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CRITERION FOR RAYS LANDING TOGETHER

JINSONG ZENG

Abstract. Let f be a polynomial with degree≥ 2 and the Julia set Jf locally connected.
We give a partition of complex plane C and show that, if z, z′ in Jf have the same itinerary
respect to the partition, then either z = z′ or both of them lie in the boundary of a Fatou
component U , which is eventually iterated to a siegel disk. As an application, we prove
the monotonicity of core entropy for the quadratic polynomial family {fc = z2 + c :
fc has no Siegel disks and Jfc is locally connected }.

1. Introduction

Let f be a polynomial with degree d ≥ 2 in the complex plane C. The filled Julia set
is

Kf := {z ∈ C : The orbit {fn(z)}n≥0 is bounded }
and the Julia set is the topological boundary of the filled Julia set

Jf = ∂Kf .

Both of them are nonempty and compact, and the filled Julia set is full, i.e., the comple-
ment C \Kf is connected. We call Ωf := C \Kf the basin of infinity which consists of
points with the orbit attracted by ∞. If Jf is connected. Then Ωf is a simply connected

and there exists an unique holomorphic parameterization Ψf : Ωf → C \ D such that
Ψf (∞) =∞, Ψ′f (∞) = 1 and

Ψf ◦ f(z) = (Ψf (z))d. (1.1)

By the external ray R(θ) we mean the preimage of the radial line Ψ−1
f {re2πiθ : r > 1},

where θ ∈ R/Z is the argument of the ray. We say that R(θ) lands at z ∈ Jf if

limr→1Ψf (re2πiθ) = z. By the theorem of Carathéodory Ψ−1
f extends continuous to ∂D

with Ψ−1
f (∂D) = Jf if and only if Jf is locally connected.

Throughout this paper we consider the case, Jf is locally connected. Define α : R/Z→
Jf , θ 7→ α(θ) where α(θ) is the landing point of ray R(θ). By (1.1), we have the following
semi-conjugation,

f(α(θ)) = α(σd(θ)), (1.2)

where σd : R/Z→ R/Z with θ 7→ d θ modZ. Thus, to study the topology of the Julia set
and the dynamics of f on Jf is necessarily to figure out the semi-conjugation α.

There are two questions arising naturally,
(1) For any z in Jf , is the fiber α−1(z) finite ? In other words, are there only finite rays

landing at z ?
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(2) Give a condition under which θ, θ′ are in the same fiber. That is, when two external
rays R(θ), R(θ′) land at a same point ?

For the first question, if the orbit of z is finite, then the fiber α−1(z) is finite [DH84].
If z is wandering, i.e., the orbit is infinite, J.Kiwi gave an upper bound #α−1(z) ≤ 2d

[Ki02]. A.Blokh and G.Levin consider the more general problem: counting the number
of external rays landing at distinct wandering points with disjoint forward orbits. Blokh
and Levin worked the abstract modeling invariant laminations and introduced a new tool
called growing tree [BL02]. In this paper, inspired by [Ki02], we reprove the inequality in
a totally different way.

Theorem 1.1. Let z1, · · · , zm be wandering branched points such that their forward orbits
avoid the critical points and are pairwise disjoint. Then∑

1≤i≤m
(v(zi)− 2) ≤ d− 2.

In the above theorem, a point z is called to be a branched point if the fiber α−1(z)
contains at least three angles and the valence v(z) is cardinal number of α−1(z).

For the existence, W. Thurston proved that for quadratic polynomials there is no wan-
dering branched points. He asked a deep question concerning their existence for higher
degree in the preprint [Th85]. A.Blokh and L.Oversteegen answered the question by con-
structing an uncountable family of cubic polynomials, the Julia set of each one is a dendrite
and containing wandering branched points [BO08].

For the second question, following [BFH92], [Po93] and [Ki05] etc, we need a concept:
critical portrait associated to a polynomial f .
• For critical point c in Jf , Θ(c) is the set of arguments of external rays which land

at c and are inverse images of one ray landing at critical value f(c). Obviously, #Θ(c) is
degf (c), the local degree of f at c.
• For strictly pre-periodic critical Fatou component U , Θ(U) is a collection of deg(f |U )

arguments whose rays support U and are inverse images of one ray supporting f(U).
• For Fatou component cycle U0, · · · , Up−1 with f i(U0) = Ui, Up := U0, let Uk0 , · · · , Ukl

with 0 ≤ k0 < · · · < kl ≤ p − 1 be critical with degree n0, · · · , nl. For 0 ≤ i ≤ p, choose
(zi, θi), zi ∈ ∂Ui and R(θi) supporting Ui at zi, such that f i(z0) = zi, f

p(zp) = zp and
f i(R(θ0)) = R(θi). Then Θ(Ukj ) is the set of arguments whose external rays land on ∂Ukj
and are preimages of R(θkj+1), for 0 ≤ j ≤ l.

Let A := {Θ(c1), · · · ,Θ(cm),Θ(U1), · · · ,Θ(Un)}. For any Θ ∈ A, set“Θ :=
⋃
{Θ′ : ∃ a chain Θ0 = Θ, · · · ,Θk = Θ′ in A such that Θi

⋂
Θi+1 6= ∅}.

The collection “A := {“Θ1, · · · ,“ΘN} is called critical portrait associated to f . In the unit

circle, there is a partition P := {I1, · · · , Id} of R/Z \⋃1≤i≤N “Θi. Each Ii is a finite union
of open intervals with total length 1/d.

Given a partition, we say x, x′ have the same itinerary respect to the partition under a
map g if and only if both gn(x) and gn(x′) lie in the same piece of the partition, for any
n ≥ 0.

For polynomials with all critical points strictly preperiodic, B.Biefield, Y.Fisher and
J.H.Hubbard showed that, if θ, θ′ have the same sequence respect to the partition P then
α(θ) = α(θ′) [BFH92]. A.Porier extends this result to crtitical finite polynomials, admit-
ting periodic Fatou component [Po93]. Both of their proofs rely on the orbifold metric in
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Julia set, on which f is expanding. In [Ki05], Kiwi considered the polynomials with all
cycle repelling and Julia set connected. Based on the properties of maximal lamination,
he proved that if θ, θ′ have the same sequence respect to P, then the impressions of R(θ)
and R(θ′) intersect.

We prove the following theorem, which is the main result of this paper.

Theorem 1.2 (Main Theorem). Let f be a polynomial with Jf locally connected. Let P
be the partition induced by critical portrait “A. If θ, θ′ have the same itinerary respect to
P, then either R(θ),R(θ′) land at the same point or R(θ), R(θ′) land at the boundary of a
Fatou component U , which is eventually iterated to a siegel disk.

Note that S.Zakeri in [Za00] proved that for Siegel quadratic polynomial f , i.e., f : z →
z2 + c has a fixed Siegel disk, no points has more that two rays landing at and if two rays
landing at z then z must eventually hit the critical point 0.

The following Corollary holds immediately.

Corollary 1.3 (No wandering continua in Jf ). Let f be a polynomial with Jf locally
connected. Then there is no wandering continua in Jf .

We have to point out that A.Blokh and G.Levin also proved the above corollary [BL02].
And J.Kiwi proved that, for polynomials without irrational neutral periodic orbits f , Jf
is locally connected if and only if f has no wandering continua in Jf . Kiwi’s proof relies
on constructing a puzzle piece around each pre-periodic or periodic point of a polynomial
f with all cycles repelling [Ki04].

1.1. Motivation

One of our motivation is to study the core-entropy of polynomials. Suppose X is a com-
pact metric space and g : X → X is continuous. The topological entropy of g is measuring
the complexity of iteration from the growth rate of the number of distinguishable orbits.
The core-entropy of polynomial f is the topological entropy of f on its f -invaritant set
Hubbard tree, i.e., the convex hull of the critical orbits within the (filled) Julia set. Let
Acc(f) be the set of all biaccessible angles θ, i.e., there exist at least two rays landing at
α(θ). Then the core-entropy h(f) is related to the Hausdorff dimension of Acc(f) in the
following way,

h(f) = log d ·H.dimAcc(f). (1.3)

These quantities are according to W.Thurston who firstly introduced and explored the
core-entropy of polynomials.

For quadratic polynomials, G.Tiozzo showed the continuity of core-entropy along prin-
cipal veins of the Mandelbrot setM in [Ti13]. This result is generalized by W. Jung to all
veins [Ju13]. Recently, G.Tiozzo proves that the function θ 7→ h(fθ) with fθ(z) = z2 + cθ
is continuous.

A.Douady proved the monotonicity of core-entropy along real vein M⋂R[Do95]. The
monotonicity for all postcritically finite quadratic polynomials is proved in Tao Li’s thesis
[Li07]. As an application of theorem 1.2, we extend Tao Li’s result to a quadratic family
F := {fc = z2 + c : fc has no Siegel disks and Jfc is locally connected }.
Theorem 1.4 (Monotonicity of core-entropy). For any fc, fc′ ∈ F , if fc ≺ fc′, then
Acc(fc) ⊆ Acc(fc′) and so h(fc) ≤ h(fc′).

For any fc, fc′ in F , we say fc ≺ fc′ if and only if Ic ⊇ Ic′ , where Ic is the characteristic
arc of fc. See section 7 for details.
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1.2. Sketch of the proof and outline of the paper

The proof of main theorem 1.2 is based on the analysis in the dynamical plane. There
is a partition {Πi}1≤i≤d of C, induced by critical portrait. It has nice properties: for any
points x, y ∈ Πi

⋂
Jf , the regulated arc [x, y] ⊆ Πi and F |[x,y] is one-to-one, where F is a

topological polynomial which takes the same value as f in Ωf . Thus if x 6= y have the
same itinerary respect to {Πi}, we obtain a sequence {Fn[x, y]} of regulated arc. The
sequence will eventually meet

⋃
1≤i≤d ∂Πi

⋂
Jf . However it is difficult to prove that the

partition {Πi}1≤i≤d separates fn(x), fn(y) for some n. To overcome this difficult, we use
this sequence to construct a wandering arc in Jf , which is a contradiction.

In section 2, we prove theorem 1.1. This key result is useful to show the fact of no
wandering regulated arcs in Lemma 6.1.

In section 3, we give the construction of regulated arcs and describe its properties.
In section 4, we explain how to get a desired topological polynomial F by modifying f

in Fatou set.
Section 5 analysis the properties of partition induced by critical portrait in the dynamic

plane.
The main Theorem 1.2 is proved in section 6.
In the last section, we discuss characteristic arcs in details and give an application of

the main theorem to the monotonicity of core entropy for a quadratic polynomial family.

Acknowledgment. The author would like very much to thank Professors Weiyuan Qiu
and Lei Tan for their introductions, support and suggestion over these years. The author
also wants to thank China Scholarship Council for supports.

2. Wandering Orbit Portrait

If not otherwise stated, we assume f to be a polynomial with degree d ≥ 2 and Jf
locally connected. Our objective is to prove the Proposition 2.5.

2.1. Portraits

Now we give some definitions by following [Mi00][GM93][BFH92][Ki02] etc.
For a point z in Jf , the valence of z, written v(z), is the number of external rays landing

at z. Then 1 ≤ v(z) ≤ ∞. If v(z) ≥ 3, z is called to be a branched point. z is called to
be wandering if fm(z) 6= fn(z) for m 6= n ≥ 0.

Let T := {θ1, . . . , θn}, θi ∈ R/Z, 3 ≤ n <∞. T is called to be a portrait of z if all R(θi)
land at z. Denote by α(T ) := z the base point and v(T ) := n the valence of T . Obviously,
we have 3 ≤ v(T ) ≤ v(z).

Let T be a portrait of z. Each connected components of C\⋃θ∈T R(θ) is called a sector
of T based at z. Evidently, any sector S of T is bounded by two rays R(θa), R(θb) with
θa, θb ∈ T . Let I(S) be the segment of R/Z \ {θa, θb} disjoint with T . Then there is
a one-to-one correspondence betweens sectors based at z and the segments of R/Z \ T ,
characterized by the property that R(t) is contained in S if and only if t is contained in
I(S). Denote the correspondence by I : S 7→ I(S).

We define the annular size of a sector S, written l(S), by the length of the corresponding
arc I(S) in R/Z. Number the n sectors of T by S1(T ), · · · , Sn(T ) according to their length:

l(S1(T )) ≤ l(S2(T ) · · · ≤ l(Sn(T )).
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α(T )

α(T ′)

Si(T ) Si(T
′)

S

Figure 1. Portraits T, T ′ with distinct base points

By means of critical sector or critical value sector if a sector S contains critical points
or critical values.

Lemma 2.1 (For portraits with distinct base points). Let T, T ′ be two portraits with
α(T ) 6= α(T ′). Let S resp. S′ be the sector of T resp. T ′ such that α(T ′) resp. α(T ) is
contained in S resp. S′. Then all but S′ resp. S of the sectors of T ′ resp. S′ are contained
in S resp. S′ and so we have

l(Si(T
′)) < l(S) for Si(T

′) 6= S′ and l(Si(T ))) < l(S′) for Si(T ) 6= S.

Proof. Set G :=
⋃

1≤i≤v(T )R(θi) ∪ {α(T )} and G′ :=
⋃

1≤i≤v(T ′)R(θ′i) ∪ {α(T ′)}. They
are disjoint close connected subset of C. So G′ is contained in exactly one connected
component of C \ G, that is, some sector of T . Since α(T ′) ∈ S and α(T ) ∈ S′, we have
G′ ⊆ S and G ⊆ S′. See figure 1. Thus all sectors of T ′ resp. T except S′ resp. S are
contained in S resp. S′. The lemma follows. �

2.2. Sector maps

Lemma 2.2 (Properties of sector maps). Let T = {θ1, · · · , θv(T )} be a portrait such that
the base point α(T ) is not a critical point of f , here θi are enumerated in cyclic order
around the circle. Then

(1) The map σd : t 7→ dt mod Z carries T bijectively onto the portrait T ′ : = {σd(θ1),
· · · , σd (θv(T ))} of f(α(T )) preserving cyclic order. Define the portrait map to be

σd : T 7→ T ′.

(2) Let S be a sector of T bounded by R(θa) and R(θb). Then the sector map

σd : S 7→ S′,

where S′ is the sector of T ′ bounded by R(σd(θa)) and R(σd(θb)), is well defined and
one-to-one.

(3) l(σd(S)) = d l(S) mod Z. Moreover, the integer n0 := d l(S)−l(σd(S)) is the number
of critical points, counting multiplicity, of f contained in S.

(4) If n0 ≥ 1, then σd(S) contains at least one critical values.
(5) If l(S) < 1/d, then l(σd(S)) = d l(S) and the restriction of f on S is homeomorphic.

Note that we distinguish the definitions of σd by acting on different categories.
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z f(z)
xb

xa
γab

Q
f(xb)

Q′

f(xa)

f(γab)

f

Figure 2. Sector maps

Proof. Let z := α(T ). Since z is not critical. f is a locally orientation-preserving homeo-
morphism at z. Note that the v(T ) angles θi in R/Z and rays R(θi) around z are identical
in order. Moreover, the order of R(θi) can be measured within an arbitrarily small neigh-
borhood of z. It follows that all rays with angels in T ′ land together at f(α(T ) and σd
sends angles in T onto T ′ bijectively and keeping the order. Thus (1) and (2) follows.

For (3), suppose S is bounded by R(θa), R(θb). Let γab(t) be a segment of equipotential
curve {z ∈ C : Gf (z) = 1} which lies in S with γ(0) = xa and γ(1) = xb, where
{xa} := γab

⋂
R(θa) and {xb} := γab

⋂
R(θb). Let Q be the close domain bounded by

R(θa), γab and R(θb). See figure 2.
Consider the image f(∂Q). It starts at f(z) and goes along the rays R(σ(θa)) until it

arrives at f(xa), then it rotates d l(S) angles, parameterized by angles of external rays,
along the equipotential curve {z ∈ C : Gf (z) = d} to f(xb), finally it turns to f(z) along
R(σ(θb)) and stops.

Let Gd := {z ∈ C : Gf (z) < d}. Let Q′ be the domain σd(S)
⋂
Gd. By the arguments

above, it is easy to see that f(γab) surround ∂Gd in n0 times and overlap ∂Gd
⋂
∂Q′ one

time more. Thus,

l(σd(S)) + n0 = d l(S).

Moreover, z ∈ ∂Gd \ ∂Q′ has n0 preimages in γab and z ∈ ∂Gd
⋂
∂Q′ has n0 + 1 preimages

in γab. The winding number of points in Gd \ f(∂Q′) are

w(z) =

®
n0 + 1 z ∈ Q′
n0 z ∈ Gd \Q′.

(2.1)

By the Arguments Principle, every point z ∈ Gd \ f(∂Q) has w(z) preimages, counting
multiplicity, in Q.

Now claim that every points z in ∂Q′ \∂Gd, consisting of two segments of external rays,
has n0 + 1 preimages, counting multiplicity, in Q. Since such z can not be a critical value,
choose sufficiently small enough neighborhood Uz such that the restriction of f on every
component f−1Uz is homeomorphic. Since Uz

⋂
Q′ has n0 + 1 components in Q and Q is

closed, z must have n0 + 1 preimages in Q as well.
Let v1, · · · , vn ∈ f(Q) be the critical value of f |Q. Let µi be the total multiplicity

of critical points in Q mapped to vi. Choose a cell subdivision ∆ of f(Q) such that
the set of its 0-cells contains {f(z), v1, · · · , vn} and the set of 1-cells contains ∂Q′. Let
∆1 := {complexes of ∆ contained in Q′} and ∆2 := ∆ \ ∆1. It follows that ∆1 is a
cell subdivision of Q′. Set xi, yi, zi to be the number of 0-cell, 1-cell and 2-cell of ∆i.



JINSONG ZENG 7

Computing the Euler characteristic, we have

X (Q′) = x1 − y1 + z1 = +1 (2.2)

and
X (f(Q)) = (x1 + x2)− (y1 + y2) + (z1 + z2) = +1. (2.3)

After lifting every complexes in ∆ by f |Q, we obtain a cell subdivision ∆0 of Q. Then

X (Q) = [(n0 + 1)x1 + n0x2 −
∑

1≤i≤n
µi]− [(n0 + 1)y1 + n0y2]

+ [(n0 + 1)z1 + n0z2] = +1.

(2.4)

Combining (2.2), (2.3) and (2.4), we have∑
1≤i≤n

µi = n0.

Thus (3) is completed.
For (4), we use the notations as above. If not, assume Q′ contains no critical values.

Then every component of f |−1
Q (Q′) is simply connected and f on the closure of which is

homeomorphic. Consider the component C with ∂Q \ γab ⊆ C. f |C cannot be one-to-one,
a contradiction.

For (5), it follows directly by (3). �

2.3. Dynamics of wandering portraits

Portrait T is called to be wandering if and only if the point α(T ) is wandering and not
iterated to critical points of f . We denote by Tn := σ◦nd (T ).

Recall that S1(T ), · · · , Sv(T )(T ) are the v(T ) sectors of T enumerated by the order of
their annular size. We have the following lemma. See also in [Ki02].

Lemma 2.3. Let T be a wandering portrait. Then

limn→∞l(Sv(T )−2(Tn)) = 0.

Proof. If not, there exist a number a > 0 and an infinite sequence Tnk such that

5a/6 < l(Sv(T )−2(Tnk) < 7a/6.

The sectors Sv(T )−2(Tnk) can not be pairwise disjoint. Because otherwise the total length
of the infinite many intervals I(Sv(T )−2(Tnk) would be greater than 1.

Then there exist ni 6= nj such that Sv(T )−2(Tni)
⋂
Sv(T )−2(Tnj ) 6= ∅. By Lemma 2.1,

we can assume α(Tni) ∈ Sv(T )−2(Tnj ) and both sectors Sv(T )−2(Tni) and Sv(T )−1(Tni) are
contained in Sv(T )−2(Tnj ). Thus,

l(Sv(T )−2(Tnj )) > l(Sv(T )−2(Tni)) + l(Sv(T )−1(Tnj )) > 5a/3,

a contradiction. �

By lemma 2.3, for any wandering portrait T , the annular size of sectors Tn, except
the two large ones, will converges to zero. Furthermore, a similar argument can show
that lim inf l(Sv(T )−1(Tn)) = 0. We will not use this fact. We are more interested in the
moment when a ”wide” critical sector is mapped to a ”narrow” critical value sector.

For any sufficiently small ε > 0 and 1 ≤ k ≤ v(T )− 2, Set

nε,k(T ) := min{n : l(Sk(Tn)) < ε}.
By lemma 2.3, l(Sk(Tn)) will eventually be smaller than ε as n→∞. Thus nε,k(T ) is well
defined. We have the following,
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Lemma 2.4. Let T be a wandering portrait. Then There exists δ > 0 such that for any
ε < δ, denote by nε,k := nε,k(T ), 1 ≤ k ≤ v(T ) − 2, we have l(Sk+1(Tnε,k)) > ε and there
exists at least one critical value sector Sk0(Tnε,k) with 1 ≤ k0 ≤ k.

Proof. By lemma 2.3, there exists an integer N ≥ 1 such that, for any n ≥ N ,

l(Sv(T )−2(Tn)) <
1

2v(T )d
.

Set
δ := min1≤i≤N{ l(S1(Ti)) }.

For any ε < δ, since nε,k is the first time that the kth sector has length strictly less than
ε. We have

ε ≤ l(Sk(Tnε,k−1)) ≤ l(Sv(T )−2(Tnε,k−1)) <
1

2v(T )d
.

By Lemma 2.2 (5), f maps the v(T ) − 2 sectors S1(Tnε,k−1), · · · , Sv(T )−2(Tnε,k−1) onto
sectors of Tnε,k homeomorphic with their length multiplied by d. Then

l(σd(Sk(Tnε,k−1))) ≥ dε > ε and l(Sk(Tnε,k)) < ε.

This means σd must map at least one of the two sectors Sv(T )−1(Tnε,k−1) and Sv(T )(Tnε,k−1)
onto a ”narrow” sector Sk0(Tnε,k) with l(Sk0(Tnε,k)) < ε. By lemma 2.2 (4), Sk0(Tnε,k) is
a critical value sector. Actually, there are only one of the above two sectors mapped to
such ”narrow” sector. Because the total length of the v(T )− 1 images,

l(Sk0(Tnε,k)) +
∑

1≤i≤v(T )−2

l(σd(Si(Tnε,k−1))) <
1

2
.

It follows that the other sector is mapped to the widest sector Sv(T )(Tε,k) with length > 1
2 .

Thus, we have

Sk+1(Tnε,k) = σd(Sk(Tnε,k−1)) ≥ dε > ε and 1 ≤ k0 ≤ k.
The proof is completed. �

2.4. Proof of theorem 1.1

Proposition 2.5. Let T (1), · · · , T (m) be wandering portraits such that α(T (i)) have disjoint
forward orbits. Then ∑

1≤i≤m
(v(T (i))− 2) ≤ d− 2. (2.5)

Proof. Let ε0 > 0 be smaller than any δT (i) , for 1 ≤ i ≤ m, as stated in the Lemma 2.4.

Firstly, applying Lemma 2.4 to the case T = T (1), k = 1 and ε = ε0, we obtain a critical

value sector S1(T
(1)
nε0,1

) and

ε := l(S1(T (1)
nε0,1

)) < ε0 < l(S2(T (1)
nε0,1

)). (2.6)

Let nk,i := nε,k(T
(i)), for 1 ≤ i ≤ m, 1 ≤ k ≤ v(T (i)). By the definition of nk,i and

orbits of α(T (i)) disjoint in the condition, it is easy to see that

nk1,i 6= nk2,j 6= nε0,1 and α(T (i)
ni,k1

) 6= α(T (j)
nj,k2

) 6= α(T (1)
nε0,1

), (2.7)

for 1 ≤ i, j ≤ m and (i, k1) 6= (j, k2), 1 ≤ k1 ≤ v(T (i)), 1 ≤ k2 ≤ v(T (j)). By Lemma 2.4

again, we obtain N :=
∑

1≤i≤m(v(T (i))−2) critical value sectors, denoted by Sτ(k,i)(T
(i)
nk,i),

and we have
l(Sτ(k,i)(T

(i)
nk,i

)) < ε < l(Sk+1(T (i)
nk,i

)), 1 ≤ τ(k, i) ≤ k. (2.8)



JINSONG ZENG 9

By (2.7) and Lemma 2.1, for any distinct two of the N+1 critical value sectors S1(T
(1)
nε0,1

)

and Sτ(k,i)(T
(i)
nk,i), they are neither disjoint or one contains the other.

We claim that the latter case can not happen. If not, suppose Sτ(k1,i1)(T
(i1)
nk1,i1

) are

contained in Sτ(k2,i2)(T
(i2)
nk2,i2

). By Lemma 2.1, we have

Sk1+1(T (i1)
nk1,i1

) ⊂ Sτ(k2,i2)(T
(i2)
nk2,i2

) and l(Sk1+1(T (i1)
nk1,i1

)) < l(Sτ(k2,i2)(T
(i2)
nk2,i2

)).

This contradicts (2.8). If one of them is S1(T
(1)
nε0,1

), similarly by (2.6), it is impossible.
Thus the N + 1 critical values sectors are pairwise disjoint and each of them contains

at least one critical value. Since it is known that, for degree d polynomials, there exist at
most d− 1 critical values. So N + 1 ≤ d− 1. The proof is completed. �

Proof of Theorem 1.1. The theorem follows immediately by Propositions 2.5. �
Actually the result in this section can extended to polynomials with Julia set connected

or not connected. We omit the details. See Appendix A in [Ki02].

Corollary 2.6. Let f be a polynomial with the Julia set Jf locally connected. Then the
number of grand orbits of wandering branched points is finite.

3. Regulated arcs

According to Fatou and Sullivan, every bounded Fatou components of polynomials
must eventually be mapped to the immediate basin of attraction of an attracting periodic
point, or to an attracting petal of a parabolic periodic point, or to a periodic Siegel
disk[Mi06][Su83]. We refer to these cases simply as hyperbolic, parabolic and Siegel
cases.

For any two points x, y ∈ Kf there usually exist more than one arc γ in Kf connecting
x and y. In the following, we will give the definition of internal ray and regulated arc
in Kf and show how to choose a canonical embedded arc between any two points in the
filled Julia set. Under certain condition, such arc is unique (See Lemma 3.4).

3.1. Extended rays

Now consider the polynomial f with Jf locally connected. We have,

Lemma 3.1 (Bounded Fatou components are Jordan domains). For any bounded Fatou
component U , ∂U is a Jordan curve.

Proof. Since Jf is locally connected, then ∂U is locally connected. Consider the Riemann
map: ΦU : D → U , it extends continuously to D by Carathéodory Theorem. Therefore,
∂U is the curve ΦU (S1). If ΦU |S1 is not injective. Then there exists t < t′ in S1 with

ΦU (t) = ΦU (t′). The two rays ΦU ([0, 1]e2πit) and ΦU ([0, 1]e2πit′) will bound a domain U ′,
which contains subset of the Julia set ΦU ({e2πiη : t < η < t′}. Since Jf is the boundary of
infinity attracting domain Ωf , some points in U ′ will escape to infinity. This contradicts
the Maximum Value Principle. �

Given any bounded Fatou component U , pick a point c(U) in U as center point and
a Riemann map ϕU : U → D with ϕU (c(U)) = 0. Then extend it to a homeomorphism
ϕU : U → D by Carathédory Theorem.



10

An arc in U of the form ϕ−1
U {reiθ : 0 ≤ r ≤ 1} is called a internal ray of U with angle θ.

All these internal rays meet at the center point c(U). Each ray has a well defined landing
point in the boundary of U . Conversely, for any point z in the boundary of U , there exists
an unique internal ray of U landing at z. We denote this internal ray by RU (z). For any
θ ∈ R/Z, if α(θ) = z ∈ ∂U , define the extended ray“RU (θ) := R(θ)

⋃
RU (z).

3.2. Components of Jf \ {x} are arcwise connected

Recall that a topological space X is said to be arcwise connected provided that there is
a topological embedding of [0, 1] into X (called arc ) joining any two given distinct points.
If p ∈ X, then X is said to be locally arcwise connected resp. locally connected at p,
provided that every neighborhood of p contains an arcwise connected neighborhood resp.
connected neighborhood of p. The space X is said to be locally arcwise connected resp.
locally connected, provided that X is locally arcwise connected resp. locally connected at
every point. We have the following well-know result.

Lemma 3.2. If a compact metric space X is locally connected, then it is locally arcwise
connected.

It follows directly by the Lemma 17.17 and Lemma 17.18 in [Mi06].

Corollary 3.3. If a compact metric space X is connected and locally connected, then it is
arcwise connected. Moreover, every connected component of X \ {x} is arcwise connected
for any x in X.

Proof. Fix p ∈ X, define Y as follows

Y = {p}
⋃
{x ∈ X : there is an arc in X joining p and x}

Obviously, Y 6= ∅. Since X is locally arcwise connected by Lemma 3.2. A simple argument
show that both Y and X \ Y are open in X. Thus, since Y 6= ∅ and X is connected, we
must have Y = X. So X is arcwise connected.

Let C be a connected component of X \ {x}, then C is open in X. Indeed, since X
is locally connected, every z in C has a sufficiently small connected neighborhood Wz

avoiding x, thus Wz ⊆ C.
Since X is locally arcwise connected by Lemma 3.2, C is locally arcwise connected as

well. Then one can show that C is arcwise connected in exactly the same way as above.
�

Hence all Julia sets and filled Julia sets discussed in this paper are locally arcwise
connected and arcwise connected.

3.3. Uniqueness of regulated arc

An arc γ in Kf is called to be regulated if it joins two distinct points in Jf and for any

bounded Fatou component U , the intersection γ
⋂
U is an empty set or a point or exactly

two internal rays.

Lemma 3.4 (Uniqueness of regulated arc). For any two distinct points x, y in Jf , there
exists only one regulated arc in Kf joining x and y.

Proof. Let η(t) : [0, 1] → Kf be the arc joining x and y with η(0) = x and η(1) = y. For

any Fatou component U whose closure intersects the arc η, set xU = inf0≤t≤1{t : η(t) ∈ U},
i.e., the first time η meets U , and yU = sup0≤t≤1{t : η(t) ∈ U}, i.e., the last time η meets
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xU
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yU
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Figure 3. Constructing regulated arc

U . If xU 6= yU . Then we replace the segment η((xU , yU )) starting at η(xU ) ending at
η(yU ) by the internal rays RU (η(xU ) and RU (η(yU )), updating η = η[0, xU ]∪RU (η(xU ))∪
RU (η(yU )) ∪ η[yU , 1]. After doing these processes for countable many Fatou components,
we obtain a regulated arc η connecting x and y as required.

For the uniqueness, if η′ is the other one. Then C \ η ∪ η′ consists of several disjoint
connected components. Let W be one of the bounded component in Kf . Then W is a
Jordan domain and ∂W ⊆ η ∪ η′. Applying the Maximum value Principle, W belongs
to the Fatou set. Let U be the Fatou component containing W . Thus W ⊆ U . Since
(η ∪ η′)⋂U consists at most four internal rays and all of the internal rays hit only at the
center point c(U). It is impossible for them to bounded a domain W , a contradiction. �

The regulated arc is denoted by [x, y]. The open arc (x, y) is defined by [x, y] \ {x, y},
and similarly the semi-open arc [x, y) and (x, y].

3.4. Quasi-buried regulated arc

A regulated arc γ is called quasi-buried if the intersection between γ and the closure of
any bounded Fatou component is either empty or exactly one point. Obviously if Kf = Jf ,
every regulated arc is quasi-buried. But if Kf 6= Jf , does there exist quasi-buried arc?
We conjecture that for some special locally connected Jf such regulated arc exists.

Similarly as the quadratic case, for high degree polynomials, we still define β fixed point
as the landing point of external ray R(0). It can be a branched point with at most d− 1
external rays landing at.

Let E′ :=
⋃
i≥0{f−i(β)}, i.e., the preimages of β fixed points. Set E be the union of E′

and branched points in Jf . If Jf is a segment, then E′ = E. We know that E′ is dense in
Jf [Mi06] and thus E is dense in Jf . Moreover, we have the following,

Lemma 3.5 (Denseness of E in quasi-buried arcs). Let I := [x, y] be a quasi-buried
regulated arc in Kf . Then E is dense in I.

Proof. Let p be any point in I \ {x, y}. Since Jf is locally arcwise connected by Lemma
3.2, we can choose sufficiently small arcwise connected neighborhood Wp in Jf such that

Wp

⋂
{x, y} = ∅ and p ∈Wp

⋂
I b I. (3.1)
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x′
ξ
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Figure 4. illustrating the proof of lemma 3.5

See figure 4. By the denseness of E in Jf , Wp
⋂
E is not empty. Choose a point z in

Wp
⋂
E. If z is in I, then we are done. If not, there exists an arc γzp in Wp joining z and

p, because Wp is arcwise connected.
Let ξ be the point at which γzp meets I at the first time. Then ξ belongs to I \ {x, y}

by (3.1). Let γzξ be the subarc of γzp joining z and ξ. It follows that the three arcs γzξ,
[x, ξ] and [y, ξ], meeting at ξ, form a ”Y” shape.

We are left to show that ξ is a branched point. Due to the Theorem 6.6 in [Mc95], we
only have to proof that Kf \ {ξ} has at least three connected components. Actually we
have the following.

Claim that x, y and z lie in distinct connected components of Kf \ {ξ}.

Proof. If not, suppose x, z in the same component C. By Corollary 3.3, C is arcwise
connected, thus there exists an arc γxz(t) in C joining x and z with γxz(0) = x and
γxz(1) = y. Set

tx := sup0≤t≤1{t : γxz(t) ∈ [x, ξ]} and tz := inf0≤t≤1{t : γxz(t) ∈ γzξ}.

Denote by x′ = γxz(tx) and z′ = γxz(tz). Note that x′, z′ are contained in [x, ξ) and
γzξ \ {ξ} respectively. Let γx′z′ be the subarc in γxz joining x′ and z′. It follows that
η := γx′z′ ∪ [z′, ξ] ∪ [x′, ξ] bounds a Jordan domain V . By the Maximum Value Principle,
V must be contained in some Fatou component U . Then [x′, ξ] ⊆ ∂U . This contradicts
the definition that I

⋂
U is either empty or only one point. A same argument show that

y, z and x, y cannot lie in the same component of Kf \ {ξ}. The claim is completed. �

Thus ξ is a branched point. The proof is completed. �

4. The topological polynomial F

The regulated arcs in Kf may not be preserved by the dynamic of f . In this section, we
will construct a nice topological polynomial F by modifying f in each bounded Fatou set.
F will coincide with f on the basin of infinity and the Julia set Jf . The above difficulty
can be most conveniently overcome by investigating F instead of f . Since we only interest
in the Julia set and the combination of external angles. These changes make no essentially
differences.
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4.1. Branched covering map

Let X and Y be domains in C, g : X → Y be a continuous map. Then g is called a
branched covering map if we can write it locally as the map z 7→ zn for some n ∈ N after
orientation-preserving homeomorphic changes of coordinates in domain and range. More
precisely, we require that for each point q ∈ Y and any preimage p in g−1(q) there exists
n ∈ N, open neighborhoods U of p and V of q, open neighborhoods U ′ and V ′ of 0 ∈ C
and orientation-preserving homeomorphisms φ : U → U ′ and ψ : V → V ′ with φ(p) = 0
and ψ(q) = 0 such that

(ψ ◦ g ◦ φ−1)(z) = zn (4.1)

for all z ∈ U ′.
The integer degg(p) := n ≥ 1 is uniquely determined by g and p and called the local

degree of g at p. A point c ∈ C with degg(c) ≥ 2 is called a critical point of g and its
image g(c) critical value. Moreover, g is an open and surjective mapping. If the set of all
critical points only consists of finite isolated points, then g is finite-to-one, i.e., every point
has finitely many preimages under g. More precisely, if deg(g) is the topological degree of
g, then ∑

p∈g−1(q)

degg(p) = deg(g)

for every q ∈ Y . A branched covering with no critical point is called unbranched covering.
A branched covering map g : C→ C is called topological polynomial if g−1(∞) =∞, that
is , ∞ is a fixed point with local degree deg(g).

4.2. From polynomial f to topological polynomial F

For polynomial f , a bounded Fatou component is called critical Fatou component if it
contains critical point of f . Its image is critical value Fatou component. Given a bounded
Fatou component U , f maps U to Fatou component U ′ holomorphic. f |∂U : ∂U → ∂U ′ is
an unbranched covering map with degree deg(f |U ).

Recall that ϕU : U → D c(U) 7→ 0 is a conformal parameterization . Set

ϕUU ′ := ϕU ′ ◦ f ◦ ϕ−1
U |∂D : ∂D→ ∂D.

Now we extend ϕUU ′ to be

ϕUU ′ : D→ D re2πiθ 7→ rϕUU ′(e
2πiθ).

One can check that ϕUU ′ is a branched covering. Define FU := ϕ−1
U ′ ◦ ϕUU ′ ◦ ϕU : U → U ′

by the following communicate diagram,

(U, c(U))
FU−−−−→ (U ′, c(U ′))

ψU

y yψU′
(D, 0)

ψUU′−−−−→ (D, 0).

By the construction, FU satisfies
• FU |∂U = f |∂U .
• FU sends c(U) to c(U ′).
• FU is a branched covering with degree deg(f |U ) and the critical point can only be

c(U).
• FU sends internal rays to internal rays, more precisely, FU (RU (z)) = RU ′(f(z)).
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Now we define the topological polynomial F : C→ C,

F (z) :=

®
FU (z) If z in some bounded Fatou component U,
f(z) Otherwise.

(4.2)

Evidently, F takes the same value as f in the Julia set and the basin of infinity. Further-
more, we have the following.

4.3. Properties of the topological polynomial F

Lemma 4.1. (1) F is continuous.
(2) F is a branched covering map.
(3) For any x 6= y ∈ Jf , [F (x), F (y)] ⊆ F ([x, y]).

(4) F (“RU (θ)) = “RU ′(σd(θ)), where U ′ = F (U), for any extended ray “RU (θ).

Proof. (1) We only have to show that, for any z ∈ Jf , F is continuous at z. Let {zk} be
an arbitrary sequence such that zk → z as k →∞. We continue the discussion into three
cases,
• If {zk} ⊆ Ωf . Since F |Ωf = f and f is continuous, then F (zk)→ F (z) as k →∞.

• If {zk} are contained in C\Ωf . Let {Uk} be a sequence of bounded Fatou components
such that zk ∈ Uk and U := {Uk : k ≥ 1}. If #U <∞, since F is continuous in any Fatou
component, we f(zk) → f(z) as k → ∞. If #U = ∞, since Jf is locally connected, the
diameter of Fatou component F (Uk) converges to zero as k →∞ (See for example Lemma
19.5 in [Mi06]). Thus,

|F (zk)− F (z)| ≤ |F (zk)− f(zk)|+ |f(zk)− F (z)|
≤ diam F (Uk) + |f(zk)− f(z)| → 0 as k →∞.

• In other cases, decompose {zk} into two subsequence {zki}, contained in Ωf , and
{zk′i} in Fatou set. By the former arguments, both of the image of the two subsequence

converge to F (z) as k →∞. So F (zk)→ 0 as k →∞.
Thus F is continuous.

(2) Let Crit(F ) to be the union of critical points of f in Jf and the center of critical
Fatou components.

Firstly, claim that F : C\F−1(F (Crit(F )))→ C\F (Crit(F )) is an unbranched covering.
We only have to show that F is locally homeomorphic on C \Crit(F ). For any z in some
Fatou component U , It follows by the construction of FU . For any z ∈ Jf \Crit(F ), choose
a sufficiently small neighborhood Wz such that
• f on Wz is injective,
• F |Wz

⋂
U is injective for any critical Fatou components,

• f(U) 6= f(U ′) for any distinct Fatou component U and U ′ which intersect Wz.
By the definition of F , We know that F |Wz is injective. Therefore, F |Wz is a homeo-

morphism by the domain invariance theorem. The claim follows.
Secondly, consider point z in the finite set Crit(F ). Let W be sufficiently small topo-

logical disk around F (z) and

φ : W → D F (z) 7→ 0

the topological parameterization. Let W ′ be one of the component F−1W containing z.
Since F : W ′ \ {z} → W \ {F (z)} is an unbranched covering by the claim. The Riemann
Hurwitz formula implies W ′ is a topological disk around z. Denote by δ := deg(F |W ′\{z}).
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Consider the following communicate diagram,

W ′ − {z} ψ−−−−→ D− {0}

F

y yz 7→zδ
W − {F (z)} φ−−−−→ D− {0}

where ψ is a homeomorphism obtained by Lifting φ through F and z 7→ zδ. Set ψ(z) = 0.
Thus F satisfies (4.1) at z.

Therefore, F is a branched covering. The critical points set is Crit(F ).

(3) F ([x, y]), consisting of internal rays, is a curve connecting F (x) and F (y). There ex-
ists a regulated arc γ ⊆ F ([x, y]) joining F (x) and F (y). By Lemma 3.4, γ = [F (x), F (y)].

(4) Let z ∈ ∂U to be the landing point of R(θ). Then F (z) = α(σd(θ)) ∈ ∂U ′. Since
FU maps internal ray RU (z) to internal ray RU ′(F (z)) and F (R(θ)) = R(σd(θ)). Thus

F (“RU (θ)) = “RU ′(σd(θ)). The proof is completed. �

5. Partitions induced by critical portraits

In this section our objective is to divide the plane into several simple connected domains
by external rays and extended rays. These rays land at Crit(F ) and collide together after
F . The restriction of F on each pieces is homeomorphic.

5.1. Supporting arguments resp. rays

Following [Po93], we give the definition of supporting arguments resp. supporting rays.
Let U be a Fatou component and p ∈ ∂U with total k rays R(θ1), · · · , R(θk) landing at.
These rays, numbered in counterclockwise cyclic order, divide the plane into k sectors.
Suppose U belong to the sector bounded by R(θ1) and R(θ2). The argument θ1 resp.
the ray Rθ1 is called the left supporting argument resp. left supporting ray of the Fatou
component U . We can also define the right supporting arguments resp. right supporting
rays in analogous way. If only one ray lands at p, then the two supporting rays coincide.

Lemma 5.1. For any U and p ∈ ∂U , the left resp. right supporting ray of U at p exists
and is unique. Let R(θ) be a ray land at p, then R(θ) is the left resp. right supporting ray
of U at p if and only if F (R(θ)) is the left resp. right supporting ray of F (U) at F (p)

Proof. Firstly, there are at least one and at most finite many rays landing at p by [DH84]
and Theorem 1.1. Thus it exists and is unique by definition.

Let R(θ′) be the right (left) supporting ray of U at p. Lθθ′ := R(θ)
⋃{p}⋃R(θ′) bounds

a domain V containing U . The map F |V is locally homeomorphic at p. So F (R(θ)) and
F (R(θ′)) are rays supporting F (U). Since F preserves the orientation. F (R(θ)), F (U)
and F (R(θ′)) are in the same cyclic order around F (p) as R(θ), U and R(θ′) around p.
Thus the lemma follows. �

5.2. Definition of critical portraits

Firstly we define Θ(c), Θ(U) resp. R(c), R(U), for critical point c in Jf and critical
Fatou component U by the following way.
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• For any critical point c ∈ Jf , we set

Θ(c) := {θ1, · · · , θdegF (c)} and R(c) := {R(θ1), · · · , R(θdegF (c))}
such that the total degF (c) external rays meet at c and F maps them onto exactly one
external ray.
• For any strictly pre-periodic Fatou component U , we denote by

Θ(U) := {θ1, · · · , θdegF |U
} and R(U) := {“RU (θ1), · · · , “RU (θdeg(F |U ))}

such that the deg(F |U ) external rays R(θi) support U and collide onto one after F . Clearly,
by Lemma 5.1, they are supporting U in the same direction.
• For any critical Fatou component cycle U0, · · · , Up−1 with F i(U0) = Ui, Up := U0, it

can only be attracting or parabolic [Mi06]. Let Uk0 , · · · , Ukl , 0 ≤ k0 < · · · < kl ≤ p − 1,
be critical with degree n0, · · · , nl respectively.

Firstly, For 1 ≤ i ≤ p, choose (zi, θi), zi ∈ ∂Ui and R(θi) landing at zi, such that
F i(z0) = zi, F

p(zp) = zp, F
i(R(θ0)) = R(θi) and R(θp) supporting Up at zp. Since

F p : ∂U0 → ∂U0 is δ := n0 · · ·nl to 1 branched covering, there exist δ − 1 distinct choices
of zp. By Lemma 5.1, all the p external rays supports the Fatou cycle in the same direction.

Secondly, for critical Fatou component Uki , 0 ≤ i ≤ l, Θ(Uki) is the set of ni angles of
external rays, which are supporting Uki and lie in the preimages of R(θki+1), and R(Uki)
is the collection of ni extended rays of Uki with angles in Θ(Uki).

After finishing the choice of Θ(Uki) and R(Uki) in critical Fatou cycle, we now state the
following lemma by adopting the same notations as above,

Lemma 5.2. If z, z′ ∈ ∂U0 have the same itinerary respect to R(Uk0), · · · ,R(Ukl), then
z = z′.

Proof. Consider the covering F p : ∂U0 → ∂U0. There are δ preimages of zp in ∂U0. These
points cut ∂U0 into open segments γ0, · · · , γδ−1, numbered in positive cyclic order which
starts at z0. Denote by

[s0, · · · , sl] := s0n1 · · ·nl + s1n2 · · ·nl + · · ·+ sl−1nl + sl,

where 0 ≤ s0 ≤ n0 − 1, · · · , 0 ≤ sl ≤ nl − 1.
Let γki,0, · · · , γki,ni−1 be the segments of ∂Uki \

⋃
θ∈Θ(Uki )

α(θ), numbered in positive

cyclic order which starts at zki . Then F maps γki,j onto ∂Uki+1 \ {zki+1} one to one.

By the construction above, we can see that ξ ∈ γ[s0,··· ,sl] if and only if F ki(ξ) ∈ γkisi
for 0 ≤ i ≤ l. Hence by the condition, {F jp(z), F jp(z′)}, for arbitrary j ≥ 0, are always
contained in one segment of γ0, · · · , γδ−1. Now we show that it is impossible.

Let γzz′ be the component of ∂U0 \ {z, z′} contained in some segment γj . Since F p is
expanding on ∂U0. There must exist a minimal positive s such that F sp(γzz′) can not lie

in one of γ0, · · · , γδ−1. Let F (s−1)p(γzz′) ⊆ γi0 . Since F p|γi0 covers ∂U0 \ {zp} by sticking
the two endpoints into zp, which is the common boundary of γj and γ(j+1)mod δ for some
0 ≤ j ≤ δ − 1. Thus F sp(z) and F sp(z′) must be in distinct segments. The proof is
completed. �

It is easy to see that all the R(c) and R(U) defined above are in star shape with a
critical point in the center.

Lemma 5.3 (Properties of R(c) and R(U)). (1) R(c)
⋂R(c′) = ∅, for distinct critical

points c, c′ in Jf .
(2) If R(c)

⋂R(U) 6= ∅, then c ∈ ∂U and the intersection is exactly either a point {c} or
one ray together with the landing point c. The latter happens if and only if Θ(c)

⋂
Θ(U) 6=

∅.



JINSONG ZENG 17

(3) If R(U)
⋂R(U ′) 6= ∅, for distinct critical Fatou component U,U ′, then the intersec-

tion is exactly either a point {p} := ∂U
⋂
∂U ′ or one ray together with the landing point

p. The latter happens if and only if Θ(U)
⋂

Θ(U ′) 6= ∅.

Proof. By definition, (1) and (2) follow immediately.
(3) Since for any two distinct Fatou component U,U ′, the intersection U

⋂
U ′ is at most

one point. R(U)
⋂R(U ′) 6= ∅ implies U

⋂
U ′ := {p}. If Θ(U)

⋂
Θ(U ′) 6= ∅, then the latter

case happens. Otherwise, we have R(U)
⋂R(U ′) = {p}. �

In R/Z, let A := {Θ(c1), · · · ,Θ(cm),Θ(U1), · · · ,Θ(Un)}. For any Θ ∈ A, let“Θ :=
⋃
{Θ′ : ∃ a chain Θ0 := Θ, · · · ,Θk := Θ′ in A such that Θi

⋂
Θi+1 6= ∅}.

The collections “A := {“Θ1, · · · ,“ΘN} are called critical portrait of F . One can check that
the following conditions are satisfied.

(1)
∑

1≤i≤N (#“Θi − 1) = d− 1.

(2) “Θ1, · · · ,“ΘN are pairwise unlinked, that is, for each i 6= j the sets “Θi and “Θj are
contained in disjoint sub-intervals of R/Z.

(3) σd sends “Θi onto exactly one argument.

5.3. Critical diagram associated to “A
Given critical portrait “A, one can construct a critical diagram D ⊆ D as follows. See

figure 5.

Start with the unit circle R/Z, for each “Θi, mark all of the points e2πiθ with θ ∈ “Θi.
Let ẑi be the center of gravity of the marked points, and join each of these points e2πiθ to
ẑi by a straight line segment lθ. Then we obtain a closed set Di :=

⋃
lθ in the unit disk.

It follows easily by Conditions (2) that distinct Di and Dj will not cross each other. Let

D :=
⋃

1≤i≤dDi be critical diagram associated to “A.
The Condition (1) implies that D \ D are d simply connected domains W1, · · · ,Wd.

Denote by Ii the interior of W i
⋂
∂D. Then {Ii}1≤i≤d is a partition of R/Z, each elements

of which consists of finite open intervals with total length 1/d by Condition (3).

5.4. Partition in the dynamic plane

Let L := {R(c1), · · · ,R(cm), R(U1), · · · , R(Un)}. For any R ∈ L, set “R :=
⋃ {R′ :

there exists a chain R0 := R, · · · ,Rk := R′ in L such that, for Ri and Ri+1, the latter
case in Lemma 5.3(3) happens}.

By Lemma 5.3, each “R corresponds to a “Θ, characterized by the property that R(θ) is

in “R if and only if θ ∈ “Θ.

Lemma 5.4 (Properties of “R ). (1) T := “R⋂
Kf is a tree. Namely, any z, z′ ∈ T ⋂

Jf
can be joined by a regulated arc in T . Moreover, the branching points in the tree must be
critical points in Jf or c(U) in critical Fatou component U .

(2) Suppose R(θ1), · · · , R(θl) be all the external rays in “R, numbered in counter-clockwise
order. Let Lθiθi+1

:= R(θi)
⋃
R(θi+1)

⋃
[α(θi), α(θi+1)], 1 ≤ i ≤ l, θl+1 := θ1. Then Lθiθi+1

cuts the plane into two domains Y , Y ′. Let Y be the one disjoint with R(θj), 1 ≤ j ≤ l.
Then for any x, y ∈ Y ⋂

Jf , [x, y] ⊆ Y and F |[x,y]
⋂
∂Y is one-to-one.

(3) The image F (Lθiθi+1
) has only three types:

• Type I: one ray union the landing point,
• Type II: one extended ray union the landing point,
• Type III: two internal rays and one external ray, which looks like ”Y”.
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ẑ1

ẑ2
ẑ3
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D2

D3

W1

W2

W3

W4 W5

W6

W7

Figure 5. An example of critical diagram D

(4) For another “R′, if “R∩ “R′ 6= ∅, then the intersection is a point.

Proof. (1) By the construction of “R, it is clear that [z, z′] ⊆ T if z, z′ ∈ T ⋂
Jf . The lemma

3.4 implies that regulated arcs cannot form a loop in Kf . Thus T is a tree. Branched
point z in Fatou component U is obviously a critical point c(U). If z is in Jf , there are at

least three critical Fatou component Ui such that z ∈ R(Ui) ⊆ “R, i ∈ {1, 2, 3}. If z is not
critical, R(Ui) share a common external ray which landing at z. Since one ray supports
at most two Fatou components. It is impossible.

(2) Consider [α(θi), α(θi+1)]. It has only three possibilities
(2.1) α(θi) = α(θi+1), then [α(θi), α(θi+1)] is degenerated.
(2.2) [α(θi), α(θi+1)] ⊆ U passes through one critical Fatou component, consisting of

two internal rays.
(2.3) [α(θi), α(θi+1)] passes through two critical Fatou component U and U ′, consisting

of four internal rays.
In fact, if [α(θ1), α(θ2)] passes through more than two critical Fatou component. Let U

be one of them with U
⋂{α(θi), α(θi+1)} = ∅. Then the supporting properties imply that

there exists a external ray in R(U) contained in Y , impossible.
Assume [x, y] \ Y 6= ∅, otherwise, (2) follows. Let γ(t) := [x, y] with γ(0) = x and

γ(1) = y. Set t1 := inf0≤t≤1{t : γ(t) ∈ C \ Y } and t2 := sup0≤t≤1{t : γ(t) ∈ C \ Y }. Then
γ(ti) ∈ ∂Y , i ∈ {0, 1} and so [γ(t0), γ(t1)] ⊆ Lθiθi+1

. We have [x, y]
⋂
∂Y = [γ(t0), γ(t1)]

and [x, y] = [x, γ(t0)]
⋃

[γ(t0), γ(t1)]
⋃

[γ(t1), y]. Thus [x, y] ⊆ Y .
Now we have to show that F |[γ(t0),γ(t1)] is one-to-one. Note that [γ(t0), γ(t1)] consists

exactly several internal rays.
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In case (2.2), at least one of R(θi), R(θi+1) is supporting U , because R(U) ⊆ “R. So
[γ(t0), γ(t1)]

⋂
U is either a point or one internal ray. Thus F |[γ(t0),γ(t1)] is one-to-one

immediately.
In case (2.3), let {p} = U

⋂
U ′. We have R(θi), R(θi+1) supporting U,U ′ respectively.

Otherwise, there exists a ray in R(U) or R(U ′) landing at p contained in Y , impossible.

Thus the intersection between [γ(t0), γ(t1)] and U resp. U
′

is at most one internal ray.
We are only left to consider the case [γ(t0), γ(t1)] = [c(U), c(U ′)]. Suppose F |[c(U),c(U ′)]

is not one-to-one. Then F ([p, c(U)]) = F ([p, c(U ′)]), thus p is a critical point. There
exists at least a external ray in R(p) contained in Y . Otherwise, consider the section S
of C \ R(p) containing U,U ′, F |S is locally homeomorphic at p, thus it can not paster
[p, c(U)] and [p, c(U)] together. This contradicts the choice of R(θi) and R(θi+1). There-
fore F |[c(U),c(U ′)] is one-to-one.

(3) By the discussion in (2), it follows easily that F (Lθiθi+1
) is in Type I, Type II or

Type III if and only if [α(θi), α(θi+1] is in case (2.1), (2.2) and (2.3), respectively.

(4) It holds directly by the definition and Lemma 5.3. �

c0

c(U1)

c(U2)

c(U3) c(U4)

Π1

Π2

Π3

Π3

Π4 Π5 Π6

Π6

Π7

Figure 6. An example of partition corresponding to critical diagram in
figure 5. Here the critical Fatou components are U1, U2, U3 and U4. There
exists a critical points c0 with degF (c0) = 2.

Let L̂ := {“R1, · · · , “RN}. For simplification, the elements are numbered in such fine

order that “Ri consists of (extended) rays with their arguments in “Θi. Let P := C \⋃
1≤i≤N “Ri consists of finite unbounded pieces P1, · · · , Ps.
Consider the critical diagram D. Given Wi, suppose it is bounded by

⋃
1≤j≤ki(lθj ∪ lθ′j )

with θj , θ
′
j ∈ “Θj and lθj ∪ lθ′j ⊆ Dj . Then, in the dynamic plane, Lθjθ′j , 1 ≤ j ≤ ki, in

Lemma 5.4 (2) are well defined. As in Lemma 5.4 (2), let Yj
⋃
Y ′j := C \ Lθjθ′j where Y ′j

be the component disjoint with
⋃
θ∈Ii R(θ).
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Now we define the partition {Πi }1≤i≤d of the dynamical plane by setting

Πi := C \
⋃

1≤j≤ki
Y ′j .

We have
• P =

⋃
1≤i≤d Πi and Πi

⋂
Πj = ∅ if i 6= j.

• each Πi, maybe not a domain, consists of finite pieces Pj and ∂Πi are the union of
several (extended) rays.
• there is an one-to-one correspondence between { Ii }1≤i≤d and {Πi }1≤i≤d by the prop-

erty that θ ∈ Ii if and only if R(θ) ⊆ Πi. See figure 5 and figure 6.
Based on the topological argument principle, we shall prove the following,

Proposition 5.5. The restriction of F on each Πi is homeomorphic.

Proof. Recall Gf : C→ [0,∞] is the Green’s function which vanishes precisely on Kf and
Gt := {z ∈ C : G(z) < t} a simply connected domain. Set Qt = Gt

⋂
Πi, which is bounded

by edges in two types,
• The segments of the equipotential cure Gf (z) = t which lies in Πi. Each one corre-

sponds to an arc in Ii. We denote by Γi the union of all these segments.
• The segments of Lθjθ′j , 1 ≤ j ≤ ki satisfying the potential inequality Gf (z) ≤ t.
Each segments in Γi is mapped to equipotential curve γdt := {z ∈ C : G(z) = dt} locally

homeomorphic. Since F pastes the segments of the latter two types together as in Lemma
5.4 (3). It follows that γdt is covered by Γi at least once. We know that F |γt : γt → γdt is
d to 1 and γt is the union of Γi, 1 ≤ i ≤ d, with their interiors disjoint. Thus F (Γi) covers
γd exactly once.

Let z0 be any point of C which does not belong to the image F (∂Qt). By the Topological
Argument Principle, the number of solutions to the equation F (z) = z0 with z ∈ Qt,
counted with multiplicity, is equal to the winding number of F (∂Qt) around z0. By
the arguments above, it is not hard to check that this winding number is +1 for z0

in Gdt \
⋃

1≤j≤ki F (Lθjθ′j ) and zeros for z0 in C \ Gdt. So F |Qt is one-to-one. By the

arbitrariness of t, F on Πi is homeomorphic.
�

5.5. Regulated arcs in the partition

Lemma 5.6. For any distinct x, y ∈ Πi
⋂
Jf , the regulated arc [x, y] is contained in Πi.

Moreover,
F : [x, y]→ [F (x), F (y)] is homeomorphic. (5.1)

Proof. We adopt the notations as before. For 1 ≤ j ≤ ki, x, y ∈ Yj . Then the Lemma 5.4
(2) gives [x, y] ⊆ Y j . Thus [x, y] ⊆ ⋂

1≤j≤ki Y j = Πi.
Consider the set

X := {z ∈ F ([x, y]) : there exist z1 6= z2 ∈ [x, y] such that F (z1) = F (z2) = z}.
Since F |Πi is one-to-one by Proposition 5.5, X ⊆ F ([x, y]

⋂
∂Πi).

We claim that X ⊆ F ([x, y]
⋂
∂Πi

⋂
Jf ). If not, let z ∈ X ⋂

U for some bounded Fatou
component U . Then there exists two distinct zj ∈ Uj such that F (zj) = z. Firstly, If
U1 = U2, then U1 must be critical. z1 and z2 are contained in two internal rays ofR(U1). It
is impossible by Lemma 5.4 (2.2). If U1 6= U2, consider the branched covering F : Uj → U .
The image F (Uj

⋂
Πi) is either U or U \R for some internal ray. In both of the cases we

have
F (U1 ∩Πi)

⋂
F (U2 ∩Πi) 6= ∅.
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This contradicts the fact that F is one-to-one on Πi in Proposition 5.5. The claim follows.
Since [x, y]

⋂
∂Πi

⋂
Jf is finite, then X is finite as well. This means F ([x, y]) has only

finite many self-intersection points. If X 6= ∅, then we can easily obtain a loop in F ([x, y]),
consisting of regulated arcs by Lemma 4.1 (3). Lemma 3.4 gives a contradiction. Thus we
have X = ∅. Therefore, F : [x, y]→ [F (x), F (y)] is homeomorphic.

�

6. Proof of the main theorem

In this section we aim to prove the main theorem, applying the tools prepared in the
previous sections.

6.1. No wandering regulated arcs

Proposition 6.1. For any regulated arc [x, y] in Kf , there exist two integer m 6= n ≥ 0
such that Fm[x, y]

⋂
Fn[x, y] 6= ∅.

Proof. For any critical point, if [x, y] is mapped onto it twice, then of course we are done.
So, by iterated [x, y] suitable times, we can assume fk|[x,y] is homeomorphic. We continue
the analysis by distinguishing the regulated arc into two case.
• [x, y] is quasi-buried, i.e., #[x, y]

⋂
U ≤ 1, for any bounded Fatou component U .

• there exists a bounded Fatou component U such that #[x, y]
⋂
U ≥ 2.

In the first case, [x, y] ⊆ Jf . Recall that E is the union of branched points and preimages
of β fixed points in Jf . By Lemma 3.5, E is dense in [x, y]. If some (pre-)periodic point lies
in [x, y], we are done. Then E

⋂
[x, y] contains infinitely many wandering branched points.

Since the number of grand orbits of wandering branched point is finite by Corollary 2.6.
So there is at least a branched point z such that its grand orbit intersects [x, y] infinitely
many times. Choose any two distinct z1, z2 ∈ [x, y] in the grand orbit. Then we have
fm(z1) = fn(z2) for some m,n ≥ 0. Therefore fm[x, y]

⋂
fn[x, y] 6= ∅. Since fm|[x,y] and

fn|[x,y] is injective. We must have m 6= n.

In the second case, let [x′, y′] := [x, y]
⋂
U , consisting of two internal rays, particu-

larly containing c(U). By Sullivan’s no wandering Fatou components, U will eventu-
ally be periodic. Then c(U) ∈ [x′, y′] is pre-periodic. So there exists m 6= n such that
fm[x′, y′]

⋂
fn[x′, y′] 6= ∅. The proof is completed. �

6.2. Quasi-buried case

Proposition 6.2. Let {Πi}1≤i≤d be the partition of C induced by the critical portrait of f .
Let [x, y] be quasi-regulated arc in Kf . If x, y have the same itinerary respect to {Πi}1≤i≤d,
then x = y.

Proof. We argue by contradiction and suppose x 6= y. Denote by zn := Fn(z) for any
z ∈ C. By Lemma 5.6, for any m ≥ 0, n ≥ 1,

Fn : [xm, ym]→ [xm+n, ym+n] is homeomorphic. (6.1)

Firstly, we claim that there exist M 6= N ≥ 0 and ξ such that
• ξ ∈ [xM , yM ]

⋂
[xN , yN ],

• The orbit of ξ is disjoint with the finite set X :=
⋃

1≤i≤d(∂Πi ∩ Jf ).

Proof of Claim. Consider the set

Y := {z ∈ [x, y] : there exist m,n ≥ 0 and z′ 6= z ∈ [x, y] such that Fm(z) = Fn(z′)}.
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Since there is no wandering regulated arc by Proposition 6.1, Y is dense in [x, y].
For any z ∈ Y , there exist m 6= n ≥ 0 such that zm ∈ [xm, ym]

⋂
[xn, yn]. If the orbit

{zi}i≥0 never hit X, we are done. If zn0 ∈ X and the orbit {zn0+i}i≥0 is infinite, then
there exists a large number N0 such that the orbit {zN0+i}i≥0 avoids the finite points X.
Let M = N0 +m,N = N0 + n and ξ = zm+N0 , we are done.

Otherwise, we can suppose that all Y are eventually iterated to X0 ⊆ X and points
in X0 are (pre-)periodic. Then there exist a periodic point w with period p and infi-
nite many points in Y iterated to w. Thus we have (z′, n′) and (z′′, n′′), z′ 6= z′′ ∈ Y ,

such that Fn
′
(z′) = Fn

′′
(z′′) = w and n′ = n′′mod p. Let n′′ = n′ + kp, k > 0. Then

Fn
′′
(z′) = Fn

′′
(z′′) = w, which contradicts (6.1). The claim follows. �

For simplicity we write [x, y] = [xM , yM ]. Let ξ ∈ [x, y]
⋂

[xN , yN ], N ≥ 1, such that its
orbit never hits the boundary of the partition {Πi}1≤i≤d. Let

H := [x, y]
⋃

[xN , yN ]
⋃

[x2N , y2N ]
⋃
· · · . (6.2)

Then,
• For any ζ, η ∈ H, [ζ, η] ⊆ H. Indeed, suppose ζ ∈ [xn1N , yn1N ] and η ∈ [xn2N , yn2N ]

with integers n1 ≤ n2. Then the path

γζη := [ζ, ξn1N ]
⋃

[ξn1N , ξ(n1+1)N ]
⋃
· · ·

⋃
[ξn2N , η]

joins ζ and η. By the uniqueness of regulated arc in Lemma 3.4, It follows that [ζ, η] ⊆ γζη.
Since [ζ, ξn1N ] ⊆ [xn1N , yn2N ], [ξkN , ξ(k+1)N ] ⊆ [xkN , y(k+1)N ] and [ζn2N , η] ⊆ [xn2N , yn2N ],
then γζη ⊆ H. Thus [ζ, η] ⊆ H.

• For any n ≥ 0, if Fn(ξ) ∈ Πi(n), then Fn(H) ⊆ Πi(n). Indeed, since ξ is never mapped
into

⋃
1≤i≤d ∂Πi, such Πi(n) exists. We claim that xkN , ξkN , ξ(k+1)N , ykN have the same

itinerary respect to {Πi}. Since ξ, ξN ∈ [x, y], then ξkN , ξ(k+1)N ∈ [xkN , ykN ]. By Lemma

5.6 and (5.1), [xkN+j , ykN+j ] must be contained in some Πj(n) for any j. In particularly,

we have F j(xkN ), F j(ξkN ), F j(ξ(k+1)N ), F j(ykN ) ∈ Πj(n). By the arbitrariness of j, the
claim follows. Therefore we obtain a sequence ξ, ξN , ξ2N , · · · , ξkN , xkN , ykN , which have
the same itinerary. Thus if Fn(ξ) ∈ Πi, F

n[xkN , ykN ] ⊆ Πi. By the arbitrariness of k, it
follows that Fn(H) ⊆ Πi.

• For any n ≥ 0, Fn|H is homeomorphism and FN (H) ⊆ H. The latter follows imme-
diately by definition. For the former, if not, there exists a minimal number n0 ≥ 0 such
that we have ζ 6= η ∈ Fn0(H) with F (ζ) = F (η). By the above conclusions, we see that
[ζ, η] ⊆ Fn0(H) and is contained in some Πi(n0). Since [ζ, η] is quasi-buried, there exists

[ζ(i), η(i)] ⊆ [x, y] with ζ(i), η(i) ∈ Πi(n0) such that ζ(i) → ζ, η(i) → η as i → ∞. Then
F |[ζ(i),η(i)] is one-to-one by Lemma 5.6. Thus F [ζ, η] is a loop. It is impossible by Lemma
3.4.

Now we pay attention to the two regulated arc [ξ, ξN ] and [ξN , ξ2N ]. Both of them are
contained in H. Their relations are in one of the following five possibilities. See figure 7.

(1) [ξ, ξN ]
⋂

[ξN , ξ2N ] = {ξN}.
(2) [ξ, ξN ]=[ξN , ξ2N ].
(3) [ξN , ξ2N ] ⊂ [ξ, ξN ].
(4) [ξ, ξN ] ⊂ [ξN , ξ2N ].
(5) [ξ, ξN ]

⋂
[ξN , ξ2N ] = [η, ξN ] for some η ∈ (ξ, ξN ).

We will show that all of them are impossible and so the proof is completed.
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ξ ξN ξ2N ξ(ξ2N ) ξN

ξ ξ2N ξN ξ2N ξ ξN

ξ ξNη

ξ2N

(1) (2)

(3) (4)

(5)

Figure 7. Relations of [ξ, ξN ] and [ξN , ξ2N ]

For case (1), we have [ξ, ξ2N ] = [ξ, ξN ]
⋃

[ξN , ξ2N ] ⊆ H. Then F |[ξ,ξ2N ] is homeomorphic.

Note that FN [ξ, ξN ] = [ξN , ξ2N ]. It follows that [ξ2N , ξ3N ]
⋂

[ξN , ξ2N ] = {ξ2N}. We also
have [ξ2N , ξ3N ]

⋂
[ξ, ξN ] = ∅. Otherwise, the three arcs [ξ, ξN ]

⋃
[ξN , ξ2N ]

⋃
[ξ2N , ξ3N ] would

form a loop. By induction, it follows that [ξnN , ξ(n+1)N ]
⋂

[ξ, ξnN ] = {ξnN} for n ≥ 0.

Then (ξ, ξN ) is a wandering regulated arc of FN . By Proposition 6.1, it is impossible.
Case (2) can not happen. Indeed, otherwise FN : [ξ, ξN ] → [ξ, ξN ] is homeomorphic.

Choose any subarc I in [ξ, ξN ] such that FN (I)
⋂
I = ∅. Then I is a wandering regulated

arc of FN .
For case (3), choose an arbitrary subarc I in (ξ, ξ2N ). Then FN (I) ⊆ (ξN , ξ2N ). Since

FN : [ξ, ξN ] → [ξN , ξ2N ] is homeomorphic and [ξN , ξ2N ] ⊂ [ξ, ξN ], I is a wandering regu-
lated arc of FN , a contradiction.

For case (4), by the intermediate value theorem, there is a fixed point ν ∈ (ξ, ξN ) of
FN . Then [ν, ξ] ⊂ [ν, ξ2N ] and the map F 2N : [ν, ξ] → [ν, ξ2N ] is homeomorphic. Let
ξ−2N ∈ [ν, ξ] such that F 2N (ξ−2N ) = ξ. Then [ξ−2N , ξ]

⋂
[ξ, ξ2N ] = {ξ}. Similar to case

(1), it is impossible.
For case (5), let η−N ∈ [ξ, ξN ] with FN (η−N ) = η. We distinguish three possibilities to

analyze.
(5.1) η−N ∈ (ξ, η). Then ηN ∈ (η, ξ2N ). Therefore [η−N , η]

⋂
[η, ηN ] = {η}. By case (1)

again, it is impossible.
(5.2) η−N = η. Then η is a fixed point of FN . We claim that there exist ν ∈ (η, ξ)

and n0 ≥ 3 such that Fn0N [η, ν] ⊆ [η, ξ]. Indeed, since F 3N [η, ξ] = [η, ξ3N ] and FN |H is
injective, hence [η, ξ3N ]

⋂
([η, ξN ] ∪ [η, ξ2N ]) = {η}. If [η, ξ3N ]

⋂
[η, ξ] 6= {η}, the claim fol-

lows. Otherwise, continue the process to [η, ξ3N ] · · · , until [η, ξkN
⋂

[η, ξ] 6= {η}. Otherwise,
we obtain an infinity sequence {(η, ξkN ]}k≥0 which are pairwise disjoint. This contradict
Proposition 6.1. Hence the claim follows.

Choose ν ′ ∈ (η, ν) such that ν ′n0N
6= ν ′. If ν ′n0N

∈ (η, ν ′), similarly in case (3), it is

impossible. If ν ′n0N
∈ (ν, ξ), let ν ′−n0N

∈ (η, ν ′) be the preimage of Fn0N |[η,ν′], then similar

in case (1), (ν ′−n0N
, ν ′) is a wandering regulated arc of Fn0N . It is impossible.
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(5.3) η−N ∈ (ξN , η). Applying intermediate value theorem to F : [η−N , η]→ [η, ηN ], we
obtain a fixed point ν ∈ (η−N , η). Since [ν, ξN ]

⋂
[ν, ξ2N ] = {ν}. So this is the case (5.2),

impossible. The proof is completed. �

6.3. General cases

Proposition 6.3. Let {Πi}1≤i≤d be the partition of C induced by the critical portrait of
f . If x, y ∈ Jf have the same itinerary respect to {Πi}1≤i≤d, then either x = y or x, y are
in the boundary of a Fatou component, which is mapped to a siegel disk.

Proof. Suppose x 6= y. Consider the regulated arc [x, y]. Let

U := {U : U is a Fatou component such that U
⋂

[x, y] 6= ∅}.

Then [x, y]\⋃U∈U U consists of several disjoint quasi-buried regulated arcs. By Proposition
6.2, each such arcs is a single point.

Firstly, U is finite. If not, since there is no wandering Fatou components and the number
of periodic Fatou components is finite. Infinite many elements in U will eventually be
mapped onto a periodic one. This contradicts (6.1).

Secondly, any U ∈ U is mapped to a siegel disk. If not, let (x′, y′) = U
⋂

[x, y]. If there
exists N ≥ 0 such that orbits of x′N and y′N avoid the finite set X :=

⋃
1≤i≤d(Jf

⋂
∂Πi),

then x′N and y′N have the same itinerary. Lemma 5.2 gives x′N = y′N . This contradicts
(6.1). Thus there exist N and a periodic point ξ ∈ X such that x′N = ξ or y′N = ξ.
Suppose x′N = ξ. Let ξ ∈ Θ(U0) and p the period of ξ. Then F p fixes x′N and iterates y′N
to at least two distinct segments of ∂U0 \Θ(U0). By properties of supporting rays, xn, yn
must be separated by Θ(U0) for some n, a contradiction.

Finally, U consists of only one Fatou component. If not, let U 6= U ′ ∈ U . Let M,N be
integers such that FM (U) = FM+N (U), FM (U ′) = FM+N (U ′). Then

FM+N [c(U), c(U ′)] = FM [c(U), c(U ′)].

By Lemma 3.4, ξ := ∂FM (U)
⋂
FM [c(U), c(U ′)] is periodic. Since FN |∂FM (U) conjugates

a irrational rotation. Thus ξ can not be periodic, a contradiction. The proof is completed.
�

Proof of Theorem 1.2. The theorem follows immediately by Propositions 6.3. �

7. Application to core entropy

Consider a quadratic polynomial family F := {fc = z2 + c : fc has no Siegel disks and
Jfc is locally connected }. As an application of Theorem 1.2, we shall prove the mono-
tonicity of core entropy.

7.1. Characteristic arc Ic

In order to introduce a partial order on F , we need the following definition of charac-
teristic arc Ic.

(C1) If fc has a parabolic or attracting Fatou cycle of period p ≥ 1. Then there exists a
unique point z in the boundary of critical value Fatou component U such that fpc (z) = z.
Let S be the sector containing U and bounded by supporting rays of U at z. Then set
Ic := {θ ∈ R/Z : R(θ) ⊆ S}. Obviously, Ic = R/Z if and only if exactly one ray lands at
z.
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(C2) In other cases, we have c ∈ Jfc . Then there is a unique sector S based at c

containing critical point 0. Set Ic := R/Z \ {θ ∈ R/Z : R(θ) ⊆ S}. Evidently, Ic is a single
angle if and only if only one ray lands at critical value c.

For any fc, fc′ in F , we say fc ≺ fc′ if and only if Ic ⊇ Ic′ .
If Ic 6= R/Z, denote by [ηc, ξc] := Ic. Let I ′c

⋃
I ′′c := σ−1

2 (Ic) with I ′c := [η′c, ξ
′
c] and

I ′′c := [η′′c , ξ
′′
c ], where {η′c, η′′c } := σ−1

2 (ηc) and {ξ′c, ξ′′c } := σ−1
2 (ξc). The above [•, •] are

measured in positive cyclic order and we distinguish it from the notation of regulated arc
by acting on distinct categories. Evidently, I ′c and I ′′c are symmetric respect to origin with
length |I ′c| = |I ′′c | = 1

2 |Ic|.

Lemma 7.1 (Properties of characteristic arc). For any fc ∈ F , then
(1) If fc is in case (C2), then
(1.1) The rays R(η′c), R(η′′c ), R(ξ′c), R(ξ′′c ) land at critical point 0.
(1.2) If Ic is not a single point, let S′c resp. S′′c be the sectors bounded by R(η′c) and

R(ξ′c) resp. R(η′′c ) and R(ξ′′c ) and Sc the sectors bounded by R(ηc) and R(ξc) avoiding the
critical point. Then (S′c

⋃
S′′c )

⋂
Sc = ∅ and f maps S′c resp. S′′c conformally onto Sc.

Denote by Hc := S′c
⋃
S′′c .

(2) If fc is in case (C1) and Ic 6= R/Z, then
(2.1) Lηcξc separates critical point 0 and critical value c. Recall Lηcξc := R(ηc)

⋃
R(ξc)

⋃{z}.
Therefore, |Ic| < 1

2 .
(2.2) R(η′c) and R(ξ′′c ) resp. R(η′′c ) and R(ξ′c) land together at z′ resp. z′′ with {z′, z′′} :=

f−1(z).
(2.3) Let Sc be the sectors bounded by R(ηc) and R(ξc) avoiding the critical point and Hc

the domain bounded by Lη′cξ′′c and Lη′′c ξ′c, then Hc
⋂
Sc = ∅ and f : Hc → Sc is a branched

covering of degree two.

(3) For any fc, fc′ ∈ F , if fc ≺ fc′, then I ′c′
⋃
I ′′c′ ⊆ I ′c

⋃
I ′′c .

S′c

S′′c

Sc R(ηc)
R(ξc)

R(η′c)

R(ξ′c)

R(η′′c )

R(ξ′′c )Sc
Lηcξc

Lη′cξ′′c

Lη′′c ξ′c

Hc

Figure 8. illustrating the proof of Lemma 7.1, Left: case (C1). Right:
case (C2)

Proof. (1) Since both R(ηc), R(ξc) land at critical value c. Then, at the critical point 0,
there exist preimages, rays R(η′c), R(η′′c ), R(ξ′c), R(ξ′′c ). If Ic is a single point, we have
η′c = ξ′c, η

′′
c = ξ′′c . If Ic is not a single point, consider the sectors S′c and S′′c based

at 0. By lemma 2.1 (S′c
⋃
S′′c )

⋂
Sc = ∅. Since f |S′c resp. f |S′′c is conformal. Thus

l(f(S′c)) = 2l(S′c) = 2l(S′′c ). Note that l(C \ Sc) > l(S′c) + l(S′′c ). It follows that
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f(S′c) = f(S′′c ) = Sc.

(2) Let p be the period of the critical value Fatou component U and z0 := z, z1 :=
f(z), · · · , zp := fp(z) with zp = z0. Since this orbit is disjoint with critical point, we can

set Lzi the preimage of f−(p−i)Lηcξc at each zi. Obviously, Lz0 = Lzp , because both of
them support Fatou component U . Let Szi be one of the components C \ Lzi containing
0 and S′zi the other.

For (2.1), suppose Lz0 does not separate 0 and c, then Sz0 contains both of them. For
i = p − 1, By Lemma 2.2 (4), the sector map σ2 must send the critical sector Szp−1 to

critical value sector Szp , and thus σ2(S′zp−1
) = S′zp . We have l(S′zp−1

) = 1
2 l(S

′
z0). Claim

Lzp−1 cannot separate 0 and c. Otherwise, using Lemma 2.1 and properties of supporting
rays, we have S′zp−1

⊃ S′z0 , thus l(S′zp−1
) > l(S′z0), impossible. For i = p − 2, · · · , 0, the

same argument as above implies l(S′zi) = 1
2 l(S

′
zi+1

) and Szi contains both 0 and c. Thus

l(S′z0) = 1
2p l(S

′
z0), a contradiction.

For (2.2), since z is not a critical value. We have two z′ 6= z′′ preimages of z. We discuss
by contradiction and assume R(η′c), R(ξ′c) resp. R(η′′c ), R(ξ′′c ) land at z′ resp. z′′. Then
consider the sector S′c :=

⋃
θ∈I′c R(θ) resp. S′′c :=

⋃
θ∈I′′c R(θ). We have σ2(S′c) = σ2(S′′c ) =

S′z0 . Since l(S′c) = l(S′′c ) = l(I ′c) = l(I ′′c ) < 1
2 , by Lemma 2.2, f |S′′c , f |S′′c are conformal.

Therefore, the image S′z0 cannot contain critical value c. This contradicts (2.1).
For (2.3), note that both of Lη′cξ′′c and Lη′′c ξ′c support the critical Fatou component and

are symmetry respect the original. Then the fact |Ic| > |I ′c| = |I ′′c | implies Hc
⋂
Sc = ∅.

For (3), one can easily check it by definition. �

7.2. Dynamic of biaccessible angles

Given fc ∈ F , an angle θ in R/Z is called to be biaccessible, if there exists θ′ 6= θ such
that R(θ) and R(θ′) landing together. Evidently, if θ is biaccessible, then the preimages
σ−1

2 (θ) are biaccessible. Inversely, if θ is biaccessible and α(θ) is not the critical point,
then σ2(θ) is also biaccessible. Denote by Acc(fc) the set of all biaccessible angles of fc.
Then if Ic = R/Z, Acc(fc) = ∅ by lemma 5.2.

Lemma 7.2. Let Ic 6= R/Z and not a single angle. Let θ be a biaccessible angle of fc and
the orbit of the landing point ζ0 := α(θ) avoid critical point 0. Then there exists a N ≥ 0
such that the orbit of ζN := fN (ζ0) is disjoint with Hc, where Hc is defined in Lemma 7.1
(1.2)(2.3). Therefore, there exists ϑ 6= θN := σN2 (θ) such that, for any ν ∈ (ηc, ξc), ϑ and
θN have the same itinerary respect to R/Z \ σ−1

2 (ν).

Proof. Let θ′ 6= θ with α(θ′) = α(θ) = ζ0. Since ζ0 will never meet the critical point. For
n ≥ 0, Lθnθ′n = fn(Lθθ′) bounds two sectors Sζn and S′ζn , where we assume Sζn is the one
containing 0.

Firstly, there exists a N ≥ 0 such that LθNθ′N separates 0 and c. If not, for each n ≥ 0,

σ2 must send Sζn to Sζn+1 and S′ζn to S′ζn+1
, therefore, l(S′ζn+1

) = 2l(S′ζn) by Lemma 2.2

(2), (3) and (4). It follows that l(S′ζn)→∞ as n→∞, impossible.

By Lemma 7.1 (1.2)(2.3), points in Hc will be mapped to Sc. Thus we only have
to show that ζn /∈ Sc, n ≥ N . Claim l(S′ζn) ≥ l(Sc). If not, let n0 > N be first

integer such that l(S′ζn0
) < l(Sc). Thus S′ζn0

must be a critical value sector. This means

S′ζn0
⊇ Sc or S′ζn0

⊇ C\Sc, both of which imply l(S′ζn0
) ≥ l(Sc), a contradiction. Therefore,

ζn /∈ Sc, n ≥ N . �
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7.3. Monotonicity of core-entropy

Proof of Theorem 1.4. If Ic = R/Z, Acc(fc) = ∅.
If #Ic = 1, then Ic = Ic′ , hence I ′c = I ′c′ and I ′′c = I ′′c′ . By Theorem 1.2, Acc(fc) =

Acc(fc′).
In other cases, we have either Ic = Ic′ or Ic′ ( Ic.
If Ic′ ( Ic. We can assume ηc′ ∈ (ηc, ξc). For any θ ∈ Acc(fc), if the orbit of α(θ)

is disjoint with critical point 0, by Lemma 7.2, there exist N and θ′ 6= θN such that θN
and ϑ have the same itinerary respect to partition R/Z \ σ−1

2 (ηc′). By theorem 1.2, in the
dynamic plane of fc′ , external rays with arguments θN , ϑ land together. Thus θ ∈ Acc(fc′).
If α(θ) is iterated to 0, then critical point is not periodic. Evidently, the above N and ϑ
exist as well.

If Ic = Ic′ . For any θ ∈ Acc(fc), if α(ηc) is not periodic, by the same argument as above,
such ϑ and N exist. If α(ηc) is periodic. If the orbit of α(θ) avoids α(ηc), then such ϑ
and N exist. If α(θ) is mapped to α(ηc). Then θ is iterated into {ηc, ξc} ⊆ Acc(fc′). Thus
θ ∈ Acc(fc′). The proof is completed. �
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[Ju13] W.Jung, Core entropy and biaccessibility of quadratic polynomials, available at

arXiv:1401.4792[math.DS].
[Ki02] J.Kiwi, Wandering orbit portraits, Trans. Amer. Math. Soc., 354(2002), 1473-1485.
[Ki04] J.Kiwi, Real laminations and the topological dynamics of complex polynomials, Advances in Math-

ematics 184(2004), 207-267.
[Ki05] J.Kiwi, Combinatorial continuity in complex polynomial dynamics, Proc. London Math. Soc.

91(2005), no.3, 215-248.
[Le98] G.Levin, On backward stability of holomorphic dynamical systems, Fundamenta Mathematicae,

158(1998), 97-107.
[Li07] T.Li,A monotonicity conjecture for the entropy of Hubbard trees, PhD Thesis, SUNY Stony Brook,

2007.
[Mc95] C.T.McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies 135,

Princeton University Press 1995.
[Mi00] J.Milnor, Periodic orbits, externals rays and the Mandelbrot set: An expository account, in “Géomé
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