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In this paper, we consider a linear meromorphic di¤erential system at the origin. For any of its levels , we prove with the factorization theorem that the Borel transforms of its -reduced formal solutions are resurgent and we give a complete description of all their singularities. Then, restricting ourselves to some special geometric con…gurations of the singular points of these Borel transforms, we make explicit formulae relating the Stokes multipliers of level of the given system to some connection constants in the Borel plane. So, we generalize the results already obtained by M. Loday-Richaud and the author for systems with a unique level and for the lowest and highest levels of systems with multi-levels. As an illustration, we develop one example.

Introduction

All along the article, we consider a linear meromorphic di¤erential system (in short, a di¤erential system or a system) of dimension n 2 at the origin 0 2 C of the form

x r+1 dY dx = A(x)Y (A)
where r 1 is a positive integer and where A(x) 2 M n (Cfxg) is a n nanalytic matrix at 0 such that A(0) 6 = 0. Using a …nite algebraic extension x 7 ! x with 2 N and a meromorphic gauge transformation Y 7 ! T (x)Y 1 with a suitable polynomial matrix T (x) in x and 1=x if needed, we can always assume (see [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]) that system (A) admits as formal fundamental solution at 0 a matrix of the form e Y (x) = e F (x)x L e Q(1=x) with

(N 1 ) e F (x) 2 M n (C[[x]]
) a formal power series in x satisfying e F (x) = I n + O(x r ), where I n denotes the identity matrix of size n,

(N 2 ) L = J M j=1
( j I n j + J n j ), where J is an integer 2, the eigenvalues j satisfy 0 Re( j ) < 1 and where if n j 2 is an irreductible Jordan block of size n j , (N 3 ) Q(1=x) a diagonal matrix of the form

J n j = 8 > > > > > > < > > > > > > : 0 if n j = 1
Q 1 x = J M j=1 q j 1 x I n j
where the q j (1=x) are polynomials in 1=x of degree r and without constant terms.

Recall that normalizations (N 1 ) and (N 2 ) guarantee the unicity of e F (x) as formal series solution of the homological system (A H ) associated with system (A) (see [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]).

Under the hypothesis that system (A) has the unique level r 1 (see de…nition 2.1 below for the exact de…nition of levels), M. Loday-Richaud and the author investigated in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF] (case r = 1) and [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] (case r

2) the resurgence of the Borel transforms of the r-reduced series (= sub-series of terms r by r) of e F (x) and displayed a complete description of all their singularities. Then, as an application, they stated some Stokes-to-connection formulae making explicit the Stokes multipliers of system (A) in terms of some connection constants in the Borel plane, providing thus an e¢ cient tool for the e¤ective calculation of the Stokes-Ramis matrices of system (A).

When system (A) has multi-levels r 1 < ::: < r p , these results were generalized later to the lowest [START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF] and highest [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF] levels by respectively considering, on one hand, the r 1 -reduced series and r p -reduced series of e F (x) and, on the other hand, the lowest and highest levels'Stokes-Ramis matrices.

In the present paper, we propose to extend the results above to any level r k of system (A). To do that, we shall proceed similarly as the approach developed in [START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF] for the lowest level by …rst showing that the study of level r k can always be reduced to the study of the highest level of a convenient system. This point, which is central in our present approach, is based on the factorization theorem of e F (x) [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF][START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF] (see section 2, theorem 2.7 below) and on a block-diagonalisation theorem allowing to write system (A) on a convenient block-diagonal form (section 3.2, theorem 3.6). Using that and the results of [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF], we then prove that the Borel transforms b F [k;u] ( ), u = 0; :::; r k 1, of the r k -reduced series of e F (x) are resurgent (section 3.3, theorem 3.10) and we give a complete description of all their singularities (section 3.4, theorem 3.15). In next section 4, we restrict our study to some special geometric con…gurations of singular points of the b F [k;u] 's; then, for such con…gurations, we display connection-to-Stokes formulae of level r k relating the Stokes multipliers of level r k of e F (x) to the connection constants of the b F [k;u] 's in the Borel plane (theorem 4.11). As an illustration of these formulae, we develop one example (section 4.3).

Preliminaries

Split the matrix e F (x) into J column-blocks …tting to the Jordan blockstructure of matrix L (for `= 1; :::; J, the matrix e F ;`( x) has n `columns):

e F (x) = h e F ;1 (x) e F ;2 (x) e F ;J (x)

i :

The aim of this section is to brie ‡y recall some basic de…nitions/results about the summation theory and to introduce some notations we are needed in the sequel.

Some de…nitions and notations

Given a pair (q j ; q `) such that q j 6 q `, we denote (q j q `) 1 x = j;x r j;`+ o 1 x r j;`

; j;`6 = 0: De…nition 2.1 (Levels, Stokes values and anti-Stokes directions of e F ;`( x)) Let j; `2 f1; :::; Jg such that q j 6 q `. The degree r j;`i s called a level of e F ;`( x).

The coe¢ cient j;`i s called a Stokes value of level r j;`o f e F ;`( x).

The directions of maximal decay of e (q j q `)(1=x) , i.e., the r j;`d irections arg( j;`) =r j;`m od (2 =r j;`) along which j;`= x r j;`i s real negative, are called anti-Stokes directions of level r j;`o f e F ;`( x).

Note that a Stokes value (resp. an anti-Stokes direction) of e F ;`( x) may be with several levels. Note also that the denomination "anti-Stokes directions" is not universal: sometimes, one calls such directions "Stokes directions". Notation 2.2 The set R (`) := fr (`) 1 < ::: < r (`) p `g with p ` 1 denotes the set of all levels of e F ;`( x).

Note that, according to normalization (N 3 ), all the levels r (`)

k are integer; one refers sometimes this case as the unrami…ed case.

Note also that, for all `, we have r

(`) p `
r the rank of system (A). Actually, if there exists `such that r (`) p `< r, then r (`) p `< r for all `2 f1; :::; Jg and polynomials q j have the same degree r and the same terms of highest degree. One then reduces to the case r (`) p `= r by means of a change of unknown vector of the form Y = Ze q(1=x) with a convenient polynomial q(1=x)

2 x 1 C[x 1 ].
Recall that such a change does not a¤ect levels or Stokes-Ramis matrices of system (A). 

Notation 2.4

The set R := fr 1 < ::: < r p g with p 1 denotes the set of all levels of e F (x) (or of system (A)).

We

clearly have R = J [ `=1
R (`) and r p = r.

When p = 1, system (A) is said to be with the unique level r. Recall that such a system was already investigated in great details in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF] (case r = 1) and [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] (case r 2). Henceforth, we suppose from now on p 2, i.e., system (A) has at least two levels. Note however that some columnblocks e F ;`( x) may have the unique level r, i.e., p `= 1 and R (`) = frg.

Multisummability

/ Multisummability of e F (x). The multisummability of formal power series in C[[x]] was investigated by many authors and several multisummation process based on various methods such as asymptotic, cohomology, integral operators, etc... were built [2-4, 6, 9, 16, 18]. Of course, all these process provide a same and unique multisum (see [START_REF] Loday-Richaud | Divergent series and di¤erential equations[END_REF] for instance). In this article, we shall use either of these process depending on our needs. Recall that s k; ( e h)(x) de…nes an analytic function 1=k 1 -Gevrey asymptotic to e h(x) on a germ of sector with vertex 0, bisected by and opening larger than =k s 1 . In particular, e h(x) is a 1=k 1 -Gevrey formal series (denoted below by e h(x) 2 C[[x]] 1=k 1 ), i.e., its formal Borel transform e B k 1 ( e h) of level k 1 is analytic at the origin 0 2 C. Recall also that, for k := (k), the set Cfxg k; coincides with the set Cfxg k; of classical k-Borel-Laplace-summable formal series in direction [START_REF] Martinet | Théorie de Galois di¤érentielle et resommation[END_REF]. We also denote by Cfxg k the set of k-summable formal series, i.e., the set of k-summable formal series in all directions but …nitely many.

Note that Cfxg Cfxg k for any k.

Back to e F (x), one has the following classical theorem:

1 When opening is < 2 , the sector can be seen as a sector of Cnf0g; otherwise, it must be considered as a sector of the Riemann surface e C := Ĉnf0g of the logarithm.

Theorem 2.6 ([4, 6, 9, 16, 18])

1.
Multisummability of e F (x). Let 2 R=2 Z be a non anti-Stokes direction of e F (x). Let r := (r 1 < ::: < r p ) be the p-tuple of all the levels of e F (x). Then, e F (x) 2 Cfxg r; .

2. Multisummability of e F ;`( x). Let (`) 2 R=2 Z a non anti-Stokes direction of e F ;`( x). Let r (`) := (r (`) 1 < ::: < r (`) p `) the p `-tuple of all the levels of e F ;`( x). Then, e F ;`( x) 2 Cfxg r (`) ; (`) .

/ Factorization theorem. The factorization theorem 2.7 below tells us that e F (x) can be written essentially uniquely as a product of r k -summable formal series e F r k (x) for the di¤erent levels r k of e F (x). It was …rst proved by J.-P. Ramis in [START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF] by using a technical way based on Gevrey estimates. A quite di¤erent proof based on Stokes cocycles and mainly algebraic was given later by M. Loday-Richaud in [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF]. Both proofs are nonconstructive. However, as we shall see in section 3, this theorem provides su¢ cient informations to allow us to investigate the resurgence and the singularities of the Borel transforms of the r k -reduced series of e F (x).

Theorem 2.7 (Factorization theorem, [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF][START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF]) Let R = fr 1 < r 2 < ::: < r p = rg denote the set of levels of e F (x) 2 . Then, e F (x) can be factored in e F (x) = e F rp (x)::: e F r 2 (x) e F r 1 (x) where, for all k = 1; :::

; p, e F r k (x) 2 M n (C[[x]]
) is a r k -summable formal series with singular directions the anti-Stokes directions of level r k of e F (x). This factorization is essentially unique: let e F (x) = e G rp (x)::: e G r 2 (x) e G r 1 (x) be another decomposition of e F (x); then, there exist p 1 invertible matrices P r 1 (x); :::

; P r p 1 (x) 2 GL n (Cfxg[x 1 ]) with meromorphic entries at 0 such that e G r 1 = P r 1 e F r 1 , e G r k = P r k e F r k P 1
r k 1 for k = 2; :::; p 1 and e G rp = e F rp P 1 r p 1 . In particular, we can always choose e F r k so that e F r k (x) = I n + O(x r ) for all k = 1; :::; p 3 . Notation 2.8 Given a level 2 R of e F (x), we denote by 2 Recall that we suppose p 2 in this paper. 3 Actually, such conditions, like the initial condition e F (x) = I n +O(x r ), allow us to have "good" normalizations for the r k -reduced series and thus to simplify future calculations (see sections 3.3 and 3.4 below). Let us now consider the matrix

A (x) := e F + (x) 1 A(x) e F + (x) x r+1 e F + (x) 1 d e F + dx (x)
of the system obtained from system (A) by the formal gauge transformation Y 7 ! e F + (x)Y . Then [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF], A (x) is analytic at 0 and the matrix e Y (x) := e F (x)x L e Q(1=x) is a formal fundamental solution of system

x r+1 dY dx = A (x)Y: (A )
Note that system (A ) and matrix e Y (x) coincide with system (A) and matrix e Y (x) when = r. Note also that all systems (A ) have same levels r 1 < r 2 < ::: < r p as system (A) and that all matrices e Y (x) have same normalizations as e Y (x). When < r, the structure of A (x) will be precised in theorem 3.6 below. In particular, we shall show that A (x) (and, consequently, e F (x)) can always be chosen with a convenient "block-diagonal form".

Main results

Since any of the J column-blocks e F ;`( x) can be positionned at the …rst place by means of a convenient permutation P on the columns of e Y (x) and since this same permutation acting on the rows of e Y (x) allows to keep initial normalizations of e Y (x) 4 , we can restrict ourselves, without loss of generality, 4 The new formal fundamental solution reads P e Y (x)P = P e F (x)P x P 1 LP e P 1 Q(1=x)P with P e F (x)P = I n + O(x r ).

to the study of the …rst column-block e F ;1 (x) which we denote below by e f (x). Note that the size of e f (x) is n n 1 . Note also that e f (x) = I n;n 1 + O(x r ), where I n;n 1 denotes the …rst n 1 columns of the identity matrix I n .

Setting the problem

In addition to normalizations (N 1 ) (N 3 ) of e Y (x), we suppose that (N 4 ) 1 = 0 and q 1 0, conditions that can always be ful…lled by means of the change of unknown vector Y = x 1 e q 1 (1=x) Z. Doing that, the levels r

(1)

1 < ::: < r

p 1 of e f (x) (see de…nition 2.1 and notation 2.2) are the degrees of nonzero polynomials q j of Q. To simplify notations, we denote them below by 1 < ::: < p 1 . Recall that p 1 = r the highest level of e F (x).

Notation 3.1 To simplify calculations below, we suppose from now on that matrix Q reads on the form

Q = Q 1 ::: Q p 1
where Q 1 is a diagonal matrix whose entries are all the polynomials q j of degree 1 , i.e., all the polynomials q j 0 (in particular, q 1 ) and all the polynomials q j of degree 1 , for all k 2, Q k is a diagonal matrix whose entries are all the polynomials q j of degree k and whose the leading term

Q k := x k Q k j x=0 has a block-decomposition of the form s k M `=1 Q k;`Im k ;`; Q k;`2 Cnf0g and Q k;`6 = Q k;`0 if `6 = `0:
Note that decomposition of Q can always be ful…lled by means of a convenient permutation acting both on the rows and columns with indices

n 1 + 1 of e Y (x).
In particular, such a permutation does not a¤ect normalizations (N 1 ) (N 4 ) of e Y (x) or the …rst place of e f (x). Note also that Q = Q 1 when p 1 = 1. Notation 3.2 Following decomposition of Q, we denote by N k the size of the square matrix Q k , k = 1; :::; p 1 , we split matrix L of exponents of formal monodromy like Q:

L = L 1 ::: L p 1 with L k 2 M N k (C):
For k 2 f1; :::; p 1 g, we denote by e f [k;u] (t), with u = 0; :::; k 1, the kreduced series of e f (x), i.e., the sub-series of terms k by k of e f (x). Recall that these series are uniquely determined by relation

e f (x) = e f [k;0] (x k ) + x e f [k;1] (x k ) + ::: + x k 1 e f [k; k 1] (x k ):
Following proposition 3.3 gives us a …rst property of the formal Borel transforms b

f [k;u] ( ) := e B 1 ( e f [k;u] )( ) of level 1.
Proposition 3.3 Let 2 R=2 Z be a non anti-Stokes direction of e f (x). Let k 2 f1; :::; p 1 g and [k] 

:= k . Case k = 1. Then, b f [1;u] ( ) is analytic at 0: b f [1;u] ( ) 2 Cf g. Case k 2. Then, b f [k;u] ( ) is summable in direction [k] : b f [k;u] ( ) 2 Cf g [k] ; [k]
, where [k] := ; :::;

k 1 k k 1 .
We denote by b f

[k;u]
[k] ( ) the sum thus de…ned by b f [k;u] ( ) in direction [k] and by V 0 ( b f

[k;u] [k] ) the domain of de…nition of b f [k;u] [k] ( ) 5 .
Proof. Since e f (x) is ( 1 ; :::; p 1 )-summable in direction with 1 1 (see theorem 2.6), [START_REF] Balser | A di¤erent characterization of multi-summable power series[END_REF] 

= k ; [k] : 5 Precisely, V 0 ( b f [k;u] [k]
) is a disc centered at 0 if k = 1 and a sector with vertex 0, bisected by [k] and opening larger than

( k k 1 )= k 1 if k 2 [18].
Hence, [3, pp. 81 and 101] implies identity

b f [k;u] ( ) = b g [k;u] 1 ( ) + ::: + b g [k;u] p 1 ( ) where b g [k;u] j ( ) 2 Cf g j =( k j ); [k] if j = k < 1 Cf g if j = k 1
In particular, we have b g

[k;u] k ( )+:::+b g [k;u] p 1 ( ) 2 Cf g and [18, Lem. 7] implies b g [k;u] 1 ( ) + ::: + b g [k;u] k 1 ( ) 2 Cf g [k] ; [k] .
This ends the proof.

The aim of section 3 is to investigate the resurgent character of functions b f

[k;u]
[k] ( ) and to give a complete description of all their singularities. Note that, since p 1 = r is the highest level of e F (x), the case k = p 1 was already treated in [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF]. For other cases k 2 f1; :::; p 1 1g, we shall see in sections 3.3 and 3.4 that their study can actually be reduced to this case of "highest level". To do that, we shall use an approach based on factorization theorem 2.7 and on block-diagonalisation theorem 3.6 below which will allow us, on one hand, to isolate levels k of e f (x) by means of the relation e

F (x) = e F + k (x) e F k (x 
) and, on the other hand, to write the corresponding matrix A k (x) into a convenient block-diagonal form. Recall that such an approach was already used in [START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF] for lowest level 1 .

Block-diagonalisation theorem

In this section, we …x k 2 f1; :::; p 1 1g. Our aim is to prove that system (A k ) can be written as a convenient direct sum of sub-systems allowing to isolate the levels k of e f (x).

Notation 3.4 Using notations 3.1 and 3.2, we denote by

Q <d = Q 1 ::: Q d 1 , Q d = Q <d Q d and Q >d = Q d+1 ::: Q p 1 , N <d = N 1 + ::: + N d 1 , N d = N <d + N d and N >d = N d+1 + ::: + N p 1 , L <d = L 1 ::: L d 1 , L d = L <d L d and L >d = L d+1 ::: L p 1
when sums make sense.

According to notation 3.4 above, matrix Q reads as

Q = Q k Q >k (3.1)
with Q k (resp. Q >k ) of size N k (resp. N >k ). Block-diagonalisation theorem 3.6 below, which is an improved version of the one stated in [START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF]Thm. 3.3], tells us that, up to analytic gauge transformation, system (A k ) can be split into a direct sum of two sub-systems …tting to the block-decomposition (3.1) of Q. In particular, it shows that matrix A k (x) can be reduced into a block-diagonal form

A k (x) = A 0 k (x) A 00 k (x).
Theorem 3.6 stems from following technical lemma 3.5 which is based on the results of B. Malgrange proved in [START_REF] Malgrange | Modules microdi¤érentiels et classes de Gevrey[END_REF] and on Tauberian theorems due to J. Martinet and J.-P. Ramis [START_REF] Martinet | Elementary acceleration and multisummability[END_REF].

Before stating this lemma, let us recall that a (formal) meromorphic gauge transformation Z = T (x)W transforms any system

x r+1 dW dx = A(x)W into the system x r+1 dZ dx = T A(x)Z where T A(x) = T A(x)T 1 + x r+1 dT dx T 1 :
Lemma 3.5 Let d 2 fk + 1; :::; p 1 g. Let a system

x d +1 dW dx = A(x)W ; A(x) 2 M N d (Cfxg) (3.2)
together with a formal fundamental solution at 0 of the form

f W (x) = e H(x)x L d e Q d (1=x)
where e

H(x) 2 M N d (C[[x]]) satis…es e H(x) = I N d + O(x r ). Suppose that e H(x) is summable of levels k . Then, there exists an invertible matrix T (x) 2 GL N d (Cfxg) with analytic entries at 0 such that 1. T (x) = I N d + O(x r ),
2. the gauge transformation Z = T (x)W transforms system (3.2) into a system

x d +1 dZ dx = A 0 (x) 0 0 A 00 (x) Z (3.3) with A 0 (x) 2 M N <d (Cfxg) and A 00 (x) 2 M N d (Cfxg), 3. the formal fundamental solution e Z(x) = T (x) f W (x) of system (3.3) has a block-diagonal decomposition e Z(x) = e H 0 (x)x L <d e Q <d (1=x) e H 00 (x)x L d e Q d (1=x)
where (a) e H 0 (x) and e H 00 (x) satisfy e 1=x) is a formal fundamental solution of system 1=x) is a formal fundamental solution of system

H 0 (x) = e H 00 (x) = I + O(x r ), (b) e H 0 (x)x L <d e Q <d (
x d 1 +1 dZ dx = A 0 (x)Z; (3.4) (c) e H 00 (x)x L d e Q d (
x d +1 dZ dx = A 00 (x)Z:
Moreover, both formal series e H 0 (x) and e H 00 (x) are summable of levels k .

Proof. / Since e H(0) = I N d , the matrix A(x) of system (3.2) reads

A(x) = x d +1 dQ d dx + x d B(x)
with B(x) analytic at 0. Hence, according to the block-decomposition of matrix Q (see notation 3.1), the heading term

A(0) = 0 N <d ( d Q d ) of A(x) reads A(0) = 0 N <d s d M `=1 d Q d;`Im d;`! with Q d;`6 = 0 and Q d;`6 = Q d;`0 if `6 = `0. Thereby, applying [13, Thm. 1.5],
there exists an invertible matrix

T 1 (x) 2 GL N d (C[[x]] 1= d [x 1 ]
) with meromorphic 1= d -Gevrey entries at 0 such that the matrix T 1 A(x) has a blockdecomposition like A(0). Note that the entries of T 1 A(x) are generally meromorphic 1= d -Gevrey and not convergent. Denote by A (`) (x), `= 0; :::; s d , the blocks of T 1 A(x). By construction, all the sub-systems

x d +1 dW dx = A (`) (x)W ; `= 0; :::; s d ;
have levels < d . Then, [13, Thm. 1.4] applies and, consequently, there exists, for all `= 0; :::; s d , an invertible matrix T (`) 2 (x) with meromorphic 1= d -Gevrey entries at 0 such that the matrix T (`) 2 A (`) (x) has meromorphic entries at 0. Finally, normalizing the formal fundamental solutions of these last systems by means of convenient polynomial gauge transformations in x and 1=x if needed, calculations above tell us that there exists a matrix

T (x) 2 GL N d (C[[x]] 1= d [x 1 ]
) satisfying points 2 3. of lemma 3.5. Note that point 1 results from equalities

T (x) e H(x) = e H 0 (x) e H 00 (x) = I N d + O(x r ) (3.5)
and from assumption e

H(x) = I N d + O(x r ).
/ We are left to prove that T (x) is analytic at 0 and that formal series e H 0 (x) and e H 00 (x) are both summable of levels k . According to construction above, we already known that e H 0 (x) and e H 00 (x) are both summable of levels < d . Then, the …rst equality of (3.5) and hypothesis " e H(x) summable of levels k "tell us that T (x) is actually both 1= d -Gevrey and summable of levels < d (indeed, k < d for all d = k + 1; :::; p 1 ). Hence, applying Tauberian theorem [18, Prop. 7, p. 349], T (x) is analytic at 0. As a result, T (x) e H(x) is still summable of levels k and, consequently, e H 0 (x) and e H 00 (x) are both summable of levels k too. This ends the proof of lemma 3.5.

Note that the hypothesis " e

H(x) is summable of levels k " is crucial in the proof of lemma 3.5: without it, we can not prove the analyticity of T (x). Note also that lemma 3.5 can be again applied to sub-system (3.4) when d k + 2... and so on as long as d 6 = k + 1.

In the case of system (A k ), an iterative application of lemma 3.5 starting with d = p 1 allows us to state the following result: Theorem 3.6 (Block-diagonalisation theorem) There exists an invertible matrix T k (x) 2 GL n (Cfxg) with analytic entries at 0 such that

1. T k (x) = I n + O(x r ), 2. the gauge transformation Z = T k (x)Y transforms system (A k ) into a system x r+1 dZ dx = T k A k (x)Z ( T k A k )
where the matrix

T k A k (x) 2 M n (Cfxg) has a block-diagonal decompos- ition like block-decomposition (3.1) of Q: T k A k (x) = A 0 k (x) A 00 k (x) with A 0 k (x) 2 M N k (Cfxg) and A 00 k (x) 2 M N >k (Cfxg), 3. the formal fundamental solution e Z k (x) = T k (x) e Y k (x) of system ( T k A k ) has a block-diagonal decomposition e Z k (x) = e F 0 k (x)x L k e Q k (1=x) e F 00 k (x)x L >k e Q >k (1=x)
where 1=x) is a formal fundamental solution of system 1=x) is a formal fundamental solution of system

(a) e F 0 k (x) and e F 00 k (x) satisfy e F 0 k (x) = e F 00 k (x) = I + O(x r ), (b) the matrix e Y 0 k (x):= e F 0 k (x)x L k e Q k (
x k +1 dZ dx = A 0 k (x)Z; (A 0 k ) (c) the matrix e Y 00 k (x):= e F 00 k (x)x L >k e Q >k (
x r+1 dZ dx = A 00 k (x)Z: (A 00 k )
In particular, the matrix T k (x) e F k (x) has the block-decomposition

T k (x) e F k (x) = e F 0 k (x) e F 00 k (x)
where e F 0 k (x) and e F 00 k (x) are both k -summable.

Remark 3.7 According to the analyticity of T k (x) and the "unicity"of factorization theorem 2.7, block-diagonalisation theorem 3.6 tells us that we can always choose as matrix e F k (x) the matrix T k (x) e F k (x) and as system (A k ) the system ( T k A k ). This we do from now on.

Note that one of the interests of the choice of system ( T k A k ) for system (A k ) is that its sub-system (A 0 k ) "contains"all the levels k of e f (x) and has k as highest level.

Note also that block-diagonalisation theorem 3.6 and remark 3.7 above can be extended to the highest level p 1 = r of e f (x) by setting N >p 1 = 0 and T p 1 (x) = I n . Doing that, we clearly have

e F (x) = e F r (x) = T p 1 (x) e F r (x) = e F 0 r (x)
and systems (A), (A r ), ( Tp 1 A r ) and (A 0 r ) coincide.

Resurgence

In this section, we shall investigate the resurgent character of functions b f

[k;u]
[k] ( ) given in proposition 3.3. In particular, we shall prove a resurgence theorem which generalizes resurgence theorems stated by M. Loday-Richaud and the author in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] for systems with single-level and in [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF] for lowest and highest levels of systems with multi-levels.

Resurgence theorem

Recall that a resurgent function is an analytic function near the origin which can be analytically continued on all a convenient Riemann surface. More precisely, one has the following.

De…nition 3.8 (Resurgent function) Let

C be a …nite subset of C containing 0. A function de…ned and analytic near 0 is said to be resurgent with singular support ; 0 when it can be analytically continued on all the Riemann surface R de…ned as (the terminal end of) all homotopy classes in Cn of paths issuing from 0 and bypassing all points of (only homotopically trivial paths are allowed to turn back to 0); in particular, such a function is analytic at 0 in the …rst sheet, resurgent with singular support ; e 0 when it can be analytically continued on all the Riemann surface e R := the universal cover of Cn .

We denote by Res ;0 and Res ; e 0 the sets of resurgent functions with singular support ; 0 and of resurgent functions with singular support ; e 0.

Recall that the di¤erence between R and e R just lies in the fact that R has no branch point at 0 in the …rst sheet. In particular, we have a natural injection Res ;0 ,! Res ; e 0 . Recall also that the choice of the Riemann surface e R or R only depends on the fact that the function we consider has a singular point at 0 or not. De…nition 3.9 (Resurgent function with exponential growth) Given > 0, a resurgent function of Res ;0 (resp. Res ; e 0 ) is said to be with exponential growth of order if it grows at most exponentially with an order on any bounded sector of in…nity of R (resp. e R ). We denote by Res ;0 (resp. Res ; e 0 ) the set of resurgent functions of Res ;0 (resp. Res ; e 0 ) with exponential growth of order . As before, we have a natural injection Res ;0 ,! Res ; e 0 . When = 1, any function of Res ;0 (resp. Res ; e 0 ) is said to be summableresurgent with singular support ; 0 (resp.

; e 0). Following notations of [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], we denote Res sum ;0 (resp. Res sum ; e 0 ) for Res 1 ;0 (resp. Res 1 ; e 0 ).

We are now able to state the main result of this section. Case k = 1. Then, for all u = 0; :::

; 1 1, b f [1;u] [1] ( ) 2 Res 1 1 ;0 . Case k 2.
Then, for all u = 0; :::

; k 1, b f [k;u] [k] ( ) 2 Res k k ; e 0 .
Remark 3.11 When e f (x) has the unique level r (i.e., p 1 = 1 and so 1 = p 1 = r), we …nd again, of course, the resurgence theorem already stated by M. Loday-Richaud and the author in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF] and [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF], namely b f

[1;u] [1] ( ) 2 Res sum 1 ;0
for all u = 0; :::; 1 1.

The proof of theorem 3.10 is developed in section 3.3.2 below. It is based on factorization theorem 2.7, block-diagonalisation theorem 3.6 and on the results of [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF].

Proof of theorem 3.10

/ A fundamental identity. Let k 2 f1; :::; p 1 g. According to factorization theorem 2.7, block-diagonalisation theorem 3.6 and remark 3.7, the formal series e f (x) can be written on the form

e f (x) = e F + k (x) e f k (x) with e f k (x) = " e f 0 k (x) 0 N >k n 1 # (3.6) where e F + k (x) 2 M n (C[[x]]) is a + k -summable formal series satisfying e F + k (x) = I n + O(x r ) when k < p 1 and e F + k (x) = I n when k = p 1 , e f 0 k (x) denotes the …rst n 1 columns of e F 0 k (x) 2 M N k (C[[x]]), 0 N >k n 1 denotes the null-matrix of size N >k n 1 .
Note that e f

k (x) = e f 0 k (x) when k = p 1 .
As before, we denote by e F We also denote by

e f [k] (t) = 2 6 4 e f [k;0] (t) . . . e f [k; k 1] (t) 3 7 5 2 M k n;n 1 (C[[t]]) the matrix formed by the k - reduced series of e f (x), e f [k;u] k (t) = " e f 0[k;u] k (t) 0 N >k n 1 # and e f [k] k (t) = 2 6 6 4 e f [k;0] k (t) . . . e f [k; k 1] k (t) 3 7 7 5 .
Then, relation (3.6) 

+ k (t) t e F [k; k 1] + k (t) e F [k; k 1] + k (t) e F [k;1] + k (t) e F [k;0] + k (t) is a +1 k k ; :::; r k -summable formal series satisfying e F [k] + k (t) = I k n + O(t)
when k < p 1 and where e F 

[k] + k ( ) reads as b F [k] + k ( ) = I k n + b G k ( ) when k < p 1 I rn when k = p 1 ;
where b G k ( ) de…nes an entire function on all C with exponential growth of order

k = +1 k =( +1 k k ) at in…nity. Indeed, +1 k = k > 1.
This brings then us to the following lemma: 

f [k;u] = " b f 0[k;u] k 0 N >k n 1 # + E k;u " b f 0[k;u] k 0 N >k n 1 # (3.7)
where E k;u is a convenient entire function on all C with exponential growth of order k at in…nity when k < p 1 and where

E k;u 0 when k = p 1 . / Resurgence of b f 0[k;u] k ( ).
By construction (see block-diagonalisation theorem 3.6 and remark 3.7), the matrix e 1=x) is a formal fundamental solution of a system of the form Thereby, choosing a direction 2 R=2 Z as in theorem 3.10, it is clear that

F 0 k (x)x L k e Q k (
x k +1 dY dx = A 0 k (x)Y (A 0 k ) with a convenient matrix A 0 k (x) 2 M N k (Cfxg) satisfying A 0 k ( 
1. is not an anti-Stokes direction of e f 0 k (x), 2. the b f 0[k;u] k ( )'s are, as the b f [k;u] ( )'s, analytic at 0 if k = 1 and [k] - summable in direction [k] = k if k 2 (see proposition 3.3).
Hence, denoting as before by b f

0[k;u]
k ; [k] ( ) the sum thus de…ned and applying [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF], we have the following. 

b f 0 [1;u] 1 ; [1] ( ) 2 Res sum 1 ;0 :
Case p 1 2. Then, for all u = 0; :::; k 1:

b f 0 [k;u] k ; [k] ( ) 2 Res sum k ; e 0 :
We are now able to end the proof of theorem 3.10.

/ Conclusion. According to lemma 3.12, functions b f

[k;u] [k] and b f 0[k;u] k ; [k] are de…ned on the same domain V 0 ( b f [k;u] [k] ) (see proposition 3.
3) and are related by relation b f

[k;u] [k] = " b f 0[k;u] k ; [k] 0 N >k n 1 # + E k;u " b f 0[k;u] k ; [k] 0 N >k n 1 # : (3.8) 
Theorem 3.10 follows then from proposition 3.13 and from the fact that the exponential growth k of E u at in…nity is greater than 1 when k < p 1 . This ends the proof.

Singularities

Resurgence theorem 3.10 above tells us in particular that the only possible singular points of b f

[k;u]
[k] ( ) are 0 and the Stokes values ! 2 k of level k of e f (x). In this section, we propose to give a complete description of all the singularities of the b f

[k;u]
[k] ( ) at the various Stokes values of k . Before starting the calculations, let us recall some de…nitions and notations about singularities. For more precise details, we refer to [START_REF] Écalle | Les fonctions résurgentes, tome III : l'équation du pont et la classi…cation analytique des objets locaux[END_REF][START_REF] Malgrange | Introduction aux travaux de J. Écalle. Enseign[END_REF][START_REF] Sauzin | Resurgent functions and splitting problems[END_REF].

Some spaces of singularities

Denote by O the space of holomorphic germs at 0 2 C and by e O the space of holomorphic germs at 0 on the Riemann surface e C of the logarithm. One calls any element of the quotient space C := e O=O a singularity at 0. Recall that C is also denoted by SING 0 by J. Écalle and al. (cf. [START_REF] Sauzin | Resurgent functions and splitting problems[END_REF] for instance). Recall also that the elements of C are called micro-functions by B. Malgrange [START_REF] Malgrange | Introduction aux travaux de J. Écalle. Enseign[END_REF][START_REF] Malgrange | Fourier transform and di¤erential equations[END_REF] by analogy with hyper-and micro-functions de…ned by Sato, Kawai and Kashiwara in higher dimensions.

The elements of C are usually denoted with a nabla, like In the sequel of this article, we shall use especially the following subspaces of C :

/ The subspace C 1 of singularities for which the variation de…nes an entire function on all e C with exponential growth of order 1 on any bounded sector of in…nity. Recall that this space is isomorphic, via the Borel-Laplace transformation, to the space of analytic functions with subexponential growth at 0 2 e C [7, pp. 46-48]; in particular, any power t with 2 C and any exponential e P (t 1=p ) with p 2 and P (t) polynomial in t of degree < p de…ne singularities in C 1 . ).

/ The subspace

For any ! 2 C , we denote by C j! the space of singularities at !, i.e., the space C translated from 0 to !. A function ' b is then a major of a singularity at ! if ' b (! + ) is a major of a singularity at 0. In the same way, we de…ne the translated space C 1 j! , etc...

Description of singularities

Let k 2 f1; :::; p 1 g and u 2 f0; :::; k 1g. The behavior of b f

[k;u]
[k] ( ) at any of its singular points ! 2 k depends, of course, on the sheet of the Riemann surface where we are, i.e., it depends on the "homotopic class" of the path of analytic continuation followed from any point a 6 = 0 of V 0 ( b f

[k;u]
[k] )6 to a neighborhood of !. Note in particular that "homotopic class" implies that the behavior of b f

[k;u]
[k] ( ) does not depend on the choice of a. We denote below by [k] ( ) along the path . Before starting the calculations, let us …rst introduce the key notion of front of a singularity [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF].

/ Front of a singularity. Let ! 2 k . We call front of level k of ! the set of all the polynomials q j (1=x) of Q(1=x) with leading term !=x k . We denote it by F r k (!) and we have

F r k (!) := ! x k + q !;k;` 1 
x ; `= 1; :::; s k where s k is an integer 1 and where all the q !;k;`( 1=x) are polynomials in 1=x with degree < k and without constant term.

Following [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF], ! (hence, its corresponding singularity

r f [k;u] [k] ;!;
) is said to be with a good front when F r k (!) is a singleton (case s k = 1) and with a bad front otherwise (case s k 2). Note that ! has always a good front when k is the smallest level of e F (x) (see [START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF]). In the special case where ! has a good front, we simply denote q !;k for q !;k;1 . Then,

F r k (!) = ! x k + q !;k 1 x
and we more precisely say that ! (and its corresponding singularity too) has a good monomial front when q !;k 0 and a good nonmonomial front otherwise.

Let us now turn to the study of singularities.

/ Description of singularities. We proceed similarly to the proof of resurgence theorem 3.10 by …rst studying the singularities of functions b f [k] ) and ending in a neighborhood of !.

0[k;u] k ; [k]
1. Suppose that ! has a good front. Let

Q ! = q !;k 1 v k t 1= k ; v = 0; :::; k 1 with k := e 2i = k .Then, r f 0 [k;u] k ; [k] ;!; 2 X q2Q! r N il s res k !;0 ~r e q j! :
In particular, if ! has besides a monomial front, then

r f 0 [k;u] k ; [k] ;!; 2 r N il s res k !;0 j! :
2. Suppose that ! has a bad front. Let

Q ! = q !;k;` 1 v k t 1= k
; `= 1; :::; s k and v = 0; :::; k 1

with k := e 2i = k . Then, r f 0 [k;u] k ; [k] ;!; 2 X q2Q! r
Det s res k !; e 0 ~r e q j! :

Notation r e q stands for the singularity of C 1 de…nes by e q (section 3.4.1).

The fundamental identity b f [k] ) and ending in a neighborhood of !.

[k;u] [k] = " b f 0[k;u] k ; [k] 0 N >k n 1 # + E k;u " b f 0[k;u] k ; [k] 0 N >k n 1 # (3.
1. Suppose that ! has a good front. Let

Q ! = q !;k 1 v k t 1= k ; v = 0; :::; k 1 with k := e 2i = k .Then, r f [k;u] [k] ;!; 2 X q2Q! r N il res; k k !;0 ~r e q j! :
In particular, if ! has besides a monomial front, then

r f [k;u] [k] ;!; 2 r N il res; k k !;0 j! :
2. Suppose that ! has a bad front. Let

Q ! = q !;k;` 1 v k t 1= k
; `= 1; :::; s k and v = 0; :::; k 1

with k := e 2i = k . Then, r f [k;u] [k] ;!; 2 X q2Q! r
Det res; k k !; e 0 ~r e q j! :

Note that conditions k which occur in singularities

r f [k;u]
[k] ;!; are due to the exponential growth of entire functions E k;u at in…nity (see lemma 3.12). Note also that a more precise description of singularities with good monomial front will be given in next section 4 in the case of some special geometric con…gurations of singular points of k .

E¤ective calculation of Stokes multipliers

In this section, we are interested in the e¤ective calculation of Stokes multipliers of e f (x). We shall prove in particular that, for some special geometric con…gurations of Stokes values of e f (x), these calculations can be reduced, by means of explicit and theoretical formulae, to the e¤ective calculations of some connection constants given by the singularities of b f

[k;u]
[k] ( ) in the Borel plane. These connection-to-Stokes formulae, which we shall display in theorem 4.11 below, generalize thus to any level of system (A) those already stated by M. Loday-Richaud and the author for systems with a single level [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] and by the author for lowest and highest levels [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF].

Before starting the calculations, let us recall some de…nitions and notations about the Stokes phenomenon and Stokes-Ramis matrices.

Stokes phenomenon and Stokes-Ramis matrices

Let 2 R=2 Z be an anti-Stokes direction of e F (x) (see de…nition 2.3).

/ Stokes phenomenon. For any > 0 small enough, directions are not anti-Stokes directions of e F (x). Then, all the sums s r; ( e F ) exist (see theorem 2.7) and we de…ne the lateral sums of e F (x) in direction as the respective analytic continuations of the s r; ( e F )'s to a sector with vertex 0, bisected by and opening =r (recall that r is the highest level of e F (x)). We denote these sums by s r; ( e F ). We also de…ne the lateral sums of e Y (x) in direction by Y (x) := s r; ( e F )(x)Y 0; ? (x), where Y 0; ? (x) is the actual analytic function Y 0; ? (x) := x L e Q(1=x) de…ned by the choice arg(x) close to ? (denoted below by arg(x) '

? ) with ? an argument of , say its principal determination in ] 2 ; 0]7 .

The Stokes phenomenon of system (A) stems from the fact that the two lateral sums s r; ? ] into blocks …tting to the Jordan blockstructure of L (for j; `= 1; :::; J, the matrix St j;` ? has size n j n `). Then, St j;j ? = I n j and St j;` ? = 0 if is not a direction of maximal decay of polynomial q j q `; otherwise, the entries of St j;` ? are called Stokes multipliers of e F ;`( x) in direction .

/ Factorization of Stokes-Ramis matrices. Like e F (x), Stokes-Ramis matrix St ? can be factored by levels. This result was …rst proved by J.-P. Ramis in [START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF] by using the factorization theorem of e F (x) (see theorem 2.7); a quite di¤erent proof based on Stokes cocycles and mainly algebraic was given later by M. Loday-Richaud in [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF].

Recall that the levels of e F (x) are r 1 < ::: < r p = r and are given by the degrees r j;`o f nonzero polynomials q j q `(see section 2.1). Theorem 4.2 (Factorization of St ? , [START_REF] Loday-Richaud | Stokes phenomenon, multisummability and di¤erential Galois groups[END_REF][START_REF] Ramis | Phénomène de Stokes et resommation[END_REF][START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF]) With notations as above, the Stokes-Ramis matrix St ? can be written as

St ? = St r 1 ; ? :::St rp; ? ; St r k ; ? = [St j;r k ; ? ] 2 GL n (C)
where, for all k = 1; :::; p, St j;j r k ; ? = I n j , St j;r k ; ? = 0 if is not a direction of maximal decay of q j q `or r j;`6 = r k . Moreover, for any 2 fr 1 ; :::; r p g, the product St ; ? := St r 1 ; ? :::St ; ? is the Stokes-Ramis matrix of system (A ) associated with e Y (x) in direction (see page 7). 2. When is a direction of maximal decay of q j q `and r j;`= r k , the entries of St j;r k ; ? are called Stokes multipliers of level r k of e F ;`( x) in direction .

For some special geometric con…gurations of the Stokes values of highest level p 1 = r p = r of e f (x), it was proved in [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF] that the Stokes multipliers st j; r; ? := St j;1 r; ? of e f (x) can be expressed in terms of connection constants given by the principal singularities (see de…nition 4.6 below) of functions b f

[p 1 ;u]
[p 1 ] ( ), u = 0; :::; r 1 (these functions are de…ned in the same way as the lateral sum s r; ( e F )). The highest level's connection-to-Stokes formulae thus obtained provide then an e¢ cient tool for the e¤ective calculation of the st j; r; ? 's. In section 4.2 below, we propose to extend this result to any level k of e f (x), k 2 f1; :::; p 1 g.

Connection-to-Stokes formulae of level k in the case of a SG-Con…guration

In this section, we …x k 2 f1; :::; p 1 g and, as before, we denote by k the set of all the Stokes values of level k of e f (x). Recall (cf. de…nition 2.1) that the elements of k determine all the anti-Stokes directions of level k of e f (x); precisely, any ! 2 k generates a collection ( `)`=0;:::; k 1 of k anti-Stokes directions of level k of e f (x) regularly distribued around the origin and de…ned by its k -th roots. In the sequel, we choose such a collection ( `) and we suppose, to …x ideas, that their principal determinations ?

`2] 2 ; 0] (see note 7) satisfy 2 < ? k 1 < ::: < ? 0 0.

Let us now denote [k] := k 0 and k ; [k] the set of all the Stokes values of k with argument [k] . Note that ! 2 k ; [k] if and only if ! 2 k and ! generates the collection ( `). Note also that, for any `2 f0; :::; k 1g, the Stokes multipliers of level k of e f (x) in direction `are all the entries of all matrices st j; k ; ? `with j such that

q j 1 x = a j; k x k + o 1 x k and a j; k 2 k ; [k] :
/ The SG-Con…guration. The connection-to-Stokes formulae of level k strongly depend on the nature and the geometric con…guration of the Stokes values of k ; [k] . Henceforth, in the rest of the article, we restrict ourselves to the following Special Geometric Con…guration (in short, SG-Con…guration): De…nition 4.4 (SG-Con…guration) The set k ; [k] is said to have a SG-Con…guration when all its elements have a good front.

Let us now consider ! 2

k ; [k] . According to the following technical lemma due to M. Loday-Richaud, we can always suppose that ! has a good monomial front. Lemma 4.5 (M. Loday-Richaud, [START_REF] Loday-Richaud | Calcul des invariants de Birkho¤ des systèmes d'ordre deux[END_REF]) Let ! 2 k ; [k] with a good front and q ! (1=x) the unique element of F r k (!).

1. There exists a change of the variable x of the form x = y 1 + 1 y + ::: + r 1 y r 1 ; 1 ; :::; r 1 2 C (4.1)

such that the polar part of q ! (1=x(y)) reads !=y r .

2. The Stokes-Ramis matrices of system (A) are preserved by the change of variable (4.1).

Note that, although lemma 4.5 be proved in [START_REF] Loday-Richaud | Calcul des invariants de Birkho¤ des systèmes d'ordre deux[END_REF] in the case of systems of dimension 2 (hence, with a single level), it can be extended to any system of dimension 3. Indeed, since the change of variable (4.1) is tangent to identity, it "preserves"levels, Stokes values and summation operators.

Under the hypotheses above, we shall now prove (see theorem 4.11) that the Stokes multipliers (st j; k ; ? `)`=0;:::; k 1 for j such that q j (1=x) 2 F r k (!) are expressed in terms of the connection constants given by the principal singularities of functions b f

[k;u]
[k] ( ) at !. To do that, let us …rst give some precisions about the structure of these singularities.

/ Principal singularities with good monomial front, principal majors and connection constants. As we said at the beginning of section 3.4.2, the singularities

r f [k;u]
[k] ;!; depend on the chosen path for the analytic continuations b f

[k;u] [k] ;!; of functions b f [k;u] [k]
and meanwhile, on the chosen determination of the argument around !. Recall that such a path starts from a point of V 0 ( b f

[k;u] [k]
) and ends in a neighborhood of !. Here below, we consider a path + 0 ;! de…ned as follows:

0 is a point of V 0 ( b f [k;u] [k] )\]0; 1e i [k]
[ lied in the …rst sheet of Riemann surface R

k or e R k (see de…nition 3.8)9 , + 0 ;! is a path starting from 0 , going along the straight line [0; !] to a point close to ! and avoiding all singular points of k \ [0; !] to the right as shown on …gure 4.1 below, we choose the principal determination of the variable around !, say arg( ) 2] 2 ; 0] as in section 4.1 (cf. note 7). 

[k;u] [k] ) with opening < 2
The analytic continuation b f

[k;u] [k] ;!;+ := b f [k;u] [k] ;!; + 0 ;! is called right analytic continuation of b f [k;u] [k]
at !. Note that it does not depend on the choice of 0 . The principal singularity of b f

[k;u] [k]
at ! is then de…ned as follows: [k] ;!;+ de…ned by the right analytic continuation b f

[k;u] [k] ;!;+ of b f [k;u] [k] at !. A major f b [k;u]
[k] ;!;+ is then called a principal major.

Under our two hypotheses "

k ; [k] has a SG-Con…guration" and "! 2 k ; [k] has a good monomial front", the structure of the principal singularity

r f [k;u]
[k] ;!;+ given in theorem 3.15 can be improved and a much more precise description can be displayed. As in section 3.4.2, this description stems from the study of the associated principal singularity of b f

0[k;u]
k ; [k] at !. The latter (see proposition 4.8 below) is obtained by applying once again the results of [START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF] to system (A 0 k ). Before stating it, let us introduce some notations. According to the blockstructures

Q 1 x = J M j=1 q j 1 x I n j and L = J M j=1 ( j I n j + J n j )
of matrices Q(1=x) and L (section 1) and the de…nition of matrices Q k and L k (see notation 3.4), we can write

Q k 1 x = J k M j=1 q j 1 x I n j and L k = J k M j=1 ( j I n j + J n j )
with a convenient J k 2 f1; :::; Jg. Note that J p 1 = J. Note also that n 1 + :::

+ n J k = N k the dimension of Q k and L k .
Notation 4.7 With notations as above, we split below b f

[k;u] [k] into J row-blocks b f [k;u]j; [k]
…tting to the Jordan block-structure of L (for j = 1; :::; J, the matrix b f

[k;u]j; [k] has size n j n 1 ), b f 0 [k;u] k ; [k] into J k row-blocks b f 0 [k;u]j;
k ; [k] …tting to the Jordan block-structure of L k (for j = 1; :::; J k , the matrix b f 0 [k;u]j;

k ; [k] has size n j n 1 ). In the same way, any matrix of size n p (resp. k ; [k] with good monomial front. Then, the principal singularity

N k p) with p 1 is split like b f [k;u] [k] (resp. b f 0 [k;u] k ; [k] ).
r f 0 [k;u] k ; [k] ;!;+ admits a major f b 0 [k;u] k ; [k] ;!;+ of the form f b 0 [k;u]j; k ; [k] ;!;+ (! + ) = j u k 1 Jn j k K 0[k;u]j; ! ? ;+ Jn 1 k + rem 0[k;u]j;
! ? ;+ ( ) for all j = 1; :::; J k with a remainder rem 0[k;u]j;

! ? ;+ ( ) := X `;q `(1=x)2F r k (!) k 1 X v=0 ` v r R 0[k;u]j; `;v;! ? ;+ (ln )
where

K 0[k;u]j; ! ? ;+ denotes a n j n 1 -constant matrix such that K 0[k;u]j; ! ? ;+ = 0 as soon as q j (1=x) = 2 F r k (!), R 0[k;u]j;
`;v;! ? ;+ (X) denotes a n j n 1 -polynomial matrix with summable-resurgent coe¢ cients in Res sum k !;0 whose the columns are of log-degree

N [`] = 8 < : (n ` 1) (n ` 1) + 1 (n ` 1) + (n 1 1) if `6 = 0 n `n`+ 1 n `+ (n 1 1) if `= 0:
The entries of nontrivial matrices K

0[k;u]j; ! ? ;+ are called the connection con- stants of b f 0 [k;u] k ; [k] 0 at !.
The structure of the principal singularities

r f [k;u]
[k] ;!;+ stems then from proposition 4.8 and from the fundamental identity (3.8) stated in section 3.3.2. More precisely, we have the following. [k] ;!;+ ) Let k 2 f1; :::; p 1 g and u 2 f0; :::; k 1g. Let ! 2 k ; [k] with good monomial front. Then, the principal singularity

r f [k;u] [k] ;!;+ admits a major f b [k;u] [k] ;!;+ of the form f b [k;u] [k] ;!;+ (! + ) = j u k 1 Jn j k K [k;u]j; ! ? ;+ Jn 1 k + rem [k;u]j;
! ? ;+ ( ) for all j = 1; :::; J with a remainder rem [k;u]j;

! ? ;+ ( ) := X `;q `(1=x)2F r k (!) k 1 X v=0 ` v r R [k;u]j; `;v;! ? ;+ (ln )
where

K [k;u]j; ! ? ;+ denotes a n j n 1 -constant matrix such that K [k;u]j; ! ? ;+ = K 0[k;u]j; ! ? ;+ if q j (1=x) 2 F r k (!) 0 n j n 1 otherwise ; R [k;u]j;
`;v;! ? ;+ (X) denotes a n j n 1 -polynomial matrix with resurgent coef-…cients in Res k k !;0 whose the columns are of log-degree N [`] (cf. notation just above).

Note that the nontrivial constant matrices K 0[k;u]j; ! ? ;+ and K [k;u]j; ! ? ;+ coincide. This shows in particular that the connection constants of b f

0[k;u]
k ; [k] at ! can actually be directly calculated by considering the principal singularity of b f

[k;u] [k]
at !. Hence, the following de…nition: at !) Given k 2 f1; :::; p 1 g and u 2 f0; :::; k 1g, we call connection constants of b f

[k;u] [k]
at ! the entries of the nontrivial constant matrices K

[k;u]j;

! ? ;+ .

Note that, in practice, the matrices K

[k;u]j; ! ? ;+ for j 2 f1; :::; Jg such that q j (1=x) 2 F r k (!) can be determined as the coe¢ cients of the monomial

( j u)= k 1 in the principal major f b [k;u]
[k] ;!;+ (! + ).

We are now able to state the connection-to-Stokes formulae of level k .

/ k ; [k] with good monomial front and any j such that q j (1=x) 2 F r k (!), the st 0j; k ; [k] at !. On the other hand, we proved in theorem 4.9 above that the connection constants K 0[k;u]j; ! ? ;+ are also the connection constants K k ; [k] with a good monomial front. Let j 2 f1; :::; Jg such that q j (1=x) 2 F r k (!). Then, the data of the Stokes multipliers (st j; k ; ? `)`=0;:::; k 1 of level k of e f (x)

and the data of the connection constants (K [k] ( ) at ! are equivalent and are related, for all `= 0; :::; k 1, by relations

st j; k ; ? `= k 1 X u=0 `(uIn j L j ) k I [k;u]j; ! ? `Jn 1 k (4.2)
where k := e 2i = k and where

I [k;u]j; ! ? := Z 0 j u k 1 Jn j k K [k;u]j; ! ? ;+ Jn 1 k e d (4.3)
with 0 a Hankel type path around the nonnegative real axis R + with argument from 2 to 0.

Note that relation (4.2) is similar to the ones obtained by M. Loday-Richaud and the author in [START_REF] Loday-Richaud | Resurgence, Stokes phenomenon and alien derivatives for level-one linear di¤erential systems[END_REF][START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF][START_REF] Remy | First level's connection-to-stokes formulae for meromorphic linear di¤erential systems[END_REF][START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF] for systems with a unique level and for the lowest and highest levels of systems with multi-levels. In particular, an expanded form providing each entry of formula (4.2) can be found in [START_REF] Remy | Matrices de Stokes-Ramis et constantes de connexion pour les systèmes di¤érentiels linéaires de niveau unique[END_REF]Cor. 4.6]. This can be useful for e¤ective numerical calculations.

Here below, we recall this expanded form in the special case where the matrix L of exponents of formal monodromy is diagonal: L = diag( 1 ; :::; n ). In this case, the matrices st j; / E¤ective calculation. When k ; [k] has the SG-Con…guration, theorem 4.11 tells us that the e¤ective calculation of the Stokes multipliers of level k associated with ! 2 k ; [k] is reduced, after applying lemma 4.5 if needed, to the e¤ective calculation of the connection constants at !.

In section 4.3 below, we treat in detail one typical example to illustrate the connection-to-Stokes formulae (4.2).

For the convenience of the reader, we brie ‡y recall here below how to characterize the formal series e f [k;u] (t)'s and their Borel transforms b f

[k;u] [k] ( )'s. Case k = 1 = 1.
In this case, the e f [k;u] (t)'s are reduced to just one series e f [k;0] (t) = e f (x) and we keep denoting the variable x for t. According to normalizations (N 1 ) (N 4 ) of the formal fundamental solution e Y (x) of system (A), the formal series e F (x) is uniquely determined by the homological system

x r+1 dF dx = A(x)F F A 0 (x) ; A 0 (x) := x r+1 dQ dx + x r L (A H )
associated with system (A) jointly with the initial condition e F (0) = I n [START_REF] Balser | A general theory of invariants for meromorphic di¤erential equations; Part I, formal invariants[END_REF]. Hence, by considering its …rst n 1 columns, we deduce that e f (x) is uniquely determined by the system

x 2 df dx = x 1 r A(x)f xf J n 1 (A [1] H )
jointly with the initial condition e f (0) = I n;n 1 (…rst n 1 columns of the identity matrix of size n). Recall that q 1 0 and 1 = 0 (cf. normalization (N 4 )).

Case k 2. In this case, a system characterizing the formal series e f [k;u] (t)'s, u = 0; :::; k 1, is provided by the classical method of rank reduction [START_REF] Loday-Richaud | Rank reduction, normal forms and Stokes matrices[END_REF] by considering the homological system of the k -reduced system associated with system (A). More precisely, writing system (A) in the form

x k +1 dY dx = A(x)Y ; A(x) := x k r A(x) 2 M n (Cfxg[x 1 ])
one can prove, similarly as in the case k = 1, that the formal series

e f [k] (t) = 2 6 4 e f [k;0] (t) . . . e f [k; k 1] (t) 3 7 5 2 M k n;n 1 (C[[t]])
is uniquely determined by the system

k t 2 df dt = A [k] (t)f tf J n 1 (A [k] H )
jointly with the initial condition e f [k] (0) = I k n;n 1 (…rst n 1 columns of the identity matrix of size k n); the matrix A 

[k] (t) 2 M k n (Cftg[t 1 ]) is de…ned by A [k] (t) = 2 6 6 6 6 6 6 4 A [k;0] (t) tA [k; k 1] (t) tA [k;1] (t) A [k;1] (t) A [k;0] (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . A [k;0] (t) tA [k; k 1] (t) A [k; k 1] (t) A [k;1] (t) A [k;0] (t) 3 
[[t]][t 1 ] to C[ (k) ; k 2 N] C[[ ]].
Recall also that, in the special case where matrix A(x) of initial system (A) has rational coe¢ cients, convolution systems (A

[1]

H ) and (A [k]

H ) can actually be always replaced by a convenient linear di¤erential system.

Example

In this section, we consider the system x L e Q(1=x) at 0 where

x 4 dY dx = 2 6 6 4 
0 0 0 0 2x 5 x 2 0 0 x 4 0 2x + x 3 2 0 x 3 x 3 2x 3 6 + x 3
Q 1 x = diag 0; 1 x ; 1 x 2 ; 2 x 3 , L = diag 0; 0; 1 2 ; 1 4 , e F (x) = 2 6 6 6 4 
1 0 0 0 e f 2 (x) 1 0 0 e f 3 (x) 0 1 0 e f 4 (x) 1 3 7 7 7 5 satis…es e F (x) = I 4 + O(x 3 ). More precisely, 8 > < > : e f 2 (x) = 2x 3 6x 4 24x 5 120x 6 + O(x 7 ) 2 x 3 C[[x]] e f 3 (x) = 1 2 x 3 + 5 8 x 5 + O(x 7 ) 2 x 3 C[[x 2 ]] e f 4 (x) = 1 6 x 3 + 61 144 x 6 + O(x 7 ) 2 x 3 C[[x]] : (4.6)
As before, we denote by e f (x) the …rst column of e F (x). According to calculations above, e f (x) has, like e F (x), three levels: 1 = 1, 2 = 2 and 3 = r = 3 the rank of system (4.5). The aim of this example is to illustrate the connection-to-Stokes formulae given in theorem 4.11 by making explicit all the Stokes multipliers of e f (x). Note that, although system (4.5) may seem a little bit involved, it is actually simple enough to allow exact calculations. This "simplicity"is due to the fact that its matrix is triangular. Of course, such a case is anecdotal and, in a more general situation, i.e., for systems for which the matrices are not triangular, such exact calculations are not possible anymore. Nevertheless, it is worth to be treated since it allows to easily illustrate formulae (4.2).

/ Stokes multipliers of level 1 = 1. According to calculations above, the direction = 0 of maximal decay of exponential e 1=x is the unique anti-Stokes direction of level 1 of e f (x) and its corresponding Stokes-Ramis matrix St 1;0 of level 1 reads as

St 1;0 = 2 6 6 4 1 0 0 0 st 2 1;0 1 0 0 0 0 1 0 0 0 0 1 3 7 7 5 :
Furthermore, using notations of section 4.2, we have [1] = = 0, 1;0 = f1g and F r 1 (1) = f 1=xg. Thereby, 1;0 has a SG-Con…guration, ! = 1 has a good monomial front and, consequently, the connection-to-Stokes formulae of level 1 allow us to express the Stokes multiplier st 2 1;0 in terms of the connection constant K 2 1;+ of b f ( ) = b f 0 ( ) at = 1 (recall indeed that, since 1 is the lowest level of e f (x), the Borel transform b f ( ) de…nes an analytic function at 0 see proposition 3.3). More precisely, since matrix L is diagonal, identity (4.4) applies and implies relation st 2 1;0 = 2i K 2 1;+ : (4.7)

We are left to calculate the connection constant K 2 1;+ . To do that, we proceed as follows: according to relation (A [START_REF] Balser | A di¤erent characterization of multi-summable power series[END_REF] H ), the formal series e f (x) is solution of system

x 2 df dx = 2 6 6 4 
0 0 0 0 2x 3 1 0 0 x 2 0 2 x + x 2 0 x x 2x 6 x 2 + x 4 3 7 7 5 f:
Thereby, its components e f j (x), j 2 f2; 3; 4g, satisfy identities

8 > > > > > > > > > > < > > > > > > > > > > : x 2 d e f 2 dx e f 2 = 2x 3 x 2 d e f 3 dx 2 x e f 3 x 2 e f 3 = x 2 x 2 d e f 4 dx 6 x 2 e f 4 x 4 e f 4 = x + x e f 2 2x e f 3
and, consequently, the Borel transforms b f j ( ) are the unique analytic solutions at 0 of the di¤erential system

8 > > > > > > > > > < > > > > > > > > > : ( 1) b f 2 = 2 2 d 2 b f 3 d 2 + d b f 3 d + 1 2 b f 3 = 1 ; b f 3 (0) = 0; d b f 3 d (0) = 0 6 d 3 b f 4 d 3 + d b f 4 d + 3 4 b f 4 = b f 2 2 b f 3 ; b f 4 (0) = 0; d b f 4 d (0) = 0; d 2 b f 4 d 2 (0) = 1 6
In particular, b f 3 ( ) is entire on all C. Moreover, choosing a determination of the logarithm such that ln( ) > 0 for > 0 and integrating system above with Lagrange method (variation of constants), we have, for all j j < 1,

b f 2 ( ) = 2 1
and b f 4 ( ) = h 1 ( ) + h 2 ( ) ln [START_REF] Balser | A di¤erent characterization of multi-summable power series[END_REF] with h 1 ( ) and h 2 ( ) analytic at 0 (in fact, on all C): Then (see de…nition 4.10), the connection constant K 2 1;+ is equal to Then, since [2] = 2 0 = 0, 2;0 = f1g and F r 2 (1) = f 1=x 2 g, the connection-to-Stokes formulae of level 2 apply (indeed, 2;0 has a SG-Con…guration and the Stokes value ! = 1 has a good monomial front) and tell us that the Stokes multipliers st 3 2;0 and st 3 2;

are expressed in terms of the connection constants K To calculate the connection constants K [2;0]3 1;+ and K [2;1]3 1;+ , we proceed similarly as the previous case 1 = 1: using relation (A [START_REF] Balser | Summation of formal power series through iterated Laplace integrals[END_REF] H ), the formal series e f [2] (t) (see page 34 for notation) is solution of system f :

Thereby, since e f 1 (x) = 1 implies e f [2;0]1 (t) = 1 and e f [2;1]1 (t) = 0, its components e f [2;u]j (t), u 2 f0; 1g and j 2 f2; 3; 4g, are uniquely determined by relations 8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > :

2t 2 d e f [2;0]2 dt = 2t 2 + t e f [2;1]2 ; 2t 2 d e f [2;1]2 dt + t e f [2;1]2 = e f [2;0]2 e f [2;0]3 = 0; 2t jointly with initial conditions e f [2;u]j (0) = 0. In particular, 8 > < > : e f [2;0]2 (t) = 6t 2 + O(t 3 ); e f [2;1]2 (t) = 2t 24t 2 + O(t 3 ) e f [2;0]3 (t) = 0; e f [2;1]3 (t) = 1 2 t + 5 8 t 2 + O(t 3 ) e f [2;0]4 (t) = Therefore, due to the Newton polygon at 0 of ( ), b f [2;0]2 (hence, b f [2;1]2 ) is 1-summable in any direction 6 = 0. In particular, functions b f [2;u]2 0 's are given, for instance, by the 1-sums s 1; 2 ( b f [2;u]2 ) in direction 2 (see notation 2.5). Moreover, since 0 is the only singular point of ( ), these functions can be analytically continued on all the Riemann surface e C of the logarithm. 

De…nition 2 . 3 (

 23 Levels, Stokes values and anti-Stokes directions of e F (x)) We call level of e F (x) (or of system (A)) any level of the e F ;`( x)'s, Stokes value of e F (x) (or of system (A)) any Stokes value of the e F ;`( x)'s, anti-Stokes direction of e F (x) (or of system (A)) any anti-Stokes direction of the e F ;`( x)'s.

Notation 2 . 5

 25 Given a direction 2 R=2 Z and k := (k 1 < ::: < k s ) a s-tuple of positive numbers, we denote by Cfxg k; the set of k-summable formal series in direction , s k; ( e h)(x) the k-sum of e h(x) 2 Cfxg k; in direction .

:= (r 1

 1 < ::: < ) the tuple of levels of R which are , +1 the level of R immediately greater than when < r, + := ( +1 < ::: < r) the tuple of levels of R which are > , with the convention + = +1 when = r, e F (x) the sub-product of e F (x) de…ned by e F (x) := e F (x)::: e F r 1 (x), e F + (x) the sub-product of e F (x) de…ned by e F + (x) := e F r (x)::: e F +1 (x) with the convention e F + (x) = e F +1 (x) = I n when = r.Note that, following[START_REF] Martinet | Elementary acceleration and multisummability[END_REF] Lem. 7], e F (x) 2 Cfxg ; and e F + (x) 2 Cfxg + ; for any non anti-Stokes direction of e F (x).

1 k 1

 11 

Theorem 3 . 10 (

 310 Resurgence theorem) Let k 2 f1; :::; p 1 g. Let 2 R=2 Z be a non anti-Stokes direction of e f (x) and [k] := k . Let k be the set of Stokes values of level k of e f (x) (see de…nition 2.1) and k := k [ f0g. Let 1 ; :::; p 1 > 0 be the positive numbers de…ned by j := + j + j j for j = 1; :::; p 1 1 and p 1 := 1.

  with u 2 f0; :::; k 1g the k -reduced series of e F + k (x) and of e f k (x).

  = I rn when k = p 1 . In particular, applying [3, p. 81], its formal Borel transform b F

Lemma 3 . 12

 312 Let k 2 f1; :::; p 1 g. Then, the formal Borel transforms b f [k;u] ( ) of e f [k;u] (t) and the formal Borel transforms b f are related, for all u = 0; :::; k 1, by relation b

  0) 6 = 0. In particular, one can easily check the following points: system (A 0 k ) has k as highest level, the levels of e f 0 k (x) are the levels k of e f (x), namely 1 < ::: < k , the Stokes values (hence, the anti-Stokes directions) of level `2 f 1 ; :::; k g of e f 0 k (x) and e f (x) coincide.

Proposition 3 .

 3 13 ([21, Thm. 4.9]) Let k 2 f1; :::; p 1 g. Let 2 R=2 Z and k as in theorem 3.10. Case p 1 = 1. Then, for all u = 0; :::; 1 1:

r', 2 ( 2 .

 22 for a singularity of the function '. A representative of r ' in e O is often denoted by ' b and is called a major of '. It is worth to consider the two natural maps can : e O ! C = e O=O the canonical map and var : C ! e O the variation map, action of a positive turn around 0 de…ned by var r ' = ' b ( ) ' b ( e 2i ), where ' b ( e 2i ) is the analytic continuation of ' b ( ) along a path turning once clockwise around 0 and close enough to 0 for ' b to be de…ned all along (the result is independent of the choice of the major ' b ). The germ var r ' is called the minor of r '. One can not multiply two elements of C, but an element of C and an element of O: On the other hand, one can de…ned a convolution product ~on C by setting r ' 1 ~r ' 2 := can(' )d 2 e O with u arbitrarily close to 0 satisfying 2]0; u[ and arg( u) = arg( ) . Note that r ' 1 ~r ' 2 makes sense since it does not depend on u, nor on the choice of the majors ' b 1 and ' b The convolution product ~is commutative and associative on C with unit := can 1 2i .

)

  of resurgent singularities of Nilsson class (resp. of …nite determination) with singular support ; 0 (resp. ; e 0) and exponential growth of order at in…nity ( denotes a positive number and a …nite subset of C containing 0). Recall that these singularities are the singularities of C for which the variation reads on the form X …nite ' ;p ( ) (ln ) p with 2 C, p 2 N and ' ;p ( ) 2 Res ;0 (resp. ' ;p ( ) 2 Res ; e 0 holomorphic on a punctured disc at 0). When = 1, such singularities are said summableresurgent and we simply denote r

  ;!; the singularity of b f [k;u] [k] ( ) de…ned by the analytic continuation of b f [k;u]

  ( ), then by applying identity(3.8). The structure of these singularities (see proposition 3.14 below) stems straightaway from[START_REF] Remy | On the highest level's Stokes phenomenon of meromorphic linear di¤erential systems[END_REF] Thm. 4.24] and from properties of system (A 0 k ) to which the b f0[k;u] k ; [k] ( )'s are intimately related (see section 3.3.2). Note in particular that these properties show, on one hand, that the nonzero singular points of b f0[k;u] k ; [k] ( ) are the singular points ! 2 k of b f [k;u][k] ( ) (see also proposition 3.13) and, on the other hand, that the fronts of singularities of functions b f0[k;u] k ; [k] ( ) and b f [k;u][k] ( ) at any of these points coincide. Proposition 3.14 (Description of r f 0 [k;u] k ; [k] ;!; , [21, Thm. 4.24]) Let k 2 f1; :::; p 1 g and u 2 f0; :::; k 1g. Let ! 2 k and a path on Cn k starting from a point of V 0 ( b f [k;u]

8 )

 8 leads then us to the result in view in this section: ;!; ) Let k 2 f1; :::; p 1 g and u 2 f0; :::; k 1g. Let ! 2 k be a Stokes value of level k of e f (x). Let a path on Cn k starting from a point of V 0 ( b f[k;u]

  ( e F ) and s r; + ( e F ) are not analytic continuations from each other in general. This defect of analyticity is quanti…ed by the collection of Stokes-Ramis automorphisms St ? : Y + 7 ! Y for all the anti-Stokes directions 2 R=2 Z of e F (x). / Stokes-Ramis matrices. The Stokes-Ramis matrices 8 are then de…ned as the matrix representations of the St ? 's in GL n (C): De…nition 4.1 (Stokes-Ramis matrix) One calls Stokes-Ramis matrix associated with e Y (x) in direction the matrix of St ? in the basis Y + . We still denote it by St ? ; it is uniquely determined by the relation Y (x) = Y + (x)St ? for arg(x) ' ? : Let us now split St ? = [St j;`

De…nition 4 . 3 (

 43 Stokes multipliers of level r k ) Let k 2 f1; :::; pg. 1. The matrix St r k ; ? is called Stokes-Ramis matrix of level r k associated with e Y (x) in direction .

Figure 4 .

 4 Figure 4.1 -A path + 0 ;! in the case of a sector V 0 ( b f

De…nition 4 . 6 (

 46 Principal singularity) Given u 2 f0; :::; k 1g, we call principal singularity of b f [k;u]

Proposition 4 . 8 (

 48 Description of r f 0 [k;u] k ; [k] ;!;+ , [21, Prop. 5.4]) Let k 2 f1; :::; p 1 g and u 2 f0; :::; k 1g. Let ! 2

De…nition 4 . 10 (

 410 Connection constants of b f [k;u] [k]

  connection-to-Stokes formulae between st 0j; k ; ? `and K 0[k;u]j; ! ? ;+ already stated in [21, Thm. 5.7] coincide with the connection-to-Stokes formulae between st j; k ; ? `and K [k;u]j; ! ? ;+ in view in this section. Hence the following.

Theorem 4 . 11 (

 411 Connection-to-Stokes fomulae of level k ) Let k 2 f1; :::; p 1 g and ! 2

  [k;u]j;! ? ;+ ) u=0;:::; k 1 of b f [k;u]

  u]j; ! ? ;+ are reduced to just one entry which we respectively denote st j k ; ? `and K [k;u]j ! ? ;+ . Then, identity (4.3) becomes Z

  [k] ( ), u = 0; :::; k 1. In the special case where k = 1 = 1, we simply denote b f ( ) for b f[k;u] [k] ( ) (in this case, the formal Borel transform of e f (x) de…nes an analytic function at 0 (see proposition 3.3)). Recall that the formal Borel transformation is an isomorphism from the C-di¤erential algebra C[[t]]; +; ; t 2 d dt to the C-di¤erential algebra ( C C[[ ]]; +; ; ) that changes ordinary product into convolution product and changes derivation t 2 d dt into multiplication by . It also changes multiplication by 1 t into derivation d d allowing thus to extend the isomorphism from the meromorphic series C

  n = 4 and rank r = 3 together with its formal fundamental solution e Y (x) = e F (x)

/

  Stokes multipliers of level 2 = 2. Let us now turn to the calculation of the Stokes multipliers of level 2. According to the form of e Y (x), the anti-Stokes directions of level 2 of e f (x) are the two directions 0 = 0 and 1 = of maximal decay of exponential e 1=x 2 . Moreover, the corresponding Stokes-Ramis matrices St 2;0 and St 2; of level 2 read as St 2

  at = 1. More precisely, since matrix L is diagonal, formulae (4.4) give us 8

1 6 t: 2

 62 + O(t 3 ); e f [2;1]4 (t) = O(t 3 )This leads then us, after a Borel transformation, to the following properties.The formal Borel transforms b f [2;0]2 and b f [

= 0 and b f [ 2 ; 1 ] 3

 213 de…nes an analytic function at 0 which is the unique solution of the di¤erential equation> > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > :

3t 2 d e f [ 3 ;0]2 dt = t e f [ 3 ; 1 ] 2 ; 3t 2 d e f [ 3 3 3t 2 d e f [ 3

 3312333 0]4 = t + t e f [3;0]2 2t e f[3;0]

3 ; 2 ] 3 (:

 323 0]2 (t) = 2t + O(t 2 ); e f[3;1]2 (t) = 6t + O(t 2 ); e f [3;2]2 (t) = 24t + O(t 2 ) e f [3;0]3 (t) = 1 2 t + O(t 2 ); e f [3;1]3 (t) = O(t 2 ); e f [(t 2 ); e f [3;1]4 (t) = O(t 2 ); e f [3;2]4 (t) = O(t 2 )As before, a Borel transformation of relations (4.10) above provides us some properties about the formal Borel transforms b f [3;u]j , hence about the functions b f[3;u] 0. More precisely, we have the following considerations.According to the …rst six identities of (4.10), one easily checks that the b f [3;u]j 's with u 2 f0; 1; 2g and j 2 f2; 3g satisfy relations 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > :

[ 3 ;0] 3 d 3 +

 333 (1620 2 64)d 2 b f

  Connection-to-Stokes formulae of level k . As said in factorization theorem 4.2, the matrix St According to block-diagonalisation theorem 3.6, this matrix has a block-decomposition St

	associated with e Y	k ; ? `is the Stokes-Ramis matrix of system (A k )
	k ; ? `= St 0 k ) associated k ; ? ` `is the Stokes-Ramis matrix of system (A k ; ? (x) in direction `. Moreover, St 0 `, where St k ; ? St 00 with e Y k k ; ? `and St 00 k ; ? `can be factored like St k ; ? `by levels k :
	St 0	k ; ? `= St 0 r 1 ; ? `:::S t 0	k ; ? `and	St 00 k ; ? `= St 00 r 1 ; ? `:::S t 00 k ; ? (recall
	that r 1 is the lowest level) and we have St ; ? `= St 0 k . In particular, the Stokes multipliers st 0j; k ; ? `of level k of e ; ? ` St 00 ; ? `for any f 0 (x) coincide with the Stokes multipliers st j; level k ; ? f (x). `of level k of e Besides, since k is the highest level of system (A 0 k ), [21, Thm. 5.7]
	applies and tells us that, for any ! 2

k (x) in direction `.

See proposition 3.3 for the exact de…nition of V 0 ( b f[k;u] [k] ).

Any choice of the argument is convenient. However, to be compatible, on the Riemann sphere, with the usual choice 0 arg(z = 1=x) < 2 of the principal determination at in…nity, we suggest to choose 2 < arg(x) 0 as principal determination about 0.

In the literature, a Stokes matrix has a more general meaning where one allows to compare any two asymptotic solutions whose domains of de…nition overlap. According to the custom initiated by J.-P. Ramis[START_REF] Ramis | Filtration de Gevrey sur le groupe de Picard-Vessiot d'une équation di¤érentielle irrégulière[END_REF] in the spirit of Stokes'work, we exclude this case here. We consider only matrices providing the transition between the sums on each side of a same anti-Stokes direction.

Note that this last condition is, of course, always ful…lled when V 0 ( b f[k;u] [k]) is a disc or a sector with opening < 2 (cf. note 5).

f : Thereby, since e f 1 (x) = 1 implies e f [3;0]1 (t) = 1 and e f [3;1]1 (t) = e f [3;2]1 (t) = 0, its components e f [3;u]j (t), u2f0; 1; 2g and j 2 f2; 3; 4g, are uniquely

In particular, we have b f [2;1]3 = b f In particular, since all the solutions of the homogeneous system are entire on all C, we have, for all j j < 1 and u 2 f0; 1g, b f

with h 1;u ( ) analytic at 0 2 e C (in fact, on all e C) and h 2;u ( ) analytic at 0 2 C (in fact, on all C). Hence, applying de…nition 4.10, the connection constants K As before, the calculation of the Stokes multipliers st 4 3; `' s can be reduced to a calculation of connection constants in the Borel plane by means of connectionto-Stokes formulae of level 3 (indeed, we have [3] = 3 0 = 0, 3;0 = f2g and F r 3 (2) = f 2=x 3 g; hence, 3;0 has once more a SG-Con…guration and the Stokes value ! = 2 has a good monomial front). More precisely, applying (4.4) since matrix L is diagonal, we have relations

) where the K [3;u]4 2;+ 's denote the connection constants of the b f

To evaluate these constants, we proceed in the same way as the two previous cases 1 = 1 and 2 = 2: using relation (A [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary di¤erential equations[END_REF] H ) page 34, the formal series e f [3] (t) is solution of system 

Then, due to the Newton polygons at 0 of ( ) and ( ), the b f [3;u]2 's (resp. b f [3;u]3 's) is 1 2 -summable in any direction 6 = 0 (resp. 2-summable in any direction = 2 f ; 0g). In particular, functions b f 's are respectively given, for instance, by the sums s1

and s 2; 4 ( b f [3;u]3 ) in direction 4 (see notation 2.5). Besides, since 0 is the only singular point of ( ) and ( ), these functions can be analytically continued on all the Riemann surface e C of the logarithm.

Let us now consider the last three identities of (4.10). Then, according to calculations just above, the functions b f

are uniquely determined by the di¤erential equations (0) = b f [3;u]4 (0)), where the g u 's denote, for all u 2 f0; 1; 2g, the functions

which are integrable at 0. In particular, Lagrange method (= variation of constants) tells us that, for all j j < 2,

3

(2 )

Z 0

(2 )

Z 0

(2 )

Z 0

(2 )

where the integrals can be written on the form Then, applying de…nition 4.10, the connection constants K