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applications to transport and wave propagation on

networks∗

Yacine Chitour† ‡, Guilherme Mazanti§ ‡, Mario Sigalotti‡ §

April 15, 2015

Abstract

In this paper, we address the stability of non-autonomous difference equations by provid-
ing an explicit formula expressing the solution at time t in terms of the initial condition and
time-dependent matrix coefficients. We then relate the asymptotic behavior of such coefficients
to that of solutions. As a consequence, we obtain necessary and sufficient stability criteria for
non-autonomous linear difference equations. In the case of difference equations with arbitrary
switching, we obtain a generalization of the well-known criterion for autonomous systems due
to Hale and Silkowski. These results are applied to transport and wave propagation on networks.
In particular, we show that the wave equation on a network with arbitrarily switching damping
at external vertices is exponentially stable if and only if the network is a tree and the damping is
bounded away from zero at all external vertices but one.

Keywords: difference equations, switching systems, transport equation, wave propagation, networks,
exponential stability.

1 Introduction
Dynamics on networks has generated in the past decades an intense research activity within the PDE
control community [2, 7, 11, 13, 16]. In particular, stability and stabilization of transport and wave
propagation on networks raise challenging questions on the relationships between the asymptotic-in-
time behavior of solutions on the one hand and, on the other hand, the topology of the network, its
interconnection and damping laws at the vertices, and the rational dependence of the transit times on
the network edges [1,5,8,10,28,29]. A case of special interest is when some coefficients of the system
are time-dependent and switch arbitrarily within a given set [3,14,23]. In this paper, we address these
issues by formulating them within the framework of non-autonomous linear difference equations

u(t) =
N

∑
j=1

A j(t)u(t−Λ j), u(t) ∈ Cd, (Λ1, . . . ,ΛN) ∈ (R∗+)N . (1.1)
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This standard approach relies on d’Alembert decomposition and classical transformations of hyper-
bolic systems of PDEs into delay differential-difference equations [6, 9, 18, 21, 26]. Here, stability is
meant uniformly with respect to the matrix-valued function A(·) = (A1(·), . . . ,AN(·)) belonging to a
given class A.

In the autonomous case, Equation (1.1) has a long history and its stability is completely character-
ized using Laplace transform techniques by the celebrated Hale–Silkowski criterion (see e.g. [4, The-
orem 5.2], [15, Chapter 9, Theorem 6.1]). The latter can be formulated as follows: if Λ1, . . . ,ΛN are
rationally independent, then all solutions of u(t) = ∑

N
j=1 A ju(t−Λ j) tend exponentially to zero as t

tends to infinity if and only if ρHS(A)< 1, where ρHS(A) is the maximum for (θ1, . . . ,θN)∈ [0,2π]N of
the spectral radius of ∑

N
j=1 A jeiθ j . Since the latter condition does not depend on Λ1, . . . ,ΛN , exponen-

tial stability for a particular choice of rationally independent Λ1, . . . ,ΛN implies exponential stability
for any rationally independent L1, . . . ,LN . Hale–Silkowski criterion actually says more, namely that
the previous conclusion holds true for any positive L1, . . . ,LN . This criterion can be used to evaluate
the maximal Lyapunov exponent associated with u(t) = ∑

N
j=1 A ju(t−Λ j), i.e., the infimum over the

exponential bounds for the corresponding semigroup. A nice feature of Hale–Silkowski criterion is
that, contrarily to the maximal Lyapunov exponent, it does not involve taking limits as time tends to
infinity. An extension of these results has been obtained in [20] for the case where Λ1, . . . ,ΛN are not
assumed to be rationally independent.

The non-autonomous case turns out to be more difficult since one does not have a general charac-
terization of the exponential stability of (1.1) not involving limits as time tends to infinity. To illustrate
that, consider the simple case N = 1 of a single delay and A = L∞(R,B) where B is a bounded set
of d× d matrices. Then the stability of (1.1) is equivalent to that of the discrete-time switched sys-
tem un+1 = Anun where An ∈ B, and it is characterized by the joint spectral radius of B (see for
instance [17, Section 2.2] and references therein) for which there is not yet a general characterization
not involving limits as n tends to infinity.

In this paper, we address the issue of stability in the non-autonomous case. Up to our knowledge,
the only results in this direction in the literature were obtained in [22], where sufficient conditions for
stability are deduced from Perron–Frobenius Theorem. Our approach is rather based on a trajectory
analysis relying on a new formula for solutions of (1.1), which expresses the solution u(t) at time t as
a linear combination of the initial condition u0 evaluated at finitely many points identified explicitly.
The matrix coefficients, denoted by Θ, are obtained in terms of the functions A1(·), . . . ,AN(·) and take
into account the rational dependence structure of Λ1, . . . ,ΛN . This formula provides a correspondence
between the asymptotic behavior of solutions of (1.1), uniformly with respect to the initial condition
u0 and A(·) ∈ A, and that of the matrix coefficients Θ uniformly with respect to A(·) ∈ A. As a
byproduct we obtain that the asymptotic behavior of solutions of (1.1) does not depend on the Lp-
space where the equation (1.1) evolves for p ∈ [1,+∞]. In the case where A = L∞(R,B) for some
bounded set B of N-tuples of d× d matrices, we extend the results of [20], replacing ρHS in the
Hale–Silkowski criterion by a generalization of the joint spectral radius. In particular, we prove that
stability for a certain N-tuple Λ = (Λ1, . . . ,ΛN) is equivalent to stability for any N-tuple (L1, . . . ,LN)
having the same rational dependence structure as Λ.

For transport and wave propagation on networks with unitary speed and time-dependent coeffi-
cients switching arbitrarily in a given bounded set, we deduce that the stability is robust with respect
to variations of the lengths of the edges of the network which preserve their rational dependence
structure. In the case of wave propagation on networks with arbitrarily switching damping at external
vertices, we obtain a necessary and sufficient stability criterion in terms of the topology of the net-
work, namely that stability holds if and only if the network is a tree and the damping is bounded away
from zero at all external vertices but at most one.

The structure of the paper goes as follows. Section 2 provides the main notations and definitions
used in this paper. Difference equations of the form (1.1) are discussed in Section 3. We start by
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establishing the well-posedness of the Cauchy problem and an explicit formula for solutions in Sec-
tions 3.1 and 3.2. Stability criteria are given in Section 3.3 in terms of convergence of the coefficients
and specified to the cases of shift-invariant classes A and arbitrary switching. In the latter case, we
provide the above discussed generalization of Hale–Silkowski criterion. Applications to transport
equations are developed in Section 4 by exhibiting a correspondence with difference equations of the
type (1.1). Thanks to d’Alembert decomposition, results for transport equations are transposed to
wave propagation on networks in Section 5. The topological characterization of exponential stability
is given in Section 5.3.

2 Notations and definitions
In this paper, we denote by N and N∗ the set of nonnegative and positive integers respectively, R+ =
[0,+∞) and R∗+ = (0,+∞). For a,b ∈ R, let Ja,bK = [a,b]∩Z, with the convention that [a,b] = /0 if
a > b. The closure of a set F is denoted by F . If x ∈ R and F ⊂ R, we use x+F to denote the set
{x+ y | y ∈ F}.

For x ∈ R, dxe denotes the smallest integer k ∈ Z such that k ≥ x. We use #F and δi j to denote,
respectively, the cardinality of a set F and the Kronecker symbol of i, j. For x ∈ R, we use x± to
denote max(±x,0) and we extend this notation componentwise to vectors. For x ∈ Rd , we use xmin
and xmax to denote the smallest and the largest components of x, respectively.

If K is a subset of C and d,m ∈ N, the set of d×m matrices with coefficients in K is denoted by
Md,m(K), or simply by Md(K) when d = m. The identity matrix in Md(C) is denoted by Idd . We
use e1, . . . ,ed to denote the canonical basis of Cd , i.e., ei = (δi j) j∈J1,dK for i ∈ J1,dK. For p ∈ [1,+∞],
|·|p indicates both the `p-norm in Cd and the induced matrix norm in Md(C). We use ρ(A) to denote
the spectral radius of a matrix A ∈Md(C), i.e., the maximum of |λ | with λ eigenvalue of A. The
range and kernel of a matrix A are denoted by RanA and KerA respectively, and rk(A) denotes the
dimension of RanA. Given A1, . . . ,AN ∈Md(C), we denote by ∏

N
i=1 Ai the ordered product A1 · · ·AN .

All Banach and Hilbert spaces are supposed to be complex. The norm of an element u in a
Banach space X is denoted by ‖u‖X. For p ∈ [1,+∞], we use Lp to denote the usual Lebesgue spaces
of p-integrable functions and W k,p the Sobolev spaces of k-times weakly differentiable functions with
derivatives in Lp.

A subset A of L∞
loc(R,Md(C)N) is said to be uniformly locally bounded if, for every compact time

interval I, supA∈A ‖A‖L∞(I,Md(C)N) is finite. We say that A is shift-invariant if A(·+ t) ∈ A for every
A ∈A and t ∈ R.

Throughout the paper, we will use the indices δ , τ and ω in the notations of systems and functional
spaces when dealing, respectively, with difference equations, transport systems and wave propagation.

3 Difference equations
Let N,d ∈ N∗, Λ = (Λ1, . . . ,ΛN) ∈ (R∗+)N , and consider the system of time-dependent difference
equations

Σδ (Λ,A) : u(t) =
N

∑
j=1

A j(t)u(t−Λ j). (3.1)

Here, u(t) ∈ Cd and A = (A1, . . . ,AN) : R→Md(C)N .
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3.1 Well-posedness of the Cauchy problem
In this section, we show existence and uniqueness of solutions of the Cauchy problem associated with
(3.1). We also consider the regularity of these solutions in terms of the initial condition and A(·).

Definition 3.1. Let u0 : [−Λmax,0)→ Cd and A = (A1, . . . ,AN) : R→Md(C)N . We say that u :
[−Λmax,+∞)→ Cd is a solution of Σδ (Λ,A) with initial condition u0 if it satisfies (3.1) for every
t ∈ R+ and u(t) = u0(t) for t ∈ [−Λmax,0). In this case, we set, for t ≥ 0, ut = u(·+ t)|[−Λmax,0).

We have the following result.

Theorem 3.2. Let u0 : [−Λmax,0)→Cd and A = (A1, . . . ,AN) : R→Md(C)N . Then Σδ (Λ,A) admits
a unique solution u : [−Λmax,+∞)→ Cd with initial condition u0.

Proof. It suffices to build the solution u on [−Λmax,Λmin) and then complete its construction on
[Λmin,+∞) by a standard inductive argument.

Suppose that u : [−Λmax,Λmin)→ Cd is a solution of Σδ (Λ,A) with initial condition u0. Then, by
(3.1), we have

u(t) =


N

∑
j=1

A j(t)u0(t−Λ j), if 0≤ t < Λmin,

u0(t), if −Λmax ≤ t < 0.

(3.2)

Since the right-hand side is uniquely defined in terms of u0 and A, we obtain the uniqueness of the
solution. Conversely, if u : [−Λmax,Λmin) → Cd is defined by (3.2), then (3.1) clearly holds for
t ∈ [−Λmax,Λmin) and thus u is a solution of Σδ (Λ,A). �

Definition 3.3. For p ∈ [1,+∞], we use Xδ
p to denote the Banach space Xδ

p = Lp([−Λmax,0],Cd)
endowed with the usual Lp-norm denoted by ‖·‖Xδ

p
.

Remark 3.4. If u0,v0 : [−Λmax,0)→ Cd are such that u0 = v0 almost everywhere on [−Λmax,0)
and A,B : R→Md(C)N are such that A = B almost everywhere on R+, then it follows from (3.2)
that the solutions u,v : [−Λmax,+∞)→ Cd associated respectively with A, u0 and B, v0 satisfy u = v
almost everywhere on [−Λmax,+∞). In particular, for initial conditions in Xδ

p, p ∈ [1,+∞], we still
have existence and uniqueness of solutions, now in the sense of functions defined almost everywhere.
If moreover A ∈ L∞

loc(R,Md(C)N), it easily follows from (3.2) that the corresponding solution u of
Σδ (Λ,A) satisfies u ∈ Lp

loc([−Λmax,+∞) ,Cd).

Theorem 3.5. Let p∈ [1,+∞), u0 ∈ Xδ
p, A∈ L∞

loc(R,Md(C)N), and u be the solution of Σδ (Λ,A) with
initial condition u0. Then the Xδ

p-valued mapping t 7→ ut defined on R+ is continuous.

Proof. By Remark 3.4, ut ∈ Xδ
p for every t ∈ R+. Since ut(s) = u(s+ t) for s ∈ [−Λmax,0), the

continuity of t 7→ ut follows from the continuity of translations in Lp (see, for instance, [24, Theorem
9.5]). �

Remark 3.6. The conclusion of Theorem 3.5 does not hold for p = +∞ since translations in L∞ are
not continuous.
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3.2 Explicit formula for the solution
When t ∈ [0,Λmin), Equation (3.2) yields u(t) in terms of the initial condition u0. If t ≥ Λmin, we use
(3.1) to express the solution u at time t in terms of its values on previous times t−Λ j, and, for each j
such that t > Λ j, we can reapply (3.1) at the time t−Λ j to obtain the expression of u(t−Λ j) in terms
of u evaluated at previous times. By proceeding inductively, we can obtain an explicit expression for
u in terms of u0. For that purpose, let us introduce some notations.

Definition 3.7. i. For n ∈ NN \{0}, we denote by Vn the set

Vn =

{
(v1, . . . ,v|n|1) ∈ J1,NK|n|1 |

|n|1
∑
j=1

δiv j = ni for every i ∈ J1,NK

}
.

ii. For n ∈ N∗ and v = (v1, . . . ,vn) ∈ J1,NKn, we define the function pv : J1,n+1K→ NN by

pv(k) =
k−1

∑
j=1

ev j .

iii. For A = (A1, . . . ,AN) : R→Md(C)N , Λ = (Λ1, . . . ,ΛN) ∈ (R∗+)N , n ∈ ZN and t ∈R, we define
the matrix Ξ

Λ,A
n,t ∈Md(C) inductively by

Ξ
Λ,A
n,t =


0, if n ∈ ZN \NN ,
Idd, if n = 0,

N

∑
k=1

Ak(t)Ξ
Λ,A
n−ek,t−Λk

, if n ∈ NN \{0}.
(3.3)

We omit Λ, A or both from the notation Ξ
Λ,A
n,t when they are clear from the context.

The following result provides a way to write Ξn,t as a sum over Vn and as an alternative recursion
formula.

Proposition 3.8. For every n ∈ NN \{0} and t ∈ R, we have

Ξ
Λ,A
n,t = ∑

v∈Vn

|n|1
∏
k=1

Avk (t−Λ ·pv(k)) (3.4)

and

Ξ
Λ,A
n,t =

N

∑
k=1

Ξ
Λ,A
n−ek,tAk(t−Λ ·n+Λk). (3.5)

Proof. We prove (3.4) by induction over |n|1. If n = ei for some i ∈ J1,NK, we have

∑
v∈Vei

1

∏
k=1

Avk(t) = Ai(t) = Ξei,t .

Let R ∈ N∗ be such that (3.4) holds for every n ∈ NN with |n|1 = R and t ∈ R. If n ∈ NN is such that
|n|1 = R+1 and t ∈ R, we have, by (3.3) and the induction hypothesis, that

Ξn,t =
N

∑
k=1
nk≥1

Ak(t)Ξn−ek,t−Λk =
N

∑
k=1
nk≥1

∑
v∈Vn−ek

Ak(t)
|n|1−1

∏
r=1

Avr (t−Λk−Λ ·pv(r))
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= ∑
v∈Vn

|n|1
∏
r=1

Avr(t−Λ ·pv(r)),

where we use that Vn = {(k,v) |k ∈ J1,NK, nk ≥ 1, v∈Vn−ek} and that ek+pv(r) = p(k,v)(r+1). This
establishes (3.4).

We now turn to the proof of (3.5). Since Ξe j,t = A j(t), (3.5) is satisfied for n = e j, j ∈ J1,NK. For
n ∈ NN with |n|1 ≥ 2, the set Vn can be written as

Vn = {(v,k) | k ∈ J1,NK, nk ≥ 1, v ∈Vn−ek},

and thus, by (3.4), we have

Ξn,t =
N

∑
k=1
nk≥1

∑
v∈Vn−ek

[
|n|1−1

∏
r=1

Avr (t−Λ ·pv(r))

]
Ak (t−Λ ·pv(|n|1))

=
N

∑
k=1
nk≥1

∑
v∈Vn−ek

[
|n|1−1

∏
r=1

Avr (t−Λ ·pv(r))

]
Ak(t−Λ ·n+Λk)

=
N

∑
k=1

Ξn−ek,tAk(t−Λ ·n+Λk). �

In order to take into account the relations of rational dependence of Λ1, . . . ,ΛN ∈R∗+ in the explicit
formula for the solution of Σδ (Λ,A), we set

Z(Λ) = {n ∈ ZN |Λ ·n = 0},

V (Λ) = {L ∈ RN |Z(Λ)⊂ Z(L)}, V+(Λ) =V (Λ)∩ (R∗+)N ,

W (Λ) = {L ∈ RN |Z(Λ) = Z(L)}, W+(Λ) =W (Λ)∩ (R∗+)N .

Notice that W (Λ)⊂V (Λ) and W (Λ) = {L ∈V (Λ) |V (L) =V (Λ)}.
The point of view of this paper is to prescribe Λ = (Λ1, . . . ,ΛN) ∈ (R∗+)N and to describe the

rational dependence structure of its components through the sets Z(Λ), V (Λ), and W (Λ). Another
possible viewpoint, which is the one used for instance in [20], is to fix B ∈MN,h(N) and consider the
delays Λ = (Λ1, . . . ,ΛN) ∈ RanB∩ (R∗+)N . We show in the next proposition that the two points of
view are equivalent.

Proposition 3.9. Let Λ = (Λ1, . . . ,ΛN)∈ (R∗+)N . There exist h∈ J1,NK, `= (`1, . . . , `h)∈ (R∗+)h with
rationally independent components, and B ∈MN,h(N) with rk(B) = h such that Λ = B`. Moreover,
for every B as before, one has

V (Λ) = RanB,
W (Λ) = {B(`′1, . . . , `′h) | `′1, . . . , `′h are rationally independent}.

(3.6)

In particular, W (Λ) is dense and of full measure in V (Λ).

Proof. Let V = SpanQ{Λ1, . . . ,ΛN}, h = dimQV, and {λ1, . . . ,λh} be a basis of V with positive
elements, so that Λ = Au for some A = (ai j) ∈MN,h(Q) and u = (λ1, . . . ,λh) ∈ (R∗+)h. For v ∈
Rh \{0}, we denote by Pv the orthogonal projection in the direction of v, i.e., Pv = vvT/|v|22.

Since Qh is dense in Rh, there exists a sequence of vectors un =(r1,n, . . . ,rh,n) in (Q∗+)h converging
to u as n→+∞, and we can further assume that the sequence is chosen in such a way that |Pun−Pu|2≤
1/n2 for every n ∈ N∗.
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For n ∈ N∗, we define Tn = Pun +
1
n (Idh−Pun). This operator is invertible, with inverse T−1

n =

Pun +n(Idh−Pun). Furthermore, both Tn and T−1
n belong to Mh(Q). For i ∈ J1,hK, we have

(T−1
n ei)

Tu = eT
i Punu+neT

i (Idh−Pun)u = eT
i Punu+neT

i (Pu−Pun)u

and thus (T−1
n ei)

Tu→ eT
i u = λi as n→+∞. Since λ1, . . . ,λh > 0, there exists n0 ∈ N∗ such that

(T−1
n ei)

Tu > 0, ∀i ∈ J1,hK, ∀n≥ n0. (3.7)

For i ∈ J1,NK, let αi = (ai j) j∈J1,hK ∈Qh. For each i ∈ J1,NK, we construct the sequence (αi,n)n∈N∗

in Qh by setting αi,n = Tnαi. It follows from the definition of Tn that αi,n converges to Puαi =
uuTαi
|u|22

as

n→ +∞. Since uTαi = ∑
h
j=1 ai jλ j = Λi > 0 and the components of u are positive, we conclude that

there exists n1 ≥ n0 such that αi,n1 ∈ (Q+)
h for every i ∈ J1,NK.

Let `= (T−1
n1

)Tu. By (3.7), `i = (T−1
n1

ei)
Tu > 0 for every i ∈ J1,hK. Since the components of u are

rationally independent, `1, . . . , `h are also rationally independent. Let bi j ∈Q+, i ∈ J1,NK, j ∈ J1,hK,
be such that αi,n1 = (bi j) j∈J1,hK. Hence, for i ∈ J1,NK,

Λi = uT
αi = uTT−1

n1
αi,n1 =

h

∑
j=1

bi juTT−1
n1

e j =
h

∑
j=1

bi j` j.

We then get the required result up to multiplying B = (bi j) by a large integer and modifying ` in
accordance.

We next prove that (3.6) holds for every B as before. (Our proof actually holds for every B ∈
MN,h(Q) with rk(B) = h such that Λ = B` for some ` ∈ (R∗+)h with rationally independent com-
ponents.) First notice that Z(Λ) = {n ∈ ZN | n ∈ KerBT}. Indeed, n ∈ Z(Λ) if and only if n
is perpendicular in RN to B`, which is equivalent to nTB = 0 since `1, . . . , `h are rationally inde-
pendent. Moreover, remark that KerBT = (RanB)⊥ admits a basis with integer coefficients since
RanB admits such a basis. To see that, it is enough to complete any basis of RanB in QN by
N − h vectors in QN and find a basis of (RanB)⊥ by Gram–Schmidt orthogonalization. We fi-
nally deduce that SpanR(Z(Λ)) = (RanB)⊥. Since by definition V (Λ) = Z(Λ)⊥, we conclude that
V (Λ) = RanB. As regards the characterization of W (Λ), an argument goes as follows. Let L ∈V (Λ),
so that L = B`′ for a certain `′ ∈ Rh. The components of `′ are rationally dependent if and only if
dimQSpanQ{L1, . . . ,LN}< h, i.e., dimRV (L)< dimRV (Λ), which holds if and only if L /∈W (Λ). �

We introduce the following additional definitions.

Definition 3.10. Let Λ = (Λ1, . . . ,ΛN) ∈ (R∗+)N . We partition J1,NK and ZN according to the equiv-
alence relations ∼ and ≈ defined as follows: i∼ j if Λi = Λ j and n≈ n′ if Λ ·n = Λ ·n′. We use [·] to
denote equivalence classes of both ∼ and ≈ and we set J= J1,NK/∼ and Z= ZN/≈.

For A : R→Md(C)N , L ∈V+(Λ), [n] ∈ Z, [i] ∈ J, and t ∈ R, we define

Ξ̂
L,Λ,A
[n],t = ∑

n′∈[n]
Ξ

L,A
n′,t , ÂΛ

[i](t) = ∑
j∈[i]

A j(t), (3.8)

and
Θ

L,Λ,A
[n],t = ∑

[ j]∈J
L·n−L j≤t

Ξ̂
L,Λ,A
[n−e j],t

ÂΛ

[ j](t−L ·n+L j). (3.9)

Remark 3.11. The expression for Ξ̂
L,Λ,A
[n],t given in (3.8) is well-defined since, thanks to (3.3), all terms

in the sum are equal to zero except finitely many. The expression for Θ
L,Λ,A
[n],t given in (3.9) is also well-

defined since, for every L ∈V+(Λ), if i∼ j and n≈ n′, one has Li = L j and L ·n = L ·n′. In addition,
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notice that Ξ̂
L,Λ,A
[n],t 6= 0 only if [n]∩NN is nonempty, and, similarly, Θ

L,Λ,A
[n],t 6= 0 only if [n]∩ (NN \{0})

is nonempty. Another consequence of the above fact and (3.9) is that Θ
L,Λ,A
[n],t 6= 0 only if t ≥ 0, since

[n− e j]∩NN = /0 whenever [n] ∈ Z and [ j] ∈ J are such that L ·n−L j < 0.
Notice, moreover, that the matrices Ξ̂, Â and Θ depend on Λ only through Z(Λ). Hence, if

Λ′ ∈W+(Λ) (i.e., Z(Λ′) = Z(Λ)), then

Ξ̂
L,Λ,A
[n],t = Ξ̂

L,Λ′,A
[n],t , ÂΛ

[i](t) = ÂΛ′
[i] (t), Θ

L,Λ,A
[n],t = Θ

L,Λ′,A
[n],t .

From now on, we fix Λ = (Λ1, . . . ,ΛN) ∈ (R∗+)N and our goal consists of writing an explicit
formula for the solutions of Σδ (L,A) for every L ∈V+(Λ). Even though the above definitions depend
on Λ, L ∈ V+(Λ) and A, we will sometimes omit (part of) this dependence from the notations when
there is no risk of confusion.

Let us now provide further expressions for Ξ̂
L,Λ,A
[n],t .

Proposition 3.12. For every L ∈V+(Λ), A : R→Md(C)N , n ∈ NN \{0}, and t ∈ R, we have

Ξ̂
L,Λ,A
[n],t = ∑

[ j]∈J
ÂΛ

[ j](t)Ξ̂
L,Λ,A
[n−e j],t−L j

, Ξ̂
L,Λ,A
[n],t = ∑

[ j]∈J
Ξ̂

L,Λ,A
[n−e j],t

ÂΛ

[ j](t−L ·n+L j),

and

Ξ̂
L,Λ,A
[n],t = ∑

n′∈[n]∩NN
∑

v∈Vn′

|n′|1
∏
k=1

Avk (t−L ·pv(k)) . (3.10)

Proof. We have, by Definition 3.10 and Equation (3.3), that

Ξ̂[n],t = ∑
n′∈[n]

Ξn′,t = ∑
n′∈[n]

N

∑
j=1

A j(t)Ξn′−e j,t−L j =
N

∑
j=1

A j(t) ∑
n′∈[n]

Ξn′−e j,t−L j

=
N

∑
j=1

A j(t) ∑
m∈[n−e j]

Ξm,t−L j =
N

∑
j=1

A j(t)Ξ̂[n−e j],t−L j = ∑
[ j]∈J

∑
i∈[ j]

Ai(t)Ξ̂[n−ei],t−Li

= ∑
[ j]∈J

(
∑

i∈[ j]
Ai(t)

)
Ξ̂[n−e j],t−L j = ∑

[ j]∈J
Â[i](t)Ξ̂[n−e j],t−L j .

The second expression is obtained similarly from Definition 3.10 and Equation (3.5) and the last one
follows immediately from (3.4) and (3.8). �

Let us give a first formula for solutions of Σδ (L,A).

Lemma 3.13. Let L ∈ (R∗+)N , A = (A1, . . . ,AN) : R→Md(C)N , and u0 : [−Lmax,0)→ Cd . The
corresponding solution u : [−Lmax,+∞)→ Cd of Σδ (L,A) is given for t ≥ 0 by

u(t) = ∑
(n, j)∈NN×J1,NK
−L j≤t−L·n<0

Ξ
L,A
n−e j,tA j(t−L ·n+L j)u0(t−L ·n). (3.11)

Proof. Let u : [−Lmax,+∞)→Cd be given for t ≥ 0 by (3.11) and u(t) = u0(t) for t ∈ [−Lmax,0). Fix
t ≥ 0 and notice that

N

∑
j=1

A j(t)u(t−L j) =
N

∑
j=1

t≥L j

∑
(n,k)∈NN×J1,NK
−Lk≤t−L j−L·n<0

nk≥1

A j(t)Ξ
L,A
n−ek,t−L j

Ak(t−L j−L ·n+Lk)u0(t−L j−L ·n)

+
N

∑
j=1

t<L j

A j(t)u0(t−L j). (3.12)
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Consider the sets

B1(t) = {(n,k, j) ∈ NN× J1,NK2 | t ≥ L j, −Lk ≤ t−L j−L ·n < 0, nk ≥ 1},

B2(t) = { j ∈ J1,NK | t < L j},
C1(t) = {(n,k, j) ∈ NN× J1,NK2 | −Lk ≤ t−L ·n < 0, nk ≥ 1, n j ≥ 1+δ jk, n 6= ek},

C2(t) = {(n,k) ∈ NN× J1,NK | −Lk ≤ t−L ·n < 0, n = ek},
and the functions ϕi : Bi(t)→Ci(t), i ∈ {1,2}, given by

ϕ1(n,k, j) = (n+ e j,k, j), ϕ2( j) = (e j, j).

One can check that ϕ1 and ϕ2 are well-defined and injective. We claim that they are also bijective. For
the surjectivity of ϕ1, we take (n,k, j)∈C1(t) and set m= n−e j. Since n j≥ 1, one has m∈NN . Since
nk ≥ 1, n j ≥ 1+δ jk, one has t ≥ L ·n−Lk ≥ L j+Lk−Lk = L j. The inequalities−Lk ≤ t−L j−L ·m<
0 and nk ≥ 1 are trivially satisfied, and thus (m,k, j) ∈ B1(t), which shows the surjectivity of ϕ1 since
one clearly has ϕ1(m,k, j) = (n,k, j). For the surjectivity of ϕ2, we take (n,k) ∈C2(t), which then
satisfies n = ek and t < L ·n = Lk. This shows that k ∈ B2(t) and, since ϕ2(k) = (n,k), we obtain that
ϕ2 is surjective.

Thanks to the bijections ϕ1, ϕ2, and (3.3), (3.12) becomes
N

∑
j=1

A j(t)u(t−L j) = ∑
(n,k)∈NN×J1,NK
−Lk≤t−L·n<0

nk≥1, n 6=ek

N

∑
j=1

n j≥1+δ jk

A j(t)Ξ
L,A
n−ek−e j,t−L j

Ak(t−L ·n+Lk)u0(t−L ·n)

+ ∑
(n,k)∈NN×J1,NK
−Lk≤t−L·n<0,

n=ek

Ak(t−L ·n+Lk)u0(t−L ·n)

= ∑
(n,k)∈NN×J1,NK
−Lk≤t−L·n<0

nk≥1, n 6=ek

Ξ
L,A
n−ek,tAk(t−L ·n+Lk)u0(t−L ·n)

+ ∑
(n,k)∈NN×J1,NK
−Lk≤t−L·n<0,

n=ek

Ξ
L,A
0,t Ak(t−L ·n+Lk)u0(t−L ·n)

= ∑
(n,k)∈NN×J1,NK
−Lk≤t−L·n<0

Ξ
L,A
n−ek,tAk(t−L ·n+Lk)u0(t−L ·n) = u(t),

which shows that u satisfies (3.1). �

We can now give the main result of this section.

Theorem 3.14. Let Λ ∈ (R∗+)N , L ∈V+(Λ), A : R→Md(C)N , and u0 : [−Lmax,0)→ Cd . The corre-
sponding solution u : [−Lmax,+∞)→ Cd of Σδ (L,A) is given for t ≥ 0 by

u(t) = ∑
[n]∈Z

t<L·n≤t+Lmax

Θ
L,Λ,A
[n],t u0(t−L ·n), (3.13)

where the coefficients Θ are defined in (3.9).

Proof. Equation (3.13) follows immediately from (3.11) and from the fact that the function ϕ :
NN× J1,NK→ Z×NN×J× J1,NK given by ϕ(n, j) = ([n],n, [ j], j) is a bijective map from {(n, j) ∈
NN×J1,NK | −L j ≤ t−L ·n < 0} to {([m],n, [i], j)∈Z×NN×J×J1,NK |n∈ [m], j ∈ [i], t < L ·n≤
t +Lmax, L ·n−L j ≤ t} for every t ∈ R. �
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3.3 Asymptotic behavior of solutions in terms of the coefficients
Let us fix a matrix norm |·| on Md(C) in the whole section. Let C1,C2 > 0 be such that

C1 |A|p ≤ |A| ≤C2 |A|p , ∀A ∈Md(C), ∀p ∈ [1,+∞]. (3.14)

Let A be a uniformly locally bounded subset of L∞
loc(R,Md(C)N). The family of all systems

Σδ (L,A) for A ∈ A is denoted by Σδ (L,A). We wish to characterize the asymptotic behavior of
Σδ (L,A) (i.e., uniformly with respect to A ∈A) in terms of the behavior of the coefficients Ξ̂[n],t and
Θ[n],t . For that purpose, we introduce the following definitions.

Definition 3.15. Let L ∈ (R∗+)N .

i. For p ∈ [1,+∞], we say that Σδ (L,A) is of exponential type γ ∈ R in Xδ
p if, for every ε > 0,

there exists K > 0 such that, for every A ∈ A and u0 ∈ Xδ
p, the corresponding solution u of

Σδ (L,A) satisfies, for every t ≥ 0,

‖ut‖Xδ
p
≤ Ke(γ+ε)t ‖u0‖Xδ

p
.

We say that Σδ (L,A) is exponentially stable in Xδ
p if it is of negative exponential type.

ii. Let Λ ∈ (R∗+)N be such that L ∈ V+(Λ). We say that Σδ (L,A) is of (Θ,Λ)-exponential type
γ ∈ R if, for every ε > 0, there exists K > 0 such that, for every A ∈ A, n ∈ NN , and almost
every t ∈ (L ·n−Lmax,L ·n), we have∣∣∣ΘL,Λ,A

[n],t

∣∣∣≤ Ke(γ+ε)t .

iii. Let Λ ∈ (R∗+)N be such that L ∈ V+(Λ). We say that Σδ (L,A) is of (Ξ̂,Λ)-exponential type
γ ∈ R if, for every ε > 0, there exists K > 0 such that, for every A ∈ A, n ∈ NN , and almost
every t ∈ R, we have ∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣≤ Ke(γ+ε)L·n.

iv. For p ∈ [1,+∞], the maximal Lyapunov exponent of Σδ (L,A) in Xδ
p is defined as

λp(L,A) = limsup
t→+∞

sup
A∈A

sup
u0∈Xδ

p
‖u0‖Xδ

p
=1

ln‖ut‖Xδ
p

t
,

where u denotes the solution of Σδ (L,A) with initial condition u0.

Remark 3.16. Let L ∈ (R∗+)N and µ ∈ R. For every A : R→Md(C)N and u solution of Σδ (L,A), it
follows from (3.1) that t 7→ eµtu(t) is a solution of Σδ (L,(eµL1A1, . . . ,eµLN AN)). As a consequence,
if A⊂ L∞

loc(R,Md(C)N) and

Aµ = {(eµL1A1, . . . ,eµLN AN) |A = (A1, . . . ,AN) ∈A},

one has λp(L,Aµ) = λp(L,A)+µ .

The link between exponential type and maximal Lyapunov exponent of Σδ (L,A) is provided by
the following proposition.
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Proposition 3.17. Let L ∈ (R∗+)N , A be uniformly locally bounded, and p ∈ [1,+∞]. Then

λp(L,A) = inf{γ ∈ R |Σδ (L,A) is of exponential type γ in Xδ
p}.

In particular, Σδ (L,A) is exponentially stable if and only if λp(L,A)< 0.

Proof. Let γ ∈ R be such that Σδ (L,A) is of exponential type γ in Xδ
p. It is clear from the definition

that λp(L,A) ≤ γ . We are left to prove that Σδ (L,A) is of exponential type λp(L,A) when the latter
is finite. Let ε > 0. From the definition of λp(L,A), there exists t0 > 0 such that, for every t ≥ t0,
A ∈A, and u0 ∈ Xδ

p, one has
‖ut‖Xδ

p
≤ e(λp(L,A)+ε)t ‖u0‖Xδ

p
.

Since A is uniformly locally bounded, by using the explicit formulas (3.11) and (3.4), one deduces
that there exists K > 0 such that, for every t ∈ [0, t0], A ∈A, and u0 ∈ Xδ

p, one has ‖ut‖Xδ
p
≤ K ‖u0‖Xδ

p
.

Hence the conclusion. �

Remark 3.18. Similarly, one proves that, for Λ ∈ (R∗+)N and L ∈V+(Λ),

limsup
L·n→+∞

sup
A∈A

esssup
t∈(L·n−Lmax,L·n)

ln
∣∣∣ΘL,Λ,A

[n],t

∣∣∣
t

= inf{γ ∈ R |Σδ (L,A) is of (Θ,Λ)-exponential type γ}

and

limsup
L·n→+∞

sup
A∈A

esssup
t∈R

ln
∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣
L ·n

= inf{γ ∈ R |Σδ (L,A) is of (Ξ̂,Λ)-exponential type γ}.

3.3.1 General case

The following result, which is a generalization of [8, Proposition 4.1], uses the explicit formula (3.13)
for the solutions of Σδ (L,A) in order to provide upper bounds on their growth.

Proposition 3.19. Let L ∈ V+(Λ). Suppose that there exists a continuous function f : R→ R∗+ such
that, for every A ∈A, n ∈ NN , and almost every t ∈ (L ·n−Lmax,L ·n), one has∣∣∣ΘL,Λ,A

[n],t

∣∣∣≤ f (t). (3.15)

Then there exists C > 0 such that, for every A ∈ A, p ∈ [1,+∞], and u0 ∈ Xδ
p, the corresponding

solution u of Σδ (L,A) satisfies, for every t ≥ 0,

‖ut‖Xδ
p
≤C(t +1)N−1 max

s∈[t−Lmax,t]
f (s)‖u0‖Xδ

p
. (3.16)

Proof. Let A ∈ A, p ∈ [1,+∞), u0 ∈ Xδ
p, and u be the solution of Σδ (L,A) with initial condition u0.

For t ∈ R+, we write Yt = {[n] ∈ Z | t < L · n ≤ t + Lmax, [n]∩NN 6= /0} and Yt = #Yt . Thanks to
Theorem 3.14, Remark 3.11, and (3.15), we have, for t ≥ Lmax,

‖ut‖p
Xδ

p
=

w t

t−Lmax

∣∣∣∣∣ ∑
[n]∈Ys

Θ[n],su0(s−L ·n)

∣∣∣∣∣
p

p

ds

≤
w t

t−Lmax
Y p−1

s ∑
[n]∈Ys

∣∣Θ[n],su0(s−L ·n)
∣∣p

p ds
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≤C−p
1

w t

t−Lmax
Y p−1

s f (s)p
∑

[n]∈Ys

|u0(s−L ·n)|pp ds

≤C−p
1 max

s∈[t−Lmax,t]
f (s)p

w t

t−Lmax
Y p−1

s ∑
[n]∈Ys

|u0(s−L ·n)|pp ds.

We clearly have Yt ≤ #{n ∈NN | t < L ·n≤ t+Lmax}. For n ∈NN , we denote Cn = {x ∈RN |ni <
xi < ni + 1 for every i ∈ J1,NK}. This defines a family of pairwise disjoint open hypercubes of unit
volume. Thus

Yt ≤ ∑
n∈NN

t<L·n≤t+Lmax

VolCn = Vol

 ⋃
n∈NN

t<L·n≤t+Lmax

Cn

≤ Vol{x ∈ (R+)
N | t < L · x < t + |L|1 +Lmax}.

Then there exists C3 > 0 only depending on L and N such that Yt ≤C3(t +1)N−1. Thus,

‖ut‖p
Xδ

p
≤C−p

1 Cp−1
3 (t +1)(N−1)(p−1) max

s∈[t−Lmax,t]
f (s)p

w t

t−Lmax
∑

[n]∈Ys

|u0(s−L ·n)|pp ds

=C−p
1 Cp−1

3 (t +1)(N−1)(p−1) max
s∈[t−Lmax,t]

f (s)p
w 0

−Lmax
∑

[n]∈Yt−Lmax−s

|u0(s)|pp ds.

Similarly, there exists C4 > 0 only depending on L and N such that, for every t ∈ R+ and s ∈
[−Lmax,0], Yt−Lmax−s ≤ C4(t + 1)N−1, yielding (3.16) for t ≥ Lmax. One can easily show that, for
0 ≤ t ≤ Lmax, we have ‖ut‖Xδ

p
≤ C′ ‖u0‖Xδ

p
for some constant C′ independent of p and u0, and so

(3.16) holds for every t ≥ 0. The case p =+∞ is treated by similar arguments. �

When L ∈W+(Λ), we also have the following lower bound for solutions of Σδ (L,A).

Proposition 3.20. Let L ∈W+(Λ) and f : R→R∗+ be a continuous function. Suppose that there exist
A ∈A, n0 ∈ NN , and a set of positive measure S⊂ (L ·n0−Lmax,L ·n0) such that, for every s ∈ S,∣∣∣ΘL,Λ,A

[n0],s

∣∣∣> f (s). (3.17)

Then there exist a constant C > 0 independent of f , an initial condition u0 ∈ L∞([−Lmax,0],Cd), and
t > 0, such that, for every p ∈ [1,+∞], the solution u of Σδ (L,A) with initial condition u0 satisfies

‖ut‖Xδ
p
>C min

s∈[t−Lmax,t]
f (s)‖u0‖Xδ

p
.

Proof. According to Remark 3.11, one has Θ
L,Λ,A
[n],s = Θ

L,L,A
[n],s for every [n] ∈ Z and s ∈R, and therefore

we assume for the rest of the argument that Λ = L and we drop the upper index L,L,A.
For s ∈ S, one has

∣∣Θ[n0],s
∣∣
∞
>C−1

2 f (s), where C2 is defined in (3.14). Using (3.17) and Remark
3.11, one derives that S⊂ [0,+∞).

For every s ∈ S, one has

C−1
2 f (s)<

∣∣Θ[n0],s
∣∣
∞
≤

d

∑
j=1

∣∣Θ[n0],se j
∣∣
∞
,

and thus there exist j0 ∈ J1,dK and a subset S̃ ⊂ S of positive measure such that, for every s ∈ S̃ and
p ∈ [1,+∞], one has

C−1
2 d−1 f (s)<

∣∣Θ[n0],se j0

∣∣
∞
≤
∣∣Θ[n0],se j0

∣∣
p . (3.18)
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In order to simplify the notations in the sequel, we write S instead of S̃.
Let t0 ∈ S \{0} be such that, for every ε > 0, (t0− ε, t0 + ε)∩S has positive measure. Let δ > 0

be such that

2δ < min

2t0,L ·n0− t0, t0−L ·n0 +Lmax, min
n∈NN

L·(n−n0)6=0

|L · (n−n0)|

 .

Such a choice is possible since t0 ∈ (L ·n0−Lmax,L ·n0), t0 ∈ S \ {0} ⊂ R∗+, and {L ·n |n ∈ NN} is
locally finite.

Let S1 = (S− t0)∩ (−δ ,δ ), which is, by construction, of positive measure, and µ : R→R be any
non-zero bounded measurable function which is zero outside S1. Define u0 : [−Lmax,0)→ Cd by

u0(s) = µ(s− t0 +L ·n0)e j0

and let u be the solution of Σδ (L,A) with initial condition u0. For s ∈ (−δ ,δ ), we have t0 + s > 0
since t0 > δ . By Theorem 3.14, one has

u(t0 + s) = ∑
[n]∈Z

t0+s<L·n≤t0+s+Lmax

Θ[n],t0+sµ(s+L · (n0−n))e j0. (3.19)

If L · n 6= L · n0, we have |L · (n−n0)| > 2δ , and so |s+L · (n0−n)| > δ , which shows that µ(s+
L · (n0−n)) = 0. Hence, Equation (3.19) reduces to u(t0 + s) = Θ[n0],t0+sµ(s)e j0 . We finally obtain,
using (3.18) and letting t = t0 +δ , that, for p ∈ [1,+∞),

‖ut‖p
Xδ

p
≥ ‖ut0‖

p
Lp([−δ ,δ ],Cd)

≥
w

S1
|u(t0 + s)|pp ds =

w

S1

∣∣Θ[n0],t0+se j0

∣∣p
p |µ(s)|

p ds

>C−p
2 d−p

w

S1
f (t0 + s)p |µ(s)|p ds≥C−p

2 d−p min
s∈[t−Lmax,t]

f (s)p ‖u0‖p
Xδ

p
.

(3.20)

A similar estimate holds in the case p =+∞, which concludes the proof of the theorem. �

As a corollary of Propositions 3.19 and 3.20, by taking f of the type f (t) = Ke(γ+ε)t , one obtains
the following theorem. The last equality follows from Proposition 3.17 and Remark 3.18.

Theorem 3.21. Let Λ∈ (R∗+)N and A be uniformly locally bounded. For every L∈V+(Λ), if Σδ (L,A)

is of (Θ,Λ)-exponential type γ then, for every p∈ [1,+∞], it is of exponential type γ in Xδ
p. Conversely,

for every L ∈W+(Λ), if there exists p∈ [1,+∞] such that Σδ (L,A) is of exponential type γ in Xδ
p, then

it is of (Θ,Λ)-exponential type γ . Finally, for every L ∈W+(Λ) and p ∈ [1,+∞],

λp(L,A) = limsup
L·n→+∞

sup
A∈A

esssup
t∈(L·n−Lmax,L·n)

ln
∣∣∣ΘL,Λ,A

[n],t

∣∣∣
t

. (3.21)

Remark 3.22. It also follows from Proposition 3.19 that, in the first part of the theorem, the constant
K > 0 in the definition of exponential type of Σδ (L,A) can be chosen independently of p ∈ [1,+∞].
Moreover, the left-hand side of (3.21) does not depend on p and its right-hand side does not depend
on Λ.
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3.3.2 Shift-invariant classes

We start this section by the following technical result.

Lemma 3.23. For every Λ ∈ (R∗+)N , L ∈V+(Λ), A : R→Md(C)N , n ∈ ZN , and t,τ ∈ R, we have

Ξ
L,A
n,t+τ = Ξ

L,A(·+τ)
n,t and Ξ̂

L,Λ,A
[n],t+τ

= Ξ̂
L,Λ,A(·+τ)
[n],t .

Proof. The first part holds trivially if n ∈ ZN \NN or if n = 0, for, in these cases, it follows from (3.3)
that Ξ

L,A
n,t does not depend on t and A. If n ∈NN \{0}, the conclusion follows as a consequence of the

explicit formula (3.4) for Ξ
L,A
n,t . The second part is a consequence of the first and (3.8). �

We next provide a proposition establishing a relation between the behavior of Ξ̂[n],t and Θ[n],t .
Notice that, if a subset A of L∞

loc(R,Md(C)N) is shift-invariant, then A is uniformly locally bounded
if and only if it is bounded.

Proposition 3.24. Let A be a bounded shift-invariant subset of L∞(R,Md(C)N), L ∈ V+(Λ), and
f : R→ R∗+ be a continuous function. Then the following assertions hold.

i. If
∣∣∣ΘL,Λ,A

[n],t

∣∣∣≤ f (t) holds for every A∈A, n∈NN , and almost every t ∈ (L ·n−Lmax,L ·n), then,

for every A ∈ A, n ∈ NN \ {0}, and almost every t ∈ R, one has
∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣ ≤ maxs∈[L·n−Lmin,L·n]
f (s).

ii. If
∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣ ≤ f (L ·n) holds for every A ∈ A, n ∈ NN , and almost every t ∈ R, then there exists

a constant C > 0 such that, for every A ∈A, n ∈ NN , and almost every t ∈ (L ·n−Lmax,L ·n),
one has

∣∣∣ΘL,Λ,A
[n],t

∣∣∣≤C maxs∈[t−Lmax,t+Lmax] f (s).

Proof. We start by showing (i). Let A ∈ A and n ∈ NN \ {0}. For every k ∈ Z, there exists a set
Nk ⊂ [L ·n−Lmin,L ·n) of measure zero such that, for every t ∈ [L ·n−Lmin,L ·n)\Nk,∣∣∣Ξ̂L,Λ,A(·−kLmin)

[n],t

∣∣∣= ∣∣∣∣∣ ∑
[ j]∈J

Ξ̂
L,Λ,A(·−kLmin)
[n−e j],t

ÂΛ

[ j](t− kLmin−L ·n+L j)

∣∣∣∣∣= ∣∣∣ΘL,Λ,A(·−kLmin)
[n],t

∣∣∣≤ f (t),

where we use Proposition 3.12, the fact that L ·n−L j ≤ L ·n−Lmin≤ t for every [ j]∈ J, and Equation
(3.9).

Let N =
⋃

k∈Z(Nk − kLmin), which is of measure zero. For t ∈ R \N, let k ∈ Z be such that
t ∈ [L ·n− (k+1)Lmin,L ·n− kLmin), so that t + kLmin ∈ [L ·n−Lmin,L ·n). Since t /∈ N, we have
t + kLmin /∈ Nk, and so, using Lemma 3.23, we obtain that∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣= ∣∣∣Ξ̂L,Λ,A(·−kLmin)
[n],t+kLmin

∣∣∣≤ f (t + kLmin)≤ max
s∈[L·n−Lmin,L·n]

f (s).

Let us now show (ii). Without loss of generality, the norm |·| is sub-multiplicative. Since A is
bounded, there exists M > 0 such that, for every A∈A, j∈ J1,NK, and t ∈R, we have

∣∣A j(t)
∣∣≤M. Let

A∈A. For every n∈NN , let N[n] be a set of measure zero such that
∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣≤ f (L ·n) holds for every

t ∈ R\N[n]. Let N =
⋃

n∈NN N[n], which is of measure zero. If n ∈ NN and t ∈ (L ·n−Lmax,L ·n)\N,
then ∣∣∣ΘL,Λ,A

[n],t

∣∣∣≤ ∑
[ j]∈J

L·n−L j≤t

∣∣∣Ξ̂L,Λ,A
[n−e j],t

∣∣∣ ∣∣∣ÂΛ

[ j](t−L ·n+L j)
∣∣∣

14



≤ NM ∑
[ j]∈J

f (L ·n−L j)≤C max
s∈[t−Lmax,t+Lmax]

f (s),

where C = N2M. �

As an immediate consequence of the previous proposition and Theorem 3.21, we have the fol-
lowing theorem, which improves Theorem 3.21 by replacing (Θ,Λ)-exponential type by (Ξ̂,Λ)-
exponential type.

Theorem 3.25. Let Λ ∈ (R∗+)N and A be a bounded shift-invariant subset of L∞(R,Md(C)N). For
every L ∈ V+(Λ), Σδ (L,A) is of (Ξ̂,Λ)-exponential type γ if and only if it is of (Θ,Λ)-exponential
type γ .

As a consequence, for every L ∈ V+(Λ), if Σδ (L,A) is of (Ξ̂,Λ)-exponential type γ then, for
every p ∈ [1,+∞], it is of exponential type γ in Xδ

p. Conversely, for every L ∈W+(Λ), if there exists
p ∈ [1,+∞] such that Σδ (L,A) is of exponential type γ in Xδ

p, then it is of (Ξ̂,Λ)-exponential type γ .
Finally, for every L ∈W+(Λ) and p ∈ [1,+∞],

λp(L,A) = limsup
L·n→+∞

sup
A∈A

esssup
t∈R

ln
∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣
L ·n

. (3.22)

3.3.3 Arbitrary switching

We consider in this section A of the type A = L∞(R,B) with B a nonempty bounded subset of
Md(C)N . In this case, Σδ (L,A) corresponds to a switched system under arbitrary B-valued switch-
ing signals (for a general discussion on switched systems and their stability, see e.g. [19, 27] and
references therein).

Motivated by formula (3.10) for Ξ̂[n],t , we define below a new measure of the asymptotic behavior
of Σδ (L,A). For this, we introduce, for Λ ∈ (R∗+)N and x ∈ R+,

L(Λ) = {Λ ·n |n ∈ NN} and Lx(Λ) = L(Λ)∩ [0,x) . (3.23)

Definition 3.26. We define

µ(Λ,B) = limsup
x→+∞

x∈L(Λ)

sup
Br∈B

for r∈Lx(Λ)

∣∣∣∣∣∣∣ ∑
n∈NN

Λ·n=x

∑
v∈Vn

|n|1
∏
k=1

BΛ·pv(k)
vk

∣∣∣∣∣∣∣
1
x

.

Note that µ(Λ,B) is independent of the choice of the norm |·| and µ(Λ,B) = µ(Λ,B). The main
result of this section is the following.

Theorem 3.27. Let Λ ∈ (R∗+)N , L ∈ V+(Λ), B be a nonempty bounded subset of Md(C)N , A =

L∞(R,B), and p ∈ [1,+∞]. Set m1 = min j∈J1,NK
Λ j
L j

and m2 = max j∈J1,NK
Λ j
L j

if µ(Λ,B) < 1, and

m1 = max j∈J1,NK
Λ j
L j

and m2 = min j∈J1,NK
Λ j
L j

if µ(Λ,B)≥ 1. Then the following assertions hold:

i. λp(L,A)≤ m1 ln µ(Λ,B);

ii. if L ∈W+(Λ), then m2λp(Λ,A)≤ λp(L,A)≤ m1λp(Λ,A);

iii. λp(Λ,A) = ln µ(Λ,B).
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Proof. Notice that (ii) follows from (i) and (iii) by exchanging the role of L and Λ, since Λ ∈ V+(L)
for every L ∈W+(Λ).

Let us prove (i). Since min j∈J1,NK
Λ j
L j
≤ Λ·n

L·n ≤max j∈J1,NK
Λ j
L j

for every n ∈ NN \{0}, it suffices to

show that, for every ε > 0, there exists C > 0 such that, for every A ∈A, n ∈NN \{0}, and t ∈R, we
have ∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣≤C (µ(Λ,B)+ ε)Λ·n . (3.24)

By definition of µ(Λ,B), there exists X0 ∈ L(Λ) such that, for every x ∈ L(Λ) with x ≥ X0, we
have

sup
Br∈B

for r∈Lx(Λ)

∣∣∣∣∣∣∣ ∑
n∈NN

Λ·n=x

∑
v∈Vn

|n|1
∏
k=1

BΛ·pv(k)
vk

∣∣∣∣∣∣∣≤ (µ(Λ,B)+ ε)x .

Since B is bounded, the quantity

C′ = max
x∈LX0(Λ)

sup
Br∈B

for r∈Lx(Λ)

∣∣∣∣∣∣∣ ∑
n∈NN

Λ·n=x

∑
v∈Vn

|n|1
∏
k=1

BΛ·pv(k)
vk

∣∣∣∣∣∣∣
is finite. Setting C = max{1,C′,C′(µ(Λ,B)+ ε)−X0}, we have, for every x ∈ L(Λ),

sup
Br∈B

for r∈Lx(Λ)

∣∣∣∣∣∣∣ ∑
n∈NN

Λ·n=r

∑
v∈Vn

|n|1
∏
k=1

BΛ·pv(k)
vk

∣∣∣∣∣∣∣≤C (µ(Λ,B)+ ε)x . (3.25)

Define ϕL : L(Λ)→ L(L) by ϕL(Λ ·n) = L ·n. This is a well-defined function since L ∈ V+(Λ).
Let A ∈A, n ∈ NN \{0}, and t ∈ R. By Proposition 3.12,

Ξ̂
L,Λ,A
[n],t = ∑

n′∈[n]∩NN
∑

v∈Vn′

|n′|1
∏
k=1

Avk (t−L ·pv(k)) . (3.26)

For r ∈ LΛ·n(Λ), we set Br = A(t −ϕL(r)) ∈ B. Thus, for every n′ ∈ [n]∩NN , v ∈ Vn′ , and k ∈
J1, |n′|1K, we have, by definition of ϕL,

BΛ·pv(k)
vk = Avk (t−ϕL (Λ ·pv(k))) = Avk (t−L ·pv(k)) . (3.27)

We thus obtain (3.24) by combining (3.25), (3.26) and (3.27).
In order to prove (iii), we are left to show the inequality ln µ(Λ,B)≤ λp(Λ,A). Let x ∈L(Λ) and

A0 ∈B. For r ∈ Lx(Λ), let Br ∈B. We define

ζ =
1
2

min
y1,y2∈Lx(Λ)

y1 6=y2

|y1− y2|> 0.

Let A = (A1, . . . ,AN) ∈A be defined for t ∈ R by

A(t) =

{
BΛ·m, if m ∈ NN is such that Λ ·m < x and t ∈ (−Λ ·m−ζ ,−Λ ·m+ζ ),

A0, otherwise.

The function A is well-defined since the sets (−Λ ·m− ζ ,−Λ ·m+ ζ ) are disjoint for m ∈ NN with
Λ ·m < x. For every n ∈ NN with Λ ·n = x, every v ∈Vn, t ∈ (−ζ ,ζ ), and k ∈ J1, |n|1K, we have

Avk (t−Λ ·pv(k)) = BΛ·pv(k)
vk ,
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and then, for every n′ ∈ NN with Λ ·n′ = x, we have

∑
n∈NN

Λ·n=x

∑
v∈Vn

|n|1
∏
k=1

BΛ·pv(k)
vk = ∑

n∈NN

Λ·n=x

∑
v∈Vn

|n|1
∏
k=1

Avk (t−Λ ·pv(k)) = Ξ̂
Λ,Λ,A
[n′],t .

Hence, for every n′ ∈ NN with Λ ·n′ = x, we have∣∣∣∣∣∣∣ ∑
n∈NN

Λ·n=x

∑
v∈Vn

|n|1
∏
k=1

BΛ·pv(k)
vk

∣∣∣∣∣∣∣
1
x

≤ sup
A∈A

esssup
t∈R

∣∣∣Ξ̂Λ,Λ,A
[n′],t

∣∣∣ 1
Λ·n′

.

Since this holds for every choice of Br ∈B, r ∈ Lx(Λ), and x ∈ L(Λ), we deduce from (3.22) that
ln µ(Λ,B)≤ λp(Λ,A). �

Remark 3.28. Since µ(Λ,B) = µ(Λ,B), it follows that λp(Λ,A) = λp(Λ,L∞(R,B)).

As regards exponential stability of Σδ (L,A), we deduce from the previous theorem and Remark
3.16 the following corollary.

Corollary 3.29. Let Λ ∈ (R∗+)N , B be a nonempty bounded subset of Md(C)N , and A = L∞(R,B).
The following statements are equivalent:

i. µ(Λ,B)< 1;

ii. Σδ (Λ,A) is exponentially stable in Xδ
p for some p ∈ [1,+∞];

iii. Σδ (L,A) is exponentially stable in Xδ
p for every L ∈V+(Λ) and p ∈ [1,+∞].

Moreover, for every p ∈ [1,+∞],

λp(Λ,A) = inf{ν ∈ R |µ(Λ,B−ν)< 1},

where B−ν = {(e−νΛ1B1, . . . ,e−νΛN BN) | (B1, . . . ,BN) ∈B}.

Corollary 3.29 is reminiscent of the well-known characterization of stability in the autonomous
case proved by Hale and Silkowski when Λ has rationally independent components (see [4, Theorem
5.2]) and in a more general setting by Michiels et al. in [20]. In such a characterization, (1, . . . ,1) is
assumed to be in V (Λ) and µ(Λ,B) is replaced in the statement of Corollary 3.29 by

ρHS(Λ,A) = max
(θ1,...,θN)∈Ṽ (Λ)

ρ

(
N

∑
j=1

A jeiθ j

)
,

where Ṽ (Λ) is the image of V (Λ) by the canonical projection from RN onto the torus (R/2πZ)N .
(Notice that Ṽ (Λ) is compact since the matrix B characterizing V (Λ) in Proposition 3.9 has integer
coefficients.)

We propose below a generalization of ρHS(Λ,A) to the non-autonomous case defined as follows.

Definition 3.30. For Λ ∈ (R∗+)N , B a nonempty bounded subset of Md(C)N , and L(Λ) given by
(3.23), we set

µHS(Λ,B) = limsup
n→+∞

sup
(θ1,...,θN)∈Ṽ (Λ)

sup
Br∈B

for r∈LnΛmax(Λ)

∣∣∣∣∣ ∑
v∈J1,NKn

n

∏
k=1

BΛ·pv(k)
vk eiθvk

∣∣∣∣∣
1
n

.
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Let us check in the next proposition that µHS actually extends ρHS.

Proposition 3.31. Let A = (A1, . . . ,AN) ∈Md(C)N and B= {A}. Then µHS(Λ,B) = ρHS(Λ,A).

Proof. One has

max
(θ1,...,θN)∈Ṽ (Λ)

ρ

(
N

∑
j=1

A jeiθ j

)
= max

(θ1,...,θN)∈Ṽ (Λ)
lim

n→+∞

∣∣∣∣∣
(

N

∑
j=1

A jeiθ j

)n∣∣∣∣∣
1
n

= lim
n→+∞

sup
(θ1,...,θN)∈Ṽ (Λ)

∣∣∣∣∣
(

N

∑
j=1

A jeiθ j

)n∣∣∣∣∣
1
n

= lim
n→+∞

sup
(θ1,...,θN)∈Ṽ (Λ)

∣∣∣∣∣ ∑
v∈J1,NKn

n

∏
k=1

Avkeiθvk

∣∣∣∣∣
1
n

,

where the second equality is obtained as consequence of the uniformity of the Gelfand limit on
bounded subsets of Md(C) (see, for instance, [12, Proposition 3.3.5]). �

In the sequel, we relate µHS(Λ,B) to a modified version of the expression (3.22) of λp(L,A).

Definition 3.32. For L ∈V+(Λ) and A a set of functions A : R→Md(C)N , we define

λHS(L,A) = limsup
|n|1→+∞

n∈NN

sup
A∈A

esssup
t∈R

ln
∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣
|n|1

.

Remark 3.33. Since Lmin |n|1 ≤ L ·n≤ Lmax |n|1 for every L ∈V+(Λ) and n ∈ NN , it follows imme-
diately from (3.22) that, for every p ∈ [1,+∞],

Lminλp(L,A)≤ λHS(L,A)≤ Lmaxλp(L,A), if λp(L,A)≥ 0,
Lmaxλp(L,A)≤ λHS(L,A)≤ Lminλp(L,A), if λp(L,A)< 0.

In particular, the signs of λHS(L,A) and λp(L,A) being equal, they both characterize the exponential
stability of Σδ (L,A).

Theorem 3.34. Let Λ ∈ (R∗+)N , B be a nonempty bounded subset of Md(C)N , and A = L∞(R,B).

Set m = inf
{

1, |z+|1|z−|1
| z ∈ Z(Λ)\{0}

}
if µHS(Λ,B) < 1 and m = sup

{
1, |z+|1|z−|1

| z ∈ Z(Λ)\{0}
}

if
µHS(Λ,B)≥ 1. Then the following assertions hold:

i. for every L ∈V+(Λ), λHS(L,A)≤ m ln µHS(Λ,B);

ii. if (1, . . . ,1) ∈V (Λ) and L ∈W+(Λ), one has λHS(L,A) = ln µHS(Λ,B).

Proof. We start by proving (i). It is enough to show that, for every ε > 0 small enough, there exists
C > 0 such that, for every A ∈A, n ∈ NN \{0}, and t ∈ R, we have∣∣∣Ξ̂L,Λ,A

[n],t

∣∣∣≤C(1+ |n|1)(µHS(Λ,B)+ ε)m|n|1 .

Let L ∈V+(Λ) and ε > 0 be such that µHS(Λ,B)+ε < 1 if µHS(Λ,B)< 1. We can proceed as in
the proof of Theorem 3.27 to obtain a finite constant C0 > 0 such that, for every n ∈ N∗,

sup
(θ1,...,θN)∈Ṽ (Λ)

sup
Br∈B

for r∈LnΛmax(Λ)

∣∣∣∣∣ ∑
v∈J1,NKn

n

∏
k=1

BΛ·pv(k)
vk eiθvk

∣∣∣∣∣≤C0 (µHS(Λ,B)+ ε)n . (3.28)
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Let A ∈ A, t ∈ R, and ϕL be as in the proof of Theorem 3.27. For r ∈ LnΛmax(Λ), we set Br =
A(t − ϕL(r)), and similarly to the proof of Theorem 3.27, (3.27) holds for every v ∈ J1,NKn and
k ∈ J1,nK. Thus (3.28) implies that, for every n ∈ N∗ and θ ∈ Ṽ (Λ),∣∣∣∣∣ ∑

v∈J1,NKn

n

∏
k=1

Avk (t−L ·pv(k))eiθvk

∣∣∣∣∣≤C0 (µHS(Λ,B)+ ε)n .

Since

∑
v∈J1,NKn

n

∏
k=1

Avk (t−L ·pv(k))eiθvk = ∑
n∈NN

|n|1=n

∑
v∈Vn

|n|1
∏
k=1

Avk (t−L ·pv(k))eiθvk

= ∑
n∈NN

|n|1=n

ein·θ
∑

v∈Vn

|n|1
∏
k=1

Avk (t−L ·pv(k)) = ∑
n∈NN

|n|1=n

ein·θ
Ξ

L,A
n,t ,

we obtain that, for every n ∈ N∗ and θ ∈ Ṽ (Λ),∣∣∣∣∣∣∣∣ ∑
n∈NN

|n|1=n

ein·θ
Ξ

L,A
n,t

∣∣∣∣∣∣∣∣≤C0 (µHS(Λ,B)+ ε)n . (3.29)

Following Proposition 3.9, fix h ∈ J1,NK and B ∈MN,h(Z) with rk(B) = h such that Λ = B`0 for
`0 ∈ (R∗+)h with rationally independent components. Let M ∈Mh(R) be an invertible matrix such
that `0 = Me1, where e1 is the first vector of the canonical basis of Rh, in such a way that Λ = BMe1.
For n ∈ N, we define the function fn : Rh→Md(C) by

fn(ν) = ∑
n∈NN

|n|1=n

ein·BMν
Ξ

L,A
n,t .

We claim that, for every n0 ∈ NN ,

lim
R→+∞

1
(2R)h

w

[−R,R]h
fn(ν)e−in0·BMνdν = ∑

n∈[n0]∩NN

|n|1=n

Ξ
L,A
n,t . (3.30)

Indeed, we have

1
(2R)h

w

[−R,R]h
fn(ν)e−in0·BMνdν = ∑

n∈NN

|n|1=n

Ξ
L,A
n,t

1
(2R)h

w

[−R,R]h
ei(n−n0)·BMνdν .

If n ∈ NN is such that Λ ·n = Λ ·n0, then Λ · (n−n0) = 0, and therefore n−n0 ∈ Z(Λ) ⊂ V (Λ)⊥ =
(RanB)⊥. One gets (n−n0) ·BMν = 0 for every ν ∈ Rh, implying that

1
(2R)h

w

[−R,R]h
ei(n−n0)·BMνdν = 1.

If now Λ ·n 6= Λ ·n0, set ξ = Λ · (n−n0), which is nonzero. Then∣∣∣∣ 1
(2R)h

w

[−R,R]h
ei(n−n0)·BMνdν

∣∣∣∣≤ 1
2R

∣∣∣∣w R

−R
eiξ ν1dν1

∣∣∣∣= ∣∣∣∣sin(ξ R)
ξ R

∣∣∣∣−−−−→R→+∞
0,
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which gives (3.30).
We can now combine (3.29) and (3.30) to obtain that, for every n ∈ N∗ and n0 ∈ NN \{0},∣∣∣∣∣∣∣∣ ∑

n∈[n0]∩NN

|n|1=n

Ξ
L,A
n,t

∣∣∣∣∣∣∣∣≤C0(µHS(Λ,B)+ ε)n.

Set m0 = sup
{

1, |z+|1|z−|1
| z ∈ Z(Λ)\{0}

}
and notice that 1

m0
= inf

{
1, |z+|1|z−|1

| z ∈ Z(Λ)\{0}
}

since Z(Λ)

=−Z(Λ). We claim that, if n,n0 ∈ NN and Λ ·n = Λ ·n0, then 1
m0
|n0|1 ≤ |n|1 ≤ m0 |n0|1. Indeed, let

z = n−n0 ∈ Z(Λ) and n1 = n0− z− ∈ NN . Then one has

|n|1
|n0|1

=
|z+|1 + |n1|1
|z−|1 + |n1|1

∈
[

1
m0

, m0

]
.

Hence, for every n0 ∈ NN \{0},

Ξ̂
L,Λ,A
[n0],t

=
+∞

∑
n=0

∑
n∈[n0]∩NN

|n|1=n

Ξ
L,A
n,t = ∑

n∈
s
|n0|1

m0
, m0|n0|1

{ ∑
n∈[n0]∩NN

|n|1=n

Ξ
L,A
n,t ,

and we conclude that∣∣∣Ξ̂L,Λ,A
[n0],t

∣∣∣≤ ∑

n∈
s
|n0|1

m0
, m0|n0|1

{
C0(µHS(Λ,B)+ ε)n ≤C(1+ |n0|1)(µHS(Λ,B)+ ε)m|n0|1,

for some C > 0. This concludes the proof of (i).
Suppose now that (1, . . . ,1) ∈ V (Λ). Then |z+|1 = |z−|1 for every z ∈ Z(Λ), and hence (i) yields

λHS(L,A) ≤ ln µHS(Λ,B) for every L ∈ V+(Λ). We claim that it is enough to prove (ii) only for
L = Λ. Indeed, assume that λHS(Λ,A) = ln µHS(Λ,B). In particular,

λHS(L,A)≤ λHS(Λ,A) (3.31)

for every L ∈V+(Λ). Since Λ ∈V+(L) if L ∈W+(Λ), by exchanging the role of L and Λ in (3.31), we
deduce that λHS(L,A) = λHS(Λ,A) for every L ∈W+(Λ), and hence (ii).

Let n∈N∗ and Br ∈B for r ∈LnΛmax(Λ). As in the argument for (iii) in Theorem 3.27, there exist
ζ > 0 and a function A : R→Md(C)N such that, for every v ∈ J1,NKn, t ∈ (−ζ ,ζ ), and k ∈ J1,nK,
we have

Avk (t−Λ ·pv(k)) = BΛ·pv(k)
vk and ∑

v∈J1,NKn

n

∏
k=1

BΛ·pv(k)
vk eiθvk = ∑

n∈NN

|n|1=n

ein·θ
Ξ

Λ,A
n,t .

Denote Z+ = {[n] ∈ Z | [n]∩NN 6= /0}. Since (1, . . . ,1) ∈ V (Λ), one deduces that, if n,n′ ∈ NN

are such that n ≈ n′, then ein·θ = ein′·θ for every θ ∈ Ṽ (Λ) and |n|1 = |n′|1. We set |[n]|1 = |n|1 for
every n ∈ NN . Then

∑
n∈NN

|n|1=n

ein·θ
Ξ

Λ,A
n,t = ∑

[n]∈Z+
|[n]|1=n

∑
n′∈[n]∩NN

ein′·θ
Ξ

Λ,A
n′,t = ∑

[n]∈Z+
|[n]|1=n

ein·θ
Ξ̂

Λ,Λ,A
[n],t .
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We clearly have #{[n] ∈ Z+ | |[n]|1 = n} ≤ #{n ∈ NN | |n|1 = n} =
(n+N−1

N−1

)
≤ (n+ 1)N−1, and we

get that, for every θ ∈ Ṽ (Λ) and n ∈ NN with |n|1 = n,∣∣∣∣∣ ∑
v∈J1,NKn

n

∏
k=1

BΛ·pv(k)
vk eiθvk

∣∣∣∣∣
1
n

≤ (n+1)
N−1

n sup
A∈A

esssup
t∈R

∣∣∣Ξ̂Λ,Λ,A
[n],t

∣∣∣ 1
n
.

Since the above inequality holds for every choice of Br ∈B, r ∈ LnΛmax(Λ), n ∈ N∗, we deduce that
ln µHS(Λ,B)≤ λHS(Λ,A). This concludes the proof of Theorem 3.34. �

The next corollary, which follows directly from the above theorem and Remarks 3.16 and 3.33,
generalizes the stability criterion in [4, 20] to the nonautonomous case (see Proposition 3.31).

Corollary 3.35. Let Λ ∈ (R∗+)N , B be a nonempty bounded subset of Md(C)N , and A = L∞(R,B).
Consider the following statements:

i. µHS(Λ,B)< 1;

ii. Σδ (Λ,A) is exponentially stable in Xδ
p for some p ∈ [1,+∞];

iii. Σδ (L,A) is exponentially stable in Xδ
p for every L ∈V+(Λ) and p ∈ [1,+∞].

Then (i) =⇒ (iii) =⇒ (ii). If moreover (1, . . . ,1) ∈V (Λ), we also have (ii) =⇒ (i) and, for every
p ∈ [1,+∞],

λp(Λ,A) = inf{ν ∈ R |µHS(Λ,B−ν)< 1},

where B−ν = {(e−νΛ1B1, . . . ,e−νΛN BN) | (B1, . . . ,BN) ∈B}.

4 Transport system
For L = (L1, . . . ,LN) ∈ (R∗+)N and M = (mi j)i, j∈J1,NK : R→MN(C), we consider the system of trans-
port equations

Στ(L,M) :


∂ui

∂ t
(t,x)+

∂ui

∂x
(t,x) = 0, i ∈ J1,NK, t ∈ [0,+∞) , x ∈ [0,Li],

ui(t,0) =
N

∑
j=1

mi j(t)u j(t,L j), i ∈ J1,NK, t ∈ [0,+∞) ,
(4.1)

where, for i ∈ J1,NK, ui(·, ·) takes values in C.
When no regularity assumptions are made on the function M, we may not have solutions for (4.1)

in the classical sense in C1(R+× [0,Li]) nor in C0(R+,W 1,p([0,Li],C))∩C1(R+,Lp([0,Li],C)). We
thus consider the following weaker definition of solution.

Definition 4.1. Let M : R→MN(C) and ui,0 : [0,Li]→ C for i ∈ J1,NK. We say that (ui)i∈J1,NK is a
solution of Στ(L,M) with initial condition (ui,0)i∈J1,NK if ui : R+× [0,Li]→ C, i ∈ J1,NK, satisfy the
second equation of (4.1), and, for every i ∈ J1,NK, t ≥ 0, x ∈ [0,Li], s ∈ [−min(x, t),Li− x], one has
ui(t + s,x+ s) = ui(t,x) and ui(0,x) = ui,0(x).
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4.1 Equivalent difference equation
For i ∈ J1,NK and M : R→MN(C), define the orthogonal projection Pi = eieT

i and set Ai(·) = M(·)Pi.
Consider the system of difference equations

v(t) =
N

∑
j=1

A j(t)v(t−L j). (4.2)

This system is equivalent to (4.1) in the following sense.

Proposition 4.2. Suppose that (ui)i∈J1,NK is a solution of (4.1) with initial condition (ui,0)i∈J1,NK and
let v : [−Lmax,+∞)→ CN be given for i ∈ J1,NK by

vi(t) =


0, if t ∈ [−Lmax,−Li),
ui,0(−t), if t ∈ [−Li,0),
ui(t,0), if t ≥ 0.

(4.3)

Then v is a solution of (4.2).
Conversely, suppose that v : [−Lmax,+∞)→ CN is a solution of (4.2) and let (ui)i∈J1,NK be given

for i ∈ J1,NK, t ≥ 0 and x ∈ [0,Li] by ui(t,x) = vi(t− x). Then (ui)i∈J1,NK is a solution of (4.1).

Proof. Let (ui)i∈J1,NK be a solution of (4.1) with initial condition (ui,0)i∈J1,NK and let v : [−Lmax,+∞)

→ CN be given by (4.3). Then, for t ≥ 0,

vi(t) = ui(t,0) =
N

∑
j=1

mi j(t)u j(t,L j),

and, by Definition 4.1, u j(t,L j) = v j(t−L j) since u j(t,L j) = u j(t−L j,0) if t ≥ L j and u j(t,L j) =
u j,0(L j− t) if 0≤ t < L j. Hence vi(t) = ∑

N
j=1 mi j(t)v j(t−L j) and thus v(t) = ∑

N
j=1 A j(t)v(t−L j).

Conversely, suppose that v : [−Lmax,+∞)→CN is a solution of (4.2) with initial condition v0 and
let (ui)i∈J1,NK be given for i ∈ J1,NK, t ≥ 0 and x ∈ [0,Li] by ui(t,x) = vi(t− x). It is then clear that
ui(t + s,x+ s) = ui(t,x) for s ∈ [−min(x, t),Li− x], and, since vi(t) = ∑

N
j=1 mi j(t)v j(t−L j),

ui(t,0) = vi(t) =
N

∑
j=1

mi j(t)v j(t−L j) =
N

∑
j=1

mi j(t)u j(t,L j),

and so (ui)i∈J1,NK is a solution of (4.1). �

The following result follows immediately from Theorem 3.2.

Theorem 4.3. Let ui,0 : [0,Li]→ C for i ∈ J1,NK and M : R→MN(C). Then Στ(L,M) admits a
unique solution (ui)i∈J1,NK, ui : R+× [0,Li]→ C for i ∈ J1,NK, with initial condition (ui,0)i∈J1,NK.

4.2 Invariant subspaces
For p ∈ [1,+∞], consider (4.1) in the Banach space

Xτ
p =

N

∏
i=1

Lp([0,Li],C)
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endowed with the norm

‖u‖Xτ
p
=


(

N

∑
i=1
‖ui‖p

Lp([0,Li],C)

)1/p

, if p ∈ [1,+∞),

max
i∈J1,NK

‖ui‖L∞([0,Li],C) , if p =+∞.

It follows from Proposition 4.2 and Remark 3.4 that, if u0 ∈ Xτ
p and M ∈ L∞

loc(R,MN(C)), then the
solution t 7→ u(t) of Στ(L,M) with initial condition u0 takes values in Xτ

p for every t ≥ 0.
In view of the application of our results to wave propagation on networks in Section 5, we find it

useful to investigate the invariance under the flow of Στ(L,M) of the following type of subspaces of
Xτ

p. For r ∈ N and R ∈Mr,N(C) with coefficients ρi j, i ∈ J1,rK, j ∈ J1,NK, we consider the space

Yp(R) =

{
u = (u1, . . . ,uN) ∈ Xτ

p | ∀i ∈ J1,rK,
N

∑
j=1

ρi j

w L j

0
u j(x)dx = 0

}
.

This is a closed subspace of Xτ
p, which is thus itself a Banach space.

Remark 4.4. Let r ∈ N, R ∈Mr,N(C), and M ∈ L∞
loc(R,MN(C)). Note that, if 1 ≤ p ≤ q ≤ +∞,

Yq(R) is a dense subset of Yp(R) since Xτ
q is a dense subset of Xτ

p. As a consequence, by a density
argument, Proposition 4.2 and Theorem 3.14, one obtains that, if Yp(R) is invariant under the flow of
Στ(L,M) for some p ∈ [1,+∞], then Yq(R) is invariant for every q ∈ [1,+∞].

The following theorem provides a necessary and sufficient condition for Yp(R) to be invariant
under the flow of (4.1).

Theorem 4.5. Let M ∈ L∞
loc(R,MN(C)), r ∈ N, R ∈Mr,N(C), and (ui,0)i∈J1,NK ∈ Yp(R). Then the

solution u = (ui)i∈J1,NK of Στ(L,M) with initial condition (ui,0)i∈J1,NK belongs to Yp(R) for every
t ≥ 0 if and only if

R(M(t)− IdN)w(t) = 0

for almost every t ≥ 0, where w = (wi)i∈J1,NK and wi(t) = ui(t,Li).

Proof. Let v : [−Lmax,+∞)→ CN be the solution of (4.2) corresponding to u, given by (4.3), and let
w = (wi)i∈J1,NK be defined by wi(t) = vi(t−Li) = ui(t,Li). Let λ = (λi)i∈J1,rK be given for i ∈ J1,rK
by λi(t) = ∑

N
j=1 ρi j

r L j
0 u j(t,x)dx. Since λi(0) = 0, we have

λi(t) =
N

∑
j=1

ρi j

[w L j

0
u j(t,x)dx−

w L j

0
u j,0(x)dx

]
=

N

∑
j=1

ρi j

[w L j

0
v j(t− x)dx−

w L j

0
v j(−x)dx

]

=
N

∑
j=1

ρi j

[w t

t−L j
v j(s)ds−

w L j

0
v j(s−L j)ds

]
=

N

∑
j=1

ρi j

w t

0

(
v j(s)− v j(s−L j)

)
ds

=
N

∑
j=1

ρi j

w t

0

(
N

∑
k=1

m jk(s)vk(s−Lk)− v j(s−L j)

)
ds

=
N

∑
j=1

ρi j

w t

0

N

∑
k=1

(
m jk(s)−δ jk

)
vk(s−Lk)ds,

so that λ (t) =
r t

0 R(M(s)− IdN)w(s)ds. The conclusion of the theorem follows immediately. �

Definition 4.6. Let L ∈ (R∗+)N and M be a subset of L∞
loc(R,MN(C)). We denote by Inv(M) the set

Inv(M) = {R ∈Mr,N(C) | r ∈ N, Yp(R) is invariant under
the flow of Στ(L,M), ∀M ∈M, ∀p ∈ [1,+∞]}.
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4.3 Stability of solutions on invariant subspaces
We next provide a definition for exponential stability of (4.1).

Definition 4.7. Let p ∈ [1,+∞], L ∈ (R∗+)N , M be a uniformly locally bounded subset of L∞
loc(R,

MN(C)), and R ∈ Inv(M). Let Στ(L,M) denote the family of systems Στ(L,M) for M ∈M. We say
that Στ(L,M) is of exponential type γ in Yp(R) if, for every ε > 0, there exists K > 0 such that, for
every M ∈M and u0 ∈ Yp(R), the corresponding solution u of Στ(L,M) satisfies, for every t ≥ 0,

‖u(t)‖Xτ
p
≤ Ke(γ+ε)t ‖u0‖Xτ

p
.

We say that Στ(L,M) is exponentially stable in Yp(R) if it is of negative exponential type.

The next corollaries translate Propositions 3.19 and 3.20 into the framework of transport equa-
tions.

Corollary 4.8. Let Λ ∈ (R∗+)N , L ∈V+(Λ), and M be a uniformly locally bounded subset of L∞
loc(R,

MN(C)). Suppose that there exists a continuous function f : R→ R∗+ such that, for every M ∈M,
n ∈ NN , and almost every t ∈ (L ·n−Lmax,L ·n), (3.15) holds with A = (A1, . . . ,AN) given by Ai =
MPi. Then there exists a constant C > 0 such that, for every M ∈M, p ∈ [1,+∞], and u0 ∈ Xτ

p, the
corresponding solution u of Στ(L,M) satisfies

‖u(t)‖Xτ
p
≤C(t +1)N−1 max

s∈[t−Lmax,t]
f (s)‖u0‖Xτ

p
, ∀t ≥ 0.

Proof. Let C > 0 be as in the Proposition 3.19. Let M ∈M, p ∈ [1,+∞], u0 ∈ Xτ
p, and u be the

solution of Στ(L,M) with initial condition u0. Let v be the corresponding solution of (4.2), given by
(4.3), with initial condition v0. Notice that ‖u0‖Xτ

p
= ‖v0‖Xδ

p
and, for every t ≥ 0, ‖u(t)‖Xτ

p
≤ ‖vt‖Xδ

p
.

By Proposition 3.19, we have, for every t ≥ 0,

‖u(t)‖Xτ
p
≤ ‖vt‖Xδ

p
≤C(t +1)N−1 max

s∈[t−Lmax,t]
f (s)‖v0‖Xδ

p
=C(t +1)N−1 max

s∈[t−Lmax,t]
f (s)‖u0‖Xτ

p
,

which is the desired result. �

Corollary 4.9. Let Λ ∈ (R∗+)N , L ∈W+(Λ), M be a uniformly locally bounded subset of L∞
loc(R,

MN(C)), and f : R→ R∗+ be a continuous function. Suppose that there exist M ∈M, n0 ∈ NN , and
a set of positive measure S ⊂ (L ·n0−Lmax,L ·n0) such that, for every t ∈ S, (3.17) is satisfied with
A = (A1, . . . ,AN) given by Ai = MPi. Then there exist a constant C > 0 independent of f , an initial
condition u0 ∈ Xτ

∞, and t > 0 such that, for every p ∈ [1,+∞] and R ∈ Inv(M), the solution u of
Στ(L,M) with initial condition u0 satisfies u(s) ∈ Yp(R) for every s≥ 0 and

‖u(t)‖Xτ
p
>C min

s∈[t−Lmax,t]
f (s)‖u0‖Xτ

p
.

Proof. As in Proposition 3.20, since L ∈W+(Λ), we can assume for the rest of the argument that
Λ = L.

Let C > 0 be as in Proposition 3.20. We construct an initial condition v0 ∈ Xδ
p as follows: choose

t0 and j0 as in Proposition 3.20 and verifying in addition t0 6= L · n0− L j0 . Then pick δ > 0 as
in Proposition 3.20 and satisfying in addition δ <

∣∣t0−L ·n0 +L j0

∣∣ and δ < Lmin/2. Next, take

µ ∈ L∞(R,R) as in Proposition 3.20 and satisfying in addition
r

δ

−δ
µ(s)ds = 0. Finally, consider the

initial condition v0(s) = µ(s− t0 +L ·n0)e j0 . As in (3.20), we still obtain that the solution v of (4.2)
with initial condition v0 satisfies, for p ∈ [1,+∞],∥∥vt0+δ

∥∥
Xδ

p
≥ ‖vt0‖Lp([−δ ,δ ],CN) >C min

s∈[t0+δ−Lmax,t0+δ ]
f (s)‖v0‖Xδ

p
. (4.4)
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Let u be the solution of (4.1) corresponding to v, in the sense of Proposition 4.2, and denote
by u0 = (ui,0)i∈J1,NK its initial condition. Since ui,0(x) = vi(−x), we have u0 ∈ ∏

N
i=1 L∞([0,Li],C).

Furthermore, ui,0 = 0 for i 6= j0 and u j0,0(x) = v j0(−x) = µ(L ·n0− t0− x). By definition of δ , we
must have either (L ·n0−t0−δ ,L ·n0−t0+δ )⊂ [0,L j0] or (L ·n0−t0−δ ,L ·n0−t0+δ )∩ [0,L j0] = /0,
but the latter case is impossible since we would then have u j0,0 = 0, and thus v(s) = 0 for every
s≥−Lmax, which contradicts (4.4). Hence (L ·n0− t0−δ ,L ·n0− t0 +δ )⊂ [0,L j0 ] and

w L j0

0
u j0,0(x)dx =

w
δ

−δ
µ(x)dx = 0.

We thus have clearly u0 ∈ Y∞(R), and in particular u(s) ∈ Yp(R) for every s ≥ 0 and p ∈ [1,+∞].
Furthermore, ‖v0‖Xδ

p
= ‖u0‖Xτ

p
and, for p ∈ [1,+∞),

‖vt0‖
p
Lp([−δ ,δ ],CN)

=
w

δ

−δ
|v(t0 + s)|pp ds =

w
δ

−δ

N

∑
i=1
|ui(t0 + s,0)|p ds =

w 2δ

0

N

∑
i=1
|ui(t0 +δ ,s)|p ds

≤
N

∑
i=1

w Li

0
|ui(t0 +δ ,s)|p ds = ‖u(t0 +δ )‖p

Xτ
p
,

with a similar estimate for p =+∞. Hence, it follows from (4.4) that, for every p ∈ [1,+∞],

‖u(t)‖Xτ
p
>C min

s∈[t−Lmax,t]
f (s)‖u0‖Xτ

p

with t = t0 +δ . �

As a consequence of the previous analysis, we have the following result.

Theorem 4.10. Let Λ ∈ (R∗+)N , M be a uniformly locally bounded subset of L∞
loc(R,MN(C)), and

A = {A = (A1, . . . ,AN) : R→MN(C)N |Ai = MPi,M ∈M}. For every L ∈ V+(Λ), if Σδ (L,A) is of
(Θ,Λ)-exponential type γ then, for every p ∈ [1,+∞] and R ∈ Inv(M), Στ(L,M) is of exponential
type γ in Yp(R). Conversely, for every L ∈W+(Λ), if there exist p ∈ [1,+∞] and R ∈ Inv(M) such
that Στ(L,M) is of exponential type γ in Yp(R), then Σδ (L,A) is of (Θ,Λ)-exponential type γ .

It follows from Theorem 4.10 that the exponential type γ for Στ(L,M) in Yp(R) is independent
of p ∈ [1,+∞] and R ∈ Inv(M). When M is shift-invariant, thanks to Theorem 3.25, one can replace
(Θ,Λ)-exponential type by (Ξ̂,Λ)-exponential type for Σδ (L,A) in Theorem 4.10.

Assume now that M = L∞(R,B), where B is a bounded subset of MN(C). Let A = {A =
(A1, . . . ,AN) : R→MN(C)N |Ai = MPi, M ∈M}, i.e., A= L∞(R,A) where A= {A = (A1, . . . ,AN)∈
MN(C)N |Ai = MPi, M ∈B}. We can thus transpose the results from Section 3.3.3, and in particular
Corollary 3.29, to the transport framework.

Theorem 4.11. Let Λ ∈ (R∗+)N , B be a nonempty bounded subset of MN(C), M = L∞(R,B). The
following statements are equivalent.

i. Στ(Λ,M) is exponentially stable in Yp(R) for some p ∈ [1,+∞] and R ∈ Inv(M).

ii. Στ(L,M) is exponentially stable in Yp(R) for every L ∈V+(Λ), p ∈ [1,+∞], and R ∈ Inv(M).

Remark 4.12. In accordance with Remark 3.28, the exponential stability of Στ(Λ,M) is equivalent
to that of Στ(Λ,L∞(R,B)).
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5 Wave propagation on networks
We consider here the problem of wave propagation on a finite network of elastic strings. The notations
we use here come from [11].

A graph G is a pair (V,E), where V is a set, whose elements are called vertices, and

E⊂ {{q, p} |q, p ∈ V, q 6= p}.

The elements of E are called edges, and, for e = {q, p} ∈ E, the vertices q, p are called the endpoints
of E. An orientation on G is defined by two maps α,ω : E→ V such that, for every e ∈ E, e =
{α(e),ω(e)}. Given q, p ∈ V, a path from q to p is a n-tuple (q = q1, . . . ,qn = p) ∈ Vn where, for
every j ∈ J1,n− 1K, {q j,q j+1} ∈ E. The positive integer n is called the length of the path. A path
of length n in G is said to be closed if q1 = qn; simple if all the edges {q j,q j+1}, j ∈ J1,n− 1K, are
different; and elementary if the vertices q1, . . . ,qn are pairwise different, except possibly for the pair
(q1,qn). An elementary closed path is called a cycle. A graph which does not admit cycles is called a
tree. We say that a graph G is connected if, for every q, p ∈ V, there exists a path from q to p. We say
that G is finite if V is a finite set. For every q ∈ V, we denote by Eq the set of edges for which q is an
endpoint, that is,

Eq = {e ∈ E |q ∈ e}.
The cardinality of Eq is denoted by nq. We say that q ∈ V is exterior if Eq contains at most one
element and interior otherwise. We denote by Vext and Vint the set of exterior and interior vertices,
respectively. We suppose in the sequel that Vext contains at least two elements, and we fix a nonempty
subset Vd of Vext such that Vu = Vext \Vd is nonempty. The vertices of Vd are said to be damped, and
the vertices of Vu are said to be undamped. Note that V is the disjoint union V= Vint∪Vu∪Vd.

A network is a pair (G,L) where G = (V,E) is an oriented graph and L = (Le)e∈E is a vector of
positive real numbers, where each Le is called the length of the edge e. We say that a network is finite
(respectively, connected) if its underlying graph G is finite (respectively, connected). If e ∈ E and
u : [0,Le]→ C is a function, we write u(α(e)) = u(0) and u(ω(e)) = u(Le). For every elementary
path (q1, . . . ,qn), we define its signature s : E→{−1,0,1} by

s(e) =


1, if e = {qi,qi+1} for some i ∈ J1,n−1K and α(e) = qi,
−1, if e = {qi,qi+1} for some i ∈ J1,n−1K and α(e) = qi+1,
0, otherwise.

The normal derivatives of u at α(e) and ω(e) are defined by du
dne

(α(e)) = −du
dx (0) and du

dne
(ω(e)) =

du
dx (Le).

In what follows, we consider only finite connected networks. In order to simplify the notations,
we identify E with the finite set J1,NK, where N = #E. We model wave propagation along the edges of
a finite connected network (G,L) by N displacement functions u j : [0,+∞)× [0,L j]→ C, j ∈ J1,NK,
satisfying

Σω(G,L,η) :



∂ 2u j

∂ t2 (t,x) =
∂ 2u j

∂x2 (t,x), j ∈ J1,NK, t ∈ [0,+∞) , x ∈ [0,L j],

u j(t,q) = uk(t,q), q ∈ V, j,k ∈ Eq, t ∈ [0,+∞) ,

∑
j∈Eq

∂u j

∂n j
(t,q) = 0, q ∈ Vint, t ∈ [0,+∞) ,

∂u j

∂ t
(t,q) =−ηq(t)

∂u j

∂n j
(t,q), q ∈ Vd, j ∈ Eq, t ∈ [0,+∞) ,

u j(t,q) = 0, q ∈ Vu, j ∈ Eq, t ∈ [0,+∞) .

(5.1)
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Each function ηq is assumed to be nonnegative and determines the damping at the vertex q ∈ Vd. We
denote by η the vector-valued function η = (ηq)q∈Vd .

Remark 5.1. Let (G,L) be a finite connected network with E = J1,NK and (α1,ω1), (α2,ω2) be
two orientations of G. If (u j) j∈J1,NK satisfies (5.1) with orientation (α1,ω1) and (v j) j∈J1,NK is given
by v j = u j if α1( j) = α2( j) and v j(x) = u j(L j− x) otherwise, we can easily verify that (v j) j∈J1,NK
satisfies (5.1) with orientation (α2,ω2). Hence the dynamical properties of (5.1) do not depend on the
orientation of G.

For p ∈ [1,+∞], consider the Banach spaces Lp(G,L) = ∏
N
j=1 Lp([0,L j],C) and

W 1,p
0 (G,L) =

{
(u1, . . . ,uN) ∈

N

∏
j=1

W 1,p([0,L j],C) | u j(q) = uk(q), ∀q ∈ V, ∀ j,k ∈ Eq;

u j(q) = 0, ∀q ∈ Vu, ∀ j ∈ Eq
}
,

endowed with the usual norms

‖u‖Lp(G,L) =


(

N

∑
i=1
‖ui‖p

Lp([0,Li],C)

) 1
p

, if p ∈ [1,+∞),

max
i∈J1,NK

‖ui‖L∞([0,Li],C) , if p =+∞,

‖u‖W 1,p
0 (G,L) =


(

N

∑
i=1

∥∥u′i
∥∥p

Lp([0,Li],C)

) 1
p

, if p ∈ [1,+∞),

max
i∈J1,NK

∥∥u′i
∥∥

L∞([0,Li],C)
, if p =+∞.

We will omit (G,L) from the notations when it is clear from the context.
Let Xω

p =W 1,p
0 ×Lp and, for every t ∈ R, define the operator A(t) by

D(A(t)) =

{
(u,v) ∈

(
W 1,p

0 ∩
N

∏
j=1

W 2,p([0,L j],C)

)
×W 1,p

0 |

v j(q) =−ηq(t)
du j

dn j
(q), ∀q ∈ Vd, ∀ j ∈ Eq; ∑

j∈Eq

du j

dn j
(q) = 0, ∀q ∈ Vint

}
,

A(t)
(

u
v

)
=

(
v

u′′

)
.

One can then write (5.1) as an evolution equation in Xω
p as

U̇(t) = A(t)U(t) (5.2)

where U =
(

u, ∂u
∂ t

)
.

5.1 Equivalence with a system of transport equations
In order to make a connection with transport systems, we consider, for p ∈ [1,+∞], the Banach space

Xτ
p =

2N

∏
j=1

Lp([0,Lτ
j ],C),

where Lτ
2 j−1 = Lτ

2 j = L j for j ∈ J1,NK.
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Definition 5.2 (D’Alembert decomposition operator). Let T : Xω
p → Xτ

p be the operator given by
T (u,v) = f , where, for j ∈ J1,NK, x ∈ [0,L j],

f2 j−1(x) = u′j(L j− x)+ v j(L j− x), f2 j(x) = u′j(x)− v j(x). (5.3)

In order to describe the range of T , we introduce the following notations. Let r ∈N be the number
of elementary paths (q1, . . . ,qn) in G with q1 = qn or q1,qn ∈Vu. The set of such paths will be indexed
by J1,rK. We denote by si the signature of the path corresponding to the index i ∈ J1,rK. We define
R ∈Mr,2N(C) by its coefficients ρi j given by

ρi,2 j−1 = ρi,2 j = si( j) for i ∈ J1,rK, j ∈ J1,NK.

We then have the following proposition.

Proposition 5.3. The operator T is a bijection from Xω
p to Yp(R). Moreover, T and T−1 are continu-

ous.

Proof. Let (u,v) ∈ Xω
p and let f = T (u,v) ∈ Xτ

p. Let (q1, . . . ,qn) be an elementary path in G with
q1 = qn or q1,qn ∈ Vu and let s be its signature. For i ∈ J1,n−1K, let ji be the index corresponding to
the edge {qi,qi+1}. We have

N

∑
j=1

s( j)
w L j

0

(
f2 j−1(x)+ f2 j(x)

)
dx = 2

N

∑
j=1

s( j)
w L j

0
u′j(x)dx = 2

N

∑
i=1

s( j)
(
u j(L j)−u j(0)

)
= 2

n−1

∑
i=1

(
u ji(qi+1)−u ji(qi)

)
= 2

(
u jn−1(qn)−u j1(q1)

)
= 0,

and thus f ∈ Yp(R).
Conversely, take f ∈ Yp(R). For j ∈ J1,NK, define v j : [0,L j]→ C by

v j(x) =
f2 j−1(L j− x)− f2 j(x)

2
. (5.4)

One clearly has v j ∈ Lp([0,L j],C). We define u j as follows: let e∈ E be the edge corresponding to the
index j. Let (q1, . . . ,qn) be any elementary path with q1 ∈Vu and qn =α(e). Let s : E→{−1,0,1} be
the signature of that path and, for i ∈ J1,n−1K, let ji be the index associated with the edge {qi,qi+1}.
For x ∈ [0,L j], set

u j(x) =
n−1

∑
i=1

s( ji)
w L ji

0

f2 ji−1(ξ )+ f2 ji(ξ )

2
dξ +

w x

0

f2 j−1(L j−ξ )+ f2 j(ξ )

2
dξ . (5.5)

This definition does not depend on the choice of the path (q1, . . . ,qn) with q1 ∈ Vu and qn = α(e)
thanks to the definition of the matrix R. It is an immediate consequence of (5.5) that (u,v) ∈ Xω

p . The
map f 7→ (u,v) defines an operator S : Yp(R)→Xω

p . We clearly have T ◦S = IdYp(R) and S◦T = IdXω
p
,

and thus T is bijective. The continuity of T and S follows immediately from (5.3), (5.4), and (5.5). �

Remark 5.4. When p = 2, one easily checks that 1√
2
T : Xω

2 → Y2(R) is unitary.

Remark 5.5. The operator T corresponds to d’Alembert decomposition of the solutions of the one-
dimensional wave equation into a pair of traveling waves moving in opposite directions. For every
j ∈ J1,NK, f2 j−1 and f2 j correspond to the waves moving from ω( j) to α( j) and from α( j) to ω( j),
respectively (see Figure 5.1).
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α( j) ω( j)

f2 j−1

f2 j

Figure 5.1: D’Alembert decomposition of the wave equation on the edge j ∈ J1,NK.

Let us consider the operator B(t) in Yp(R) defined by conjugation as

D(B(t)) = { f ∈ Yp(R) |T−1 f ∈ D(A(t))}, B(t) f = TA(t)T−1 f .

In order to give a more explicit formula for B(t), we introduce the following notations.

Definition 5.6 (Inward and outward decompositions). The inward and outward decompositions of
C2N are defined respectively as the direct sums

C2N =
⊕
q∈V

W q
in, C2N =

⊕
q∈V

W q
out,

where, for every q ∈ V, we set

W q
in = Span

(
{e2 j |ω( j) = q}∪{e2 j−1 |α( j) = q}

)
,

W q
out = Span

(
{e2 j |α( j) = q}∪{e2 j−1 |ω( j) = q}

)
.

For every q ∈ V, we denote by Π
q
in and Π

q
out the canonical projections of C2N onto W q

in and W q
out,

respectively, which we identify with matrices in Mnq,2N(C).

For n∈N, let Jn denote the n×n matrix with all elements equal to 1. Set D= diag((−1) j) j∈J1,2NK.
For q ∈ V and t ∈ R, we set

Mq(t) =



(
Π

q
out
)T
(

Idnq−
2
nq

Jnq

)
Π

q
in, if q ∈ Vint,(

Π
q
out
)T

Π
q
in, if q ∈ Vu,

1−ηq(t)
1+ηq(t)

(
Π

q
out
)T

Π
q
in, if q ∈ Vd.

We define the time-dependent matrix M = (mi j)i, j∈J1,2NK by

M =−D

(
∑
q∈V

Mq

)
D. (5.6)

Remark 5.7. If the components of η are nonnegative measurable functions, then M is measurable
and its components take values in [−1,1].

Remark 5.8. Notice that W q1
in and W q2

in are orthogonal whenever q1 6= q2, and similarly for the outward
decomposition. Moreover, for each q ∈ V, the spaces W q

in and W q
out are invariant under D. We finally

notice that the image of Mq(t) is contained in W q
out. From these observations, we deduce that, for

every q ∈ V and t ∈ R,
Π

q
outDM(t) =−Π

q
outM

q(t)D.
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We finally obtain the following expression for B(t).

Proposition 5.9. For t ∈ R and p ∈ [1,+∞], the operator B(t) is given by

D(B(t)) =

{
f ∈ Yp(R)∩

2N

∏
i=1

W 1,p([0,Lτ
i ],C) | fi(0) =

2N

∑
j=1

mi j(t) f j(Lτ
j), ∀i ∈ J1,2NK

}
, (5.7)

B(t) f =− f ′. (5.8)

Proof. Let f ∈ Yp(R) and (u,v) = T−1 f ∈ Xω
p and notice that

u′j(x) =
f2 j−1(L j− x)+ f2 j(x)

2
, v j(x) =

f2 j−1(L j− x)− f2 j(x)
2

. (5.9)

It follows from (5.3) and (5.9) that fi ∈W 1,p([0,Lτ
i ],C) for every i ∈ J1,2NK if and only if ui ∈

W 2,p([0,Li],C) and vi ∈W 1,p([0,Li],C) for every i ∈ J1,NK.
We suppose from now on that fi ∈W 1,p([0,Lτ

i ],C) for every i ∈ J1,2NK. Let F0 = ( fi(0))i∈J1,2NK
and FL = ( fi(Lτ

i ))i∈J1,2NK. The condition

fi(0) =
2N

∑
j=1

mi j(t) f j(Lτ
j), ∀i ∈ J1,2NK (5.10)

can be written as F0 = M(t)FL. Thanks to the outward decomposition of C2N , this is equivalent to
Π

q
outDF0 = Π

q
outDM(t)FL for every q ∈ V. By Remark 5.8, we have Π

q
outDM(t) =−Π

q
outM

q(t)D, and
thus (5.10) is equivalent to

Π
q
outDF0 +Π

q
outM

q(t)DFL = 0, ∀q ∈ V. (5.11)

If q ∈ Vd, let j be the index corresponding to the unique edge in Eq. To simplify the notations, we
consider here the case α( j) = q, the other case being analogous. Then

Π
q
outDF0 +Π

q
outM

q(t)DFL = Π
q
outDF0 +

1−ηq(t)
1+ηq(t)

Π
q
inDFL = f2 j(0)−

1−ηq(t)
1+ηq(t)

f2 j−1(L j)

= u′j(0)− v j(0)−
1−ηq(t)
1+ηq(t)

(
u′j(0)+ v j(0)

)
=

2
1+ηq(t)

(
ηq(t)u′j(0)− v j(0)

)
,

which shows that the left-hand side is equal to zero if and only if v j(q) = −ηq(t)
du j
dn j

(q). If q ∈ Vu,
the same argument shows that the left-hand side is equal to zero if and only if v j(q) = 0.

Finally, if q ∈ Vint, one easily obtains that

Π
q
inDFL =

(
du j
dn j

(q)− v j(q)
)

j∈Eq
, Π

q
outDF0 =

(
−du j

dn j
(q)− v j(q)

)
j∈Eq

.

Since Π
q
out
(
Π

q
out
)T

= IdW q
out

, one has

Π
q
outDF0 +Π

q
outM

q(t)DFL =
(
−du j

dn j
(q)− v j(q)

)
j∈Eq

+

(
Idnq−

2
nq

Jnq

)(
du j
dn j

(q)− v j(q)
)

j∈Eq

=
(
−2v j(q)− 2

nq
∑k∈Eq

(
duk
dnk

(q)− vk(q)
))

j∈Eq
.

The right-hand side is equal to zero if and only if v j(q) = vk(q) for every j,k ∈ Eq and ∑k∈Eq
duk
dnk

(q) =
0.
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Collecting all the equivalences corresponding to the identities in (5.11), we conclude that (5.7)
holds.

Let now f ∈ D(B(t)) and denote (u,v) = T−1 f ∈ D(A(t)), g = B(t) f . Then

g = TA(t)T−1 f = TA(t)(u,v) = T (v,u′′),

and so, by (5.3), for every j ∈ J1,2NK,

g2 j−1(x) = v′j(L j− x)+u′′j (L j− x) =− d
dx

(
v j(L j− x)+u′j(L j− x)

)
=− f ′2 j−1(x),

g2 j(x) = v′j(x)−u′′j (x) =
d
dx

(
v j(x)−u′j(x)

)
=− f ′2 j(x),

which shows that (5.8) holds. �

The operator T : Xω
p → Yp(R) transforms (5.2) into

Ḟ(t) = B(t)F(t).

This evolution equation corresponds to the system of transport equations
∂ fi

∂ t
(t,x)+

∂ fi

∂x
(t,x) = 0, i ∈ J1,2NK, t ∈ [0,+∞) , x ∈ [0,Lτ

i ],

fi(t,0) =
2N

∑
j=1

mi j(t) f j(t,Lτ
j), i ∈ J1,2NK, t ∈ [0,+∞) ,

(5.12)

where F(t) = ( fi(t))i∈J1,2NK. The following property of the matrix M(t) will be useful in the sequel.

Lemma 5.10. For every t ∈ R,

M(t)TM(t) = Id2N− ∑
q∈Vd

4ηq(t)
(1+ηq(t))2 (Π

q
in)

T
Π

q
in.

Proof. Notice that, for every q ∈ V, Mq(t) can be written as

Mq(t) = (Π
q
out)

T
(

λq(t) Idnq−
2
nq

δqJnq

)
Π

q
in,

where λq(t) =
1−ηq(t)
1+ηq(t)

if q∈Vd and λq(t) = 1 otherwise, while δq = 1 if q∈Vint and δq = 0 otherwise.
By a straightforward computation, one verifies that, for every q ∈ V,(

λq(t) Idnq−
2
nq

δqJnq

)T(
λq(t) Idnq−

2
nq

δqJnq

)
= λq(t)2 Idnq .

Noticing furthermore that, for every q1,q2 ∈ V, Π
q1
out(Π

q2
out)

T = δq1q2 IdW q1
out

, one deduces that

M(t)TM(t) = D

[
∑
q∈V

λq(t)2(Π
q
in)

T
Π

q
in

]
D.

Since the term between brackets in the above equation is diagonal and λq(t)2 = 1− 4ηq(t)
(1+ηq(t))2 for

q ∈ Vd, the conclusion follows. �
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5.2 Existence of solutions
Thanks to the operator T : Xω

p → Yp(R), one can give the following definition for solutions of (5.1).

Definition 5.11. Let U0 ∈ Xω
p and η = (ηq)q∈Vd be a measurable function with nonnegative compo-

nents. We say that U : R+→Xω
p is a solution of Σω(G,L,η) with initial condition U0 if T−1U : R+→

Yp(R) is a solution of (5.12) with initial condition T−1U0 ∈ Yp(R).

For every F0 ∈ Yp(R), it follows from Theorem 4.3 that (5.12) admits a unique solution F : R+→
Xτ

p. In order to show that this solution remains in Yp(R) for every t ≥ 0, one needs to show that Yp(R)
is invariant under the flow of (5.12).

Proposition 5.12. For every t ∈ R, RM(t) = R.

Proof. Thanks to the inward decomposition of C2N , we prove the proposition by showing that for
every q ∈ V and t ∈ R,

−RD(Π
q
out)

T
[

λq(t) Idnq−
2
nq

δqJnq

]
= RD(Π

q
in)

T, (5.13)

where λq(t) and δq are defined as in the proof of Lemma 5.10. Without loss of generality, it is enough
to consider the case where R is a line matrix, i.e., we consider a single elementary path (q1, . . . ,qn) in
G with q1 = qn or q1,qn ∈ Vu, with signature s. Then R = (ρ j) j∈J1,2NK is given by ρ2 j−1 = ρ2 j = s( j)
for j ∈ J1,NK. For i ∈ J1,n− 1K, denote by ji the edge corresponding to {qi,qi+1}. Let us write
R = ∑

n−1
i=1 s( ji)(e2 ji−1 + e2 ji)

T and notice that

RD =
n−1

∑
i=1

s( ji)(−e2 ji−1 + e2 ji)
T.

By definition of the signature s, one has, for i ∈ J1,n−1K,

−s( ji)eT
2 ji−1 = eT

2 ji−1
[
(Π

qi+1
in )T

Π
qi+1
in − (Π

qi
in)

T
Π

qi
in

]
,

s( ji)eT
2 ji = eT

2 ji

[
(Π

qi+1
in )T

Π
qi+1
in − (Π

qi
in)

T
Π

qi
in

]
,

and
−s( ji)eT

2 ji−1 = eT
2 ji−1

[
(Π

qi
out)

T
Π

qi
out− (Π

qi+1
out )

T
Π

qi+1
out
]
,

s( ji)eT
2 ji = eT

2 ji

[
(Π

qi
out)

T
Π

qi
out− (Π

qi+1
out )

T
Π

qi+1
out
]
.

One deduces that

RD =
n−1

∑
i=1

(e2 ji−1 + e2 ji)
T [(Πqi+1

in )T
Π

qi+1
in − (Π

qi
in)

T
Π

qi
in

]
=

n−1

∑
i=1

(e2 ji−1 + e2 ji)
T [(Πqi

out)
T
Π

qi
out− (Π

qi+1
out )

T
Π

qi+1
out
]
.

By using the above relations, Equation (5.13) can be rewritten as[
λq(t) Idnq−

2
nq

δqJnq

]
Π

q
out

n−1

∑
i=1

(
δqqi+1−δqqi

)
(e2 ji−1 + e2 ji)

= Π
q
in

n−1

∑
i=1

(
δqqi+1−δqqi

)
(e2 ji−1 + e2 ji). (5.14)
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Such an identity is trivially satisfied if q /∈ {q1, . . . ,qn}. Assume now that either q = qi for some
i ∈ J2,n− 1K or q = q1 = qn (and in the latter case set i = n and define jn+1 = j1). In particular,
q ∈ Vint and λq(t) = δq = 1. We therefore must prove that[

Idnqi
− 2

nqi

Jnqi

]
Π

qi
out(e2 ji−1−1 +e2 ji−1−e2 ji−1−e2 ji) = Π

qi
in(e2 ji−1−1 +e2 ji−1−e2 ji−1−e2 ji). (5.15)

By definition of Π
qi
in and Π

qi
out, one has that

Π
qi
out(e2 ji−1−1 + e2 ji−1− e2 ji−1− e2 ji) = Π

qi
in(e2 ji−1−1 + e2 ji−1− e2 ji−1− e2 ji) = w,

where w ∈ Cnqi has all its coordinates equal to zero, except two of them, one equal to 1 and the other
one equal to −1. Hence Jnqi

w = 0 and (5.15) holds true.
It remains to treat the case q ∈ {q1,qn} ⊂ Vu. In this case, λq(t) = 1 and δq = 0, and we further-

more assume, with no loss of generality, that q = q1. We can rewrite (5.14) as

Π
q1
out(e2 j1−1 + e2 j1) = Π

q1
in (e2 j1−1 + e2 j1),

which holds true by definition of Π
q1
in and Π

q1
out. This concludes the proof of the proposition. �

The main result of the section, given next, follows immediately from Proposition 5.12 and Theo-
rem 4.5.

Theorem 5.13. Let (G,L) be a network, p∈ [1,+∞], and η = (ηq)q∈Vd be a measurable function with
nonnegative components. Then, for every U0 ∈ Xω

p , the system Σω(G,L,η) defined in (5.1) admits a
unique solution U : R+→ Xω

p .

5.3 Stability of solutions
We next provide an appropriate definition of exponential type for (5.1).

Definition 5.14. Let (G,L) be a network, p ∈ [1,+∞], and D be a subset of the space of measurable
functions η = (ηq)q∈Vd with nonnegative components. Denote by Σω(G,L,D) the family of systems
Σω(G,L,η) for η ∈ D. We say that Σω(G,L,D) is of exponential type γ in Xω

p if, for every ε > 0,
there exists K > 0 such that, for every η ∈D and u0 ∈Xω

p , the corresponding solution u of Σω(G,L,η)
satisfies, for every t ≥ 0,

‖u(t)‖Xω
p
≤ Ke(γ+ε)t ‖u0‖Xω

p
.

We say that Σω(G,L,D) is exponentially stable in Xω
p if it is of negative exponential type.

Given D as in the above definition, we define

M= {M : R→M2N(R) |M is given by (5.6) for some η ∈D}.

Thanks to the continuity of T and T−1 established in Proposition 5.3, we remark that Σω(G,L,D) is of
exponential type γ in Xω

p if and only if Στ(L,M) is of exponential type γ in Yp(R). As a consequence
of Theorem 4.11, we have the following result in the case of arbitrarily switching dampings ηq, q∈Vd.

Theorem 5.15. Let (G,Λ) be a network, d = #Vd, D a subset of (R+)
d , and D = L∞(R,D). The

following statements are equivalent.

i. Σω(G,Λ,D) is exponentially stable in Xω
p for some p ∈ [1,+∞].

ii. Σω(G,L,D) is exponentially stable in Xω
p for every L ∈V+(Λ) and p ∈ [1,+∞].
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We can now provide a necessary and sufficient condition on G and D for the exponential stability
of Σω(G,Λ,L∞(R,D)).

Theorem 5.16. Let (G,Λ) be a network, d = #Vd, D a bounded subset of (R+)
d , and D= L∞(R,D).

Then Σω(G,Λ,D) is exponentially stable in Xω
p for some p ∈ [1,+∞] if and only if G is a tree, Vu

contains only one vertex, and D⊂ (R∗+)d .

Proof. Similarly to Remark 4.12, the exponential stability of Σω(G,Λ,D) is equivalent to that of
Σω(G,Λ,L∞(R,D)). We therefore assume with no loss of generality that D is compact.

Suppose that either G is not a tree, Vu contains more than one vertex, or D contains a point η with
ηq = 0 for some q ∈ Vd. Let (q1, . . . ,qn) be an elementary path in G with q1 = qn, q1,qn ∈ Vu, or
q1 ∈ Vu and qn = q. Let s be its signature and, for i ∈ J1,n−1K, let ji be the index corresponding to
the edge {qi,qi+1}. Take L ∈V+(Λ)∩NN , which is possible thanks to Proposition 3.9. For j ∈ J1,NK,
we define

u j(t,x) =

{
s( ji)sin(2πt)sin(2πx), if j = ji for a certain i ∈ J1,n−1K,
0, otherwise.

One easily checks that (u j) j∈J1,NK is a solution of Σω(G,L,η) for every η ∈ D. Since it is periodic
and nonzero, Σω(G,L,D) is not exponentially stable in Xω

p for any p ∈ [1,+∞], and so, by Theorem
5.15, Σω(G,Λ,D) is not exponentially stable in Xω

p for any p ∈ [1,+∞].
Suppose now that G is a tree, Vu contains only one vertex, and D=D⊂ (R∗+)d . Up to changing the

orientation of G, we assume that α( j) = q for every q∈Vu and j ∈ Eq. Let ηmin =minη∈Dminq∈Vd ηq

> 0. Let U = (u,v) be a solution of Σω(G,Λ,D) in Xω
2 and f = 1√

2
TU . Notice that ‖ f (t)‖Y2(R) =

‖U(t)‖Xω
2

thanks to Remark 5.4. For t ≥ 0, denote F0(t) = ( fi(t,0))i∈J1,2NK and FΛ(0) = ( fi(t,
Λτ

i ))i∈J1,2NK, so that F0(t) = M(t)FΛ(t). For t ≥ 0 and s ∈ [0,Λmin], we have, by Lemma 5.10,

‖U(t + s)‖2
Xω

2
=

2N

∑
i=1

w
Λτ

i

0
| fi(t + s,x)|2 dx

=
2N

∑
i=1

w
Λτ

i

s
| fi(t,x− s)|2 dx+

w s

0
|F0(t + s− x)|22 dx

=
2N

∑
i=1

w
Λτ

i

s
| fi(t,x− s)|2 dx+

w s

0
|FΛ(t + s− x)|22 dx

−
w s

0 ∑
q∈Vd

∑
i∈Eq

4ηq(t + s− x)
(1+ηq(t + s− x))2 | f2i−1(t + s− x,Λi)|2 dx

= ‖U(t)‖2
Xω

2
− ∑

q∈Vd

∑
i∈Eq

w t+s

t

4ηq(τ)

(1+ηq(τ))2 | f2i−1(τ,Λi)|2 dτ,

and, since

f2i−1(τ,Λi) =
∂ui
∂x (τ,0)+ vi(τ,0)√

2
=

1+ηq(τ)√
2

∂ui

∂x
(τ,0), ∀q ∈ Vd, ∀i ∈ Eq,

we conclude that

‖U(t + s)‖2
Xω

2
= ‖U(t)‖2

Xω
2
− ∑

q∈Vd

∑
i∈Eq

w t+s

t
2ηq(τ)

∣∣∣∣∂ui

∂x
(τ,0)

∣∣∣∣2 dτ. (5.16)
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Since (5.16) holds for every t ≥ 0 and every s ∈ [0,Λmin], one can easily obtain by an inductive
argument that it holds for every t ≥ 0 and s≥ 0. Hence, for every t ≥ 0 and s≥ 0,

‖U(t + s)‖2
Xω

2
−‖U(t)‖2

Xω
2
≤−2ηmin ∑

q∈Vd

∑
i∈Eq

w t+s

t

∣∣∣∣∂ui

∂x
(τ,0)

∣∣∣∣2 dτ.

We can thus proceed as in [11, Chapter 4, Section 4.1] (see also [25]) to obtain the following observ-
ability inequality: there exist c > 0 and ` > 0 such that, for every t ≥ 0,

∑
q∈Vd

∑
i∈Eq

w t+`

t

∣∣∣∣∂ui

∂x
(τ,0)

∣∣∣∣2 dτ ≥ c‖U(t + `)‖2
Xω

2
.

This yields the desired exponential convergence in Xω
2 , and hence in Xω

p for every p ∈ [1,+∞] thanks
to Theorem 5.15. �
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