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ABSTRACT 21 

The extent of changes in basic physiological and demographic traits associated with 22 

reproduction was investigated in the highly cultivated haploid-diploid red alga, 23 

Gracilaria chilensis. Sixty individuals bearing vegetative and reproductive fronds 24 

collected in the natural population of Niebla (39° 52’ S, 73° 23’ W), in Chile, were 25 

cultivated under control culture conditions. Our results demonstrated that vegetative 26 

fronds have a higher survival rate and a better growth rate than reproductive ones 27 

whatever the type of individual analyzed (male gametophyte, female gametophyte and 28 

tetrasporophyte).  Moreover, the reproductive fronds clearly showed a decrease in 29 

photosynthetic activity compared to non-reproductive ones. In males and 30 

tetrasporophytes the photosynthetic reduction in reproductive individual could be 31 

explained by a physical effect of reproductive structure development as well as spores 32 

release, disrupting the continuity of the photosynthetic cortical tissues. Translocation of 33 

photoassimilates from nearby vegetative tissue or on the previous accumulation of 34 

photosynthetic products seems to be a prerequisite for reproductive structure 35 

development in this species. Altogether, these results document for the first time in G. 36 

chilensis that reproduction has a strong physiological effect on male, female and 37 

tetrasporophyte fronds. This trade-off between reproduction, growth and survival, suggest 38 

the existence of reproductive costs in the life history of G. chilensis.  39 

 40 

41 
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Introduction 42 

The existence of reproductive cost has been demonstrated in various animals 43 

(Reznick et al. 2000) and plants (Obeso 2002). The concept of reproductive cost, 44 

developed by Fisher (1930) and Harper (1967), provides the conceptual framework of the 45 

theory of resource allocation (for review see Bazzaz et al. 2000). This theory predicts the 46 

existence of a resource trade-off between reproduction, growth and survival, assuming 47 

that reproductive effort imposes a cost on an organism in terms of reduced growth or 48 

lower survival (Fisher 1930; Bell 1984; Stearns 1992). Consequently, the study of 49 

resource investment in reproduction constitutes a crucial parameter in the understanding 50 

of life history strategies of any given species (Harper 1967). According to Bell (1984), 51 

reproductive cost is a necessary condition for the optimization of life histories. Indeed, 52 

the evolution of life history is constrained by the presence of trade-offs among some of 53 

the traits that contribute to fitness (Stearns 1992). 54 

In terrestrial plants, such trade-offs have been demonstrated experimentally in 55 

limited resources conditions either between sexual reproduction and vegetative growth 56 

(Obeso 2002) or between reproduction and survival rate (Rameau and Gouyon 1991). In 57 

dioecious plants, studies have shown clear differences in responses among sexes, with 58 

females investing more carbon, nitrogen, and other resources in reproduction than males 59 

(Obeso 2002). This difference in reproductive effort has been mainly related to the 60 

production of seeds, fruits and associated structures (Ashman 1994) and has often been 61 

linked with differences in photosynthetic performance (Wheelwright and Logan 2004).  62 

In seaweed, cost of reproduction remains poorly documented (for review see De 63 

Wreede and Klinger 1990) and has been mainly addressed in Phaeophyceae species in 64 



 4 

which reproductive organs are clearly differentiated (e.g. receptacles and sporophylles) 65 

(Vernet and Harper 1980; McCourt 1985; Ang 1992; Mathieson and Guo 1992; Åberg 66 

1996; Zou et al. 2011). While a reproductive cost, like growth reduction or decrease of 67 

survival rate, has been observed in various fucoids (McCourt 1985; Ang 1992; Mathieson 68 

and Guo 1992; Åberg 1996; Chu et al. 2011), the existence of resource trade-off in algae 69 

has been discussed, because reproductive organs are normally pigmented and potentially 70 

able to photosynthesis before the release of spores or gametes (De Wreede and Klinger 71 

1990). However, the reproductive period coincide generally with the end of growth and 72 

can be followed by the senescence and the death of the parental thallus (Zou et al. 2006).  73 

In Rhodophyta species, resource trade-off between reproduction and vegetative 74 

growth was more difficult to assess because reproductive organs are generally embedded 75 

in the cortical tissues of the photosynthetic thallus except for female individuals showing 76 

a parasitic-like development of cystocarp on the female thallus after fertilization 77 

(Hommersand and Fredericq 1995). In Gracilaria chilensis and G. domingensis, it has 78 

been shown that vegetative growth of female gametophyte decreases after fertilization 79 

during the development of cystocarps (Santelices and Varela 1995; Guimarães et al. 80 

1999), suggesting that resources were limited. Similarly, the results obtained in the three 81 

Ceramiacean species, Antithamnion nipponicum, Ceramium boydenii and C. japonicum, 82 

demonstrated that the number and size of spores released depends on the length of the 83 

vegetative branch on which cystocarps were produced (Kamiya and Kawai 2002). All 84 

these results support the existence of a high photosynthetic investment in reproductive 85 

structures of female gametophyte in Rhodophyta. In male and tetrasporophyte 86 

individuals, the influence of reproductive structure on survival and growth was rarely 87 
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assed (but see Santelices and Varela 1995). In these two types of individual, the 88 

reproductive structure derives from cortical tissues, and the dual role of the thallus (i.e., 89 

photosynthesis and reproduction) raises questions regarding the potential trade-offs 90 

involved in the maintenance of these two functions. Thornber (2006) hypothesized that 91 

haploid (male and female gametophytes) and diploid (tetrasporophytes) individuals could 92 

differ in vegetative growth, survival and respective investment in reproductive structures. 93 

The aim of this study was to analyze the ecophysiological outcomes of the 94 

development of reproductive structures in the red seaweed Gracilaria chilensis for the 95 

three types of individuals (males, females and tetrasporophytes). This species is the most 96 

commercially important agarophyte in Chile (Buschmann et al. 2001). We studied the 97 

influence of the reproductive status on survival and growth rates as well as basic 98 

physiological parameters of interest (i.e., respiration rate, net primary production and 99 

pigment content) by comparing reproductively and vegetative fronds of male 100 

gametophyte, female gametophyte and tetrasporophyte individuals. 101 

 102 

Materials and methods 103 

Species under study 104 

Gracilaria chilensis exhibits a typical Polysiphonia-type life cycle with two free-105 

living isomorphic generations. Meiosis occurs in the reproductive diploid individuals 106 

(tetrasporophytes) to produce haploid spores (tetraspores). When liberated, tetraspores 107 

attach to the substratum, develop perennial holdfasts, and grow into haploid dioecious 108 

gametophytic males and females. Male gametes are liberated in the water column, 109 

whereas female gametes are retained on the female thallus. After fertilization the 110 
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carposporophyte (cystocarp) develops on the female haploid plant and the zygote 111 

undergoes successive mitoses to produce a gonimoblast from which many thousands of 112 

identical diploid spores are formed. When liberated, carpospores attached to the 113 

substratum develop into perennial holdfasts, subsequently growing into a tetrasporophyte, 114 

completing the complex life cycle. In Chile, natural populations formed by individuals 115 

growing from a perennial holdfast and attached to the rocky substratum are encountered 116 

between Coquimbo and Raul Marin Balmaceda (30°S and 45°S; Bird et al., 1986). As 117 

vegetative fronds share the same morphology, phase and sex of individuals can be 118 

recognized only during the reproductive period. 119 

 120 

Laboratory experimental design 121 

Individuals of G. chilensis were collected at low tide in the natural population of Niebla 122 

(39° 52’ S, 73° 23’ W, Region XIV, Chile) in March 2010. The type of individuals was 123 

identified according to their reproductive structures (tetrasporangia for tetrasporophytes, 124 

spermatangia for males and cystocarps for fertilized females), using a binocular 125 

microscope (SMZ-10; Nikon Co., Tokyo, Japan) (Guillemin et al. 2008). Even if 126 

reproductive individuals of G. chilensis could be encountered all year round (Meneses, 127 

1996), a three-year survey of the Niebla population has shown that the highest percentage 128 

of reproductive individuals was encountered during summer (December to April) with at 129 

least 85% of reproductive individuals (Guillemin M-L. unpublished data). Twenty 130 

tetrasporophytes, 20 females and 20 males, were sampled and cleaned of epiphytes. For 131 

each individual, two grams of fresh weight of vegetative fronds and two grams of fresh 132 

weight of reproductive fronds were selected to obtain six groups of fronds (vegetative 133 
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females, males and tetrasporophytes; and reproductive females, males and 134 

tetrasporophytes). Following the criteria suggested by Guzmán-Urióstegui et al. (2002), 135 

we selected for experimental analyses only the healthy fronds with no damage (i.e., 136 

alteration of the cortical tissue) or discoloration. Only fronds with early stages of 137 

reproductive structures where selected to form the three groups of reproductive fronds. 138 

The fronds were incubated during two weeks in 1 L Erlenmeyer flask (Schott Duran, 139 

Elmsford, NY, USA) of culture medium (Modified SFC culture medium, Correa and 140 

McLachlan 1991) aerated with ambient air under controlled photoperiod (12:12 h L:D), 141 

photon flux density (60 μmol m-2 s-1), temperature (15 ± 1°C) and salinity (35 PSU). An 142 

important spore released was observed during the first 48h for both tetrasporophytes and 143 

females. However, a continuous and low spore shading was observed until the end of the 144 

experiment for these two types of individuals (spores not counted during our study).   145 

Basic physiological parameters and survival rate and growth rates of vegetative fronds 146 

were measured on fronds without visible reproductive structure under binocular 147 

microscope observation. For reproductive fronds, measures were performed on male and 148 

tetrasporophyte fronds showing reproductive structures and, on female fronds, with at 149 

least two cystocarps per centimeter. Male and tetrasporophyte reproductive thalli selected 150 

presented a continuous and homogenous cover of reproductive structures (100% 151 

covering).  152 

Pigments content  153 

Chlorophyll a (Chl a) was extracted from 10-15 mg fresh weight samples in N, N-154 

dimethylformamide (DMF) following the protocols of Gómez et al (2005). Absorbance 155 

values of the supernatant were measured using a spectrophotometer (SUV-2120; Scinco 156 
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Co., Ltd., Seoul, Korea). Chl a concentration were estimated by the equation of Inskeep 157 

and Bloom (1985). The phycobilins were extracted from ~ 50 mg fresh weight samples in 158 

0.1 M phosphate buffer (pH = 6.5). After centrifugation (30 min at ca. 4500 x g) the 159 

concentrations of phycoerythrin (PE) and phycocyanin (PC) were determined 160 

spectrophotometrically (SUV-2120; Scinco Co., Ltd., Seoul, Korea) using the equation of 161 

Beer and Eshel (1985). For each pigment concentration measurement performed, eight 162 

samples of the six frond groups were selected randomly. 163 

  164 

Metabolic rates and primary productivity  165 

Net Primary Productivity (NPP) and Respiration (R) were measured using the 166 

light and dark bottles methodology described in Howarth and Michaels (2000). Fresh 167 

fronds of 0.1 ± 0.02 g were placed in Falcon tubes of 50 mL (Becton Dickinson, Cowley, 168 

Oxford, UK) filled with filtered seawater sterilized with UV light (QL-40; Rainbow 169 

Lifegard; El Monte, California, USA) and kept in a temperature- and light-controlled 170 

incubation chamber (60 μmol m-2 s-1 and 15 ± 1°C) for twelve hours. Initial and final 171 

dissolved O2 concentrations were estimated using an YSI 550A oxymeter (YSI Inc., 172 

Yellow Springs, Ohio, USA). No blank correction was applied since oxygen values in 173 

light and dark control bottles remained constant. All oxygen values (mg O2 L
-1 h-1) were 174 

converted into carbon values (mg C L-1 h-1) by using a factor of 0.375/PQ (i.e., 175 

photosynthetic quotient). The PQ value was taken as 1 and expressed as a fresh weight 176 

basis. Eight replicate measurements were taken for each of the six groups of fronds. After 177 

incubation, the algae from the respective bottles were dried at 60°C until a constant 178 

weight was reached.  179 
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 180 

Survival and growth 181 

Fifty frond segments (without apex), 1 cm in length, were excised from each 182 

group of fronds (vegetative and reproductive male, female and tetrasporophytes). 183 

Separately for each group of fronds, ten segments were randomly selected and placed into 184 

a 50 mL culture flask (Orange Scientific, Braine-L’Alleud, Belgium) with filtered 185 

seawater without aeration and under low light intensity of 20 μmol m-2 s-1 (5 replicates). 186 

Filtered seawater was changed weekly and segments were cleaned using a soft brush. 187 

After 50 days, the survival rate was estimated by counting the number of healthy 188 

segments (i.e., highly pigmented) and was expressed as a percentage of the original 189 

number of segments at the beginning of the experiment. After 60 days, all the bleached 190 

fronds fragments had died. The growth rate was estimated after 50 days by measuring the 191 

number of new tips formed along the 1cm length frond segment.  192 

  193 

Data analysis 194 

Physiological parameters of interest, survival and growth estimated under 195 

laboratory conditions were compared using a two-way analysis of variance (ANOVA) 196 

and Tukey's Honestly Significant Difference (HSD) tests (STATISTICA 7.0, StatSoft, 197 

Tulsa, Oklahoma, USA). The type of individual (female, male and tetrasporophyte) and 198 

the reproductive status of the fronds (vegetative or reproductive) were used as fixed 199 

factors. ANOVA assumptions (homogeneity of variance and normal distribution) were 200 

examined using Cochran and Kolmogorov-Smirnov tests respectively. Transformations 201 
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preceded the analyses when needed (log10 (x+1) for all three pigment concentrations and 202 

Arc Sen √ (x/100) for the survival rate).  203 

 204 

Results 205 

There was a significant interaction between the type of individual (female 206 

gametophyte, male gametophyte and tetrasporophyte) and the reproductive status of the 207 

frond (vegetative or reproductive) with respect to the concentration of phycoerythrin 208 

(PE), net productivity, respiration and growth rates (Table 1). Reproductive females 209 

(showing cystocarps) presented the lowest values of pigment content, net productivity 210 

and respiration rate of all the fronds measured (Figure 1). 211 

The reproductive status of the frond in G. chilensis strongly affects all the seven 212 

ecophysiological measurements performed during our study (p < 0.001, ANOVA Table 213 

1, Figure 1). Regardless of sex or phase, vegetative fronds were characterized by a higher 214 

pigment content, net productivity, survival and growth rates, than reproductive fronds 215 

(Figure 1). Concentration of Chl a and PE were 1.2 to 4.5 times greater in vegetative 216 

fronds than in reproductive ones (Figure 1A and B). Net productivity for vegetative 217 

fronds was almost twice that of reproductive fronds for all three individual types (Tukey 218 

HSD p < 0.05, Figure 1D). On the other hand, the respiration rates were roughly similar 219 

for all groups of fronds, with the exception of reproductive females, which presented a 220 

reduction in the respiration rate (Figure 1E). Striking differences between vegetative and 221 

reproductive fronds were observed for survival and growth rates. Indeed, after 50 days, 222 

whereas male and female reproductive gametophytes segments had not generated new 223 

apex, vegetative segments of 1 cm length (whatever the sex or phase) have generated 224 
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approximately two new apices (Figure 1F and G). The most conspicuous differences 225 

between reproductive and vegetative fronds were observed in female gametophytes and 226 

the differences were significant for all the seven measures (Tukey HSD p < 0.05, Figure 227 

1). 228 

There were no consistent differences between the three types of individual except 229 

for the phycobilin concentrations (PC), the net productivity and respiration rate (ANOVA 230 

Table1). PE and PC were slightly higher in tetrasporophytes than in gametophytes, and 231 

the lowest net productivity and respiration rate was seen in female gametophytes 232 

(Figure1).  233 

 234 

Discussion 235 

The results of this study indicate that (1) vegetative fronds of Gracilaria chilensis 236 

from the natural population of Niebla (Chile) have a higher survival rate and a better 237 

growth rate than reproductive ones and (2) the reproductive fronds clearly show a clear 238 

decrease in photosynthetic activity compared to non-reproductive fronds.  239 

Previous studies in Rhodophyta species demonstrated the effect of reproduction 240 

on the photosynthetic activity, such as Gelidiella acerosa (Ganzon-Fortes 1999), 241 

Schottera nicaeensis (Perrone and Felicini 1988) and Porphyra yezoensis (Yang et al. 242 

2012). These authors suggested that development of new reproductive structures depends 243 

on translocation of photoassimilates from nearby vegetative tissue, or on the previous 244 

accumulation of photosynthetic products. Yang et al. (2012) demonstrated that complete 245 

maturation of the spermatia in P. yezoensis was determined by photosynthetic activity at 246 

the beginning of the spermatangial development (i.e. the four-cell stage), while in the 247 
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Chlorophyta Ulva prolifera, the formation of the mature sporangia depended directly on 248 

the thallus accumulation of photosynthetic products (Gao et al. 2010). In the red algae 249 

Gracilaria cornea, Guzmán-Urióstegui et al. (2002) pointed out the importance of 250 

nutrient supply in the development of cystocarps, and Kamiya and Kawai (2002) 251 

demonstrated in Ceramiales species that female reproductive effort depends on the length 252 

of the vegetative branch where cystocarps are produced. The dependence of reproductive 253 

structure upon nearby vegetative tissues in algae are generally associated to (i) a positive 254 

correlation between plant size and fecundity (De Wreede and Klinger 1990; Åberg 1992; 255 

Mathieson and Guo 1992; Pfister 1992; Åberg 1996; Zou et al. 2006) and (ii) the 256 

existence of a threshold size necessary to achieve reproductive maturity (Gómez and 257 

Westermeier 1991; Dyck and De Wreede 2006). 258 

Interestingly, in our study, cystocarps, spermatangia and sporangia development 259 

was concomitant to a reduction of photosynthetic rate. This was usually associated to a 260 

slower growth rate and a higher mortality rate of reproductive fronds in comparison to 261 

vegetative fronds. We can hypothesize that the lower net productivity observed in 262 

reproductive fronds of G. chilensis is directly linked to lower pigment concentration as 263 

suggested by Yokoya et al. (2007). In Gracilaria, development of reproductive organs as 264 

well as the release of tetraspores borne in cortical tissue could affect directly the 265 

photosynthetic activity, decreasing the pigment concentration. The negative effect of 266 

carposporophyte (cystocarp) on female growth rate has been reported previously in 267 

different Gracilaria species (G. sjoestedtii: Zhang and van der Meer 1988; G. chilensis: 268 

Santelices and Varela 1995; G. domingensis: Guimarães et al. 1999). These results 269 

suggest that the development of carposporophyte depend nutritionally on the female 270 
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gametophyte (Hommersand and Fredericq 1995). Similar relationship showing a negative 271 

trade-off between gametophyte growth rate and sporophyte production were also 272 

observed in some bryophytes (Bisang and Ehrlen 2002; Rydgren and Økland 2003). Our 273 

results corroborate previous studies on G. chilensis showing that the reproductive stages 274 

have lower growth rate compared to the vegetative stages (Santelices and Varela 1995, 275 

Halling et al. 2005) and suggest that reduce growth rate is due to extra energy costs for 276 

producing gametes and spores (Kain and Destombe 1995).    277 

Generally, the existence of long-term demographic effects of current reproduction 278 

on subsequent mortality, growth, or reproduction has remained somewhat unclear in 279 

algae, as incongruent results have been reported (De Wreede and Klinger 1990; Ang 280 

1992; Dyck and De Wreede 2006). Low reproductive costs were suggested since 281 

reproductive structures are potentially capable of photosynthesis (Santelices 1990). 282 

Moreover, it has been hypothesized that the comparatively low cost of reproductive 283 

structures in relation to the overall energy budget of the plant might minimize the cost of 284 

reproduction in algae. In fucoid species, Vernet and Harper (1980) estimated that a very 285 

low proportion of body weight was invested in gamete production (< 0.4 % for female 286 

gametes and < 0.02 % for male gametes). Pfister (1992), suggested that plastic or 287 

compensatory responses to the environment may minimize reproduction cost on kelps, 288 

and Ang (1992) argued that the failure to detect cost of reproduction with respect to 289 

mortality and longevity in F. distichus may be due to the modular nature of the plants, 290 

where cost occurs at the level of the modules (branches or fronds) rather than at the level 291 

of the whole plant (individual). In fact, in G. chilensis, Santelices and Varela (1995) have 292 

proposed that the negative impact of reproductive structures in female (i.e. cystocarps) 293 
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could be highly localized. Even though the long-term cost of reproduction at the 294 

individual level was not measured in our study, the lower growth and survival of 295 

reproductive fronds may have a strong impact on individual fitness. In short-lived 296 

seaweeds (or semelparous), release of gametes or spores usually initiates the degradation 297 

of the photosynthetic tissues and bouts of sexual reproduction have a clear negative 298 

impact on local algal abundance (Clifton and Clifton 1999; Sánchez et al. 2003). In 299 

perennial species (or iteroparous), reproduction is generally delayed and depends on the 300 

individual size (Åberg, 1992). While fronds constitute the primary photosynthesis organ 301 

and only seasonally bear reproductive structure, spores production and individual volume 302 

are inextricably linked in G. gracilis (Engel et al. 2001). In G. chilensis, reproductive cost 303 

could have a higher demographic impact in estuaries, where populations reproduce 304 

mostly by vegetative fragmentation of fronds than in rocky shore, where individuals are 305 

fixed by a perennial holdfast and reproduce solely by spores (Guillemin et al. 2008).  306 

 In conclusion, the physiological and demographic parameters analyzed in this 307 

study allowed the exploration of reproductive cost in red haploid-diploid seaweeds. The 308 

results revealed the existence of short-term reproductive cost in G. chilensis whatever the 309 

type of individual studied (male gametophyte, female gametophyte and tetrasporophyte), 310 

providing valuable insight into demographic processes at a local scale. In fact, our results 311 

demonstrated that vegetative fronds have a higher survival rate and a better growth rate 312 

than reproductive ones. These findings could have useful implications in the management 313 

and farming practices of G. chilensis. Nevertheless, there is a need to carry out new 314 

experimental approach at the population level to estimate the impact of reproduction on 315 

individual survival in different local ecological environments, such as muddy or rocky 316 

http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2745.1999.00397.x/full#b28
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shore. Similarly, since ecological differences have been reported in this species 317 

(Santelices and Ugarte, 1990), it is important to understand to what extend environmental 318 

variation can influence changes in the energy allocation and trade-offs between 319 

reproduction, growth and survival across the geographical range of distribution of G. 320 

chilensis and future studies should be performed in natural populations located in other 321 

regions in order to generalized our results. 322 
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