed solution
addresses a noticeably wider scope of use-cases and does not
depend on the underlying execution environment. It consists
of: (i) a model and a formalism used for specifying valid
applicative architectures (or elasticity scenarios) according to
the resources allocated to the application. The originality of
this first contribution lies in the association of a component
model with a set oriented query language; (ii) a defeasible
reasoning-based planning algorithm that computes the target
applicative architecture from the model and elasticity requests;
(iii) a first qualitative and quantitative evaluation that highlights
the relevance and the viability of the proposed approach.

I. INTRODUCTION

Cloud computing [1] constitutes an execution environment
for applications (i.e. a cooperative set of software and hard-
ware elements) that obtain the resources they need by con-
suming cloud services. These services can be either hardware
entities (e.g. virtual machines or VMs), or software platforms
pieces that can make up applications, or also full end-user
applications. Because a cloud client is charged according to the
consumed services, this consumption shall fit the best with the
application charge. At any time, an application must consumes
enough services to have enough resources but must also
minimizes its services consumption to optimize costs. This
optimization is operated dynamically, during the application
run and without service interruption. This is a complex process
called elasticity. It consists in modifying the application by
adding, removing or else reconfiguring application elements.

One cloud promise is to automate the elasticity. This is a
process that mainly must answer to two issues:

1) When and which operation must be decided?
2) How this decision must be concretely realised to adapt

the application. This issue is related to a Planification
of modifications to operate on the application.

Current solutions aiming at offering an automated elasticity
do not explicitely address the Planification. Such a situation
results in strong limitations around covered elasticity scenarios
and all applications can not be addressed. This is the result
of a tightly coupling of each elastic solution with a particular
context of elasticity [2].

This paper proposes a general solution that pushes the limits
of the current automated elasticity. It proposes a framework
for a generic elasticity that operates regardless of the applica-
tion, its architecture and the cloud provider. More precesely,
contributions of this paper are:

• a model for the description of an elastic application in
the cloud.

• an algorithm that makes use of the model for the plani-
fication of elastic applications.

• a first quantitative and qualitative evaluation of the pro-
posed approach.

This article is organized as follows. Section 2 describes the
motivations of the proposed solution. Section 3 presents the
principles of the solution. Section 4 presents the implemen-
tation of a prototype and its evaluation. Section 5 provides
the positioning of the work presented in this article. Section
6 concludes and presents the perspectives of this work.

II. MOTIVATIONS

Making an application elastic in the cloud implies to be
able to dynamically modify it. For instance, more worker parts
can be added to manage heavy loads (scale out operation), or
else removed during lighter loads to save resources, hence
money (scale in operation). In the case of a web three tiers
application (i.e. one presentation tier, one business tier, one
database tier), a typical scale out consists in adding one more
application server to the business tiers. Such a scale out is in
fact more complex than just booting one VM and running an
executable inside: this operation requires not only a functional
configuration of the added server but also a reconfiguration of
the running application to integrate the new server. So, the
management of elasticity is an adaptive process that consists
in continuously scheduling a set of operations ranging from
VM creation to the configuration of all applicative functional
entities. Moreover, elasticity issues do not solely consist in
deciding when a scale in/out is needed, they also include
the way how to effectively realise it. All solutions that aim at
offering an automated elasticity must deal with the continuous
determination of the full realisation of elasticity scales.



The automation of elasticity is a continuous and an adaptive
process for which the autonomic computing’s approach is
well-suited. Autonomic computing models such a permanent
adaptation over resources by the so-called MAPE-K [3] loop
(or autonomic control loop).

Nevertheless, the consideration of the state of the art of
the automated elasticity shows that all stages of MAPE-K
are not equally addressed. Whereas Monitoring, Analysis and
Execution have a vast variety of solutions, Planification is
either implicit and proper to a particular context or not
addressed at all. In facts, all approaches get around the
problem of the planification by simplifying elasticity. This
simplification consists in shrinking the elasticity parameters
as much as possible to obtain a solution able to manage the
elasticity automation in a particular context. For example, for
one application, Amazon and Microsoft use the same virtual
image, with the same VM hardware profile, only in their cloud,
and in the same geographic area. The way how all application
parts work together are achieved by proprietary intermediate
load balancers. These solutions have the big advantage to offer
an automated elasticity that can be simply used for all multi-
tiers applications. However, these solutions have two major
drawbacks: a restricted elasticity (only n-tiers architectures
with explicit load balancer components)and a strong vendor
lock-in. So, Amazon and Microsoft leverage planification by
removing many degrees of liberty. The provided elasticity
can be simply used but is also limited and a vendor lock-in
occurs. In these solutions, Analysis and Planification are mixed
together: the decision of an elasticity operation is implicitly
known how to be fulfilled (one virtual image, one hardware
profile, one geographic region, in one cloud, with known load
balancers).

With both of these approaches, the Planification is coarse.
It results in many limitations:

• Some applications without a multi-tiers architecture are
not addressed. For example, Content Delivery Networks
(CDN), and Map-Reduce frameworks can not be made
elastic directly by those platforms. Such applications re-
quire either to use a similar service of the cloud provider
(vendor lock-in) or to rewrite a new tool to manage such
an application.

• Management of HA across more than one cloud is made
more complex because of the use of vendor specific
services (load balancers of Amazon and Microsoft).

• The automation of elasticity across different parts of
clouds is not possible.

• The coverage of elasticity scenarios are restricted to a
defined set. The vertical elasticity is not always offered
and this is a big problem to respond to sudden loads.

• The automation of elasticity across different clouds is not
managed by some existing solutions.

Thus, we believe that it is primordial to have a real
Planification separated form the Analysis, so as to separate
the specification of elasticity objectives from the realization
of these objectives. The proposed Planification in this paper

is separated from the the rest of other MAPE-K steps. It ad-
dresses the issue of how an application must be reconfigured
to apply a decision for an elasticity operation. There is
no restriction around elasticity parameters described at the
beginning of this section.

III. PRINCIPLES OF THE SOLUTION

The main goal of this paper is to provide a Planification
which is integrated into a MAPE-K loop to offer an automated
elasticity. The Analysis decision is its input whereas its output
is the Execution model.

Besides the integration into a MAPE-K loop, the Planifica-
tion must do some computations proper to its role. To this,
our solution makes use of a model that centralizes all ”live”
parameters and parts of the application: it represents the cur-
rent state of an application. This model is called Extensional
Model (EM) and is continuously updated to always represent
the current state of an application. The EM is also at the heart
of the computation of the further application states: it is the
support for all computations of the planification.

The proposed Planification has also a template for all
possible EMs for an application. This is a second model
different of the EM called Intensional Model (IM) [4].

A third feature is an algorithm that makes use of both the
EM and the IM. When an elasticity operation is decided by
the Analysis, the algorithm computes the current EM into a
next one with consideration of the IM.

A. Extensional Model

The Extensional Model (EM) represents all relevant data
about the application at a given time. In MAPE-K, this
model centralizes all information the Monitoring lets know
about an application. During the Planification, the EM is used
to determine how the application will be modified by the
Execution. The EM relies on a component-based architecture
like Fractal [5]. Thanks to the use of a component based
architecture, the EM is generic . In the EM, each part of an
application is represented by a component: note that this is
just a representation of underlying applicative resources and
absolutely not an implementation requirement for applications.
Consequently, there is no need to recode the applications.

Knowledge

Analysis

Elasticity decision

Application's 

administrator

Execution

Fig. 1. Planification’s inner functioning. The algorithm computes a target
application state (i.e. a new Extensional Model (EM) ) according to the
Intensional Model, the current EM and the Analysis elasticity decision.



A component can be either a primitive component either
a composite component. A primitive component contains no
other components whereas a composite component may con-
tain zero or more components (primitive and/or composite).
In the rest of this article, primitive components are just called
components and composite components containers. Both com-
ponents and containers may have attributes that can represent
their internal parameters like an IP address, a network port
or a path to an executable. Apart from components and
containers, a component based architecture use two other
concepts: bindings and placements.
• Components may have bindings with others. A binding

is in fact a communication channel between two compo-
nents. Bindings are oriented from the client component
to the server component: it means that the client depends
on the server to work.

• Components are located into a hierarchy of containers in
which one container can be contained by another one.
The location of a given component or a given container
inside a container defines a placement: this contained
component or this contained container is said to be placed
inside the outer container.

The Figure 2 depicts a Content Delivery Network (CDN)
application. This application aims at delivering data from
a central server to geographically spread users through a
distributed system constituted of several nodes. This service
has two goals:
• Reducing load on the central server.
• Improving the user’s experience by reducing latencies

and/or maximizing the throughput.
To achieve these goals, the nodes need to store data and to
be located near the users whereas the users must be routed

Fig. 2. Graphical representation of an Extensional Model (EM) for a CDN
deployed in the cloud.

to the best node. CDN services are typically used to deliver
static data content of a web server like files or images. They
are also used to provide streaming of video contents.

All components have one binding to the central server. They
are also placed into a VM container, itself placed into a cloud
container. All components and all containers have a unique
id. For instance, the component named node:1 is placed into
the VM container named VM:2, itself placed into the cloud
container named cloud:2. Some attributes are also mentioned
as their IP addresses.

B. Intensional Model

The Intensional Model is a template for all possible EMs.
It constitutes a mean to express How an application must
be modified during elasticity. All possible modifications are
coming from different types of constraints:
• Inheritance: an application is composed of one or more

components. All of these components inherit their global
characteristics from a type of component similarly to an
object in the object oriented programming paradigm. In
the EM, a component can not exist if it is not the instance
of a component type. By the same way, a container must
inherit from container type.

• Bindings: each component has bindings from or to
other components. These bindings must satisfy some
constraints. For example, in Figure 2, each component
representing a node must have a unique binding to the
component server:1.

• Placements: each component must be placed into a
complete hierarchy of containers. For instance, in the
Figure 2, each component must be placed into its proper
VM container. Each VM container must be placed into
one cloud container.

• Configurations: each component and each container must
have a complete configuration. In the case of the Fig-
ure 2’s example, each node component must expose its
service trough the port 80.

• Mix of the previous constraints: in facts some constraints
may result of the combination of inheritance, existing
bindings, existing placements, or the current configura-
tions. Such a mixed constraint can be seen in Figure 2:
each VM container that contains a node component must
be configured to have at least 2GB of RAM and 2CPUs.

In the approach proposed in this article, the IM makes use
of an original formalism that allows for the introspection of
the current EM, the determination of some modifications on
the current EM and the verification of the constraints in the
new EM. The IM specifies what are the component types
used by an application. Each component present in an IM
is an instance of one type. By this way is addressed the
constraints dealing with the inheritance. Constraints about
bindings, placements and configurations are addressed by
means of a Set-Oriented Query Language (SOQL) as SQL [6].
It is the heart of the originality of the proposed formalism
for the IM. A SOQL permits to extract subsets of entities
from the EM, to filter some elements of such subsets and then



to order these filtered elements to obtain a result. In facts, a
SOQL language constitutes a programming way to achieve the
satisfaction of constraints. For example, in a pseudo-language,
the placement constraint that requires 2GB RAM and 2 CPUs
for all VM container in which a node component is placed,
can be expressed very simply as shown by the Algorithm 1.

Algorithm 1 Example of a query for the configuration of all
VM containers hardware profiles.

1: for each Container c in EM/[all V M containers]
2: where c contains a component inheritingfrom ”node”
3: return Configure(c, RAM=2GB, CPU=2)
4: . Only VM containers hosting a node component are configured. The result

Configure(c, RAM=2GB, CPU=2) will be interpreted by the Planification’s
engine.

In this example, the returned result is a configuration that
is then interpreted by the engine of the Planification.

Using a programming SOQL to manage all constraints in
the IM has several advantages. Firstly it is not specific to a
kind of constraint. It can cover a wide range of concerns such
as the little set of examples presented in the Table I.

Id Constraint
type

Concern Constraint example

1 Binding Quality of
Service

Bind only to components lo-
cated at a distance below a
given limit (topology or ge-
ography)

2 Binding Cardinalities Bind to components not al-
ready bound more than n
times

3 Placement Price Use only infrastructures
whose price per VM and per
hour is below a limit

4 Placement Location Use only infrastructures lo-
cated in Europe

5 Placement Availability Having replicas for services
which are geographically
distributed

6 Configuration Scaling Having a VM profile accord-
ing to placed components

7 Configuration Load
balancing

Affecting weighted coeffi-
cients according to the load
of each member of a service
(dynamic load balancing)

TABLE I
EXAMPLES OF DIFFERENT CONSTRAINTS THAT CAN BE EXPRESSED IN

THE INTENSIONAL MODEL.

As a comparison, the use of cardinalities (i.e. a min and a
max on a binding between to component types) only addresses
how many components have bindings to and from other
components. Cardinalities are so not suitable to express the
constraint 1 in the Table I. Moreover, the use of cardinalities
does not explain how to modify the EM during elasticity: this
is the role of an algorithm that needs additional semantics.
As instance, the preference to obtain the min or else the
max of a cardinality depends on the algorithm. A SOQL has

an expressiveness very useful to address present and future
concerns relative to the constraints required for a generic
elasticity.

A second advantage of using a SOQL concerns its ability
to manage a infinity of possible configurations. On contrary,
the use of a list of all possible configurations quickly becomes
a painful job.

A third advantage for a SOQL approach is its batch pro-
cessing ability. As shown is the pseudo-language example in
this section, one query treats entities by groups and return a
set of results specific for one entity.

A fourth advantage is the ease for an administrator to use
the proposed approach. SOQL is indeed well known thanks
to a widespread usage of SQL [6] with relational databases or
XQuery [7] with NoSQL databases. On contrary to a Domain-
Specific Language (DSL), SOQL makes easier the learning for
an application’s administrator. There is also neither dependen-
cies to solve nor compilation as with a compiled language.

The IM uses a SOQL formalism that permits the coverage
of extensible constraints for the modification of the EM during
the elasticity. This formalism needs to be interpreted and
the returned result must be applied on the EM. This task
is achieved by the second contribution of this article: an
algorithm able to make changes in the EM according to IM
and an operation of elasticity decided by the Analysis.

C. An algorithm to plan modifications

The algorithm is responsible for computing the transition
from the current EM to a next one according to the constraints
expressed in the IM. This transition is a set of modifications
and must satisfy all types of constraints of the IM. The
proposed algorithm relies on one fundamental property: each
type of constraints results in a precise set of modifications
over the EM. The Table II shows what are the possible
modifications by type of constraints.

All modifications listed in the Table II are handled by
the algorithm. However, the listed constraints may be mixed
together. An example of such a mixed constraint is the creation
of bindings according to the placement: only components
placed into the same geographic area must be bound together
(e.g. mix of constraints 5 and then 1 in the Table I). This
constraint is really useful for the management of both HA and
performances: by this way, an application is geographically
distributed and latencies are also controlled. This mix of
constraints constitutes a big issue for the ease of use. Indeed,

Constraint
type

Possible modifications

Inheritance add/remove a component/container
Bindings bind/unbind components
Placements place a component/container into a container
Configurations set/unset a parameter of a component/container

TABLE II
EXAMPLES OF DIFFERENT CONSTRAINTS THAT CAN BE EXPRESSED IN

THE INTENSIONAL MODEL.



the problem comes from the wide range of compositions
possible: as binding constraints according to placements, as
placement constraints according to bindings may occur. An
example of the second statement is the placement of one probe
component (e.g. for a monitoring tool) that is responsible of a
new added component as a CDN node component (i.e. a scale-
out operation): this probe must be placed into the same cloud
container and the same VM container than the node compo-
nent. This example underlines where resides a big challenge
for each administrator: the creation, the understanding and the
debug of complex mixed contraints expressed in the IM.

The proposed algorithm tackles this difficulty by compos-
ing constraints together. This algorithm automatically mixes
simple constraints and offers in the same time a clear vision
of how they are mixed. This algorithm executes each type
of constraints in a given order (note this order is arbitrary).
One after one, all types of constraints are computed. The
type of executed constraints is verified by allowing only the
modifications covered by each type of constraints as mentioned
in the Table II, and possibly a revision requirement. As
instance, in the step corresponding to the bindings constraints,
the only modifications allowed are bind/unbind components or
else a notification meaning ”a problem occurs because of the
given reason XXX” (where XXX is the problem description).
Such an algorithm has two advantages:

• The creation of complex constraints are achieved by the
composition of very simple constraints.

• Such queries are reusable: the simpler the queries, the
more reusable. Queries are indeed less complex and so
they are less specific to either one application, or one
architecture, or one cloud... For example, the binding
query that results in the binding of each node component
to the unique server component server:1 in the Figure 2
can be also used for a web application between the
business tier and the database.

The algorithm proposed is written in the Algorithm 2. From
the line 1 to the line 17, the algorithm begins with applying
the elasticity decision on a copy of the current EM and then
completes this first modification by additional modifications
according to the constraints. From the line 5 to the line 17, all
constraints types are computed on the target EM (i.e. the next
application state during its creation). Inheritance constraints
are managed when components or containers are added into
the computing EM like in lines 5 and 30. Other constraints
types (i.e. Bindings, Placements, Configurations) are managed
by the function manageConstraints (lines 20 to 35). Each of
the former constraints types are computed successively in lines
7, 9 and 11 by calling the function manageConstraints. This
function computes each constraint of a given type, one after
one (line 24). For each constraint, if no revision is required
(line 25), the computed modifications can be applied on the
computing EM (line 26). Only allowed modifications of the
Table II are effectively applied. On the contrary, if a revision
is required (line 27), the algorithm is rerouted to an additional
computation step responsible for managing a revision. This

Algorithm 2 Planification’s algorithm.
INPUT: An elasticity operation from the Analysis or else an update request

ALGORITHM:
1: M ← input.getCorrespondingBaseModifications() .

First: get base modifications corresponding to the input
2: em

′ ← em.copy() . Copy the current EM
3: endFlag ← false . Set a flag meaning the algorithm’s end
4: . Inheritance is treated during the following line
5: em

′ ← em
′
.doAllModifications(M) . Apply base modifications on the

EM’s copy: add/remove/set components/container
6: while not(endFlag) do . Start the main sequence
7: revisionFlag ← MANAGECONSTRAINTS(em’,Bindings,im)
8: if not(revisionFlag) then
9: revisionFlag ← MANAGECONSTRAINTS(em’,Placements,im)

10: if not(revisionFlag) then
11: revisionFlag ← MANAGECONSTRAINTS(em’,Configurations,im)
12: if not(revisionFlag) then
13: endFlag ← true
14: end if
15: end if
16: end if
17: end while
18:
19:
20: function MANAGECONSTRAINTS(em’,t, im)
21: typedConstraints← im.getConstraintsOfType(t) . get

constraints by type in the IM
22: revisionFlag ← false
23: for c in typedConstraints do
24: (M, r)← c.executeOn(em

′
) . Get new modifications in M and

revision in r
25: if r is null then . No revision required: apply modifications
26: em

′ ← em
′
.doAllowedModificationsForType(M, t)

27: else . An revision is required
28: revisionFlag ← true
29: HANDLEREVISIONS(em’,c,M,r)
30: em

′
.doAllModifications(M) . Apply revision modifications

31: break . Return to begin a new main sequence: Inheritance was
checked in the previous line

32: end if
33: end for
34: return revisionFlag
35: end function
36:
37: . According to a set of revisions declarations, find a corrective set of

modifications
38: function HANDLEREVISIONS(em’,c,M,r)
39: if r.getCode().equals(”Lacks one component of type”) then
40: M ← {new Modification(add, r.getConcernedType()}
41: else if r.getCode().equals(”Lacks one container of type”) then
42: M ← {new Modification(add, r.getConcernedType()}
43: else if others then
44: ...
45: end if
46: end function
47:

OUTPUT: Transform EM’ (i.e. the new EM) into the Execution model formalism and
then give it to the Execution

step is denoted by the function handleRevision (lines 38 to 46).
It mainly consists in performing a matching between the code
that identifies the revision and additional modifications. For
instance, if a revision meaning ”an empty VM lacks” is run,
this revision will match the pattern line 41 and a modification
of the EM doing the addition of a new VM container is
returned (line 42). In line 30, all additional modifications are
applied onto the EM and the main sequence is started again
(line 6).

IV. EVALUATION

The main objective of the following evaluation consists in
showing the coverage of new elasticity scenarios, the ease of
use and the efficiency of our solution. Such efficiency does



not concern the performances of an elastified application but
rather the overhead introduced by an explicit Planification.

A. Implementation and examples

The formalism of the intensional model and the extensional
model is based on XML. Constraints are expressed in the
intensional model thanks to XQuery [7]. The code of the
prototype engine (Vulcan) is based on the Java language.
XQuery is a set-oriented query language particularly suitable
for handling XML trees.

The Figure 3 and the Figure 4 show two IM examples.
XQuery is used to describe constraints in both of these

examples. All requests used in the two examples are provided
by a library. Even if the two modelled applications are very
different, their IM are really similar. Some constraints are
even used in the two IMs like a constraint requiring that
each component must be placed into its own VM container

<intensional-model>
<inheritance>
<component name="Apache" init="1"/>
<component name="Jonas" init="2" max="10"/>
<component name="MySQL" init="1"/>

</inheritance>
<bindings>
<query>local:bindExactlyOneAll("Apache","Jonas")</query>
<query>local:bindAllExactlyOne("Jonas","MySQL") </query>

</bindings>
<placements>
<query>local:placeOneOne()</query>

</placements>
<configurations>

<query>local:configureVMs("2cpus", "2GB")</query>
</configurations>
[...]

Fig. 3. Example of a intensional model for the application Springoo a web
three tier application (representative of 80% of the Information System (IS)
of Orange. In section configurations, a query sets a hardware profile for all
VM containers (RAM: 2GB, CPU:2cores).

<intensional-model>
<inheritance>
<component name="server" init="1" max="1"/>
<component name="node" init="2"/>

</inheritance>
<bindings>
<query>local:bindAllExactlyOne("node","server")</query>

</bindings>
<placements>
<query>local:placeOneOne()</query>
<query>local:placeOneVMInOneCloud()</query>

</placements>
<configurations>

<query>local:configureVMsHosting("2cpus", "2GB",
server)</query>

<query>local:configureVMsHosting("4cpus", "4GB",
node)</query>

</configurations>
[...]

Fig. 4. Example of an intensional model for a Content Delivery Network
application. In section configurations two queries set VMs hardware profiles.

(denoted by local:placeOneOne()). In addition to this sim-
ilarity, one other can be found in the bindings contraints:
local:bindAllExactlyOne(X,Y) denotes a constraint resulting
in binding all components of type X to one component of
type Y. The implementation presented uses XQuery to express
constraints. This expression allows the engine (Vulcan) to
make use of the intensional model to determine extensional
models. The planification algorithm permits to express very
dissimilar applications with reusable descriptions using li-
braries. Complex constraints are addressed by some simple
ones. Thanks to these characteristics, making elasticity for an
application is really simple.

B. Elasticity scenarios

This section lists a sample set of elasticity scenarios. They
demonstrate the expressiveness of Vulcan. Figure 5 depicts all
of these scenarios.

Fig. 5. Elasticity scenarios to evaluate the expressiveness of Vulcan.

1) Scenario 1: Multi-tier elasticity: This first scenario is
elementary. It consists in operating elasticity on a multi-tier
application on its business tier. To this, a Jonas application
server is added into a new VM application. This scenario
corresponds to the industrial state of the art. The proposed
approach addresses this scenario and other which are more
complex. Such more complex scenarios are exposed below.

2) Scenario 2: Profiled elasticity: An Orange-internal use
case intends to modulate the deployment of an application
according to a profile. When a profile named developer is
used, the application is deployed in a single VM. However,
the use of a profile production results in the deployment of the
same application in different VMs and with a specific initial
scale. In facts, the developer profile allows a development
team to test functionalities. In this case, there is no need
for good performances. On contrary, the production requires
an application supporting the load. Each deployment must be
elasticized independently with each others.

Vulcan addresses this scenario by using containers. Only
one application is deployed but some subsets of components
are isolated from each other according to their location in



a container. Thus it allows Vulcan to apply each elasticity
request on precise subsets.

3) Scenario 3: Fine grained elasticity (intra-container):
Another Orange-internal use case aims at managing multiple
USB devices through over IP remote communications. The
devices are managed by an application hosted in the cloud.
This application is composed of many processing nodes. Such
nodes have a limit inherent to the USB bus which prevents
them from managing more than 128 devices simultaneously.
Nevertheless, by hosting only one node a VM remains un-
derutilized. One solution to this problem consists in grouping
many processing nodes in one VM. Practically when a new
device appears, it must be ensured that a processing node can
manage it. If this is not the case, a new one must be added.
Of course, one VM can not host too many nodes: the ability
to add VMs must be also used according to the context.

Vulcan provides elasticity at the component level. Each
component is executed within a VM. Vulcan can dynamically
add/remove instances in VMs. It therefore addresses this
scenario of elasticity thanks to its granularity finer than the
VM.

4) Scenario 4: Vertical Elasticity: The vertical elasticity
consists in operating changes on the processing capabilities
of components and containers rather than their number. For
example, during a load peak, it may be interesting to resize
the profile of the VM by adding RAM and/or processor cores.
The provision of a VM is effectively a long process. Because
all load peaks are not predictable, it may be important to have
a high reactivity.

Vulcan has the ability to configure resources and therefore
VMs. Vulcan offers not only the possibility of establishing
profiles of VMs but also of operating deployment only in in-
frastructures able to manage dynamic changes of VM profiles.

C. Performances

Tests were achieved on machine with a dual-core Intel
Xeon W3503 processor and 2GB of RAM. The measured
times correspond to the resolution of an elasticity request for
adding one Jonas server to those already present. Figure 6
shows the measured time in function of the final number
of Jonas servers. This graph shows that the time increases

Fig. 6. Planification time in milliseconds depending on the final number of
Jonas servers.

linearly with the number of servers. This increase is due to
the placement constraint that requires to place each component
in a separate VM. It requires to introspect each VM container

to check if it is empty. Other experiments not reported here
have shown comparable performances with other applications.
The encountered time necessary for provisioning one VM [8]
usually ranges from about 30s. to one minute. The ratio of the
measured resolution time on the provisioning VM duration
is in the worst case of 0.020. This rate shows that - for
this scenario - the impact of processing elasticity planning is
almost negligible. As a matter of fact, the approach is valid.

V. RELATED WORKS

The consideration of both the literature and the industrial
solutions shows that all steps of the MAPE-K loop applied
to elasticity are not fairly addressed. The ecosystem of the
monitoring step is rich. It presents both general solutions
like Zabbix [9], Shinken [10] or Nagios [11] and proprietary
solutions like Amazon CloudWatch [12]. Concerning the anal-
ysis, various research solutions exist. They generally focus on
applications with multi-tier architectures [13], [14], [15]. Some
of these solutions make possible the management of quality
of service [16], [17]. The ecosystem of the analysis part also
includes proprietary solutions like Amazon CloudWatch and
RightScale [18] which trigger elastic operations of additions
and removals of VMs when thresholds on different metrics
are exceeded. Other solutions, which offer higher level, such
as Microsoft Azure [19] and Redhat OpenShift [20] manage
automatically the elasticity of some specific software compo-
nents. Considering the fourth step, execution, its ecosystem
is rich and consists of generic solutions such as VAMP, or
more limited or specific ones as VEGA [21], Amazon AWS,
Microsoft Azure and Redhat OpenShift.

For the planning step, to our knowledge, two generic
solutions exist. The first is Application Deployment
Toolkit(ADT) [22]. It provides a framework for the
development of planification-like programs. To do this, ADT
offers a set of features for the implementation enabling the
execution and the monitoring of managed resources. This
solution offers APIs for the development of both analysis
and planification. ADT does not manage itself all aspects
related to the planification. The second solution named
ElaaS [23] allows to model the architecture of an elastic
application by abstracting the specificities of a temporary
architecture. It provides APIs allowing analysis to interface
with it. Nevertheless, the aspect of planning is also let to the
analysis.

Specific ”black boxes” planification solutions also exist but
are used to address a limited number of scenarios. Amazon
Auto-Scaling manages elasticity within Amazon infrastructure
with VMs having necessarily the same profile, in the same
area, with the use of load balancers between different groups
of elasticity. RightScale is based on a similar approach with
similar limits. In the case of Microsoft Azure and RedHat
OpenShift, the planification is not accessible to the user. It
applies only in a specific execution context and a finished soft-
ware components available in a catalog together. ConPaaS [24]
composes an application thanks to interconnected services.
This solution has a VM granularity and can not finely manage



placement of components. The planification step has a lack of
generic solutions able to manage elasticity independently of
the application and the execution context. Table III summarizes
the management by various industry and research solutions of
elasticity scenarios presented in the evaluation.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Amazon AWS Yes No No No
ConPaas Yes Yes No No

Microsoft Azure Yes No No No
Redhat OpenShift Yes No No No

RightScale Yes No No No
Vulcan Yes Yes Yes Yes
ADT Partial Partial Partial Partial
ElaaS Partial Partial Partial Partial

TABLE III
MANAGEMENT OF ELASTICITY SCENARIOS BY DIFFERENT SOLUTIONS.

THESE SCENARIOS ARE PRESENTED IN THE EVALUATION. A partial
MEANS THAT THE SOLUTION DOES NOT PROVIDE ITSELF THE
MANAGEMENT OF THE SCENARIO BUT DOES NOT BLOCK IT.

VI. CONCLUSION AND PERSPECTIVES

This article proposes a solution for the planification aiming
at offering an automated elasticity to applications deployed in
the cloud. A first contribution is a model and its formalism for
the description of elastic applications. The model used aims
at describing how an application must be modified to apply
an elasticity decision. This model makes use of a formalism
based on a set-oriented query language. The formalism allows
to express all constraints to be satisfied during elasticity. It
is generic with regards to the concern its addresses (e.g. in-
heritance, bindings,...) and expressive enough to cover a wide
range of scenarios not accessible by other solutions. A second
contribution is an algorithm which computes new application
architectures according to an elasticity decision. It allows an
administrator for the expression of very complex constraints
by specifying simple ones. This algorithm composes all con-
straints together. It eases the administrator’s job by permitting
to reuse library constraints. This algorithm is implemented
inside an engine which uses the formalism introduced in this
article. A third contribution is an evaluation of the proposed
approach and its implementation. Through various examples
it shows abilities for the re-usability of constraints and a
larger coverage of elasticity in terms of managed scenarios.
An evaluation shows the viability of both the formalism and
the proposed implementation thanks to a negligible overhead.
Vulcan currently manages elasticity requests one after one. A
possible evolution is to manage several requests at the same
time (group and/or competition). A more industrial projection
is to achieve a complete autonomous loop of elasticity placing
Vulcan as at the output of an analysis solution, as at the input
of an execution one like VAMP [8].

ACKNOWLEDGEMENTS

This work is partially supported by the FSN OpenCloud-
ware project, by the FSN Datalys project and by the CtrlGreen

ANR project.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[2] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling
applications in the cloud,” Computer Communication Review, vol. 41,
no. 1, pp. 45–52, 2011.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[4] M. Hofmann, Extensional constructs in intensional type theory, ser.
CPHC/BCS distinguished dissertations. Springer, 1997.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The fractal component model and its support in java,” Softw., Pract.
Exper., vol. 36, no. 11-12, pp. 1257–1284, 2006.

[6] T. Lacy-Thompson, Informix-SQL - a tutorial and reference. Prentice
Hall, 1969.

[7] N. Wiegand, “Investigating xquery for querying across database object
types,” SIGMOD Record, vol. 31, no. 2, pp. 28–33, 2002.

[8] X. Etchevers, T. Coupaye, F. Boyer, and N. D. Palma, “Self-
configuration of distributed applications in the cloud,” in IEEE CLOUD,
L. Liu and M. Parashar, Eds. IEEE, 2011, pp. 668–675.

[9] “Zabbix website,” https://www.zabbix.org/.
[10] “Shinken website,” http://www.shinken-monitoring.org/.
[11] “Nagios website,” http://www.nagios.org/.
[12] “Amazon web services website,” http://aws.amazon.com/fr/.
[13] K. Konstanteli, T. Cucinotta, K. Psychas, and T. A. Varvarigou, “Ad-

mission control for elastic cloud services,” in IEEE CLOUD, R. Chang,
Ed. IEEE, 2012, pp. 41–48.

[14] P. Marshall, H. M. Tufo, and K. Keahey, “High-performance computing
and the cloud: a match made in heaven or hell?” ACM Crossroads,
vol. 19, no. 3, pp. 52–57, 2013.

[15] H. Nishimura, N. Maruyama, and S. Matsuoka, “Virtual clusters on
the fly - fast, scalable, and flexible installation,” in CCGRID. IEEE
Computer Society, 2007, pp. 549–556.

[16] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in NOMS. IEEE, 2012, pp. 204–
212.

[17] Y. Kouki and T. Ledoux, “Csla: A language for improving cloud sla
management,” in CLOSER, F. Leymann, I. Ivanov, M. van Sinderen,
and T. Shan, Eds. SciTePress, 2012, pp. 586–591.

[18] “Rightscale website,” http://www.rightscale.com.
[19] “Microsoft azure website,” http://www.microsoft.com/windowsazure/.
[20] “Redhat openshift website,” https://www.openshift.com/.
[21] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic scaling

of web applications in a virtualized cloud computing environment,” in
ICEBE. IEEE Computer Society, 2009, pp. 281–286.

[22] M. Keller, C. Robbert, and M. Peuster, “An evaluation testbed for adap-
tive, topology-aware deployment of elastic applications,” in SIGCOMM,
D. M. Chiu, J. Wang, P. Barford, and S. Seshan, Eds. ACM, 2013, pp.
469–470.

[23] P. Kranas, V. Anagnostopoulos, A. Menychtas, and T. A. Varvarigou,
“Elaas: An innovative elasticity as a service framework for dynamic
management across the cloud stack layers,” in CISIS, L. Barolli,
F. Xhafa, S. Vitabile, and M. Uehara, Eds. IEEE, 2012, pp. 1042–
1049.

[24] G. Pierre and C. Stratan, “Conpaas: A platform for hosting elastic cloud
applications,” IEEE Internet Computing, vol. 16, no. 5, pp. 88–92, 2012.


