
HAL Id: hal-01140004
https://hal.science/hal-01140004v1

Submitted on 7 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupling geometric analysis and viability theory for
system exploration: Application to a living food system
Salma Mesmoudi, Isabelle Alvarez, Sophie Martin, Romain Reuillon, Mariette

Sicard, Nathalie Perrot

To cite this version:
Salma Mesmoudi, Isabelle Alvarez, Sophie Martin, Romain Reuillon, Mariette Sicard, et al.. Coupling
geometric analysis and viability theory for system exploration: Application to a living food system.
Journal of Process Control, 2014, 24 (12), pp.18-28. �10.1016/j.jprocont.2014.09.013�. �hal-01140004�

https://hal.science/hal-01140004v1
https://hal.archives-ouvertes.fr


Coupling geometric analysis and viability
theory for system exploration. Application to

a living food system

Salma Mesmoudi ISCPIF, LIP6 salma.mesmoudi@iscpif.fr
Isabelle Alvarez LIP6, IRSTEA isabelle.alvarez@lip6.fr

Sophie Martin IRSTEA sophie.martin@irstea.fr
Romain Reuillon ISCPIF romain.reuillon@iscpif.fr

Mariette Sicard INRA, UMR782 GMPA, mariette.sicard@grignon.inra.fr
Nathalie Perrot INRA, UMR782 GMPA, nathalie.perrot@grignon.inra.fr

October 15, 2014

Abstract

This paper addresses the issue of studying a food complex system
in a reverse engineering manner with the aim of identifying the set of
all possible actions that makes it reach a quality target with respect to
manufacturing constraints. Once the set of actions is identified, sev-
eral criteria can be considered to identify interesting trajectories and
control policies. A viability approach, coupling the viability theory
and a geometric approach of robustness, is proposed to study com-
plex dynamical systems. It can be implemented for several types of
systems, from linear to non linear or hybrid systems. The proposed
framework was adapted to a living food system: a ripening model of
Camembert cheese to identify the set of states and actions (capture
basin) from which it is possible to reach a predefined quality target.
Within the set of viable trajectories, particular trajectories that im-
prove the Camembert cheese ripening process are identified using the
proposed approach. The results are applied at a pilot scale and are
discussed in this paper.

keywords: model exploration, viability, geometric analysis, food
system, optimal control, dynamical system

1

Author-produced version of the paper published in  Journal of Process Control,  vol.24, n°12, 2014, 18-28. 
Original version available at  http://www.sciencedirect.com, DOI : doi:10.1016/j.jprocont.2014.09.013



Nomenclature
t time (s)
T and Tfintime sequence and finite time where the target is
m cheese mass (kg)
ML mass loss
ro2 dioxygen consumption rate (mol.m−2.s−1)
rco2 carbon dioxide consumption rate (mol.m−2.s−1)
rh ripening room relative humidity (%)
T ◦ ripening room temperature (Celsius)
RR respiration rate g/m2/day
Ts cheese surface temperature (Celsius)
DT disrupted trajectory
TVA viable optimized trajectory
SRT standard ripening trajectory
w02 dioxygen molar mass (kg.mol-1)
wco2 carbon dioxyde molar mass (kg.mol-1)
s cheese surface (m2)
RT robustness of trajectory
mmbr maximal maximal ball radius
d Normalized distance*

*Normalization of the distance to the boundary of the viability tube: one
step is equivalent to 2% in relative humidity or 1◦C in temperature or 1 g in
mass loss or 1m−2.s−1 in respiration rate.

1 Introduction
The cheese ripening process, such as the one used for Camembert, is consid-
ered to be a complex system. Numerous interactions take place over time
at different scales, from the microscopic to the macroscopic level. To better
understand and eventually enhance Camembert ripening control, numerous
studies have been carried out in food sciences. But despite the number
of experimental databases collected, process knowledge remains incomplete.
Experimental trials are very costly (the necessary time is 41 days per trial).
However, models have been developed to help us to more effectively under-
stand such complex processes [29].Cheese processing has been modeled by
means of mechanistic models [31], the partial least square method [18], neu-
ronal methods [23],dynamic Bayesian networks [12],genetic algorithms [11],
stochastic models [10], finite element methods [14] and the fuzzy symbolic ap-
proach [28, 22].Cheese making has been modeled by means of microorganism
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kinetics, contamination evolution, substrate consumption, mineral diffusion,
sensory property prediction, ripening time prediction and expert knowledge.
These models may become a key source to integrate the knowledge from ex-
perimental databases. Simulations can be performed with these models to
investigate and to better understand food processes.

The aim of this study is to use a viability approach, developed within a
complex system approach, to more effectively explore the Camembert ripen-
ing process. It relies on an approach coupling the viability theory and a
geometric analysis [3]. For basic information on set valued analysis and via-
bility theory, we refer for instance to [5] or [6] and [9]. The viability theory
aims at controlling dynamical complex systems with the goal of maintaining
them within a given constrained set. Such problems are frequently encoun-
tered in ecology or economics where the systems badly deteriorate when they
leave some regions of the state space. This theory has been applied to ecolog-
ical problems such as prey-predator dynamics studied by [16] to determine
the necessary conditions to allow prey and predator coexistence. It was also
applied to the renewable resource domain, for example, to the viability of
trophic interactions in a marine ecosystem by [19] or to the restoration cost
of an eutrophic lake by [25] considered as socio-ecological systems. Other ap-
plications can also be found in the areas of finance [17], highway traffic fluxes
[8] and sociology [15]. This is the first time that viability theory has been
applied to a living food system. Moreover the coupling of such an approach
with a geometric study, brings original tools to deal with decision help and
reverse engineering problems in food science.

Viability theory proposes a framework to calculate the set of all possible
states (the capture basin) from which it is theoretically possible to reach a
quality target with respect to manufacturing constraints [7]. The ripening
process is modeled as a dynamical system. This work is detailed in [34] and
[37]. Contrary to optimal control,the viability approach computes the set
of all possible states without considering optimization aims at first. The
main objective of this method is to keep new and unexpected trajectories
that would be disregarded otherwise. The capture basin can be seen as an
explicit representation of the process itself.

Once the capture basin has been computed, it is interesting to study its
geometric properties. Outside the capture basin, it is not possible to control
the ripening process to make an acceptable cheese. So, if a cheese is in a state
near the boundary, small perturbations (for example, dysfunction of sensors
or actuators, measurements errors, control errors, etc. ) can throw the
processed cheese out of the capture basin, where it cannot recover. Obviously,
trajectories that stay far from the capture basin boundary are safer than
trajectories that go near the boundary. The distance to the boundary can
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thus be seen as a measure of the robustness of a state to perturbations or
errors.

Geometric analysis of the capture basin allows to define the robustness
of states and trajectories. Robustness can then be used to qualify particular
control sequences. It can also be used explicitly as a selection criterion (as
well as control cost and other classical optimization criteria). The global
distance analysis can also be used to identify unsafe areas in the process.

This paper presents the geometric study of the capture basin applied to
a food living system: the Camembert cheese ripening process, based on the
viability study made in [37].

Section 2 introduces the viability framework. Presenting in detail the
principles and the algorithm of the geometric method, and the definition
of robustness. Section 3 presents the results that were obtained with the
Camembert cheese ripening application following by conclusions in section 4.

2 Material and Methods

2.1 Capture basin of the Camembert cheese ripening
process.

The domain of viability theory is the control of the dynamical systems [6].
The evolution of the state variable vector x ∈ X ⊂ Rn is described by:{

x′(t) = f(x(t), u(t))
u(t) ∈ U(x(t))

(1)

where U(x) ⊂ Rp is the set of admissible controls when the state of the
system is x.

Given a constraint set K ⊂ X, the viability theory methods and tools
first aim at determining the viability kernel, that is the subset of K gathering
all states of the system such that there exists at least one control function
that makes it possible to remain in the constraint set indefinitely:

V iab(K) = {x ∈ K | ∃u(.) | x(t) ∈ K ∀t ∈ [0,+∞[}.

The states belonging to the viability kernel are called viable states.
Given a constraint set K and a target set C, another concept is the

capture basin define as all the states for which a control function exists and
makes it possible to reach the target set while remaining in the constraint
set:

Capt(K,C) = {x ∈ K | ∃u(.), ∃T | x(T ) ∈ C and x(t) ∈ K ∀t ∈ [0, T ]}.
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In the case of the Camembert cheese ripening application [37], the state
space is 3-dimensional: m, the cheese mass, TS, the cheese temperature and
the microorganism respiration rate, rO2,CO2 . The cheese mass loss is linked
to the evaporation phenomena and the carbon loss through respiration of
microorganisms.
The control dynamics for m and TS are two control variables, the ripening
room temperature T∞ (Kelvin) and the relative humidity rh [20]:

dm

dt
= s {wo2 · ro2 − wco2 · rco2 − k [aw · psv(Ts)− rh · psv(T∞)]} (2)

dTS
dt

=
s

m · C
{
h(T∞ − Ts) + εσ(T 4

∞ − T 4
s )− λk [aw · psv(Ts)− rh · psv(T∞)]

+α
ro2 + rco2

2

}
(3)

aw is the cheese surface water activity (dimensionless), psv is the saturation
vapor pressure (Pa), k is the average water transfer coefficient (kg.m−2.Pa−1.s−1),
C is the cheese specific heat (J.kg−1.K−1), h is the average convective heat
transfer coefficient (W.m−2.K−1), ε is the cheese emissivity (dimensionless),
σ is the Stefan-Boltzmann value (W.m−2.K−4), α is the respiration heat for
1 mol of carbon dioxide release (J.mol−1) and λ is the latent vaporization
heat of water (J.kg−1).

This set of previously established differential equations represents a sim-
ple but accurate model to predict cheese mass changes according to available
online measurements. The main hypotheses underlying the model are 1) the
cheese water activity is constant during ripening, 2) the respiratory activity
of the microflora plays a major role by inducing heat production, combined
with important water evaporation, 3) the temperature gradient inside the
cheese is negligible, and the limiting phenomenon is the convective transfer.
The water activity and the specific heat of the cheeses are assessed by of-
fline measurements. The others parameters in the model are obtained from
literature.

The controlled dynamics of the microorganism respiration, rO2,CO2 , are
extracted from expert knowledge and experimental results [37].

We fix the following constraints on the state variables: Cheese mass can
vary from 250g to 310g, the cheese temperature from 7◦ C to 17◦ C and the
respiration rate of microorganisms from 0 to 50 g/m2/day.

The sets of admissible controls are ripening room temperature from 8◦ C
to 16◦ C and relative humidity from 84% to 98%.
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The considered manufacturing and quality objectives regarding the sets
of admissible controls are described below:

• The final mass of the cheese, must belong must range from 250to270g
(the lower limit is fixed by administrative rule),

• The final temperature must remain between 8◦ − 10◦ C

• The final respiration must remain between 23 and 50g/m2/day

• A specific profile for the gas rate evolution of (CO2, O2) is fixed. The
respiration rates should begin at level 0 on day 1 (microbial growth
latency), reach a maximum between day 3 and day 8 and decrease
slowly during the last days of ripening. This temporal constraint is
chosen to embed a quality requirement. (see [35][36]).

These four objectives are described by subsets of the state space, also
called targets for the viability theory framework [37].

The discretization of the control variables is set upon a balance between
(a) the sensitivity of the microorganisms in the cheese to an increment of
control variables (known to be significant for an increment of 1◦ C and 1% of
relative humidity [24],[37] ) and (b) the precision of the regulation. In ripen-
ing rooms, as well as cold chambers [13], spatial variations of humidity and
temperature are always observed due to climate control. The resulting gra-
dients deriving from the shape of the room and air regulation devices. Place
from an industrial point of view, since it is impossible to place sensors in ev-
ery point of the ripening chamber, the precision of the regulation is estimated
to be around 2%. For the state variables, 1 g in mass loss and 1m−2.s−1 in
respiration rate are fixed. It corresponds to the level of attempted precision
described by the experts of the domain for those variables [24], [37].

Given those dynamics, constraints and targets, the viability theory algo-
rithm [32] allows to compute the sequence of T -capture basins, considering
constraints depending on time, with backward computation from the target
followed by a forward computation from initial conditions (see [37] for more
details).

A T -capture basin gathers all states for which there exists a control func-
tion that allows to reach the target at time T while remaining in the con-
straint set between time 0 and T :

Capt(T,K,C) = {x ∈ K | ∃u(.), x(T ) ∈ C and x(t) ∈ K ∀t ∈ [0, T ]}.

Calculation requires a nearly exhaustive search in the control space at
each time step. In this study, the computation is performed by the dis-
tributing the effort on a cluster of 200 CPU (Central Processing Unit). A
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dimension 5 (plus time) set is produced, the capture basin with the three
state variables (cheese mass, respiration rate and cheese temperature) and
the two associated control variables (ripening room temperature and relative
humidity of the air) [37]. Actually an exhaustive search is made to record
all the control values (with respect to the discretization scheme), that lead
from one state in Capt(T − t,K,C) to one state in Capt(T − t + dt,K,C),
with t ∈ [0;T − dt].

In the 12 days-capture basin, the traditional Camembert ripening process
strategy (Ts = 12°C, rh = 92%) gathers a subset of states (which are all
reached using these control values, with exception of initial states, and from
which these controls leads to states that are also in the capture basin). All
the others states correspond to different possible strategies which eventually
lead to the targeted cheese quality.

Once the capture basin is computed, it is possible to perform a geometric
analysis in order to identify risky areas. It is also possible to explore it in
order to find new control sequences.

2.2 Geometric analysis of a capture basin.

The state space is divided into two areas within the capture bassin: belongs
or not to the capture basin. If usual existence assumptions are done on the
dynamics, the constraints and the target (compactness, convexity, continuity,
for more details see [9]), then the corresponding capture basin is a closed set.
We will assume in the following that these assumptions are satisfied and that
the capture basin is a closed set. We denote Γ the boundary of the T -capture
basin.

In this way, a T -capture basin can be seen as a classification system where
the decision boundary is the boundary of the T -capture basin. We thus pro-
pose to use technics belonging to the field of classification in order to analyse
the capture basin. In particular, the distance to the decision boundary and
other geometric concepts can be used to obtain relevant information about
a particular state [3].

2.2.1 Geometric robustness

We assume in this section that it is possible to define a meaningful distance
in the state space (which dimension is finite), see [4] for more details. In
practice, when performing a viability study on a dynamical system, homoge-
nization and rescaling are part of the state variables discretization of in order
to run the viability algorithms with efficiency. In the case of the Camembert
cheese ripening, the discretization step of state and control variables is de-

7



termined by domain experts (see [37]), taking into account sensor accuracy.
Discretization steps are considered as distance unit on each variable axis.
Euclidean distance or sup-norm distance are then defined accordingly. With
the sup-norm, the combination of perturbations of the same size on different
variables does not change the size of the resulting perturbation.

In this work, we define perturbations one-time instantaneous "shocks"
in the state space. Consequently, the occurrence of a perturbation causes a
jump in the state space and can be described by a function D that associates
state x with state D(x) the reachable state from x after this perturbation
[25]. The size of a perturbation is then defined by the size of the jump, the
distance d(D(x)−x). A perturbation can be, for instance, an accidental loss
of mass, or a sudden change of respiration rate of microorganism (due to
external influences such as change of activity or mortality). Former errors of
measurement can also be seen as perturbations (once they are discovered).

Considering such perturbations, the distance to the capture basin bound-
ary Γ is a useful indicator of the robustness of a state. If a perturbation
occurs when the state of the system is x, as long as its size is smaller than
d(x,Γ), the new state of the system, D(x), will still belong to the capture
basin. Consequently, the distance to the boundary can be seen as a measure
of the robustness of a state to perturbations (for instance errors of measure-
ment concerning the localization of the state variable) in the state space.
This robustness indicator could be used to assist the process operator when
the process is sufficiently monitored: If the state of the system has a low
robustness value, it means that it is close to the boundary, so monitoring
should be intensified.

We define p(x) as a point of the boundary for which the distance d(x,Γ)
is reached (for the Euclidean distance it is the orthogonal projection). p(x)
gives the direction and size of the smallest perturbation (the sensitive move)
at state x that will move the system outside the capture basin.

State robustness can be used to define a robustness of the trajectory fol-
lowed by the system in the capture basin. Several definitions can be proposed,
depending on the manager’s perception of risks [30]. The risk of adverse de-
cision can be considered in many different ways. We will consider the most
risk-adverse indicator which is the minimum of the distance to the boundary
over the trajectory:

Definition 1 Min-robustness of a Trajectory.
Let T > 0, x ∈ Capt(T,K,C) and x : t 7−→ x(t) be a trajectory starting at
x such that ∀t ∈ [0;T ], x(t) ∈ Capt(T − t,K,C), we note ΓT−t the boundary
of Capt(T − t,K,C), then the robustness value of Min-robustness of x(.) is
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defined by:
r(x(t)) := min{d(x(t),ΓT−t)|t ∈ [0;T [}.

With this definition it is possible to assign a robustness value to each
cheese ripening trajectory that reaches the target set while satisfying the con-
straints. Trajectories that stay always far from the T -capture basin bound-
aries have a higher Min-robustness value, as it can be seen in figure 1. In
the following sections we use the term robustness for Min-robustness when
dealing with trajectories.

[Figure 1 around here]

When a trajectory has a low Min-robustness value, there are times for
which x(t) is close to the boundary of Capt(T − t,K,C) which means that a
perturbation (or a measurement error in the state space) with a low intensity
may cause a jump outside Capt(T − t,K,C) and the target will no more be
reached in the allotted time. Hence, trajectory Min-robustness can be seen
as a criterion to choose a particular trajectory among the set of trajectories
that reach the target while remaining in the constraint set.

2.2.2 Global quality indicator of a capture basin

Geometric indicators give useful information about the feasibility of control-
ling the system under the constraints set.

Relative volume. The size of the capture basin compared with the size
of the constraint set is a first basic indicator. Since the capture basin V
is a subset of the constraint set K, it is easy to compare the size of the
corresponding hypervolumes: vol(V )

vol(K)
.

This indicator is generally used in sensitivity analysis. However, this in-
dicator can gives misleading information about the structure of the problem,
even when the capture basin is a simply connected set (which means roughly
that it has no holes). because the same volume can enclose rather different
shapes. For instance, in a dimension d space, a hypercube with side 2r and a
hyperrectangle with one side size 2αr and all other sides 2r

(α)
1

d−1
with α >> 1,

share the same volume (2r)d. In the first case, the distance to the boundary
of the hypercube reaches its maximum at the center with a value of r. In
the second case, the points of the hyperrectangle cannot be farther from the
boundary than r

(α)
1

d−1
.
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Maximal maximal ball. Maximal balls are open balls included in the
capture basin, that are maximal. This means that it is not possible to find
a larger open ball centered on the same state that will be totally included in
the capture basin. Centers of maximal balls form the skeleton. The maximal
maximal ball is the maximal ball with the largest radius among maximal
balls. Its center is the farthest point of the capture basin from the decision
boundary. The larger the radius of the maximal maximal ball is, the more
robust to perturbation the system is: among all the closed sets with the same
inner volume, the maximum value of the distance to the boundary is reached
for the closed ball.

A relatively large maximal maximal ball suggests that it should be easy
to find control sequences that guarantee viability constraints verified over
time.

2.3 Distance and projection algorithm

When the decision boundary Γ is described by an analytical formula, or
by a set of constraints, it is possible to compute the exact value of d(x,Γ)
for all points of the input space, with efficient algorithms. When it is not
the case, then it is necessary to compute an approximation of the distance.
Considering a grid G of N points per axis in dimension n, ΓN is the set of
points that belong to the discretized boundary. When ΓN is known, efficient
algorithms make it possible to compute an approximation of the distance. In
practice, ΓN is often not known and what is computed is the distance to the
complementary set (points that are not in the capture basin). An algorithm
from [26] has been adapted in [3] to compute on a grid of N points per axis
the exact distance to the complementary set. This algorithm is optimal since
its complexity is in O(Nn), that is a linear complexity in the number of points
of the grid where the distance is computed.

V̄ 6= ∅ is the set of points that are not viable. The distance and projection
algorithm DistanceMapToSet consists in computing first the distance and a
point where the distance is reached along the first axis. The first axis is run
in both directions, a function labels points of V̄ if any point is discovered, and
a counter records the distance to the last encountered point. This procedure
is linear in the number of grid points, actually 2Nn.

Then a second procedure AdditionalAxis, is called repeatedly for the n−1
remaining axes. Its complexity is also in O(Nn), so the complete algorithm
is in O(n · Nn). The basic idea, coming from [21], and detailed in [26] for
dimension 2, consists in considering at step k the distance map gk−1(X)
computed at step k − 1 on G (the square distance in the Euclidean case).
Building functions FX specific to the distance are considered at each coor-
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dinate xk along the kth axis, based on the map gk−1(X) computed on the
first k − 1 axes and the distance along axis k. When the difference between
two building functions is a monotonic function, then the lower envelope of
these functions gives the distance at step k. This monotonicity property is
verified in particular in the case of the Euclidean square distance and of the
sup-norm distance (we note it D depending on the distance d: D = d2 in the
Euclidean case and D = d in the sup-norm case).

In the case of the Euclidean distance, gn(X) = d2(X, pn(X)). In the case
of the sup-norm, gn(X) = d(X, pn(X)). (See Appendix for details).

2.4 Theoretical example

We propose here a simple model to illustrate the interest of computing the
capture basin and then use the distance to the boundary to select a trajectory
robust to perturbations in the state space.

2.4.1 Description of the viability problem

We use in this example a controlled dynamical system, the state space is
two-dimensional (x, y) and the control space is one -dimensional u:

x′(t) = x′0 x′0 > 0
y′(t) = y′0 + u(t) y′0 > 0
u(t) ∈ [−u0; +u0] u0 > 0

(4)

The constraint set is described by:

K := {(x, y) | y ∈ [y1,K ; y2,K ]} (5)

The target is described by:

C := {(x, y) | x = x1 and y ∈ [y1,C ; y2,C ]} (6)

The dynamics, the constraint set and the target are displayed in figure
2a.

[Figure 2 around here]

2.4.2 Calculation of the capture basin

In this example, the capture basin is easy to determine as shown in figure
2b.

Outside the capture basin Capt(K,C), it is not possible to reach the
target. For states (x, y) which belong to the capture basin (as a topological
set), every control value u ∈ [−u0; +u0] applies.
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2.4.3 Finding robust evolutions

We consider perturbations in the state space, such as in 2.2.1: a state (x, y)
can be translated to D(x, y) = (x′, y′). The state space is associated with
the Euclidean norm. The distance to the boundary of the capture basin as
then an index of robustness to these perturbations.

Given an initial point A and knowing the capture basin, we can compute
the evolution which is viable and reaches the target, and which also maxi-
mizes the integral of the distance to the boundary of the T-capture basins.
Such an evolution is displayed in figure 2c.

It is worth noting that the computation of the capture basin should be
computed before the determination of this robust evolution.

Indeed, maximizing the distance to the boundary of the constraint set
leads to choose a much less robust evolution displayed in figure 2d. This
evolution spends a long time on the boundary of the capture basin and the
smallest perturbation can provoke a jump of the system state outside the
capture basin and the target can no longer be reached.

3 Results: Geometric analysis of the ripening
process

The proposed viability algorithm was used to compute the capture basin
of the cheese ripening process. We then applied the previously described
distance and projection algorithm to this capture basin. The main objectives
are to offer a visualization of the ripening process as a set of possible states,
to provide global indicators for the capture basin, to study the robustness of
theoretical trajectories in order to select the best experimental trajectories.

3.1 Complete capture basin robustness

The complete calculated capture basin is organised in 11th days completed
by the capture basin of the 12th day which is the target itself. The dimension
of the state space is 3 (see section 2.1).

[Figure 3 around here]

Figure 3 shows the twelve sections (one section per day) of the complete
capture basin. The Euclidean square distance (d) to the boundary is used to
color the points of each section.
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The more the color goes towards red, the more robust the state is (far
from boundary), on the contrary, the more the color goes towards blue, the
less robust the state is (closer to the boundary).

The shape of the capture basin suggests that the process is rather robust
to perturbations in the state space: the daily sections have relatively large
maximal maximal balls, with a square radius of the maximal maximal ball
of 25 steps which corresponds to a distance d of 5 steps. This is also the
theoretical maximum value of distance to the boundary of the constrained
domain. This distance can be expressed mathematically, as half the small-
est constraint range of the state variables which corresponds to the cheese
temperature range,10

2
where 10 represents the number of steps between 17

◦C and 7◦C . The maximum value (5) is reached for an important part of the
viable states inside each section from day 4 to day 12, as it can be seen in
Figure 3,

the red area of these daily sections covers a significant proportion of the
capture basin.

The different sections of the capture basin show the evolution of the
possible states of the cheese from one day to the next.

The viability set of day 1 is reduced to a two-dimension set, since the
breathing dimension is not active, the microorganisms involved in the process
having not germinated yet. All the mass values are viable at the starting
day. From the 2nd day until the 6th day (see Figure 3), the microorganisms
breathing develops and the viability domain spreads over the constraint set.
The percentage of the viable states increases rapidly (see Figure 4) to 89 %.

[Figure 4 around here]

This shows that the exploration domain is correctly defined, since the cap-
ture basin is strictly inside the exploration domain but one section occupies
almost all the domain.

During the 5th and 6th day, the proportion of viable states is maximal,
but the capture basin drifts progressively to higher values of the breathing
and higher surface temperature. This can be seen easily in Figure 3. After
Day 8 it is no longer possible to reach the target if the microorganisms haven’t
reached a minimal development. From the 6th day, the viability domain
begins converging towards the target. This convergence implies a decrease in
the volume of the viable state area, with the fading of high mass values and
a slight decrease of the values of the breathing of the microorganisms. The
11th day is very constrained: the percentage of the viable points reaches its
lowest level, 17 %, just before the target itself (6 %).

Even in the smaller capture basins, the maximum distance to the bound-
ary remains almost unchanged. This characteristic of the shape of the capture
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basin suggests that the ripening process is particularly robust to perturba-
tions.

3.2 Contribution to a reverse engineering approach

The capture basin provides the set of all states from which it is possible to
reach the target with respect to the constraints. For each state x in the
(T − t)-capture basin the viability analysis gives also at least one vector
u of control values such that f(x, u) is in the (T − t + dt)-capture basin.
Actually, in the continuous case, for states that are not on the boundary, all
the control values are available. However, some control values may be used
only for a very short time. With a constant time step discretization, all the
control values may not be available anymore. In our case, with respect to
the discretization scheme, we compute all the possible control values that
can be associated to a state x. In this enlarged (T − t)-capture basin (state
space x with possible controls), we used the same definition. In practice,
this means that we prefer a state far from the capture basin boundary with
control values far from the boundary of available controls.

In accordance with experts, we focus our study on a viability tube com-
puted in less than twelve days, since the analysis of the capture basin showed
that it was possible to reach the target in less time. A gain in time of 4 days
was considered by the experts as extremely desirable. This is the reason
why we have worked on a more constrained set than the complete 12 day
tube. We have calculated a new 8 day capture basin and all the associated
trajectories.

Inside this capture basin, a trajectory that reaches a weighted compromise
between reduced initial mass, reduced operational costs and robustness is
selected.

A geometric calculus is applied to this trajectory. On this basis, we
show, through simulations and experimental validations on a pilot, that it is
possible to predict and quantify the disturbances that could lead to disrupted
trajectories of the capture basin, or conversely the perturbations that ensure
future states to stay within the boundaries.

added value of the geometric robustness and simulations

The result of the geometric calculus on the 8 day trajectories is presented
Table 1.

The geometric robustness of the trajectory is computed with theD istanceMapToSet
algorithm with the sup norm in an extended state space. With regards to the
identical results for T and Ts, we only use one of the temperatures, labeled
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Table 1: The new 8-day trajectory: control values, predicted state values,
robustness (distance d to the boundary of the viability tube, dim 4, sup
norm), maximal distance to the boundary (mmbr).

Control value Ripening state Distance
Day T ◦C rh% RR ML Ts

◦C d(mmbr)

1 12 84 0 284 12 1 (-)
2 13 94 0 280 13 1 (2)
3 14 94 1.7 279 14 3 (4)
4 14 94 6.4 277 14 3 (4)
5 12 94 17.6 276 12 3 (4)
6 12 94 32.1 271 12 3 (4)
7 9 94 44 270 9 3 (4)
8 9 94 43.2 268 - -

T , for the computation of the distance. This equality can be easily explained
by the time to reach Ts knowing the control temperatures. It can be con-
sidered as instantaneous as regard to the process reaction time manipulated
(1 day). The extended state space is then the 4-dimensions space of the
capture basin with normalized state and control variables. The sup norm is
used instead of the Euclidean norm, since measurement and control errors
can combine but not substitute for one another. A distance (d) of 3, like in
day 3, means that one or more variables are 3 steps away from the boundary.
Any 2 steps perturbation is not enough to move the cheese state outside.
The distance d can be compared to the maximal maximal ball radius of the
capture basin(mmbr) for each day. At day 3 for example, a value of 4 means
that the thickness of the capture basin at this day (radius of the maximal
maximal ball) is 4, that is at least four steps along one variable at least are
needed to reach the boundary of the capture basin from its center.

In Table 1 we can see that the 8-days trajectory is very robust, since each
day is almost as large as possible (the thickness of the tube is 4).

To assess the validity of our approach, we subsequently test the predicted
8-day trajectory under perturbations.

Since the accuracy of common actuators concerning the control of the
relative humidity is rather limited, we decided to apply the disturbance to
this variable. Small errors (1%) can induce a great change in the water
transfer coefficient and as a consequence in the mass loss [13]. In our model,
the discretization step on relative humidity is 2%, to take into account the
imprecision of sensors and the difficulty of control.
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Since the robustness of the trajectory shown in Table 1 is 3 after the two
first days, we apply a perturbation to the relative humidity on day 3 and
4, to be sure to be near the boundary without leaving the viability domain.
Instead of the normal value of 94%, we fix a set point of 96% for the relative
humidity during these two days. The temperature is unchanged. According
to the theoritical results, this disturbance should not bring the trajectory out
of the capture basin. Table 2 shows the disrupted trajectory simulated by
the model. As expected, the robustness of the disrupted trajectory is now
only 2 on day 3 and 4 (it is only two steps from the boundary). The change
of state values induced by the change of control values has no other effect on
the robustness of the trajectory.

Table 2: 8-days disrupted trajectory: control values, predicted state values,
predicted robustness (d), maximal distance to the boundary (mmbr).

Control value Ripening state Distance
Day T ◦ RH% RR ML d(mmbr)

1 12 84 0 284 1 (1)
2 13 94 2 280 1 (4)
3 14 96 7 279 2 (4)
4 14 96 19 278 2 (4)
5 12 94 33 277 3 (4)
6 12 94 48 275 3 (4)
7 9 94 41 272 3 (4)

Validation of the simulations on the experimental pilot ripening
room

Three trajectories are tested on the INRA’s experimental pilot ripening room
[36]. The two first are organized in 8 days while the third one is organized
in 12 days for a ripening trial close to factory practices. Control and state
variables are recorded: temperature (T ◦) and relative humidity (rh%), mass
loss (ML), respiration rate (RR). The trajectory corresponding to table (1)
control set points, for a ripening in 8 days, is called TVA (viable optimized
trajectory). The trajectory corresponding to table (2) control set points,
for a ripening in 8 days close to the boundary of the capture basin is called
DT (disrupted trajectory). The 12-day trajectory, corresponding to standard
controls in a factory for 12 days of ripening is called SRT (standard ripen-
ing trajectory, for a control temperature set point of 12 ◦C and a relative
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Table 3: Summary distances (calculated with the algorithm DistanceMap-
ToSet, Euclidean distance in the same 3 dimensional state space as in figure
3 and state values reached during the trial for the standard trajectory SRT

Control value Ripening state Distance
Day T ◦ RH% RR ML d (mmbr)

1 12 92 0 310 1 (1)
2 12 92 3 306 3 (3)
3 12 92 10 302 5 (5)
4 12 92 23 300 5 (5)
5 12 92 43 297 5 (5)
6 12 92 54 294 5 (5)
7 12 92 43 289 5 (5)
8 12 92 37 284 5 (5)
9 12 92 28 280 5 (5)
10 12 92 25 275 4.2 (5)
11 12 92 23 271 - -

humidity of the air of 92%). This last trajectory is shown to provide a refer-
ence for traditional practices. In particular, the robustness of this standard
trajectory, as shown in table (3), is almost always at the possible maximum.

The experimental results show that both trajectories reach the designed
target. The main impact of the differences of control the slope of mass loss,
as it can be seen in figure 6.

The mass loss is smaller for the disturbed trajectory from the 3rd day.
Considering the quality of the cheese, it is well known that the range of con-
trol of relative humidity, from 96% to 100 especially if this relative humidity
is maintained all along the duration of the process, can have a negative im-
pact on the microorganism kinetics and, as a consequence, on the global state
of the cheese [24]. In fact, we can see that the respiration rate is modified at
the beginning of the ripening process (see figure 7). The profiles of respira-
tion rate for the disturbed and undisturbed trajectories are rather different
during days 3 to 5.The respiration rate reached is maximum 1 day earlier by
comparison to the SRT and TVA trajectories. Nevertheless, the consequence
on the microorganism kinetics for the complete duration of the process, in-
cluding the time of ripening after wrapping of the cheese (from day 12 to day
45), is very limited, as it can be seen in figure 5.
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[Figure 5 around here]

The 8-day trajectory also performs very well in the 8-day capture basin.
Moreover, the proposed approach also helps us to know to which extent

this new way of control is robust, and what is the acceptable uncertainty
with regards to the boundary of the capture basin. This is very encouraging
for further developments of control strategies at 8-day ripening rather than
the standard of 12-day process.

[Figure 6 around here]

[Figure 7 around here]

4 Conclusions
Thanks to the viability theory framework applied to the ripening process, we
are able to compute the set of initial points included in a given constrained
set from which starts at least one evolution (1) satisfying the manufacturing
constraints and (2) reaching the quality target at the allotted time.
We evaluate the robustness of these trajectories by using recent original
mathematical developments, finally choosing a trajectory with low opera-
tional costs among the more robust ones. This trajectory has a 8-day ripening
time and an initial mass of 0.284 kg, whereas the standard one was ripened
in 12 days from an initial mass of 0.3 kg. Moreover, we show that a coupling
between the viability method and an adapted geometrical robustness compu-
tation leads to interesting information for reverse engineering purposes. We
show that it is possible to predict and quantify the disturbances that can lead
to disrupted trajectories that go outside the viable set and conversely that
can ensures the state to stay in the viable set. This allows us to effectively
control the cheese ripening process in an optimized way. The method devel-
oped in this work can be applied to other processes for which a dynamical
model is available, in order to explore its state space and propose new ways
of controlling it.

Robustness is crucial for the dairy industry to avoid process drift. Other
measures of robustness based on the capture basin boundary should be devel-
oped to identify the areas where the process is more sensitive to perturbation
and, consequently, where it should be more carefully monitored.

In future works, we will investigate in more detail the enlarged state space
with viable controls, and the links with the time of exit from the capture basin
(since some control values can apply for very short time if a state is near the
capture basin boundary).
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Further studies will be focus on the exploitation of this approach to con-
sider a multi-objective optimization problem related to the modeling of a
food industrial process, that is the Camembert cheese ripening process. One
aim is to construct the Pareto boundary [27] of the optimal strategies, i.e.
the optimal paths, among each possible viable path to the target.
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Appendix: Geometric Algorithms
Algorithms are adapted from [26]. We consider a grid G of N points per
axis in dimension d. V̄ is the set of points that are not viable. Since the
boundary of V is not known explicitly, this kind of algorithm is appropriate
(when the boundary is known, other algorithm are more suitable). We note
X = (x1, .xk, .xn) and Xk = (x1, .xk−1, xk+1, .xn) ∈ [0, N − 1]n−1, we note
gXk
k (xk) = gk(X) the distance map (we note it D depending on the distance
d: D = d2 in the Euclidean case and D = d in the sup-norm case) and
pXk
k (xk) = pk(X) the point where it is reached. If we note Ek−1 the subspace

spanned by the (k − 1) first axis, we have:

∀X ∈ G, V̄ ∩ (X + Ek−1) 6= ∅ ⇒{
gk−1(X) = D(X, V̄ ∩ (X + Ek−1))
∃Y = pk−1(X) ∈ V̄ , D(X, Y ) = gk−1(X)

(7)

The definition of the building functions depends on D and is such that:

FX(i) = FXk
xk

(i) := D ((x1, .xk−1, i, xk+1, .xn), pk−1(X)) (8)

The minimum of a building function FXk
xk

(i) is reached for i = xk.
In the case of the square Euclidean distance, the definition of the building

functions from equation (8) is given by the Pythagorean theorem and the
coordinate of their intersection on the kth axis (noted uk) on the grid is
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defined by:{
FX(i) = FXk

xk
(i) := gk−1(X) + (i− xk)2

}
(0 ≤ xk < N)

intersect(FXk
xk
, FXk

yk
) = truncate(x2

k − y2
k + gk−1(X)− gk−1(Y ))÷ 2(xk − yk)

(9)

In the case of the sup norm, the building functions (8) are truncated
V-shaped function defined by:

FX(i) = FXk
xk

(i) := max(gk−1(X), |i− xk|), (0 ≤ xk < N)

The intersection of truncated V -shaped functions FX and F Y used by the
algorithm is given by the following formula (with xk ≤ yk), contrary to [26]:

intersect(FX , F Y ) =


max((xk + gk−1(Y )), ((xk + yk)÷ 2))

if gk−1(X) ≤ gk−1(Y )

min((yk − gk−1(X)), ((xk + yk)÷ 2)) otherwise
(10)

The algorithm can be used for other distances, as long as the difference
of building functions verifies the monotonicity property (see [21]).

We now consider the kth axis uk, 2 ≤ k ≤ n. FXk
l (xk), with 0 ≤ l <

N , gives the distance (or square distance in the Euclidean case) between
X = (x1, .xk, .xn) and pXk

k−1(l). We have FXk
l (xk) = F (X+(l−xk)uk)(xk). If

V̄ ∩ (X + Ek) 6= ∅, then there is at least one l, 0 ≤ l < N such that gXk
k−1(l)

and pXk
k−1(l) are defined. Then we have:
gk(X) = min

{
F (X+(l−xk)uk)(xk), 0 ≤ l < N

}
pk(X) = pk−1(X + (m− xk)uk)

with m = argmin
{
F (X+(l−xk)uk)(xk), 0 ≤ l < N

} (11)

But the computation of all these values of F is suboptimal, so the algo-
rithm considers the set of building functions FXk

l , and computes the lower
envelope of this set, using the intersection between two building functions F
to switch from one function to another.

For all points Xk ∈ [0, N − 1]n−1, the procedure AdditionalAxis recruits
building functions along axis k. A candidate function f = FXk

i is recruited if
there is no other recruited function or if it intersects the previous recruited
function FXk

j with j < i on the grid. From the definition of the building
functions, we then have:

Let 0 ≤ j < i < N and w = max(0; 1 + intersect(FXk
j , FXk

i )),

(w < N)⇒ ∀l, w ≤ l < N, FXk
i (l) < FXk

j (l) (12)
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The candidate function is then recruited after FXk
j from the coordinate w if

w < N . If there is no previous recruited function it is recruited from w = 0.
Let us suppose that there are already two building functions FXk

x1
and

FXk
x2

with x1 < x2 < i. FXk
x2

was recruited from w(x2) with:

0 ≤ w(x2) = 1 + intersect(FXk
x1
, FXk

x2
) < N

. Then if f(w(x2)) = FXk
i (w(x2)) < FXk

x2
(w(x2)), the monotonicity property

insures that for all l ≥ w(x2), then f(l) < FXk
x2

(l) (This can be easily verified
from equations (9) and (10) respectively). So the candidate f replaces the
last function FXk

x2
. This is done until all previously recruited functions are

replaced or alternatively until the last recruited function FXk
j , recruited from

wj with j < i is such that FXk
j (wj) < f(wj). In that case f is recruited with

w as in (12).
Let (FXk

xi
)i∈I be the sequence of building functions recruited along axis k

from (wi)i∈I respectively. The functions are labeled such that if i < j then
xi < xj. The sequence of recruitment points (wi) defines the lower envelope
of the recruited building function. We then have:

∀xk, 0 ≤ xk < N, let m = max {i ∈ I, wi ≤ xk} then{
gk(X) = gXk

k (xk) = FXk
xm

(xk)

pk(X) = pXk
k−1(xm)

(13)

In the case of the Euclidean distance, gn(X) = d2(X, pn(X)). In the case
of the sup-norm, gn(X) = d(X, pn(X)). pn(X) is a point where the distance
is reached (the orthogonal projection in the Euclidean case).
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List of figures:
Figure 1: Geometric robustness of trajectories in the capture basin. The

robustness of x(t) is low whereas the robustness of y(t) is high.
Figure 2: Construction of a capture basin. , (a) dynamics (4), constraint

set (5) and target set (6), (b) Capture basin, (c) From initial point A, the blue
evolution, viable and which reaches the target, also maximises the integral of
the distance to the boundary of the capture basin. The green curve describes
the skeleton of the capture basin, (d) From initial point A, the red evolution,
viable and which reaches the target, also maximises the integral of the distance
to the boundary of the constraint set. The black dotted curve describes the
skeleton of the constraint set.

Figure 3: Distance square map of the capture basin (12 sections corre-
sponding to the different days of the process). Viable states that are near
the boundary are not shown (the yellow bounding box shows the maximal
extent of viable states). Axes x(red), y(green) and z(blue) correspond to
the mass(g), temperature ( ◦C) and the respiration rate of microorganisms
(g/m2/day) respectively. The black box delimits the target: final mass be-
tween 251 and 276g, final temperature between 8 and 10◦C, respiration rate
between 34 and 55g/m2/day.

Figure 4: Ratio of the number of viable states.
Figure 5: Evolution of the microorganisms during the cheese ripening

for TVA (viable optimized trajectory) and DT (disrupted trajectory), (a) K.
marxianus, (b) G. candidum, (c) B. aurantiacum.

Figure 6: Comparative profile of the mass loss reached for three experi-
ments led on the experimental pilot TVA (viable optimized trajectory), DT
(disrupted trajectory) and SRT (standard ripening trajectory).

Figure 7: comparative profile of the respiration rate variation reached for
the three experiments TVA, DT and SRT led on the pilot.
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