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We study transport phenomena of total angular momentum in holography, as a first step toward
holographic understanding of spin transport phenomena. Spin current, which has both the local Lorentz
index for spins and the space-time vector index for current, couples naturally to the bulk spin connection.
Therefore, the bulk spin connection becomes the source for the boundary spin current. This allows us to
evaluate the spin current holographically, with a relation to the stress tensor and metric fluctuations in the
bulk. We examine the spin transport coefficients and the thermal spin Hall conductivity in a simple

holographic setup.
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I. INTRODUCTION

Spintronics is a technology where we manipulate the
intrinsic electron spin degrees of freedom instead of the
electric charge [1,2]. In ferromagnetic/antiferromagnetic
materials, spin-charge separation can occur, and in such a
situation, it is useful to consider spin as an independent
degree of freedom which carries information. Because
electric charge transport is not involved there, spin devices
can reduce power consumption compared to usual electric
ones and exceed the velocity limit of the electron charge.
This spintronics is actually used widely, for example, for
read heads of hard drives, and is based on a recent
development of experimental technologies manipulating
imbalance between up spins and down spins. For these
reasons, spin transport phenomena have been attracting
special interest recently.

Recent research on the spin transport basically relies on
one-body quantum mechanical analyses, especially in the
presence of a spin-orbit interaction. However, in strongly
correlated systems, we have to go beyond the one-body
physics by treating the interaction effect seriously. In this
paper, we propose a method to study the spin transport
phenomena for strongly correlated systems by using the
holography, i.e., gauge/gravity correspondence [3-5]. The
method of holography is one of the most useful tools
to study strongly correlated quantum field theories. While
there are some attempts to include effects of spins in
holography, e.g., Refs. [6—14], study of spin transport itself
has not yet been performed in the literature. To discuss the
spin degrees of freedom, we first show a definition of spin
current from a relativistic field theoretical viewpoint as a
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conserved Nother’s current. Then with this definition, we
show how to deal with the spin transport coefficients from
the holographic viewpoint. The key point is that the spin
connection is naturally regarded as a source for the spin
current. We demonstrate a holographic treatment of the spin
transport, on a “boosted” Schwarzschild black brane back-
ground in anti-de Sitter (AdS), and we calculate a spin
transport coefficient and a thermal spin Hall conductivity.

II. SPIN CURRENT

The spin current is, as the name suggests, a flow of the
intrinsic spin degrees of freedom, instead of the electric
charge. If z-spin is conserved, namely a good quantum
number, we can apply a naive definition of the spin current,

=1 - -

Je=50=1,). (1)
This means that the spin current is given by the difference
between flows of up and down spins, jT and J |» while
the electric current is the total contribution of them,
j:jT —I—ji, as shown in Fig. 1. This definition (1)

FIG. 1 (color online). (a) The charge current is just the
total contribution of up- and down-spin currents J = J r .
(b) The spin current is given by difference between them,
.72 :%(jT -J ;). This picture is available if and only if
z-direction spin is conserved.
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corresponds to the Schwinger representation of the spin
operator, 5 = 1y oy.

The expression (1) is available if and only if the spin is
conserved or, at least, approximately conserved [15].
However, generically the electron spin is not conserved
by itself, due to the spin-orbit interaction. Therefore, the
naive definition of the spin current (1) has to be modified in
the presence of such an effect.

First we consider how to define the spin current from the
field theoretical point of view. Let us recall the treatment of
conserved currents in the context of quantum field theories.
A conserved current is defined as a variation of an action
with respect to the corresponding source. For example, the
electric current J# is derived by differentiating an action
with respect to a U(1) gauge field,

5

=
SA,

(2)
Conservation of J# is guaranteed by Nother’s theorem,
associated with a U(1) gauge symmetry,

9,4 = 0. (3)

In the weak coupling limit of a U(1) gauge theory, the U(1)
local symmetry reduces to a global one. The A, becomes a
nondynamical background gauge potential, which is a
source, and the J# becomes a global current. In this limit,
the global U(1) current J* couples to the source A, in the
Lagrangian as L. = A,J". Therefore, the U(1) current
J# is obtained by differentiating the action with respect to
its source A,,.

Similarly a stress tensor is given by a variation of an
action with respect to a metric,

15
Vat') 59/41/ .

The conservation of energy and momentum

™

(4)

0, =0 (5)

comes from the translation invariance in temporal and
spatial directions, respectively. In the weak gravity limit
(where gravity is decoupled), nondynamical background
metric g, becomes a source for the stress tensor, and it
couples with the stress tensor as Lygyee = gy, T* in the
Lagrangian.

In this way, in order to obtain a conserved quantity, we
have to introduce a corresponding field (or source) which
couples to the conserved quantity. For the case of the spin
ab is

current J¥ 7, our claim is that the spin connection w,

the corresponding field (source). This implies that they
couple as Lyee = a)ﬂai’ J# . in the Lagrangian. By differ-
entiating an action with respect to the spin connection, we
can obtain the spin current.
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To see why it is so, let us recall the nature of spin. The
spin operator s; = ¢;/2 has an index a for the orientation
of the spin. Here the hatted index a takes only a spatial
coordinate as @ = X, 9, Z, and o is the Pauli matrix. Spin is
conserved only in the sense that the total angular momen-
tum is conserved. The total angular momentum is asso-
ciated with the global rotational symmetry of the system. If
we uplift this global rotational symmetry to a local one,
then these become a subgroup of the local Lorentz
symmetry. Therefore, it is natural to associate the conserved
spin o, to a local Lorentz generator X,; = [y, 7;] as
o = ¢*P?y;  where €P? is an antisymmetric tensor
taking 41 defined on the spatial part of the local
Lorentz indices; ie., a.b,¢ of €*P¢ takes only %,9,2.
Furthermore, since the spin connection a),f”’ is a gauge
field associated with the local Lorentz symmetry, it is
natural to associate it to the conserved spin current J¥,;,
as Eq. (2).

Therefore, we reach a conclusion that a spin current is
given by a variation of an action with respect to a spin

connection as

oS

a
ow,

o
Jizb_

- (6)

From now on, the hatted indices a, l;, ... represent the local
Lorentz indices, so they stand for 7, %, 9, 2. Greek indices
U, v, ... stand for curved spacetime vector indices. The spin

connection is written in terms of a vielbein e, as

= —e,,i’V el = — i’&, (7)

where Ffw stands for the Christoffel symbol, and the
vielbein e, satisfies g, =n,;¢,%¢,”, with the local
Lorentz metric 7, ; = diag(—1,1,1,1).

Usually, we call the following current as a spin current,

Jﬂ& :6.0&};8.];426’ (8)

rather than the former one J¥,;. Here we use the con-

vention €123 = 1. One can easily see that the definition (8)
is consistent with, for example, the standard free fermion
spin current. To see this, let us consider the generic form
of a fermionic Lagrangian on a curved space, which is
given by

Lr=w [ie"ay& (8ﬂ —iA, — %wﬂagﬁal}) - m] v. (9)

From this, we have the spin current by differentiating it
with the spin connection,
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1_ l_
Tap =30 Eapr—0Va = 51117”(% Q Ny. (10)
This is regarded as a current carrying a-direction spin. We
can see that the zeroth component correctly gives the spin
density

% =w'(sa ® Dy (11)

In this way, we have seen that the definition (8) is consistent
with the conventional one for the spin current. However, it
is more convenient to consider J#,; as a spin current, since
J#, defined in Eq. (8) is not local Lorentz invariant tensor.
This is because the ¢94%¢ tensor takes explicit index

component 0.
The conservation of the spin current J¥ ;,

8,05 =0, (12)
is associated with the local Lorentz invariance, and the spin
current J#,; couples to the source term w,*” in the

Lagrangian as Lgoyee = @,PJ% ;.

Precisely speaking, what we define above is “total
angular momentum” current, rather than ‘“spin” current.
Note that only the total contribution of the angular
momentum current, coming from both the orbital and
the spin angular momentum, is conserved. A difficulty
in dealing with spin transport phenomena is in the
definition of the spin current, because the intrinsic spin
is not conserved solely but rather conserved as a whole
angular momentum. Therefore, the spin current, by itself,
cannot be introduced as a conserved Nother current at least
in the relativistic limit. Thus, in this sense, the spin current
defined above is slightly different from the conventional
definition of the spin current often used in the nonrelativ-
istic condensed-matter system, which includes the contri-
bution of only the intrinsic electron spin.

We will also point out that it is possible that the orbital
contribution gives only a subleading contribution, in the
nonrelativistic limit. This is because the orbital angular
momentum includes the spatial momentum as L = X x p.
Thus, by taking an appropriate limit, the spin current, defined
as a conserved one, may provide a good description of the
spin transport. We will discuss how we take the nonrelativ-
istic limit a bit more in detail in the discussion later.

There is a number of attempts to define the spin current
in the literature. The original idea of using the spin
connection as a source to obtain a spin current is found
in Refs. [16,17], especially in 2+ 1 dimensions. In
Ref. [16] the authors treated the space and time separately
and broke the Lorentz invariance explicitly. Another
attempt to define a spin current is performed by introducing
an SU(2)-valued gauge field, coupled to a spin degrees
of freedom, in addition to a U(1) electromagnetic field
[18-20]. This SU(2) symmetry can be seen as a remnant

PHYSICAL REVIEW D 91, 086003 (2015)

of the local Lorentz symmetry, which is decomposed as
SO(1,3) 2 SU(2) x SU(2) in 3 + 1 dimensions. However,
since these SU(2) are not decoupled except for the massless
case, it is difficult to define the spin current as a conserved
current only with the SU(2) gauge field. Actually, this
SU(2) symmetry is broken in the presence of the spin-orbit
interaction.

III. HOLOGRAPHY

Given the spin current definition in terms of spin
connection, in order to study the spin current by the
gauge/gravity duality scheme, we will evaluate the fluc-
tuation mode of the spin connection. Note that holography
induces one extra coordinate, i.e., a radial direction.
So in the gravity side, the local Lorentz index runs as
a=12%92 and 7 Similarly the vector index runs
H=1,XDY,2,T.

Before studying a component of the spin connection
corresponding to a spin current in a spatial direction, we
analyze a temporal component of a spin current J,*¥, as an
example. This term couples to w,**. When the background
metric is diagonal, the static contribution is calculated as

[P SO
dw, Y = Ee“eyy (8yég,x - 8x59ty)' (13)

Here we apply a gauge choice ¢,**" = g,,,. = 0. From the
indices, it is clear that this represents a rotation of a metric
fluctuation in the xy-plane. In terms of the gauge/gravity
duality, the non-normalizable mode of this component is

regarded as a chemical potential for the Z-component of
1)
index (NN) represents the non-normalizable mode [21].
This chemical potential is naively interpreted as the
difference between those for up and down spins,

#* =% (uy —py). The Z-component spin density J,° cor-

the total angular momentum, i.e., @ = % u’, where the

responds to the normalizable mode of a)f “(QN) in the holo-
graphic viewpoint, where the index (N) represents the
normalizable mode.

Similarly, let us study a fluctuation of the spin con-
nection along the x-spatial direction, w,**. This corre-
sponds to a spin current J,*¥ =1J % i.e., z-oriented spin
flows along the x direction. Here we can see that we need to
turn on some of the off-diagonal elements of the back-
ground metric, in particular g, and g,,, which correspond
to nonvanishing off-diagonal contributions of vielbeins, e,*
and e,’. To see this, assuming that the fluctuation depends
only on r and t directions, we obtain

o | B 1 .
St = —EeIXewat(ngy + Ee”e’yatégm. (14)

From this expression one can see that the off-diagonal
components of the metric, e,* and e,”, or equivalently g,,
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and g,,, are required in order to give the spin current JA A
physical meaning of this condition is discussed later.

IV. EXAMPLE: “BOOSTED” BLACK BRANE

So far we have considered a boundary theory in 3 + 1
(2,9, 2 and 7) dimensions. However, even if the boundary
theory is 2 + 1 dimensional, none of our argument so far is
modified since 2 + 1-dimensional theories still admit a
spin along the “z”-direction; Here z-direction is simply the
(a.b) = (%.) component, J,*¥. We will conduct a cal-
culation of the spin current in a holographic setting, but for
simplicity of the calculation in the bulk, we consider a bulk
theory in 3 + 1 dimensions, which corresponds to a
boundary theory in 2 4 1 dimensions.

We demonstrate a calculation of the transport coeffi-
cients for spin with the simplest holographic setup, i.e.,
pure gravity in 3 4+ 1 dimensions,

S = Spuk + Sboundary’ (15)

Spur = / d*x\/G(Rlg) - 20). (16)

Sboundary = 2/d3x\/ —-70, (17)

where the cosmological constant is A = -3, and y,, is the
boundary metric, defined by the metric components
along the boundary dimensions. ® is a scalar defined
with the extrinsic curvature @ = —1(V¥n¥ + V¥n*), as
© =y,0". n* is outward unit vector pointing along the
radial direction. This boundary action is to provide a well-
defined Dirichlet variational principle. In addition, we have
to also take into account another counterterm, called the
cosmological counterterm, which depends on the intrinsic
curvature of the boundary [22]. Although this counterterm
is important for the regulation of the boundary stress tensor,
it is known that the correct boundary stress tensor,
involving the contribution from the cosmological counter-
term, can be read off simply from the normalizable modes
of the metric [23]. As explained later, we will study the spin
current in terms of the stress tensor based on the relation
between the spin connection and the metric, and further-
more we will read off the boundary stress tensor from the
normalizable modes. Therefore, we just apply the argument
for the stress tensor, instead of taking the variation with the
spin connection without worrying about the cosmological
counterterm.

We study metric fluctuations around a boosted
Schwarzschild black brane solution in AdS,,

ds*> = -U(r)df* + dr* + r’dy?

U(r)
+ (P = @U()dF —2aU () dids, (18)
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with U(r) = (r*=r})/r. r=rq is the horizon while
r = oo is the boundary. r, is related to the temperature
T as T =3ry/4r [24]. This metric was obtained by a
coordinate transformation ¢ — ¢+ ax on the AdS-
Schwarzschild solution, and it suffices for our purpose
since it includes the off-diagonal metric element g,.. We
can check that this satisfies the Einstein equation
R, —%9uR+ Ag,, =0 and is not singular for |a| < 1,
and we can consider a > 0 without loss of generality.
Let us perform a fluctuation analysis around the back-
ground solution. Fluctuations we consider are dg,, and g,
and we assume the following form for ac fluctuations, -

5gty = 5gyt = ee—iwter(r)’ (19)
8Gsy = 8gyy = € €' h(r). (20)

Then, nontrivial components of the Einstein equation to
linear order in these fluctuations, O(¢), are found to be
just the fy-component, the ry-component and the
xy-component. The other components of the Einstein
equation turn out to be trivially satisfied. Among the three
equations, the ry-component provides a constraint,

Iz

71(r) = <a+a(r333)>_1h’(r), 1)

0=
where ' is for the r-derivative. With this relation, the
ty-component reduces to a simple equation solely for A(r),

nr) + - r(3) d [( (r} - ;’(3));’4 d

o?’rd dr |[(1—-a*)r’ + azrg drh(r)} =0. (22)
Furthermore, the remaining xy-component of the Einstein
equations also reduces to the same equation (22). So, we
just need to solve the equation (22) for /(r) and relate it to
f(r) via the constraint equation (21). This equation (22), in
the limit a = 0, coincides with the equation for the shear
viscosity calculation [25,26].

Equation (22) can be written by a new coordinate
X=ry/r as
w? 5 3 d 1—x3 dh(x)
rs hx) = =) dx ch(l —a*+a*x?) dx } 23)

The new coordinate x ranging 0 < x <1 can make the
boundary analysis easier.
Near the horizon x = 1, we can solve (23) as

h « exp <—%rﬂlog(1 - x)) (24)
0

which amounts to the ingoing boundary condition at the
horizon. Note that the equation of motion (23) and the
ingoing boundary condition (24) depend on r(, only through
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the combination w/ry. Since T « ry, the temperature
dependence is the same as the 1/w dependence. This is
because the background is a finite temperature system of an
AdS space, namely a scale invariant system, and therefore
any nontrivial dependence comes from only the dimension-
less ratio, w/rg [27].

Near the boundary x =0, we have two independent
solutions of (23),

1 1
h:ho(l—iyx2—§y2x4+-~~>, (25)
h=hy(x* +--), (26)

with y(0,T) = (1 —a*)®?/r}. Here hy, and h; are
integration constants. We can find that A, is the non-
normalizable mode, while A3 is the normalizable mode.
Consider the bulk action, Eq. (16), and expand that around
r — oo in the background equation (18), with the fluc-
tuation h(r) and f(r). After using the constraint (21), we
find, to the quadratic order in 4(r), the leading r behavior
of the Einstein action is

\/—_Q[R[g] - 2A]|r—>oo

2 ,~liwt 4
= (background) — e T

102
2(1 _aZ)h(r) ’ (27)
neglecting the boundary terms. From this expression, we
confirm that 4 ~ const is the non-normalizable mode [28],
while /2 ~ r~3 is the normalizable mode.

We can also specify the boundary condition for the other
fluctuation f(r). From (21), we obtain

x a(sd - s
- [F22=0 o

d , 28
s$3—a*+1 ds Ste (28)

where c is an integration constant. Near the horizon x = 1,
h(x) approximated as (24) can give an ingoing wave for
f(x) only if ¢ = 0. So we need to put ¢ =0, and f(x) is
uniquely determined once /(x) is given. The magnitude f
of the non-normalizable mode of f(x) can be read by (28)
with ¢ = 0, while the magnitude h5 of the normalizable
mode of f(x) is proportional to that of A(x) (which is &3),
through (28).

V. SPIN CURRENT AND STRESS TENSOR

Let us pose and understand the physical meaning of the
modes we consider above. The spin connection can be
written with the metric, or the vielbein as Eq. (7). This
means that the spin current, which is dual to the spin
connection, should be associated with the stress tensor,
which is dual to the metric. Therefore, we have to evaluate

PHYSICAL REVIEW D 91, 086003 (2015)

the spin current by taking into account its relation to the
stress tensor. In other words, the spin current can be
determined by comparing the coefficients appearing in
the following relation:

T, 560,20 = Tr°6y,, = 6L. (29)

Here L is the Lagrangian of the quantum field theory in the
boundary 2 + 1 dimensions. Note that these metric and
spin connections are defined on the boundary, and therefore
all the indices run without the radial direction. We have
omitted the volume factor /=y for simplicity.

To obtain an explicit relation between the spin current
and the stress tensor, we first need to choose a local Lorentz
frame. Any spin current is dependent on the choice of the
frame. The boundary metric is

2

gtt:_lv gtx:gxy:_av gxx:]_a ’

These are given by subtracting the scale factor r of the bulk
metric in the limit r — o0. A natural choice of the local
Lorentz frame for the background vielbein consistent with
this metric is given by [29]

e =1. (31)

y

We turned on the ac fluctuation of the metric given
by Egs. (19) and (20), and the most generic vielbein
fluctuation consistent with (19) and (20) is a set

{e/. e, e,  e,}, which satisfies the two relations

—¢ e—iwt—&-ikxx-&-ik}.yfo’ (32)

e —e

exy + eyx _ aeyt — €e—iwt+ikxx+ik).yh0 (33)

coming from the constraint y,, = e,%e,’n, ;. Here we used
Fourier modes as ~e™ %> +iky “and (w, k,, k,) is the
frequency/momentum for the fluctuations. The other com-
ponents of the vielbein are consistently put to zero in
our case.

With this at hand, all nontrivial components of the spin

connection are
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sV = iwe,,

. i . N ; g 7
bw,* = _Ekx(ety —e')+ Ew(eyx — ey +aey),

. i . PN 2 ; i
003 = = klef ) 3 o(—ef — e +ae,),

e i 5 5 3
bw, = _Ekx(zeyx +ae, — ae,’)

+ %aw(—ey“% —e + aey?),

o i N N i N N N
(Sa)ytx - _zkx(ety - eyt) + zw(_e)'x - ex}‘ + aeyt)’
560)';5} == _ikyetf”
dw,*F = —ik,(ae, — e,5). (34)

Keeping the two relations (32) and (33) satisfied, we can
make a gauge choice of the local Lorentz frame,
e),; = ey’? =0, and restrict ourselves to homogeneous
fluctuation, k, = k, = 0. In this local Lorentz frame, the
above spin connections are simplified, and all the nonzero
components are

b, = e ey, (35)

S = d0, = do,1* = —%6 e™hy.  (36)

Since h, is the constant mode of the boundary metric g,
it is a source for the boundary stress tensor 7, and
therefore we obtain the spin current coupled to the spin
connection from this expression as

e 11
T = T a2iw e, (37)
o i o 1
J=J" =0 = ~%im T, (38)

All the other components, other than each antisymmetric
partner J,»% = —J 4% are zero. These combined with (35)
and (36) clearly satisfy (29). Jﬁy is the spin current along
the x direction, and J,*%(= J,/ = J %) is the temporal
component of the spin current, corresponding to the spin
density.

Here we have employed a choice of the local Lorentz
frame eyi = ey“% = 0. However, other local Lorentz frame
choices are also possible. Actually, for a certain other
choice of the local Lorentz frame, one can show that the
spin current determined in this way is equivalent to a
popular definition of the angular momentum current M
made by the stress-energy tensor,

M,‘M = beﬂl - xﬂTﬂv‘ (39)

PHYSICAL REVIEW D 91, 086003 (2015)

Due to this relation, for example, we can obtain the
normalizable and non-normalizable modes for the spin
connection from those for the metric. Note that this current
is with the target spacetime indices, so in order for this to be
equivalent to our spin current J, a certain local Lorentz
frame should be appropriately chosen.

To check this explicitly, we consider our case of nonzero
TY and T*. We consider a = 0 for simplicity. From the
definition (39), one obtains

My =—1T" — M, =xT" M, =T,
M, = xT™, MY, =xT" —(T",
MYy =T, MY, = —yT™. (40)

One can show that all of these are consistent with the spin
connections (34) only when we choose a local Lorentz
frame at which

e) = —e, e =ef (41)

are satisfied. To see this, in this case, (32) and (33) become

) N 1
ety e — 56 e_lthrlkXXHkyny = _5gty’ (42)

7 2

y by 1 —iwt-ik x+i 1
ex) —e = iee 14k x+ k>.yh0 = Eégxy’ (43)

N 1 " 1
bw,'” = Eatégty’ b = — Eax‘sgty,
N 1 R 1
Sw, " = Eatégxy’ ow,? = Eaxégxy,
(Swy”f = 28x59,y + > 8,59x),
N 1 = 1
bt = =2 0,80, 6w, ==0,60,. (44)

Therefore, the angular momentum current M*,, given
by (40) satisfies our previous anticipation (29) with the
spin connection (44) via a partial integration.

The freedom for the local Lorentz frame choice corre-
sponds to the freedom for the local choice of the axes to
define the rotation for the angular momentum. Note that
in any choice of the local Lorentz frame for the vielbein
fluctuations, interestingly, the expression of the most
important spin connection (35) is universal, and therefore
so is (37).

VI. TRANSPORT COEFFICIENTS

hs is proportional to the spin current J,* = 2J ¥ h is
proportional to the spin gradient along the x direction V 4?,
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Xy

because V¢ =2V, 0, (iIN) is gauge equivalent to

—2V,a)jg\m) = 2iw a)j(yNN).
fo corresponds to the thermal gradient along the y
direction due to the relation iwégg.\j N = rZVyT/ T [30].

f3 corresponds to a thermal current along the y direction,
since 5955) is dual to the stress tensor, 593\]) =T,.
From these, we can evaluate the spin transport coefficient
a and the thermal spin Hall conductivity x,y, defined as
J.B=—=aV ut, J=—-kuV,T. (45)
Using holography, these coefficients are represented by
normalizable and non-normalizable modes as

J > h
a=-—"r :_233h, (46)
iwéw NNy @t
2J ¥ hy
Ksn = NN, o (47)

iwTsg,, /1 aw’Tfy
As we have seen, the ratio h3/hy and h;/ f, are functions
of only w/T, in Egs. (23), (24) and (28). We obtain these
by solving the bulk equation and imposing the ingoing
boundary condition at the horizon, and the radial r
dependence of the bulk equation is reflected as w/r,
dependence in the boundary viewpoint.

Actually the sources (hy, f() and the expectation values
(h3, f3) are related by a 2 by 2 matrix, and the coefficients
a and xgy are just the upper two elements of this 2 by 2
matrix. However, as we have seen, in our system it follows
that f3 = (a — 1/a)~'h3 due to the relation (21), where f3
is the normalizable mode coefficient for f(r), just as A3 in
the equation (26). Therefore, the ratio f5/f, and the ratio
f3/ hg are essentially the same as h3/ f, and the ratio i3/ hy,.

We have evaluated these transport coefficients by a
numerical method for solving the differential equation (23).
By varying the frequency w, we find the ac conductivities as
shown in Fig. 2 [31].

For the numerical simulations, we have worked in the
unit 7 = 1 and chosen a = 0.03, a = 0.5 and a = 0.9 for
simplicity. The top figure of Fig. 2 is the spin transport
coefficient a. This is the coefficient on the spin current J,*
as a response to the ac external gradient of the spin
chemical potential x°. The bottom figure of Fig. 2 is the
thermal spin Hall conductivity k. In both figures, the
transport coefficients are multiplied by a’w’ to show
the w/T dependence clearly. From the figures, we find
that the imaginary parts x? vanish linearly at @ = 0, so
around the origin the imaginary parts behave as 1/w. This
means that in the real parts there exists a Drude peak
proportional to §(w) often observed in superconducting/
metal phases. We also see specific behavior of the thermal
spin Hall conductivity, changing the sign of the transport
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FIG. 2 (color online). Top: the spin transport coefficient a as a
function of the frequency over the temperature, /7. Large dots
are the real part Re[a], and small dots are the imaginary part
Im[a]. Blue, red and green correspond to a = 0.03, 0.5 and 0.9,
respectively. Bottom: the thermal spin Hall conductivity «y as a
function of w/T.

coefficient as the frequency gets larger. It is quite interest-
ing to observe such frequency dependence by experimental
or other theoretical setups.

VII. ON THE SPIN CURRENT DEFINITION

We have evaluated the spin current following the relation
(29). However, (29) is not necessarily the same as our
definition of the spin current (6). We will now discuss that
the spin current evaluated by the definition (6) yields zero
value, using the action (15) [32]. This is the reason why we
need to relate the spin current to the stress tensor as (29),
which we have used in this paper.

To obtain the spin current following the definition (6) in
holography, note that (6) means that we have to differ-
entiate the action (15) with the boundary spin connection,
which is defined by the spin connections along the
boundary directions. The contribution coming from a
variation of the bulk action (16) by the boundary spin
connection, vanishes by using the bulk equations of
motion. Thus, the contribution to the spin current comes
from a variation of the boundary action (17) only. However,
we will see that this contribution also vanishes.
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Whenever we take a variation, we have to fix all the other
quantities. In this case, we regard each of the boundary spin
connection components as an independent degree of free-
dom, and then we take a variation of the action by that,
while keeping all the other quantities, which include the
metric, fixed. In this formulation, each spin connection
component is an independent degree of freedom from the
metric; the independent degrees of freedom are metric and
spin connection. In fact, we can formulate general relativity
in such a way, by i.e., the so-called Palatini formulation
of gravity. However, this procedure turns out to give a
vanishing spin current.

To see this, let us conduct a variation of the boundary
action (17) by the boundary spin connection. The extrinsic
curvature © is written with the normal vector n, as
0=- "”V”ny. In the Palatini formalism, the boundary
metric y** and the boundary spin connection are indepen-
dent, and therefore the contribution form the boundary
action variation yields

1
JHy = =20 —2 = L00 = Deketin,.  (48)
a (Swﬂab 5Fg/{ a v

Since n, #0 only when v =r and e"; #0 only when

b = #, there is no spin current on the boundary. This shows
that the spin current evaluated by the Palatini formalism
vanishes [33]. To obtain a nonvanishing spin current, we
should not regard the metric and the spin connection as
independent degrees of freedom. We need to modify our
definition of the spin current (6) slightly.

Therefore, in this paper we do not regard the spin
connection as an independent variable but associate it with
the metric. This further implies that our spin current, which
is dual to the spin connection, should be associated with the
stress tensor, which is dual to the metric. In the Palatini
formalism, the relation (7) comes from the equation of
motion for the spin connection. Therefore, we have
evaluated the spin current by taking into account its relation
to the stress tensor as (29) in this paper.

VIII. DISCUSSIONS : SPIN VS ANGULAR
MOMENTUM

In this paper we have investigated the spin transport
phenomena from the viewpoint of gauge/gravity corre-
spondence. We have introduced the proper definition
of the spin current, as a conserved Nother’s current, which
couples naturally to the spin connection.

We have analyzed the AdS Schwarzschild black brane
geometry as a simple example to demonstrate how to
study the spin transport in the context of the holography.
We have calculated the spin transport coefficient a and
the thermal spin Hall conductivity kg by studying the
fluctuations of the metric components. We have
obtained the corresponding transport coefficient from the
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non-normalizable and normalizable modes propagating in
the bulk gravity.

Let us comment on a physical meaning of the holo-
graphic analysis done in this paper. We have seen that the
off-diagonal metric component for the background, i.e.,
Gix(= 9yy), is required for giving the spin current. Note that
if there is such a component in the background geometry
that leads to a constant energy flow coupled to g,.. By
applying the fluctuation Jg;, in addition to the background
flow, we should have an angular momentum current in the
x-direction as shown in Fig. 3. It seems that our spin current
almost corresponds to the orbital part of the angular
momentum.

However, at least from the relativistic theoretical view-
point, we cannot split the total angular momentum into
contributions from orbital and intrinsic spin; spin is
originally defined in the nonrelativistic system, where
the Lorentz invariance is broken and we should treat space
and time separately. Since in this paper we have considered
the total angular momentum current defined in relativistic
field theory, in order to really discuss the spin current, we
need to take an appropriate nonrelativistic limit of our
system. Only after taking that, we can extrapolate the spin
contribution from the total angular momentum current, and
we can discuss if the orbital contribution gives only a
subleading contribution or not.

The nonrelativistic limit of relativistic conformal field
theories is obtained by taking the discreet light-cone
quantization (DLCQ). This limit reduces the boundary
metric from AdS into the form [34-38]

dr? -
ds* = —r¥(dx")? + Lz +2r2dxtdx™ + r?dx*, (49)
r

where xT is the light front time, and r is the holographic
radial direction as before. x~ is a new direction associated
with the boost direction and we compactly x~ ~ x~ + R,
and has an interpretation as “dual” to the conserved particle
number since P_ is quantized as N/R, where N is the
particle number. z is called the “dynamical exponent” and
represents the difference of the scaling between time x* and
spatial coordinate X.

Jtx L x

sjo ')
Qf’¢
0Gty J 7

x

FIG. 3 (color online). When the off-diagonal background
metric g,,, namely a constant energy flow in the x-direction, is
turned on, the angular momentum current as a spin current J, is
induced by applying the fluctuation &g,
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For example, starting from a boundary theory which is
3 + 1 dimensional, we can obtain a 2 + 1-dimensional
nonrelativistic theory where we can identify x* = + x3
and x~ =t —x>. This metric possesses the Schrodinger
symmetry for the z = 2 case.

Taking this DLCQ limit, or simply replacing the boun-
dary metric from AdS into the above, is not enough for
extracting the spin information, since spin is not a con-
served quantity by itself even here, and only the total
angular momentum is a conserved one. To eliminate the
contribution of the orbital angular momentum, it is best to
consider a setting where the momentum of the particle is
suppressed, namely an insulator. The insulator is realized as
a system which has an energy gap. The energy gap is
reflected in a holographic setting in the bulk as a system
which has an IR cutoff, like the confinement in holographic
QCD. The hard wall model is the simplest setting to realize
the mass gap, and therefore this would lead one to a
system which has an asymptotic metric as (49) and has an
IR cutoff. Such a bulk setup is good for us to study the
spin-transport phenomena, and it is interesting to see how
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the orbital and the real spin parts contribute to our total spin
current, after taking the nonrelativistic limit.

In this paper we considered only the spin-current
induction by the spin-current potential and also thermopo-
tential, but not the one induced by an electric field. In real
experiments, the spin current induced by some external
electric field is more often considered, so this forces us to
consider a bulk action coupled to the electromagnetic field.
Adding impurity effects [7,13,39,40] is also important. We
hope to return to these analyses in the near future.
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