
HAL Id: hal-01139890
https://hal.science/hal-01139890v1

Submitted on 7 Apr 2015 (v1), last revised 23 Sep 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Opacity of Discrete Event Systems: models, validation
and quantification

Romain Jacob, Jean-Jacques Lesage, Jean-Marc Faure

To cite this version:
Romain Jacob, Jean-Jacques Lesage, Jean-Marc Faure. Opacity of Discrete Event Systems: models,
validation and quantification. DCDS15, May 2015, Cancun, Mexico. pp.174-181. �hal-01139890v1�

https://hal.science/hal-01139890v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Opacity of Discrete Event Systems:
models, validation and quantification

Romain Jacob ∗, Jean-Jacques Lesage ∗, Jean-Marc Faure ∗

∗ LURPA, ENS Cachan, Univ Paris-Sud, F-94235 Cachan, France
(e-mail: romain.jacob@ens-cachan.fr).

Abstract: Over the last decade, opacity of discrete event systems (DES) has become a very
fertile field of research. Driven by safety and privacy concerns in network communications and
online services, much theoretical work has been conducted in order to design opaque systems.
A system is opaque if an external observer in unable to infer a ”secret” about the system
behavior. This paper aims to review the most commonly used techniques of opacity validation
for deterministic models and opacity quantification for probabilistic ones. Available complexity
results are also provided. Finally, we review existing tools for opacity validation and current
applications.

Keywords: Opacity, Discrete event systems, Validation, Verification, Enforcement
Quantification, Secrecy, Privacy, Security

1. INTRODUCTION

Online services and network communications have become
ubiquitous over the past 30 years. This evolution in our
everyday life brought along new preoccupations regarding
security and privacy. Despite continuously releasing tons
of information about everything we do and think, we still
want some information to remain secret. Thus, a new
problem has arisen in computer science, called Information
Flow. It characterizes the (possibly illegal and indirect)
transmission of secret data from a high level user to a
low level one. Various information flow properties have
been defined in the literature: anonymity, non-interference,
secrecy, privacy, security and opacity.

In this paper, we focus on opacity, which characterizes
whether a given ”secret” about a system behavior is
hidden or not from an external observer, further called the
intruder. It is assumed the intruder has full knowledge of
the system’s structure but only partial observability. Based
on its observations, the intruder constructs an estimate of
the system’s behavior. The secret is said to be opaque if
the intruder’s estimate never reveals the system’s secret.
Specifically, the system is opaque if for any secret behavior,
there exists at least one other non-secret behavior that
looks the same to the intruder.

Opacity is a rather recent field of research. It was first
introduced in 2004 in computer science to analyze cryp-
tographic protocols (Mazaré (2004)). It reached the dis-
crete event systems (DES) community with the work of
Bryans et al. (2005) which investigated opacity in systems
modeled as Petri nets. Secrets were set as predicates over
Petri net markings (i.e., states). In Bryans et al. (2008),
previous work was extended by investigating opacity in
labeled transition systems (LTS), in which secrets were
defined as predicates over runs. More recently, Saboori
and Hadjicostis investigated state-based opacity proper-
ties using finite-state automata (FSA) models (Saboori
and Hadjicostis (2007), Saboori (2011)). Many researchers

have considered the validation of opacity properties which
spans from system’s opacity verification (Hadjicostis and
Keroglou (2014)) to the synthesis of a controller/scheduler
which assures opacity, either through supervision (Dubreil
(2010)) or enforcement (Falcone et al. (2014)). Recent
work has been conducted on quantifying a system’s opacity
(Bérard et al. (2010)). Indeed, opacity validation w.r.t. a
given secret and intruder is a yes/no question for deter-
ministic models. However, many systems are probabilistic.
In that case, one might be interested in quantifying the
possible information leakage from the system.

This paper aims to provide a comprehensive and general
review of opacity related work considering DES models.
After introducing relevant notations in Section 2, we syn-
thesize different notions of opacity used in the literature in
Section 3. Section 4 reviews validation methods of various
opacity properties. Extensions to probabilistic models are
presented in Section 5. Section 6 summarizes decidability
and complexity of most approaches surveyed in this paper.
Finally, applications of opacity in DES are presented in
Section 7 and Section 8 concludes the paper.

2. PRELIMINARIES

Let E be an alphabet of labels. E∗ is the set of all finite
strings composed of elements of E, including the empty
string ε. A language L ⊆ E∗ is a set of finite-length strings
of labels in E. For any string t, |t| denotes the length of
t. For a string ω, ω denotes the prefix-closure of ω and is
defined as ω = {t ∈ E∗|∃s ∈ E∗, ts = ω}. The post-string
ω/s of ω after s is defined as ω/s = {t ∈ E∗, st = ω}.
A finite-state automaton G = (X,E, f,X0) is a 4-tuple
composed of a finite set of states X = {0, 1, ..., N − 1}, a
finite set of events E, a partial state transition function
f : X×E → X and a set of initial states X0. The function
f is extended to domain X×E∗ in the usual manner. The
language generated by the system G describes the system’s
behavior and is defined by

L(G,X0) := {s ∈ E∗|∃i ∈ X0, f(i, s) is defined}; it is
prefix-closed by definition.

Note that in opacity problems, the initial state need not
to be known a priori, therefore the set of initial states
instead of a single initial state. We also consider partially
observable systems. The event set is partitioned into an
observable set Eo and an unobservable set Euo. Given a
string t ∈ E∗, its observation is the output of the natural
projection function P : E∗ → E∗o , which is recursively
defined as P (te) = P (t)P (e) where t ∈ E∗ and e ∈ E. The
projection of an event P (e) = e if e ∈ Eo, while P (e) = ε if
e ∈ Euo ∪ {ε}. Finally, for a language J ⊆ E∗, the inverse
projection is defined as P−1(J) = {t ∈ E∗ : P (t) ∈ J}.

3. OPACITY OF DISCRETE-EVENT SYSTEMS

In this section, we formalize different opacity properties of
DES. In the general case, the intruder is assumed to have
full knowledge of the system structure (plus eventually the
system’s controller) but has only partial observability over
it. Opacity is parameterized by a secret predicate S and
by the intruder’s observation mapping P over the system’s
executions. A system is opaque w.r.t. S and P if, for any
secret run in S, there is another run not in S which is
observably equivalent.

In cases of DES models, the secret predicate S can be of
two classes: a subset of executions (or parts of executions)
or a subset of states. This classifies opacity properties
into two families: language-based opacity and state-based
opacity.

3.1 Language-based opacity – LBO

LBO has been formalized in different ways in the litera-
ture. It was first introduced in Badouel et al. (2007) and
Dubreil et al. (2008). LBO (also referred to as trace-based
opacity) is defined over a secret behavior described by a
language LS ⊆ E∗. The system is opaque w.r.t. LS and
the projection map P if no execution leads to an estimate
that is completely inside the secret behavior. Alternatively,
in Lin (2011), LBO is defined over two sublanguages of
the system, (L1, L2) ⊆ (L(G,X0))2. Sublanguage L1 is
opaque w.r.t. L2 and any observation mapping θ if the
intruder confuses every string in L1 with some strings in
L2 under θ. In most recent papers considering LBO, the
latter definition is used except for the observation mapping
θ which is generally the natural projection mapping P .

Definition 1 (LBO – Strong Opacity): Given a system
G = (X,E, f,X0), a projection P , a secret language LS ⊆
L(G,X0), and a non-secret language LNS ⊆ L(G,X0), G
is language-based opaque if for every string t ∈ LS, there
exists another string t′ ∈ LNS such that P (t) = P (t′).
Equivalently, LS ∈ P−1[P (LNS)].

The system is language-based opaque if for any string t
in the secret language LS , there exists at least one other
string t′ in the non-secret language LNS with the same
projection. Therefore, given the observation s = P (t) =
P (t′), intruders cannot conclude whether the secret string
t or the non-secret string t′ has occurred. Note that LS
and LNS do not need to be prefix-closed in general, nor
even regular.

Part of the literature refers to Definition 1 as strong
opacity. In Lin (2011), a smoother opacity property is also
defined.

Definition 2 (LBO – Weak Opacity): Given a system
G = (X,E, f,X0), a projection P , a secret language LS ⊆
L(G,X0), and a non-secret language LNS ⊆ L(G,X0), G
is weakly opaque if for some string t ∈ LS, there exists
another string t′ ∈ LNS such that P (t) = P (t′).
Equivalently, LS ∩ P−1[P (LNS)] 6= ∅.
The system is weakly opaque if some strings in LS are
confused with some strings in LNS .

As a consequence, the property of no opacity can be easily
defined.

Definition 3 (LBO – No opacity): LS is no opaque w.r.t.
LNS and P if LS is not weakly opaque w.r.t. LNS and P .
Equivalently, LS ∩ P−1[P (LNS)] = ∅.
Remark 1. It is shown in Ben-Kalefa and Lin (2009) that
LBO properties are closed under union, but may not
be closed under intersection. They further discuss how
to modify languages to satisfy the strong, weak, and no
opacity by investigating sublanguages and superlanguages.

Example 1. From Wu and Lafortune (2013) – Consider the
system G in Fig. 1(a) with Eo = {a, b, c}. It is language-
based opaque when LS = {abd} and LNS = {abc∗d, adb}
because whenever the intruder sees P (LS) = {ab}, it is
not sure whether string abd or string adb has occurred.
However, this system is not language-based opaque if
LS = {abcd} and LNS = {adb}; no string in LNS has
the same projection as the secret string abcd.

3.2 State-based opacity – SBO

The state-based approach for opacity of DES was intro-
duced in Bryans et al. (2005) (for Petri nets models) then
extended to FSA in Saboori and Hadjicostis (2007). The
state-based approach relates to the intruder ability to infer
that the system is or has been in a given ”secret” state or
set of states. Depending on the nature of the secret set,
different opacity properties have been defined.

Current-State Opacity – CSO CSO was first intro-
duced in Bryans et al. (2005) and called final opacity, in
the context of Petri nets. The definition was then adapted
to LTS in Bryans et al. (2008), and further developed in
finite state automata models in Saboori and Hadjicostis
(2007). A system is CSO if the observer can never infer,
from its observations, whether the current state of the
system is a secret state or not.

Definition 4 (CSO): Given a system G = (X,E, f,X0),
a projection P , a set of secret states XS ⊆ X, and a set of
non-secret states XNS ⊆ X, G is current-state opaque if
∀i ∈ X0 and ∀t ∈ L(G, i) such that f(i, t) ∈ XS, ∃j ∈ X0,
∃t′ ∈ L(G, j), such that f(j, t′) ∈ XNS and P (t) = P (t′).

The system is CSO if for every string t that leads to a
secret state, there exists another string t′ leading to a non-
secret state whose projection is the same. As a result, the
intruder can never assert with certainty that the system’s
current state is in XS .

Remark 2. In Bryans et al. (2005), the property of always-
opacity is also introduced. A system is always-opaque (or
total-opaque in Bryans et al. (2008)) over a set of runs if
it is CSO for any state visited during these runs. This is
equivalent to consider a set of secret states which lies on
a prefix-closed language.

43

0 21
a

b
d d

b

c
(a) Example 1 (LBO)

42

0 31
a b

c

b

(b) Example 2 (CSO)

32

10
b

� �
a

a

b

(c) Example 3 (ISO)

3 54

0 21

a
a

a

b
b

b

�

(d) Example 4 (KStep)

Fig. 1. From Wu and Lafortune (2013) and Falcone and Marchand (2013) – Systems discussed in Examples 1 to 4.

Example 2. From Wu and Lafortune (2013) – Consider G
in Fig. 1(b) and the sets of secret and non-secret states
XS = {3} and XNS = X\XS . If Eo = {b}, then G
is current-state opaque because the intruder is always
confused between ab and cb when observing b; that is, the
intruder cannot tell if the system is in state 3 or 4.
However, if Eo = {a, b}, CSO does not hold because
the intruder is sure that the system is in state 3 when
observing ab.

Initial-State Opacity – ISO ISO property relates to
the membership of the system’s initial state within a set
of secret states. The system is initial-state opaque if the
observer is never sure whether the system’s initial state
was a secret state or not.

Definition 5 (ISO): Given a system G = (X,E, f,X0),
a projection P , a set of secret initial states XS ⊆ X0, and
a set of non-secret initial states XNS ⊆ X0, G is initial-
state opaque if ∀i ∈ XS and ∀t ∈ L(G, i), ∃j ∈ XNS,
∃t′ ∈ L(G, j), such that P (t) = P (t′).

The system is ISO if for every string t that originates from
a secret state i, there exists another string t′ originating
from a non-secret state j such that t and t′ are obser-
vationally equivalent. Therefore, the intruder can never
determine whether the system started from a secret state
i or from a non-secret state j.

Example 3. From Wu and Lafortune (2013) – Consider
G in Fig. 1(c) with Eo = {a, b}, XS = {2}, and XNS =
X\XS . G is initial-state opaque because for every string t
starting from state 2, there is another string (τ)t starting
from state 0 that looks the same.
However, ISO does not hold if XS = {0}. Whenever the
intruder sees string aa, it is sure that the system originated
from state 0; no other initial states can generate strings
that look the same as aa.

Remark 3. Hadjicostis (2012) defines resolution of initial
state w.r.t. a secret set of states S. It requires that
when the system starts from a secret state, the observer
will be able to eventually (i.e., after a finite sequence
of events/observations) determine with certainty that the
system’s initial state lied within the set of secret states
S. It is worth pointing out at this point that absence of
resolution of initial state is necessary but not sufficient for
ISO.

K-step opacity Except for ISO, these opacity prop-
erties do not consider the system behavior once it has
exited a secret state. A more general problem would be
to keep secret the fact the system was in a secret state a
few steps ago. This property is called K-step opacity and
was first introduced in Saboori and Hadjicostis (2007).

Definition 6 (K-step opacity): Given a system G =
(X,E, f,X0), a projection P , and a set of secret states
XS ∈ X, G is K-step opaque w.r.t. XS and P , or
(XS , P,K)-opaque (for K ≥ 0), if:

∀i ∈ X0, ∀t ∈ L(G, i) and ∀t′ ∈ t such that f(i, t′) ∈ XS

and |P (t)/P (t′)| ≤ K,

∃j ∈ X0, ∃s ∈ L(G, j) and ∃s′ ∈ s, such that f(j, s′) ∈
XNS, P (s) = P (t) and P (s′) = P (t′).

This definition can be reformulate as in Falcone et al.
(2014). The system is (XS , P,K)-opaque if for every exe-
cution t of G and for every secret execution t′ prefix of t
with an observable difference inferior to K, there exist two
executions s and s′ observationally equivalent respectively
to t and t′ such that s′ is not a secret execution (i.e., which
does not bring the system in a secret state).

Example 4. From Falcone and Marchand (2013) – Con-
sider G in Fig. 1(d) with Eo = {a, b}, XS = {2}, and
XNS = X\XS . G is (XS , P, 1)-opaque.
However, it is not (G,P, 2)-opaque as only (τ)aba is a
compatible execution with the observation aba. After the
last a has occurred, the intruder can deduce that the
system was in state 2 two steps ago.

Remark 4. K-step opacity is a direct extension of CSO.
CSO is equivalent to 0-step opacity (Saboori and Hadji-
costis (2007)).

Remark 5. In Falcone et al. (2014), Definition 6 is referred
to as K-step weak opacity. The property of K-step strong
opacity holds if the system is K-step weakly opaque and
there exists a trace of the system (observably equivalent
to the actual execution) which does not cross any secret
state over the last K steps.

Infinite-step opacity In Saboori (2011), K-step opa-
city has been further extended to infinite-step opacity.

Definition 7 (Infinite-step opacity): Given a system G =
(X,E, f,X0), a projection P , and a set of secret states
XS ∈ X, G is infinite-step opaque w.r.t. XS and P , or
(XS , P,∞)-opaque, if:

∀i ∈ X0, ∀t ∈ L(G, i) and ∀t′ ∈ t such that f(i, t′) ∈ XS,

∃j ∈ X0, ∃s ∈ L(G, j) and ∃s′ ∈ s, such that f(j, s′) ∈
XNS, P (s) = P (t) and P (s′) = P (t′).

A system is infinite-step opaque if, for every execution
of the system, after having observed an arbitrary long
sequence of events, the intruder cannot infer the system
was in a secret state at some point (at any step back in
the execution).

3.3 Transformations between different opacity properties

The aforementioned opacity properties have strong con-
nections between each another. Several works have ad-
dressed the translation between opacity properties.

Saboori (2011) adapts the language-based definition to
ISO in order to apply supervisory control (refer to Section
4.2). On the contrary, Cassez et al. (2012) describes
transformations from LBO to CSO. In Wu and Lafortune
(2013), the authors extend these works and provide a full
transformation mapping between LBO, CSO, ISO and IFO
(initial-and-final state opacity – defined therein).

In addition, we already mentioned that K-step opacity is
an extension of CSO. CSO is equivalent to 0-step opacity.

Finally, in Saboori (2011), a language-based translation of
K-step opacity is suggested: trace-based K-step opacity. It
is a special case of K-step opacity which, to the best of our
knowledge, has never been used or considered in any other
work. It is mentioned here for the sake of completeness.

3.4 Distributed opacity

Most opacity-related studies account for a single intruder.
However, a few of them consider distributed notions of
opacity. Hence, Badouel et al. (2007) considers multiple in-
truders, each of them having its own observation mapping
and secret of interest. The system is said to be concur-
rently opaque if all secrets are safe. A different notion,
called joint opacity is presented in Wu and Lafortune
(2013) and Wu (2014). In this setting, several intruders
collaborate through a coordinator in order to discover
the same secret. Finally, Paoli and Lin (2012) considers
decentralized framework with and without coordination
among agents and formalizes definitions of decentralized
opacity. It is shown to be an extension of co-observability,
used in traditional supervisory control.

3.5 Infinite DES models

Up to a few years ago, opacity-related studies only con-
sidered finite-state DES models have been considered in .
There are recent work addressing extensions to infinite-
state DES. CSO and diagnosability verification are in-
vestigated for infinite-state DES modeled by pushdown
automata in Kobayashi and Hiraishi (2013) (therein called
pushdown systems), as well as in Chédor et al. (2014), in
the more general setting of recursive tile systems.

3.6 Relation with other DES and information flow
properties

We mentioned in Section 1 that opacity is an information
flow property. Relations between several of these proper-
ties can be easily drawn. First of all, secrecy is a special
case of opacity. A system predicate is secret if the predicate
and its complement are simultaneously opaque (Badouel
et al. (2007)).

It was shown in Bryans et al. (2008) that anonymity
and non-interference problems may be reduced to opacity,
using suitable observation functions. Lin (2011) also estab-
lishes links between opacity, anonymity and secrecy and
shows that observability, diagnosability, and detectability,
can be reformulated as opacity as well. The equivalence
between opacity and intransitive non-interference is proven
in Mullins and Yeddes (2013).

Moreover, opacity can be considered in some sense as the
dual of diagnosability (Zaytoon and Lafortune (2013)): for
opacity to hold, the secret should not be diagnosable from
the viewpoint of the intruder. As a result, several opacity
related works use techniques from diagnosis of DES; e.g.,

Dubreil (2010), Kobayashi and Hiraishi (2013), Chédor
et al. (2014).

4. ENSURING OPACITY

Traditional opacity formulations from the literature were
presented in Section 3. The following question is how does
one know that a given system G is opaque w.r.t. a secret
and the information available to intruders? Furthermore,
if it is not, what can be done to make it opaque? These
questions have been continuously addressed and this sec-
tion aims to synthesize the main approaches available in
the literature.

There are three main approaches to ensure opacity prop-
erties of DES:

• Verification, which roughly consists in model-checking
opacity properties;

• Supervisory control theory (SCT), which restricts the
system’s behavior in order to preserve the secret;

• Enforcement, which inputs observable events of the
systems and outputs (possibly) modified information
to the observer, such that the secret is preserved.

The main difference between SCT and enforcement is that
SCT constrains the system behavior (by restraining its
output) by means of a controller while enforcement allows
the system free-behavior but post-processes all its output.

4.1 Verification of opacity properties

Diagnosis approaches We mentioned in Section 3.6
that opacity can be considered as the dual property of
diagnosability. Dubreil et al. (2009) investigates the use of
techniques from diagnosis of DES (Zaytoon and Lafortune
(2013)) to detect and predict the flow of secret information
and construct a monitor that allows an administrator to
detect it.

In the sequel of the paper, only control and enforcement
approached will be further developed. For more details
about verification of: (i) LBO, refers to Lin (2011); (ii)
SBO, refers to Falcone et al. (2014) and Hadjicostis and
Keroglou (2014).

4.2 Supervisory control theory – SCT

The potential use of SCT for opacity validation of DES is
rather obvious. Several works present construction of mini-
mally restrictive opacity-enforcing supervisory controllers;
e.g., Takai and Kumar (2009), Saboori (2011), Ben-Kalefa
and Lin (2011). It is shown that optimal control always
exists for strong-opacity (Dubreil (2010)).

In these approaches, the intruder is generally assumed to
have full knowledge of the controller’s structure in addition
to the system’s. Moreover, the set of events the intruder
can observe is fixed.

The applicability of SCT depends on the hypothesis made
on the system’s model. Given EI , EO and EC being
respectively the set of events observable by the intruder,
of events observable by the controller and of controllable
events respectively, SCT can be directly applied in the
following cases (Dubreil (2010)):

(1) EC ⊆ EO ⊆ EI ;
(2) EI ⊆ EC ⊆ EO.

Furthermore, to deal with the following two cases, slight
extensions of SCT have been suggested in Dubreil (2010):

(3) EC ⊆ EI ⊆ EO ;
(4) EI ⊆ EO and EC ⊆ EO

but without EC and EI being comparable.

In Badouel et al. (2007), the authors solved the problem
of concurrent secrecy (Section 3.4) using SCT. Sufficient
conditions to compute an optimal controller preserving
all secrets are provided, assuming that the controller has
complete knowledge of the system and full control over it.

The work of Ben-Kalefa and Lin (2011) considers the
verification of both strong and weak opacity. It shows
that the solution to the Strong-Opacity Control Problem
(SOCP) exists and is unique if all controllable events
are observable. However solutions for the Weak-Opacity
Control Problem (WOCP) does not exist. This means
that if a system is not weakly opaque w.r.t. a given
secret language, there exists no controllable and observable
sublanguage which can assure weak opacity.

In Darondeau et al. (2014), the authors lift the opacity
enforcing control problem using SCT from a single finite
transition systems to families of finite transition systems
specified by modal transition systems (Larsen (1990)). The
objective is to ensure opacity of a secret predicate on all
models of a LTS derived from a given modal transition
system.

Using SCT is naturally more suited to language-based
notions of opacity. However, the verification of initial
state opacity has been addressed in Saboori (2011) by
means of reformulation of ISO to LBO, under regular SCT
hypothesis (cases (1) and (2)). Similar work was performed
for infinite-step opacity even though it cannot be so easily
translated to LBO. It is shown that the approach for ISO
can be extended by using a finite bank of supervisors and
ensure infinite-step opacity in a minimally restrictive way.

Superlanguages and Sublanguages In a nutshell, su-
pervisory control resumes to find the supremal sublan-
guage that ensures opacity. In Ben-Kalefa and Lin (2009),
the authors further investigate language composition and
show that opacity properties (with secrets being lan-
guages) are closed under union, but may not be closed
under intersection. They also demonstrate the following
results:
(i) the supremal strongly opaque sublanguage exists and
is unique;
(ii) the minimal strongly opaque superlanguage exists but
may not be unique;
(iii) the minimal weakly opaque superlanguage exists but
may not be unique; and
(iv) the supremal not opaque sublanguage exists and is
unique.

4.3 Enforcement of opacity properties

Opacity enforcement at run-time was recently surveyed in
Falcone et al. (2014). Enforcement does not restrict the
system behavior anymore. Instead, it ”hides” some of the
system’s output events whenever it is necessary. It is a
non-intrusive approach, opposite to supervision. There are
three main approaches used for opacity enforcement: 1)
Deleting occurrences of events from the output; 2) Adding
events to the output; 3) Delaying the output.

Deletion of events Considering a trace observed by
the intruder, it may happen that the observation of the

next event discloses the secret. A simple idea is to hide the
occurrence of this event from observation at run-time (and
possibly only this single occurrence) to avoid information
flow.

Main work achieving this is synthesized in Cassez et al.
(2012). In this approach, the enforcer is a device called a
mask. This mask restricts the observable outputs of the
system either in a static or dynamic fashion. The latter
case allows the mask to adapt to the intruder observation
mapping (assumed to be dynamic) at each execution step.

Addition of events Deleting events from the output
was still considered as intrusive by some researchers. Even
if the internal behavior of the system is no longer restricted
(as it is with SCT), its actual output is.

To cope with this problem, Wu and Lafortune derived a
method which artificially adds output to the set of ob-
servable events. This approach is called insertion functions
(Wu (2014)). An insertion function is a monitoring inter-
face at the system’s output that changes it by inserting
additional (”fake”) observable events.

Remark 6. Both these approaches were suggested in Lig-
atti et al. (2005), which proposed an enforcement mecha-
nism called edit-automata. This mechanism featured the
idea of ”suppressing” and ”inserting” actions in the cur-
rent execution of a system but without direct application
to information flow and opacity.

Delay of events The last approach to enforce of
opacity properties is to delay emissions of one or several
events which would have disclosed the secret, up to the
point the disclosure is of no interest anymore, or the
system reaches a state in which opacity holds again. This
method allows the full system behavior as well, but can
only apply to secrets for which time duration is of concern.

This approach has been presented in Saboori and Hadji-
costis (2007) and applied to K-step (weak) opacity. It was
later extended in Falcone et al. (2014) to K-step strong
opacity.

5. QUANTIFYING OPACITY

We presented in Section 3 main formulations of opacity
properties which have been considered in the literature.
With these definitions, even decidable problems (refer
to Section 6) only provide a yes/no answer to the sys-
tem’s opacity. Control (Section 4.2) and enforcement (Sec-
tion 4.3) can manage to turn a non-opaque system into an
opaque one.

However, this only accounts for deterministic models,
which is known to be a strong limitation in practice. Thus,
researchers extended some notions of opacity and tried to
quantify it in a probabilistic setting. That is, how can one
evaluate the possible information leakage of a system w.r.t.
a given secret? Hence, for a given system’s execution, we do
not ask if there exists an observably equivalent execution,
but how many there are, with a probabilistic measure
taking into account the likelihood of such executions.

5.1 Quantification of language-based opacity

Initial work on quantification of opacity properties was
reviewed in Bryans et al. (2013). It provides quantitative
measures of LBO in a probalistic setting but it is limited to
purely probalistic models, based on labeled Markov chains.

In Bérard et al. (2010) two dual notions of probabilistic
opacity are introduced:
(i) Liberal probabilistic opacity (LPO) measures the prob-
ability for an intruder observing a random execution of
the system to be able to gain information he can be sure
about. This definition provides a measure of how insecure
the system is. LPO = 0⇔ LBO.
(ii) Restrictive probabilistic opacity (RPO) measures the
level of certitude in the information acquired by an in-
truder observing the system. RPO = 0 means the system
is never opaque, whichever the running execution.

This work was extended very recently in Bérard et al.
(2015) to Markov decision processes with infinite execu-
tions. Quantification is performed through the computa-
tion of a probabilistic disclosure (PD). It is the proba-
bilistic measure that a run disclosing the secret has been
executed. Several problems are addressed, among which:
(i) General disclosure: Is PD bigger than a threshold?
(ii) Limit disclosure problem: Is PD = 1?
(iii) Almost-sure disclosure: does there exists a scheduler
such that PD = 1?
(iv) Almost-sure opacity: Is PD = 0?

Future extensions to this work would include the inves-
tigation of disclosure before some given delay, either as
a number of steps in the spirit of Saboori (2011), or for
probabilistic timed systems with an explicit time bound.

5.2 Quantification of state-based opacity

Saboori first investigated the extension of state-based opa-
city properties to probabilistic models. Three probabilistic
properties are presented in Saboori and Hadjicostis (2014):
(i) Step-based almost current-state opacity considers the
a priori probability of violating current state opacity fol-
lowing any sequence of events of length K. It requires this
probability to lie below a threshold for all possible lengths
k = (0, 1, . . .K). It is the extension of K-step opacity.
(ii) Almost current-state opacity is step-based almost
current-state opacity when there is no consideration re-
garding the length of the sequence of events, i.e., it consid-
ers the a priori probability of violating CSO following any
sequence of events. It requires this probability to lie below
a threshold. It is the extension of infinite-step opacity.
(iii) Probabilistic current-state opacity holds if the maxi-
mum increase in the conditional probability that the sys-
tem’s current state lies in the set of secret states (con-
ditioned on a sequence of observations) compared to the
case when no observation is available (prior probability) is
bounded.

These definitions were extended to ISO in Keroglou and
Hadjicostis (2013) for systems modeled as probabilistic
finite automata:
(i) Step-based almost initial state opacity captures the a
priori probability that the system will generate behavior
that violates initial state opacity after a certain number of
events.
(ii) Almost initial-state opacity captures the a priori prob-
ability that the system will eventually generate behavior
that violates initial state opacity.

Finally, Ibrahim et al. (2014) extended step-based almost
current-state opacity from Saboori and Hadjicostis (2010).
Instead of the disclosure probability being below a thresh-
old at each time step, it considers the probability of reveal-

ing the secret over the set of all behaviors. Two properties
are introduced :
(i) Sτ -Secrecy (stochastic-secrecy) holds if the probability
of secret disclosure is always below τ .
Secrecy ⇔ S0-secrecy.
(ii) I-S-Secrecy (increasing stochastic-secrecy) hold if,
whatever the threshold, there exists a size n of execution
length beyond which every trace has a disclosure proba-
bility below the threshold.

6. DECIDABILITY AND COMPLEXITY OF
OPACITY PROPERTIES

Opacity is a very general property. As a result, many
opacity problems are undecidable. This was demonstrated
in Bryans et al. (2008). It remains undecidable for general
finite labeled transition systems if you do not restrict the
class of observation function. Even for decidable opacity
problems, they are computationally complex to solve in
general. This sections synthesizes decidability and com-
plexity results demonstrated in the literature.

Note that LBO, ISO and CSO – referred to as general
opacity problems – have been proven to be reducible into
one another in polynomial time (Wu and Lafortune (2013),
Chédor et al. (2014)). Therefore, these problems have same
decidability and complexity (since their own complexity is
at least polynomial).

Table 1 synthesizes decidability and complexity results of
general opacity problems w.r.t the system’s model and
the observation mapping. Table 2 gathers results from
opacity quantification approaches. Finally, more specific
complexity results are presented in Table 3 .

7. APPLICATIONS AND RELATED ISSUES

Over the literature, some opacity properties and validation
strategies have been applied and evaluated. The reference
case of study is known as the Dinning cryptographers
problem, introduced by Chaum (1988); see e.g., Bérard
et al. (2010), Wu and Lafortune (2013). It illustrates
properties of ISO and CSO. Another ISO application is
presented in Saboori (2011), related to encryption using
pseudo random generators. The same work also presents
the problem of sensor network coverage for vehicle track-
ing. Opacity Issues in Games with Imperfect Information is
another application considered in Maubert et al. (2011).
It exhibits relevant opacity verification problems, which
noticeably generalizes approaches considered in the liter-
ature for opacity analysis in DES. Finally, the problem of
Ensuring Privacy in Location-Based Services was studied
in Wu (2014), using opacity techniques.

Much of the work in the DES community is essentially
theoretical. This applies to opacity-related papers as well,
therefore the shortness of this section. However, there have
been a few implementations, which are presented in the
following section.

Tools and implementation

Saboori used the Umdes Library to implement the veri-
fication method for infinite-step opacity, as described in
Saboori (2011). Umdes is a library of C routines developed
at the University of Michigan (Umdes (2009)) for studying
DES modeled by finite automata.

Table 1. Decidability and complexity results for general opacity problems

System model Observation mapping Decidability Complexity Reference

Petri Nets – Undecidable – Bryans et al. (2008)

Finite labeled Static Undecidable – Bryans et al. (2008)
transition system m-orwellian Decidable PSPACE-complete Cassez et al. (2012)

Pushdown automata (PDA)
– Undecidable / Decidable – / 2(1)-EXPTIME

Kobayashi and Hiraishi (2013)
if X\XS is a visible PDA (if XS is a visible PDA)

Recursive tile systems (RTS) – Undecidable – Chédor et al. (2014)

Weighted RTS (CwRTS) – Decidable 2-EXPTIME Chédor et al. (2014)

Table 2. Decidability and complexity results for quantified opacity problems

Problem Decidability Complexity Reference

General disclosure
}

Decidable /
Undecidable with partial

observation of the controller Bérard et al. (2015)
Limit disclosure opacity Polynomial / –
Almost-sure disclosure
Almost-sure opacity (perfect observation) Decidable Polynomial
Almost-sure opacity (partial observation) Decidable for ω-regular secrets EXPTIME

Step-based / almost current-state opacity Decidable PSPACE-hard
Saboori and Hadjicostis (2014)

Probabilistic current-state opacity opacity Undecidable –

Step-based / almost initial-state opacity Decidable – Keroglou and Hadjicostis (2013)

Sτ -Secrecy/I-S-Secrecy Decidable – Ibrahim et al. (2014)

Table 3. Other complexity results

Problem Complexity Order Reference

Current-state opacity PSPACE-complete O(2N)

Saboori (2011)
Initial-state opacity PSPACE-complete O(4N)
K-Step opacity NP-hard O((|Eobs|+ 1)K × 2N)
Infinite-Step opacity PSPACE-hard –

Resolution of initial-state Polynomial – Hadjicostis and Keroglou (2014)

LBO Strong-opacity PSPACE-complete – Lin (2011)

LBO Weak-opacity Polynomial – Zhang et al. (2012)

Static mask synthesis PSPACE-complete –
Cassez et al. (2012)

Dynamic mask systhesis EXPTIME lower bound –

Falcone developed a specific toolbox named Takos: a Java
Toolbox for the Analysis of K-Opacity of Systems (Takos
(2010)) to implement the K-step opacity enforcement
method presented in Falcone et al. (2014) (using delays).

Finally, in Klai et al. (2014), a symbolic observation graph-
based opacity checker has been implemented in C++ using
a binary decision diagram package called BuDDy (BuDDy
(1998)). Results are compared with the Takos toolbox on
the other well known Dinning philosophers problem.

8. CONCLUSIONS AND OPEN PROBLEMS

Over the past ten years, opacity applied to DES has
been broadly studied. Almost all opacity problems proven
decidable have a known complexity. Future trends are
oriented toward infinite-state discrete-event models, even-
tually coupled with probabilistic transition functions.

Moreover, in order to broaden the fields of applications,
one could consider opacity validation from another pers-
pective. Starting from a fully observable system and a
given secret, which events one should ”hide” in order to
assure opacity. This approach could provide a pragmatic
methodology for people interested in designing opaque sys-
tems. To the best of our knowledge, this problem has never
been addressed so far and is an interesting perspective.

REFERENCES

Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud,
B., and Darondeau, P. (2007). Concurrent secrets.
Discrete Event Dynamic Systems, 17(4), 425–446.

Ben-Kalefa, M. and Lin, F. (2009). Opaque superlan-
guages and sublanguages in discrete event systems. In
Decision and Control, 2009 held jointly with the 2009
28th Chinese Control Conference. CDC/CCC 2009.
Proceedings of the 48th IEEE Conference on, 199–204.
IEEE.

Ben-Kalefa, M. and Lin, F. (2011). Supervisory control for
opacity of discrete event systems. In Communication,
Control, and Computing (Allerton), 2011 49th Annual
Allerton Conference on, 1113–1119. IEEE.

Bérard, B., Chatterjee, K., and Sznajder, N. (2015). Prob-
abilistic opacity for markov decision processes. Informa-
tion Processing Letters, 115(1), 52–59.

Bérard, B., Mullins, J., and Sassolas, M. (2010). Quan-
tifying opacity. In Quantitative Evaluation of Systems
(QEST), 2010 Seventh International Conference on the,
263–272. IEEE.

Bryans, J.W., Koutny, M., Mazaré, L., and Ryan, P.Y.
(2008). Opacity generalised to transition systems. In-
ternational Journal of Information Security, 7(6), 421–

435.
Bryans, J.W., Koutny, M., and Mu, C. (2013). Towards

quantitative analysis of opacity. Springer.
Bryans, J.W., Koutny, M., and Ryan, P.Y. (2005). Mod-

elling opacity using petri nets. Electronic Notes in
Theoretical Computer Science, 121, 101–115.

BuDDy (1998). Buddy. online. URL http://vlsicad.
eecs.umich.edu/BK/Slots/cache/www.itu.dk/
research/buddy/.

Cassez, F., Dubreil, J., and Marchand, H. (2012). Synthe-
sis of opaque systems with static and dynamic masks.
Formal Methods in System Design, 40(1), 88–115.

Chaum, D. (1988). The dining cryptographers problem:
Unconditional sender and recipient untraceability. Jour-
nal of cryptology, 1(1), 65–75.

Chédor, S., Morvan, C., Pinchinat, S., Marchand, H., et al.
(2014). Diagnosis and opacity problems for infinite state
systems modeled by recursive tile systems. Discrete
Event Dynamic Systems.

Darondeau, P., Marchand, H., and Ricker, L. (2014). En-
forcing opacity of regular predicates on modal transition
systems. Discrete Event Dynamic Systems, 1–20.

Dubreil, J. (2010). Monitoring and Supervisory Control
for Opacity Properties. English. tel-00461306, Ph.D.
dissertation, Software Engineering, Universit Rennes 1.

Dubreil, J., Darondeau, P., and Marchand, H. (2008).
Opacity enforcing control synthesis. In Discrete Event
Systems, 2008. WODES 2008. 9th International Work-
shop on, 28–35. IEEE.

Dubreil, J., Jéron, T., Marchand, H., et al. (2009). Moni-
toring confidentiality by diagnosis techniques. In Euro-
pean Control Conference, 2584–2589.

Falcone, Y. and Marchand, H. (2013). Runtime enforce-
ment of k-step opacity. In Decision and Control (CDC),
2013 IEEE 52nd Annual Conference on, 7271–7278.
IEEE.

Falcone, Y., Marchand, H., et al. (2014). Enforcement
and validation (at runtime) of various notions of opacity.
Discrete Event Dynamic Systems.

Hadjicostis, C.N. (2012). Resolution of initial-state in
security applications of des. In Control & Automation
(MED), 2012 20th Mediterranean Conference on, 794–
799. IEEE.

Hadjicostis, C. and Keroglou, C. (2014). Opacity formu-
lations and verification in discrete event systems. In
Emerging Technology and Factory Automation (ETFA),
2014 IEEE, 1–12. IEEE.

Ibrahim, M., Chen, J., and Kumar, R. (2014). Secrecy
in stochastic discrete event systems. In Networking,
Sensing and Control (ICNSC), 2014 IEEE 11th Inter-
national Conference on, 48–53. IEEE.

Keroglou, C. and Hadjicostis, C.N. (2013). Initial state
opacity in stochastic des. In Emerging Technologies &
Factory Automation (ETFA), 2013 IEEE 18th Confer-
ence on, 1–8. IEEE.

Klai, K., Hamdi, N., and Hadj-Alouane, N.B. (2014). An
on-the-fly approach for the verification of opacity in
critical systems. In WETICE Conference (WETICE),
2014 IEEE 23rd International, 345–350. IEEE.

Kobayashi, K. and Hiraishi, K. (2013). Verification of opa-
city and diagnosability for pushdown systems. Journal
of Applied Mathematics, 2013.

Larsen, K.G. (1990). Modal specifications. In Automatic
Verification Methods for Finite State Systems, 232–246.
Springer.

Ligatti, J., Bauer, L., and Walker, D. (2005). Edit au-
tomata: Enforcement mechanisms for run-time security
policies. International Journal of Information Security,
4(1-2), 2–16.

Lin, F. (2011). Opacity of discrete event systems and its
applications. Automatica, 47(3), 496–503.

Maubert, B., Pinchinat, S., and Bozzelli, L. (2011). Opa-
city issues in games with imperfect information. arXiv
preprint arXiv:1106.1233.

Mazaré, L. (2004). Using unification for opacity properties.
In Proceedings of WITS, volume 4, 165–176.

Mullins, J. and Yeddes, M. (2013). Opacity with orwellian
observers and intransitive non-interference. arXiv
preprint arXiv:1312.6426.

Paoli, A. and Lin, F. (2012). Decentralized opacity of
discrete event systems. In American Control Conference
(ACC), 2012, 6083–6088. IEEE.

Saboori, A. (2011). Verification and enforcement of state-
based notions of opacity in discrete event systems. Ph.D.
thesis, University of Illinois at Urbana-Champaign.

Saboori, A. and Hadjicostis, C.N. (2007). Notions of
security and opacity in discrete event systems. In
Decision and Control, 2007 46th IEEE Conference on,
5056–5061. IEEE.

Saboori, A. and Hadjicostis, C.N. (2010). Opacity verifi-
cation in stochastic discrete event systems. In Decision
and Control (CDC), 2010 49th IEEE Conference on,
6759–6764. IEEE.

Saboori, A. and Hadjicostis, C.N. (2014). Current-state
opacity formulations in probabilistic finite automata.
Automatic Control, IEEE Transactions on, 59(1), 120–
133.

Takai, S. and Kumar, R. (2009). Verification and synthesis
for secrecy in discrete-event systems. In American
Control Conference, 2009. ACC’09., 4741–4746. IEEE.

Takos (2010). Takos: A java toolbox for analyzing
the k-opacity of systems. online. URL http://
toolboxopacity.gforge.inria.fr/.

Umdes (2009). Umdes-lib. online. URL http://www.
eecs.umich.edu/umdes/toolboxes.html. Software li-
brary.

Wu, Y.C. (2014). Verification and Enforcement of Opacity
Security Properties in Discrete Event Systems. Ph.D.
thesis, Wayne State University.

Wu, Y.C. and Lafortune, S. (2013). Comparative analysis
of related notions of opacity in centralized and coordi-
nated architectures. Discrete Event Dynamic Systems,
23(3), 307–339.

Zaytoon, J. and Lafortune, S. (2013). Overview of fault
diagnosis methods for discrete event systems. Annual
Reviews in Control, 37(2), 308–320.

Zhang, B., Shu, S., and Lin, F. (2012). Polynomial
algorithms to check opacity in discrete event systems.
In Control and Decision Conference (CCDC), 2012 24th
Chinese, 763 – 769. IEEE.

