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Abstract. In this article, we focus on data arriving sequentially by blocks in a stream. A semiparametric

regression model involving a common EDR (Effective Dimension Reduction) direction β is assumed in each

block. Our goal is to estimate this direction at each arrival of a new block. A simple direct approach

consists of pooling all the observed blocks and estimating the EDR direction by the SIR (Sliced Inverse

Regression) method. But in practice, some disadvantages appear such as the storage of the blocks and the

running time for large sample sizes. To overcome these drawbacks, we propose an adaptive SIR estimator

of β based on the optimization of a quality measure. The corresponding approach is faster both in terms

of computational complexity and running time, and provides data storage benefits. The consistency of our

estimator is established and its asymptotic distribution is given. An extension to multiple indices model is

proposed. A graphical tool is also provided in order to detect changes in the underlying model, i.e., drift in the

EDR direction or aberrant blocks in the data stream. A simulation study illustrates the numerical behavior

of our estimator. Finally, an application to real data concerning the estimation of physical properties of the

Mars surface is presented.

Keywords: Effective Dimension Reduction (EDR), Sliced Inverse Regression (SIR), data stream
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1 Introduction

Regression models are used to highlight the relationship between one response variable Y

and a p-dimensional regressor X. When p is large, parametric as well as nonparametric

regression methods are faced with the so-called curse of dimensionality. One way to overcome

this problem is to use dimension reduction techniques which aim at replacing X with a

projection onto a smaller dimension subspace. For the sake of simplicity, let us first consider

a semiparametric single index model.

More precisely, let (Y,X) ∈ R × Rp with E(X) = µ, covariance matrix V(X) = Σ and

E((X ′X)2) < ∞. Let ε be a real random error independent of X. It is assumed that Y

depends on X only through X ′β according to the following dimension reduction model:

Y = f(X ′β, ε), (1)

where the real-valued link function f and the parameter β ∈ Rp are unknown. Since the

function f is unspecified, only the linear subspace spanned by β may be identified. This

subspace is usually called Dimension Reduction (DR) subspace. Clearly, there are many

DR subspaces for a fixed model. This smallest DR subspace, which is the intersection of all

DR subspaces, is called the Effective Dimension Reduction (EDR) subspace (see Duan and

Li, 1991) or the central subspace (see Cook, 2007, section 8.3 for details and discussion).

The former term EDR is adopted in this paper, in order to be consistent with the closest

references to our work. To estimate the EDR subspace, Duan and Li (1991) introduced

a link-free and distribution-free method called SIR (Sliced Inverse Regression). The basic

principle of SIR is to reverse the role of Y and X and to study the geometric property of

the first inverse moment E(X|Y ) ; see for instance Li (1991), Chen and Li (1998), Zhu et al.

(2007) among others. The term “Sliced” refers to the fact that a slicing is realized on the

response variable Y to facilitate the estimation of the inverse conditional expectation.

In this paper we focus on data streams, that is, data arriving sequentially by blocks in

a stream. Since an increasing number of data sets are not fixed, but evolve over time, the

study of dimension reduction model in this case appears to be very useful. It is assumed that

each data block t is composed of an independent and identically distributed (i.i.d.) sample

{(Xi, Yi), i = 1, . . . , nt} available from the model in (1). A first simple approach to estimate

the EDR direction consists of waiting for all the blocks to be observed, pooling them and

then estimating the EDR direction by SIR. While SIR is a computationally simple and fast

method, the drawback of pooling the data lies in the storage of the blocks since the size of
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the dataset increases considerably with the number of blocks.

To avoid this, we propose an adaptive SIR method based on the optimization of a criterion

which assesses the proximity between the EDR directions of each block and the “global”

direction of the overall data stream. This optimization problem is equivalent to the eigen-

decomposition of a symmetric p× p matrix. It involves weighting terms which evaluate the

squared cosines between the current direction of the block and the previous ones. This leads

to an adaptive procedure which can detect aberrant blocks and which can also recover some

possible changes of EDR direction in the data. Another main advantage of this method is

in terms of storage since it is not necessary to stock all blocks of observations but only their

EDR directions.

In Section 2, after a brief recall on SIR, we introduce our SIR approach for data streams

(named SIRds). Both population and sample versions are described. This approach is ex-

tended to multiple indices models in Section 3. A simulation study is carried out in Section 4

in order to illustrate the behavior of our estimator and to compare it to classical SIR applied

to all blocks. The superiority of SIRds is evaluated in terms of computational complexity and

running time. SIRds adaptivity is investigated for recovering potential changes of direction

in some blocks. In Section 5, the proposed adaptive SIRds method is used to study the phys-

ical properties of surface materials on planet Mars from hyperspectral images. Concluding

remarks are given in Section 6.

Finally, let us note that a short french summary of this work (without proofs, real data

application and with only few simulation results) can be found in the proceedings of the

“Journées de Statistique” conference, see Chavent et al. (2012).

2 An adaptive SIR estimator for data stream: SIRds

Let us first recall in Section 2.1 the population and sample versions of SIR based on a single

block. Then, the population and sample versions of our adaptive method for a data stream

(of blocks) are presented in Section 2.2. Asymptotic results for the SIRds estimator are given

in Section 2.3. Finally, Section 2.4 provides some comments on computational complexity

and data storage for SIRds and the usual SIR applied to the union of all the blocks.
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2.1 Recall on SIR in block t

In this section, let us focus on a single block t. We first present the population version of

SIR and then derive its sample version.

The population version of SIR relies on the following linear condition:

(LC) : E(X ′θ|X ′β) is linear in X ′β, ∀θ ∈ Rp,

which is fulfilled when X is elliptically distributed. Moreover, in the presence of high-

dimensional data, this condition is often approximately fulfilled, see Hall and Li (1993)

for details. Let us consider a monotone transformation T (·) of Y . Under condition (LC)

and model (1), Duan and Li (1991) showed that the centered inverse regression curve is

contained in the one-dimensional linear subspace of Rp spanned by Σβ. As a consequence,

the eigenvector ut of Σ−1Γ associated with the non-null eigenvalue is an EDR direction (i.e.,

is collinear with β) where Γ = V(E(X|T (Y ))). The vector ut is Σ-normalized. Let us define

bt the Ip-normalized version of ut as bt = ut/||ut|| with ||ut||2 = u′tut.

To obtain an estimator of Γ which can be easily used in practice, Li (1991) proposed for

T (.) a slicing into Ht ≥ 2 non-overlapping slices s1, . . . , sHt . Denoting the hth slice weight

(resp. mean) by ph = P (Y ∈ sh) (resp. mh = E(X|Y ∈ sh)), then the matrix Γ can be

written as:

Γ =
Ht∑
h=1

ph(mh − µ)(mh − µ)′. (2)

Using the nt observations (Xi, Yi) within block t, it is straightforward to estimate the matrix

Γ by substituting theoretical versions of the moments by their empirical counterparts. Let

Γ̂ denote this estimator. Therefore, one obtains the estimated EDR direction ût as the

eigenvector associated with the largest eigenvalue of Σ̂−1Γ̂ where Σ̂ is an estimator of Σ. Let

us highlight that Σ̂ is assumed to be invertible which implies that nt > p. The vector ût is

Σ̂-normalized. Let us define b̂t the Ip-normalized version of ût as b̂t = ût/||ût||.

2.2 Population and sample versions of SIRds

In this section, let us consider T sequentially arriving blocks of data. From each block t,

we can obtain bt, the Ip-normalized EDR direction computed with SIR as described in the

previous section. The question is now to combine these directions b1, . . . , bt, . . . , bT in order

to provide an estimator of the EDR direction taking into account the T available blocks.

Averaging the vectors bt is not ideal since only the direction of bt is identifiable: even if the
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vectors bt have unit length and are collinear, their mean can be zero if they do not share the

same orientation.

Another way is to recover the direction “most collinear” with the vectors b1, . . . , bT . The

collinearity between two unit vectors a and b is measured by m(a, b) = cos2(a, b) = (a′b)2.

The following optimization problem is then considered:

max
a∈Rp

T∑
t=1

wtm(bt, a) s.t. ||a|| = 1, (3)

where the wt’s are positive weights such that
∑T

t=1wt = 1. These weights provide more

flexibility in the application: for instance, they allow the algorithm to take into account dif-

ferent block sizes. This approach is suitable but suffers from not being adaptive with respect

to changes in the parametric part of the model (i.e., β moves to β∗ 6= β in the underlying

model in block T ). In the following, an adaptive version of the maximization problem (3) is

introduced in order to take into account the possible evolution of the parametric part of the

semiparametric model in each block.

Population version of SIRds. To give an adaptive SIR approach for data streams, let us

add in (3) the weights m(bt, bT ). These weights will examine if the “new” block T provides

the same information as the previous blocks, that is if the EDR direction bT obtained in

block T is close to the directions bt, t = 1, . . . , T − 1 of the previous blocks. The following

optimization problem is thus considered:

max
a∈Rp

T∑
t=1

wtm(bt, bT )m(bt, a) s.t. ||a|| = 1. (4)

From now on, let us define Q(a, b1, . . . , bT ) :=
∑T

t=1wtm(bt, bT )m(bt, a) for all a ∈ Rp.

Theorem 1

(i) The solution vT ∈ Rp of the maximization problem (4) is the normalized principal

eigenvector of

MT =
T∑
t=1

wtbtb
′
tm(bt, bT ) (5)

associated with the largest eigenvalue Q(vT , b1, . . . , bT ).

(ii) Under linearity condition (LC) and model (1), vT is an EDR direction.

The proof is provided in the Appendix. Under (LC) and model (1), note thatQ(vT , b1, . . . , bT ) =

1, and otherwise Q(vT , b1, . . . , bT ) ∈ [0, 1]. The closer to one this measure is, the closer the
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linear subspace Span(vt) is to all the T linear subspaces Span(bt), t = 1, . . . , T . Let us also

highlight that, ignoring the adaptive term m(bt, bT ) in (5), one obtains the matrix of interest

used in the SIR approach for a stratified population developed by Chavent et al. (2011).

Let us now explain the advantage of this adaptive SIRds version on a simple example.

Let us assume that the underlying regression model for the first T − 1 blocks is given in (1).

It also assumed that for the last block T the parameter β is replaced by β∗ in model (1) with

β∗ ⊥ β for the usual inner product. Assuming the linearity condition, the SIRds approach

provides an EDR direction collinear with β for the first T − 1 blocks as mentioned above,

which is the “true” direction of the underlying model for these blocks. When block T arrives,

from the population point of view, we have: m(bt, bT ) = 0 for t = 1, . . . , T − 1 (since each

bt, for t = 1, . . . , T − 1, is collinear with β and bT is collinear with β∗). Then MT = wT bT b
′
T

since m(bT , bT ) = 1. Finally, an EDR direction collinear with β∗ is obtained, which is the

“true” direction of the current block. To conclude, the SIRds approach allows

• either to detect an aberrant block (that is with a parametric part which differs from

that of the previous block), and then to provide the “true” EDR direction of this specific

block,

• or to use the available information from all blocks with a common direction, and then

to provide the common EDR direction.

A visualization of the weights m(bt, bT ) for t = 1, . . . , T and T = 2, . . . , T will be very useful

for the user to detect whether or not aberrant blocks or drifts are present in the data stream.

Section 4 gives some graphical illustrations on various scenarios of data streams.

Sample version of SIRds. For each block t = 1, . . . , T , let us recall that b̂t is the Ip-

normalized estimator of the EDR direction bt. The estimator v̂T of the EDR direction vT

with the SIRds approach is the principal eigenvector of the p× p matrix defined as

M̂T =
T∑
t=1

wtb̂tb̂
′
t m(̂bt, b̂T ). (6)

One possible choice for the weights wt can be wt = nt∑T
j=1 nj

for t = 1, . . . , T , that is, the

relative size of the block t. The next section provides some asymptotic results for this

estimator: weak consistency and asymptotic normality.

6

Marie Chavent, Stephane Girard, Vanessa Kuentz, Benoit Liquet, Thi Mong Ngoc Nguyen, et al.. 
A sliced inverse regression approach for data stream. Computational Statistics, Springer, 

2014, 29, pp.1129-1152. <10.1007/s00180-014-0483-4>. <hal-00688609v3>



2.3 Asymptotic results

The following assumptions are necessary to state our asymptotic results on the convergence

of the estimated EDR direction by SIRds. Let us consider a fixed number T of blocks and

a sample size n =
∑T

t=1 nt which tends to ∞. Let Ht be the number of slices in block t and

let nh,t be the number of observations in the hth slice such that
∑Ht

h=1 nh,t = nt is the total

number of observations in block t.

• (A1) Each block t is a sample of independent observations from the single index

model (1).

• (A2) For each block t, the support of Y is partitioned into a fixed number Ht of slices

such that ph > 0, h = 1, . . . , Ht.

• (A3) For t = 1, . . . , T and h = 1, . . . , Ht, nh,t →∞ (therefore nt →∞ and n→∞).

Theorem 2 Under model (1), linearity condition (LC) and assumptions (A1)-(A3), one

has:

(i) v̂T = vT +Op(n
−1/2) where n := min(nt, t = 1, . . . , T ).

(ii) If, moreover, nt = n/T =: n for all t = 1 . . . , T , then

√
n(v̂T − vT ) −→d W ∼ N (0,ΓW ),

where the expression for ΓW is given in (19).

The proof is postponed to the Appendix.

2.4 Computational complexity and data storage

Computational complexity. For the sake of simplicity, let us assume that each block

has the same sample size n. In such a case, the computational complexity of SIR computed

on one block is of order p2(n+ p) (denoted as O(p2(n+ p)) hereafter). The first term (np2)

corresponds to the cost of computing the empirical covariance matrix Σ̂, the second term

(p3) is the cost for computing the matrix Σ̂−1Γ̂ and its eigendecomposition.

Our goal is to show that the SIRds approach performs faster than the sequential SIR

method which consists of computing SIR on the union of the j first blocks for j = 1, . . . , T .

Clearly, the computational complexity of sequential SIR is

O((np2 + p3) + (2np2 + p3) + · · ·+ (Tnp2 + p3)) = O(Tp2(nT + p)), (7)
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since it requires T computations of SIR on blocks of increasing sizes. The computational

complexity of SIRds is

O((np2 + p3) + (np2 + 2p2 + p3) + · · ·+ (np2 + Tp2 + p3)) = O(Tp2(n+ T + p)). (8)

The terms O(np2) correspond to the calculation of the covariance matrices Σ̂ in each block t.

The terms O(T p2) represent the calculation of the matrix M̂T when T > 1 blocks are

available. Finally the terms O(p3) stand for the cost of the eigendecompositions.

From (7) and (8), it appears that the complexity of sequential SIR depends on the

product nT while the complexity of SIRds depends on the sum n+T . From the computational

complexity point of view, SIRds outperforms sequential SIR as soon as
1

T
+

1

n
� 1, which

is often the case in practical situations.

Data storage. Sequential SIR requires the storage of the whole matrix of regressors (i.e.

T blocks of size np), its storage load is thus O(Tnp). As a comparison, SIRds requires

the storage of only one block of regressors and of the T EDR directions computed on the

previous blocks, corresponding to a storage load O((n+T )p). Similarly, for the data storage

comparison, SIRds has better performance than sequential SIR as soon as
1

T
+

1

n
� 1, since

the product nT is replaced by the sum n+ T .

3 Extension to multiple indices model

In this section, an extension of SIRds approach to the case of a multiple indices model is

proposed. Let us first recall the corresponding model introduced by Li (1991).

3.1 Recall on the multiple indices SIR on block t

The response variable Y is related to the p-dimensional quantitative regressor X (with

E(X) = µ and V(X) = Σ) only through the indices X ′βk, k = 1, . . . , K:

Y = g(X ′β1, . . . , X
′βK , ε). (9)

As in the single index model, the error term ε is independent of X and the link function g

is unknown. In other words, Y and X are independent conditionally on (X ′β1, . . . , X
′βK).

In this multiple indices model, we search for a basis that spans the K-dimensional EDR

subspace E = Span(β1, . . . , βK). As for the single index model, SIR is used to seek for a
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basis of the EDR subspace for each block. In order to get theoretical results, the linearity

condition (LC) is replaced by:

(LC’) E(X ′v|X ′β1, . . . , X ′βK) is linear in X ′β1, . . . , X ′βK for any v ∈ Rp.

For the block t, assuming the linearity condition (LC’) and model (9), the eigenvectors

u1,t, . . . , uK,t associated with the largest K eigenvalues of the matrix Σ−1Γ are EDR direc-

tions, where the matrix Γ has been defined in (2). Note that the number H of slices must

be greater than K in order to avoid artificial dimension reduction. Let us define the matrix

Ut = [u1,t, . . . , uK,t] containing these EDR directions which form a Σ-orthogonal basis of E.

Then the first K eigenvectors, b1,T , . . . , bK,T of the matrix UtU′t form an Ip-orthonormal basis

of E. They are stored in the p×K matrix Bt = [b1,t, . . . , bK,t].

3.2 Population and sample versions of SIRds

Since the dimension K of the EDR space is greater than one, the optimization problem (4)

can be adapted as follows. Direction bt is replaced by an Ip-orthonormal basis Bt of the EDR

subspace and the weights cos2(bt, bT ) by the following proximity measure between the linear

subspaces spanned by Bt and BT from the blocks t and T :

m(Bt,BT ) =
Trace(PtPT )

K
,

where Pl = Bl(B′lBl)−1B′l = BlB′l is the Ip-orthogonal projector onto Span(Bl), the EDR

subspace obtained from the block l (equal to t or T ). This measure takes its values in [0,1].

Note that m(Bt,BT ) = 1 when Span(Bt) = Span(BT ). The closer this measure is to one, the

closer the linear subspace Span(Bt) is to the linear subspace Span(BT ).

Let A be a p × K matrix such that A′A = IK . Let us introduce Q(A,B1, . . . ,BT ) the

following proximity measure between the linear subspace Span(A) and the EDR subspaces

Span(B1), . . . , Span(BT ) respectively obtained from the T available blocks:

Q(A,B1, . . . ,BT ) =
T∑
t=1

wtm(Bt,BT )m(A,Bt),

where ∀t, wt ≥ 0 and
∑T

t=1wt = 1. Note that this measure takes its values in [0,1]. We

have Q(A,B1, . . . ,BT ) = 1 when Span(A) = Span(B1) = · · · = Span(BT ). The closer this

measure is to one, the closer the linear subspace Span(A) is to all the T linear subspaces

Span(Bt), t = 1, . . . , T .
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Population version of SIRds. Similarly to the single index case, let us now deal with

the maximization problem:

max
A

Q(A,B1, . . . ,BT ) s.t. A′A = IK . (10)

The following theorem provides the solution of (10) and establishes the link with the EDR

subspace.

Theorem 3

(i) The solution VT = [v1,T , . . . , vK,T ] of the maximization problem (10) is an Ip-orthonormal

basis of the K-dimensional eigenspace associated with the K largest eigenvalues λ1, . . . , λK

of the p× p matrix

MT =
T∑
t=1

wt
BtB′t
K

m(Bt,BT ). (11)

Moreover Q(VT ,B1, . . . ,BT ) = λ1 + · · ·+ λK.

(ii) Under linearity condition (LC’) and model (9), the column vectors of VT form an

Ip-orthonormal basis of the EDR subspace E.

The proof can be found in the Appendix. Under (LC ′) and model (9), note thatQ(VT ,B1, . . . ,BT ) =

1, and otherwise, Q(VT ,B1, . . . ,BT ) ∈ [0, 1]. The closer this measure is to one, the closer

the linear subspace Span(Vt) is to all the T linear subspaces Span(Bt), t = 1, . . . , T .

Sample version of SIRds. The corresponding sample version can now be briefly de-

scribed. For each block t, using the corresponding sample, a Σ̂-orthogonal basis of the EDR

subspace is first estimated with SIR. The basis vectors are stored in the matrix Ût. Then

the first K eigenvectors of the matrix ÛtÛ′t are computed and stored in the matrix B̂t. They

form an Ip-orthogonal basis of the estimated EDR subspace. Finally the estimator of MT is

constructed as follows:

M̂T =
T∑
t=1

wt
B̂tB̂′t
K

m(B̂t, B̂T ).

Then the K eigenvectors associated with the largest K eigenvalues of this matrix M̂T , de-

noted by V̂T = [v̂1,T , . . . , v̂K,T ], provide an Ip-basis of the estimated EDR subspace denoted

by Ê.
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3.3 Asymptotics

Under the linearity condition (LC’) and the assumptions (A1)-(A3) given in Section 2, for

single index model, it can be shown that the estimated EDR basis converges to an EDR basis

at root n rate, that is the estimated EDR subspace Ê converges to the true EDR subspace:

Theorem 4 Assume that λ1 > λ2 > · · · > λK > 0. Under linearity condition (LC’) and

assumptions (A1)-(A3), we have

v̂k,T = vk,T +Op(n
−1/2), k = 1, . . . , K,

that is V̂T = VT +Op(n
−1/2).

The proof can be found in the Appendix. Note that, as for the single index model, using the

Delta-method, and asymptotic results of Tyler (1981) and Saracco (1997), the asymptotic

normality of the eigenprojector onto the estimated EDR subspace can be obtained, as well

as the asymptotic distribution of the estimated EDR directions, associated with eigenvalues

assumed to be different.

3.4 Discussion on the choice of dimension K

Since the beginning of this section, the dimension K of the EDR subspace was assumed

to be known. However in most applications the number K of indices is unknown a priori

and, hence, must be estimated from the data. Several approaches have been proposed in

the literature for SIR. Some are based on hypothesis tests of the nullity of the last (p−K)

eigenvalues, see Li (1991), Schott (1994) or Barrios and Velilla (2007). Another approach

relies on a quality measure based on the squared trace correlation between the true EDR

subspace E and its estimate Ê, see for instance Ferré (1998) or Liquet and Saracco (2008,

2012) for a graphical bootstrap based approach.

In the datastream context, under assumption (LC’), the dimension K is common to all

the blocks since it is assumed that the underlying model in each block relies on the same

EDR subspace E. From the theoretical point of view, it can thus be estimated from any

block or from any combinations of blocks. From the practical point of view, we recommend

choosing the dimension K using classical SIR in the first block. If a block appears to be

aberrant, the user has to again determine the dimension in order to confirm that the true

dimension of the whole EDR subspace is still K. In the example given in Section 5, the
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graphical approach of Liquet and Saracco (2012) is described and used to determine the

suitable dimension K.

4 A simulation study

A simulation study is carried out to evaluate the numerical performance of the proposed

method. First, Section 4.1 describes the single index model used in this simulation study

and the estimation methods (note that in the real data application of Section 5, we shall

consider and estimate a multiple indices model with K = 2). In Section 4.2, the numerical

results obtained with SIRds are compared with those provided by classical SIR approach.

The mean computational times obtained with both approaches are also exhibited. Finally

Section 4.3 illustrates the behavior of SIRds on various scenarios in which some blocks do

not have the same EDR direction.

4.1 Simulated model and estimation methods

In this simulation study, two semiparametric regression models are considered:

Y =
3

10
(X ′β)3 + ε, (12)

and

Y = sin(X ′β) + |X ′β|ε, (13)

where X follows the p-dimensional normal distribution Np(0p,Σ) with a covariance Σ ar-

bitrarily chosen as follows: a matrix A is randomly filled using the uniform distribution

on [−1, 1], then Σ = AA′ + Ip in order to avoid possible problems of inversion of Σ. The

error term ε follows the normal distribution N (0, σ2) and is independent of X. Model

(12) is homoscedastic while model (13) is a heteroscedastic one. We set p = 10, β =

(1,−1, 2,−2, 0, . . . , 0)′/
√

10 and σ = 0.5. In the following, for each model and a fixed covari-

ance matrix Σ, data streams of T = 20 blocks are generated with n = 200. One can observe

in Figure 1 the scatterplots of the true index X ′β versus Y for models (12) and (13) using

data from one block. Note that the corresponding empirical mean (over 500 replications) of

signal-to-noise ratio in model (12) (resp. model (13)) is equal to 6.48 (resp. 2.78).

For each model and for each data stream, the EDR direction is estimated as follows. At

the arrival of each block t (t = 1, . . . , T ), the EDR direction is computed with SIRds based

on these first available t blocks. The EDR direction is also calculated with the classical
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Figure 1: Scatterplots of the true index X ′β versus Y for model (12), on the left, and (13), on the

right, using data of one block.

SIR approach based on the sample formed by the union of the first available t blocks; this

approach is denoted by SIRu (for SIR on union of blocks) hereafter.

4.2 Numerical results and running times

First, for each model, numerical results obtained with SIRds and SIRu approaches are com-

pared using the quality measurem, that is the squared cosine between the true EDR direction

and the estimated one. Then, we focus on the running time of these approaches to determine

which is fastest. The experiments have been conducted using the R language on a laptop

with a 2.53GHz processor.

Comparison of SIRds and SIRu approaches. Here our aim is to compare quality

measures of EDR directions estimated with SIRds and SIRu. For each model, B = 500 data

replications of a data stream of size T = 20 blocks are generated as previously. Figure 2

shows boxplots of the quality measure of the corresponding estimated EDR directions for T =

1, 5, 10, 15, 20 blocks. Let us first remark that both models provide very similar numerical

results. Note that in the case T = 1 (only one block), the two approaches SIRds and SIRu

are obviously equivalent to the usual SIR.

The case T = 1 shows us the variability existing in each block of data. It gives an idea

of the structure of the data, since each block is simulated according to the same model.

Notice that both methods, SIRds and SIRu, give reliable results with quality measures close

to 1. Not surprisingly, the quality measure increases with the number of blocks. SIRu

always provides slightly better results than SIRds as the EDR direction is estimated on

the whole data set (when all blocks are collected and stored in a big dataset). But, as
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Figure 2: Boxplots of the squared cosines between the true EDR direction and the EDR directions

estimated with SIRu and SIRds for different values of T .
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mentioned previously, the disadvantage of SIRu is clearly the storage of all the blocks.

SIRds is advantageous in keeping only the estimated EDR directions of the previous blocks

in memory, which is an interesting gain in storage. The price to pay is a small loss of quality

in the estimation of the EDR directions.

Running time. The running time (in seconds) of SIRds approach are now compared with

sequential SIR (which has been defined in Section 2.4 as a sequential use of SIRu). More

precisely, for a data stream of T blocks, the running times were calculated as follows:

• the running time of SIRds corresponds to the required time to compute an estimate

of the EDR direction with SIR for the first block, plus the time necessary to compute

an estimate of the EDR direction with SIRds for the first two blocks, . . . , plus the

time necessary to compute an estimate of the EDR direction with SIRds for the first

T blocks ;

• the running time of sequential SIR corresponds to the time necessary to compute an

estimate of the EDR direction with SIR for the first block, plus the time necessary to

compute an estimate of the EDR direction with SIRu for the first two blocks, . . . , plus

the time necessary to compute an estimate of the EDR direction with SIRu for the

first T blocks.

From model (12), B = 500 data streams are generated for various values of the dimension

p of X, the size n of each block and the total number T of blocks in the data stream.

Then the computational times are measured for both methods, SIRds and sequential SIR.

Unsurprisingly one can observe in Figure 3 that the dimension p noticeably favors SIRds

versus sequential SIR while the number T of blocks and the block size n hugely penalize the

sequential SIR approach in comparison with SIRds.

4.3 Adaptation to changes in the underlying model

In this section, the assumption that the model is the same in all the blocks is relaxed. From

now on, the slope parameter β in model (12) is thus indexed with t. In order to illustrate

the adaptivity of SIRds in comparison with SIRu in such cases, the following two scenarios

are considered.

For each scenario, T = 20 blocks are generated as described below:
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Figure 3: Mean of computational times (in seconds) of sequential SIR (◦) and SIRds (+)

for various values of T , p and n. (a) T ∈ {10, 20, 30, 40, 50, 60} for fixed n = 200 and

p = 10. (b) p ∈ {5, 10, 20, 40, 80} (plotted in log-scale) for fixed n = 200 and T = 20. (c)

n ∈ {100, 200, 400, 800, 1600, 3200} (plotted in log-scale) for fixed T = 20 and p = 10. For the sake

of readability, the points have been joined up with dotted and dashed lines.

• Scenario 1: βt is constant for T − 1 blocks and the 10th block is aberrant. We fix βt =

(1,−1, 2,−2, 0, . . . , 0)′/
√

10 for each block t with t 6= 10 and βt = (1, 1, . . . , 1)′/
√

10

for the 10th block.

• Scenario 2: βt = (1,−1, 2,−2, 0, . . . , 0)′/
√

10 for the first 9 blocks (t = 1, . . . , 9) and

βt = (1, 1, . . . , 1)′/
√

10 for the remaining ones (t = 10, . . . , 20).

At each time t (i.e., when the first t blocks are available), the corresponding true direction

βt is estimated with the SIRds and SIRu approaches. This direction is also computed with

classical SIR using only the data from block t. The quality measure of the estimator β̂t

obtained with SIRds, SIRu or SIR estimators is thus cos2(β̂t, βt). It is plotted for each

scenario in Figures 4 and 5. The weights cos2(̂bt, b̂T ) used in the computation of the SIRds

estimator in equation (6) are represented in a color scaled image. The lighter the shade of

yellow is, the larger the weight is (close to 1). The darker the shade of red is, the lower the

corresponding weight is (close to 0). This image will provide the user an interesting chart to

help detect if aberrant blocks appear in the data stream or if the underlying slope parameter

has drifted.

For scenario 1 (see Figure 4), SIRds and SIRu perform well on the first nine blocks. For the

aberrant 10th block, SIRds, in contrast to SIRu, is able to detect the change of direction

and allows to estimate the “true” EDR direction, i.e., the direction of the current block.

Moreover, the image of the weights clearly indicates that this 10th block is aberrant. Note

that the classical SIR in each block provides a good estimation of the EDR direction. Taking
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Scenario 1: the 10th block is different
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Figure 4: Numerical behavior of the SIRu and SIRds estimators for scenario 1. Top: plot of the

quality measure m(β̂t, βt) versus the number t of blocks (dashed red line for SIRds on the first t

blocks, dotted green line for SIRu on the first t blocks, solid block line for SIR on block t only).

Bottom: image of the weights cos2(̂bt, b̂T ) used in the computation of the SIRds estimator v̂T .
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into account all the information in previous blocks allows SIRds to improve the estimation

of the EDR direction from SIR in the current block.

For scenario 2 (see Figure 5), the image of the weights clearly shows that there is a drift from

the 10th block to the last one. The estimation of the true direction βt for SIRds remains

efficient after the 10th block whereas the accuracy of the estimation from SIRu falls after

the 10th block and rises slowly after that. Again, the results obtained with SIRds are better

than those obtained with SIR based only on the current block because SIRds uses all the

information of the previous available blocks sharing the same EDR direction.

As a conclusion, in both experiments, SIRds showed an interesting adaptive behavior

with respect to aberrant blocks and drift of the EDR direction.

5 A real data illustration

As an illustration, we consider a nonlinear inverse problem in remote sensing. The goal is

to estimate the physical properties of surface materials on planet Mars from hyperspectral

data. Specifically, the aim is to estimate the functional relationship between some physical

parameters Y and observed spectra X. For this purpose, a database of synthetic spectra is

generated by a physical radiative transfer model. Bernard-Michel et al. (2009a) propose to

reduce the high dimension of spectra (p = 352 wavelengths) with a regularized version of

SIR. The need to regularize SIR in very high dimensions is well-known as shown by Zhong

et al. (2005). Here, the empirical covariance matrix Σ̂ is replaced by Σ̂ + λIp where λ > 0,

see Bernard-Michel et al. (2009b) or Scrucca (2007) for other types of regularization.

In practice, the database of synthetic spectra may be so large that it cannot be stored

in a computer memory. Thus, a stream of smaller sub-databases is generated and SIRds

approach is applied in this context.

Description of the data. We focus on an observation of the south pole of Mars at the

end of summer, collected by the French imaging spectrometer OMEGA on board of Mars

Express Mission. A detailed analysis of this image (Douté et al. (2007)) revealed that this

portion of Mars mainly contains water ice, carbon dioxide and dust. This has led to the

physical modeling of individual spectra with a surface reflectance model. This model allows

the generation of blocks of n = 800 synthetic spectra with the corresponding parameters.

For the sake of simplicity, we limit ourselves to the study of the first T = 8 blocks. Also, let

us focus on a terrain unit of strong CO2 concentration determined by a classification method
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Scenario 2: a drift occurs from the 10th block to the last block
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Figure 5: Numerical behavior of the SIRu and SIRds estimators for scenario 2. Top: plot of the

quality measure m(β̂t, βt) versus the number T of blocks (dashed red line for SIRds on the first t

blocks, dotted green line for SIRu on the first t blocks, solid black line for SIR on block t only).

Bottom: image of the weights cos2(̂bt, b̂T ) used in the computation of the SIRds estimator v̂T .
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based on wavelets (Schmidt et al. (2007)). The parameter of interest, Y , is the proportion

of CO2 ice.

Choice of the parameters. The number H of slices is fixed to 19 since it corresponds

to the number of distinct values of Y in the database. The regularization parameter is fixed

at λ = 0.00001 thanks to a cross-validation procedure, see Bernard-Michel et al. (2009a) for

further details.

The dimensionK of the EDR subspace E was selected on the first block using the method

proposed in Liquet and Saracco (2012). The criterion used is the squared trace correlation

to study the closeness between two k-dimensional linear subspaces: the corresponding risk

function is defined as

Rk = E
[
Trace(PkP̂k)

]
/k, (14)

where Pk denotes the orthogonal projector onto the subspace spanned by the first k basis

vectors of E and P̂k is the orthogonal projector onto the subspace spanned by the first k

vectors of Ê. This quantity Rk is only defined for any dimension k less than or equal to

the true dimension K of the EDR subspace. In our dimension reduction context, a value

of Rk close to one indicates that the set of the k estimated linear combinations of X is

close to the ideal set. So in terms of dimensionality, k is a feasible solution. On the other

hand, a value of Rk perceptibly different from 1 means that this estimated set is slightly

different from the ideal one, so the solution for the dimension is greater than k. Since RK

will converge to one as n tends to infinity (for the true dimension K), then, for a fixed n, a

reasonable way to assess whether an EDR direction is available is to look the deviation of Rk

from one. From a computational point of view, consistent estimates R̂k of Rk are required,

so a feasible solution for the dimension can be obtained by computing the values of R̂k for

k = 1 to p and observing how much it deviates from one. Liquet and Saracco (2012) use a

bootstrap estimator of this criterion. Note that in our application, the number of slices is

fixed since the dependent variable Y is discrete (H = 19). Hence, here, we adapt slightly the

criterion proposed by Liquet and Saracco (2012) to select only the dimension K (and not to

determine the couple (H,K) of parameters). Let B be the number of bootstrap replications

of the data from the first block of size n. Let us consider s(b) =
{

(X
(b)
i , Y

(b)
i ), i = 1, . . . , n

}
a non-parametric bootstrap sample replication. A naïve bootstrap estimate of the mean
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squared risk function is defined by:

R̂k =
1

B

B∑
b=1

R̂
(b)
k (15)

where R̂(b)
k = Trace

(
P̂kP̂

(b)
k

)
/k and P̂

(b)
k is the projector onto the subspace spanned by

the first k eigenvectors of the matrix of interest, as obtained from the bootstrap replication

sample s(b). In practice, the criterion R̂k will be computed for all k = 1 . . . , p whereas

from a theoretical point of view the Rk is only defined for k = 1, . . . , K. The objective

of the graphical method is to provide a practical choice of the dimension K of the model

thanks to the bootstrap estimated version of the criterion. To do this, the method consists

of evaluating the R̂k for all k ∈ {1, . . . , p} and then in observing how much they depart from

one. Note that in Figure 6 (on the right), since p is large, R̂k versus k is plotted only for

k ∈ {1, . . . , 15}. The best choice will be the value K̂ which gives a value of R̂k close to

one, such that K̂ � p. In practice, since there is no objective criterion to establish when a

departure from one is small, a visual inspection of the plot of the R̂k versus k allows the best

value to be chosen. It is also useful to provide, for each k, the boxplot of the R̂(b)
k ’s to inspect

the stability (or not) of the corresponding k-dimensional linear subspace. In Figure 6 (on

the left), it clearly appears that the one- and two-dimensional EDR subspaces are stable,

while the subspaces of greater dimension (k ≥ 3) are more unstable. Following inspection

of Figure 6, it appears that K̂ = 2 seems to be an appropriate choice in terms of stability

of the estimated EDR subspace. This choice is also confirmed by the eigenvalues scree plot

which presents a jump after K = 2, see Figure 7.
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Figure 6: Choice of the dimension based on the stability of the estimated EDR subspace.

21

Marie Chavent, Stephane Girard, Vanessa Kuentz, Benoit Liquet, Thi Mong Ngoc Nguyen, et al.. 
A sliced inverse regression approach for data stream. Computational Statistics, Springer, 

2014, 29, pp.1129-1152. <10.1007/s00180-014-0483-4>. <hal-00688609v3>



●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200 250 300 350

0.0
0.2

0.4
0.6

0.8
1.0

k

eig
en

va
lue

s

Figure 7: Eigenvalue scree plot of the first block.
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Figure 8: Plots of the dependent variable versus the first EDR index (on the left) and the second

EDR index (on the right).

The plots of the proportion of CO2 ice (Y ) versus the first and second EDR indices

depicted on Figure 8 exhibit a nice structure. Similar results are obtained by plotting the

dependent variable Y as a bivariate function of both first and second indices (see the left

panel of Figure 9). Let us highlight that these structures are stable, i.e., they have also been

observed on the other blocks. In contrast, the plot of the proportion of CO2 ice versus the

third and fourth EDR indices (see the graphic on the right of Figure 9) does not exhibit

any structure and is very different from one block to another. These graphical diagnostics

therefore confirm the choice K̂ = 2.
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Figure 9: 3D-plot of the dependent variable versus the first two EDR indices (on the left); 3D-plot

of the dependent variable versus the third and fourth EDR indices (on the right)

SIR data stream on all the blocks. Here, the true directions are unknown but it is still

possible to assess the stability of the estimated EDR subspace by representing the weights

cos2(̂bt, b̂T ) used in equation (6) graphically. However, since all the squared cosines are larger

than 0.98, we do not provide the corresponding figure to visualize the weigths used in SIRds

because only one color (light yellow) would be used. Therefore, the EDR subspace computed

on the current block is very close to the EDR subspace computed on the previous blocks.

Thus there exists an unique underlying EDR direction in this data stream.

Moreover, it can also be checked that SIRds and SIRu yield similar EDR subspaces with

squared cosines larger than 0.999 at each step t=1,. . . ,8. The plots of the proportion of CO2

ice versus the first and second EDR indices computed on all the blocks are very similar to

those in Figures 8 and 9. Finally, Figure 10 represents the coordinates of each of the first

two EDR directions. It indicates which wavelengths are important (nonzero coordinates) for

estimating the proportion of CO2 ice.

6 Concluding remarks

We present in this paper population and sample versions of SIRds for a single index or

multiple indices model. The proposed SIRds approach performs well on simulated data as

long as the EDR could be accurately estimated in each block. This implies that the size nt of
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Figure 10: Final first and second EDR directions obtained with SIRds on all the blocks.

each block should be large enough in regards to the dimension p. Our approach has been also

applied to real data concerning the estimation of physical properties of the surface of Mars.

In this application, we use an extension of SIRds based on a regularized SIR version instead

of the usual SIR. It is also possible to use alternative methods instead of SIR, such as SIR-II,

SAVE or SIRα for example. These approaches are based on properties of the conditional

variance of X given T (Y ), see for instance Li (1991) or Shao et al. (2009). Another possible

extension is to investigate the case of a multivariate response variable Y : the idea would

be to use a multivariate SIR approach instead of univariate SIR methods, see for instance

Barreda et al. (2007), Saracco (2005) or Lue (2009).
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Appendix: Proofs

Proof of Theorem 1. (i) Since ||bt|| = 1 and introducing αt = wtm(bt, bT ), we have:∑T
t=1 αt cos2(bt, v) =

∑T
t=1 αt(b

′
tv)2

=
∑T

t=1 αtv
′btb
′
tv

= v′
(∑T

t=1 αtbtb
′
t

)
v

= v′MTv.

Thus the maximization problem (4) can be rewritten as

max
v∈Rp

v′MTv

v′v
. (16)

The solution of (16) is clearly the normalized principal eigenvector of MT .

(ii) Assuming the linearity condition (LC) and model (1) for each block t, all the vectors bt are

collinear with β. The rank of the symmetric matrix MT is therefore one. The eigenvector vT

associated with the non-null eigenvalue ofMT is also collinear with β: thus vT is a normalized

EDR direction (||vT || = 1). �

Proof of Theorem 2. (i) For each block t and under the assumptions (LC), (A1)-

(A3), from the SIR theory of Li (1991) each estimated EDR direction b̂t converges to bt

at root nt rate: that is, for t = 1, . . . , T , b̂t = bt + Op(n
−1/2
t ). It can be shown that

cos2(̂bt, b̂T ) = cos2(bt, bT ) + Op(n
−1/2) = 1 + Op(n

−1/2), and thus M̂T = MT + Op(n
−1/2).

Therefore the principal eigenvector of M̂T converges to that corresponding to MT at the

same rate: v̂T = vT + Op(n
−1/2). Since vT is collinear with β, the estimated EDR direction

v̂T converges to an EDR direction at root n rate.

(ii) Let C1 ⊗ C2 denote the Kronecker product of the matrices C1 and C2 (see for instance

Harville, 1999, for some useful properties of the Kronecker product). Let C = [c1, . . . , cq] be

a (p × q) matrix, where the ck’s are p-dimensional column vectors. Let vec(C) denote the

pq-dimensional column vector: vec(C) =
(
c′1, . . . , c

′
q

)′
. We shall denote by N+ the Moore-

Penrose generalized inverse of the square matrix N . In the sequel, let B = [b1, . . . , bT ] be the

matrix which contains all the EDR directions obtained from all T blocks. Let us also define

the matrix B̂ = [̂b1, . . . , b̂T ]. The proof involves three steps.

Step 1: Asymptotic distribution of vec(B̂). Under (A1)-(A3), asymptotic theory of

SIR gives us the following result for each block t = 1, . . . , T :
√
n(̂bt− bt) −→d Ut ∼ N (0, Vt),
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where the expression of Vt can be found in Saracco (1997), for instance. Then, it follows

that:

√
n(vec(B̂)− vec(B)) −→d vec


U1

...

UT

 ∼ N (0,ΓU) where ΓU =


V1 0

. . .

0 VT

 (17)

Step 2: Asymptotic distribution of vec(M̂T ). Standard properties of “vec” operator

yield:

vec(M̂T ) =
T∑
t=1

wtvec(̂btb̂′t)(̂b
′
tb̂T )2 = f(vec(B̂)),

with ||̂bt|| = 1, ∀t = 1, . . . , T and where the function f is defined as:

f : Rp×T → Rp2

vec(B) 7→
∑T

t=1wtvec(btb
′
t)(b

′
tbT )2.

Let K1,p be the vec-permutation matrix given by K1,p =
∑p

j=1(E1j ⊗ E ′1j) with E1j = e′j,p

and ej,p is the jth column of Ip. The (p2 × pT ) Jacobian matrix J = [J1| . . . |JT ] associated

with f is defined by the concatenation of the p2× p matrices Jt, where, for t = 1, . . . , T − 1,

Jt =
∂f(vec(B))

∂b′t
=
∂wtvec(btb′t)(b′tbT )2

∂b′t

= wt(K1,p ⊗ Ip)[bt ⊗ Ip + Ip ⊗ bt](b′tbT )2 + wtvec(btb′t)2(b′tbT )b′T ,

and JT is defined by:

JT =
∂f(vec(B))

∂b′T
=
∂
∑T

t=1wtvec(btb
′
t)(b

′
tbT )2

∂b′t

=
T−1∑
t=1

wtvec(btb′t)2(b′tbT )b′t +
∂wTvec(bT b′T )(b′T bT )2

∂b′T

=
T−1∑
t=1

wtvec(btb′t)2(b′tbT )b′t + wT (K1,p ⊗ Ip)[bT ⊗ Ip + Ip ⊗ bT ](b′T bT )2 + wTvec(bT b′T )4(b′T bT )b′T .

Then, using (17) and applying Delta-method entail

√
n(vec(M̂T )− vec(MT )) −→d V ∼ N (0,ΓV = JΓUJ

′). (18)

Step 3: Asymptotic distribution of b̂. The vector v̂T (resp. vT ) is the eigenvector

associated with the largest eigenvalue λ̂ (resp. λ) of M̂T (resp. MT ). Since M̂T = MT +

Op(1/
√
n) and using (18), Lemma 1 of Saracco (1997) yields:

√
n(v̂T − vT ) −→d W = (MT − λIp)+V vT ∼ N (0,ΓW )
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with

ΓW = [v′T ⊗ (MT − λIp)+]ΓV [vT ⊗ (MT − λIp)+]. (19)

�

Proof of Theorem 3. (i) Since the bases A, B1, . . . , BT are assumed to be Ip-orthonormal

and introducing αt = wtm(Bt,BT ), we have:

Q(A,B1, . . . ,BT ) =
∑T

t=1 αtm(A,Bt)

=
∑T

t=1 αtTrace(AA′BtB′t)/K

=
∑T

t=1 αtTrace(A′BtB′tA)/K

= Trace(A′{
∑T

t=1 αtBtB′t}A)/K

= Trace(A′{
∑T

t=1wt
BtB′

t

K
m(Bt,BT )}A)

= Trace(A′MTA).

Let VT = arg maxAQ(A,B1, . . . ,BT ). Since it is well known that VT is given by the p ×K

matrix formed by the K eigenvectors VT associated with the K largest eigenvalues of MT ,

the proof is complete.

(ii) Since the column vectors of Bt form an Ip-orthonormal basis of E, we have Span(Bt) =

E for each block t. Then the eigenvectors associated with the K largest eigenvalues of BtB′t
form an Ip-orthonormal basis of E. The assumptions of the theorem imply that m(Bt,BT ) =

1. Then it follows that the eigenvectors associated with the K largest eigenvalues of MT

form an Ip-orthonormal basis of the EDR subspace E. �

Proof of Theorem 4. From SIR theory, one can derive B̂t = Bt + Op(n
−1/2
t ) for each

block t. Then the eigenvectors associated with the K largest eigenvalues of the matrix B̂tB̂′t
converge at the same rate to the corresponding eigenvectors associated with the K non-

null eigenvalues of BtB′t. Under the assumptions of the theorem, we have m(B̂t, B̂T ) = 1 +

Op(n
−1/2). As a consequence M̂T = MT +Op(n

−1/2), and finally v̂k,T = vk,T +Op(n
−1/2), k =

1, . . . , K, which completes the proof. �
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