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In this contribution a conceptual study for torsional oscillators, which are electromagnetically driven and read out, is presented. The aim is to experimentally investigate the basic feasibility of a torsional resonator with application to viscosity and mass density sensing in liquids. Such a device is particularly interesting as cylindrical, torsional resonators for fluid sensing applications are hardly reported but unlike many other devices, yield pure shear wave excitation in the liquid. The design of first conceptual demonstrators for measurements in air as well as in liquids and their benefits and disadvantages are discussed in detail. A closed form as well as a reduced order model and measurement results obtained with first demonstrators are presented.

Introduction

Recently, we investigated various resonant sensors for liquid viscosity and mass density, see e.g., [START_REF] Jakoby | Miniaturized sensors for the viscosity and density of liquids -performance and issues[END_REF], which were particularly designed to be operated in the low kilohertz range. Amongst these devices, in-plane oscillating platelets, emitting mainly shear waves into the sample liquids, were investigated e.g., in [START_REF] Reichel | Analysis and experimental verification of a metallic suspended plate resonator for viscosity sensing[END_REF][START_REF] Abdallah | Measurement error estimation and quality factor improvement of an electrodynamic-acoustic resonator sensor for viscosity measurement[END_REF] where millimeter sized metal platelets were used. In [START_REF] Riesch | A suspended plate viscosity sensor featuring inplane vibration and piezoresistive readout[END_REF][START_REF] Cerimovic | Sensing viscosity and density of glycerol-water mixtures utilizing a suspended plate mems resonator[END_REF] similar miniaturized devices have been implemented in silicon technology. Generally used shear oscillating resonators, such as shear oscillating quartz crystals [START_REF] Martin | Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading[END_REF] and the aforementioned in-plane oscillating platelets, have in common that, besides the desired shear waves, compressional waves are also radiated into the liquid. These pressure waves result e.g., from non-uniform shear displacement [START_REF] Beigelbeck | A two-dimensional analysis of spurious compressional wave excitation by thickness-shear-mode resonators[END_REF][START_REF] Voglhuber-Brunnmaier | Efficient spectral domain formulation of loading effects in acoustic sensors[END_REF], the resonators' finite thicknesses, and spurious out-of-plane modes e.g. from the plate itself or of supporting beams. Potential candidates for resonators which only emit shear waves into the test fluid are cylindrical torsional oscillators. First, such pure shear wave emitting devices are of special interest from a rheological point of view, when it comes to the analysis of complex liquids such as viscoelastic liquids. For pure shear wave deformation, the liquid can be described by a complex-valued shear modulus or a complex valued viscosity, which, in general, are frequency dependent quantities [START_REF] Macosko | Rheology, Principles, Measurements and Applications[END_REF]. With oscillatory measurements, the values obtained at a number of discrete frequencies can be used to obtain a rheological spectrum. A second merit for cylindrical, torsional resonators is that, due to their geometry, they resemble concentric cylinder rheometers. Thus, they yield comparable measurements but extend the measurable frequency range of conventional rheometers which is usually limited at approximately 100 Hz. Third, cylindrical, torsional oscillators allow experimental comparison of measurement results obtained with the above mentioned in-plane oscillating resonators, which excite spurious compressional waves. Thus, by means of such a comparison the impact of these compressional waves could be experimentally estimated.

In-plane oscillating devices, oscillating rotational disks [START_REF] Rahafrooz | Characterization of rotational mode disk resonator quality factors in liquid, Frequency Control and the European Frequency and Time Forum (FCS)[END_REF] and other resonators for viscosity and mass density sensors such as cantilevers [START_REF] Dufour | The microcantilever: A versatile tool for measuring the rheological properties of complex fluids[END_REF][START_REF] Vančura | Analysis of resonating microcantilevers operating in a viscous liquid environment[END_REF], quartz tuning forks [START_REF] Toledo | Application of quartz tuning forks and extensional microresonators for viscosity and density measurements in oil/fuel mixtures[END_REF] and vibrating bridges [START_REF] Riesch | A novel sensor system for liquid properties based on a micromachined beam and a low-cost optical readout[END_REF][START_REF] Etchart | Mems sensors for density-viscosity sensing in a low-flow microfluidic environment[END_REF] are based on a similar operational principle. Usually, the devices' frequency responses, containing a characteristic resonant mode, are recorded upon immersion in a sample liquid. The change of evaluated resonance frequencies and quality factors are then related to the liquid's mass density and viscosity.

In this work a feasibility study for electromagnetically driven and read out torsional oscillators for operation in liquids is presented. Two concepts for actuation and readout discussed in Sec. 2 were manufactured and the experimental analysis in air allowed investigating the benefits and disadvantages of both approaches. The analysis of measurements obtained with three different torsional spring diameters and various spring lengths allowed designing a demonstrator for measurements in liquids, which is explained in detail in Sec. [START_REF] Abdallah | Measurement error estimation and quality factor improvement of an electrodynamic-acoustic resonator sensor for viscosity measurement[END_REF]. A closed form model for the resonator, relating the input to the output voltage, is derived in Sec. 4. In Sec. 5 evaluated results of measurements obtained with the cylindrical torsional resonator in ten different liquids are shown. Furthermore, the sensor's sensitivity and cross sensitivity to temperature are evaluated and compared to other sensor concepts. 

Torsional resonator

Concept

The basic idea of the torsional resonator is to excite a cylinder to torsional vibrations by means of Lorentz forces acting on sinusoidal currents in a constant external magnetic field. For recording the device's frequency response, the excitation current's frequency is swept over a frequency range containing the resonant fundamental mode and simultaneously measuring the motion induced voltage on an electrical conductor, following the torsional oscillation. To implement this idea, a rotor (bobbin) is mounted on torsional springs, where two different principles were realized and compared. In the first approach, the bobbin carries one single coil which is used for both, excitation and read out, where in the second approach, two separate coils are used for these tasks.

Conceptual investigation in air

To investigate the functional principle of the electromagnetic torsional oscillator and to estimate the achievable range of resonance frequencies and signal strengths, a single coil type bobbin has been mounted and investigated on three torsional springs at various spring lengths. For this, a setup as depicted in Figs. 1(a) and 1(b) has been used. There, one hundred turns of a 80 µm thick copper wire were wound on a 3D printed bobbin with 8 mm in diameter and 22 mm in length, which was attached to tungsten rods with diameters of 0.58 mm, 1.6 mm and 2 mm serving as torsional springs. For each torsional spring, the same rotor was used so that only the effect of different torsional spring lengths and diameters could be examined. For attaching, the rotor was affixed with screws to the torsional springs, which were rigidly clamped at their ends with fibreglass blocks through which the torsional spring lengths could be adjusted. The bobbin was placed in a magnetic field (denoted with B) provided by neodymium permanent magnets and set to torsional oscillations by means of Lorentz forces on sinusoidal currents (I in ) in the coil which was connected to a signal generator (V g and 50 Ω output resistance) and a series resistance R s = 100 Ω which was used to limit the excitation current, to prevent from non-linear deflections. By sweeping the excitation current's frequency, the oscillator's frequency response can be recorded. In this case, for the sake of straight forward manufacturing, the coil's ends of the 80 µm thick copper wire were kept long enough for direct connection with the excitation and readout electronics. However, for a stable resonator, this wiring approach is not adequate. In the demonstrator used for measurements in liquids which will be presented in Sec. 3 this drawback has been overcome by connecting the coil's ends to the torsional springs for electrical connection of the resonator.

Figure 2 shows the results of recorded frequency responses and evaluated resonance frequencies in air for tungsten rods with diameters of 0.58 mm and 1.6 mm for various spring lengths in comparison with theoretical results also presented in [START_REF] Heinisch | Concept study on an electrodynamically driven and read-out torsional oscillator[END_REF]. These results proved the basic feasibility of the concept and allowed designing a torsional resonator in the desired frequency range.

Single versus double coil setup

The benefits and disadvantages of using single or double coil setups were experimentally investigated. The cross sec- tions of the rotors as well as the electrical equivalent circuits for both cases are depicted in Figs. 1(b) and 1(c). For the first case, a single coil with 100 turns, a length of 20 mm and a width of 8 mm is used for both, excitation and read out and for the second case, two coils with 50 turns each are used separately for these purposes. The voltage of the signal generator V g was 0.1 V and the series resistance R s was 100 Ω.

For the single coil setup, the rotor is excited to torsional vibrations by means of Lorentz forces on sinusoidal currents I in . The oscillation of the coil in the presence of the external magnetic field causes a motion induced voltage V M on the excitation coil itself. This motion induced voltage is proportional to the the velocity of the oscillation and thus an appropriate quantity for measuring the oscillation. However, the measurable output voltage V out consists of an additional voltage resulting from the coil's impedance related voltage drop. The coil's impedance is modeled as a serial connection of a resistance R c and an inductance L c . For the manufactured rotor R c = 21.3 Ω and L c = 215 µH were obtained by fitting the parameters in the recorded frequency response from 100 Hz to 100 kHz. The output voltage was measured with a lock-in amplifier (with an input resistance of 10 MΩ) and reads

V out (ω) = V M (ω) + (R c + j ω L c )I in (1)
in complex notation where j = √ -1, ω is the angular frequency and the time dependence e j ω t is suppressed.

To reduce this impedance-related offset voltage, a second coil is used in the double coil setup for readout. This second coil follows the motion of the oscillating cylinder and thus, as in the single coil setup, a voltage is induced. However, in this case due to electrical crosstalk resulting from the current I in in the excitation coil, an additional voltage V ct is induced in the measuring coil. Assuming that the output current I out is negligible, the output voltage reads

V out (ω) = V M (ω) + j ω M I in ( 2 
)
where M is the mutual inductance describing the inductive coupling from the excitation to the readout coil. For the rotor used in this experiment M = 480 µH was obtained. Both types of rotors have been manufactured and mounted on a tungsten rod with 0.58 mm diameter and 5 cm length for each torsional spring. The recorded frequency responses covering a frequency range of 100 Hz to 10 kHz as well as detailed plots of the fundamental resonance are shown in Fig. 3 for both cases. The resonance peak is more than twice as high in case of the single coil setup compared with the double coil setup. (12.4 mV in contrast to 5.5 mV for the double coil setup.) This results from the fact that for the single coil setup, the number of coil turns is twice as high which yields a higher effective driving force in the rotor and a proportional to the coil turns higher induced voltage. Thus, assuming the same mechanical conditions for both setups, the voltage peak of the single coil setup • is that the output voltage is subjected to a slight crosstalk voltage at these frequencies. This crosstalk voltage increases proportionally to the excitation frequency as it can be observed in Fig. 3(b) which is also considered in Eq. 2.

Demonstrator for measurements in liquids

The use of a second coil did not show a major advantage in the obtained signals compared to the setup where only one coil is used for excitation and readout. However, using only one coil has a significant advantage for electrical connection. In this case, the electrical conductive torsional springs can be used for this task. For the double coil setup which requires the connection of four wires, the usage of tubes would be necessary (serving as torsional springs) through which the coils' wires have to be threaded which might be a rather tedious manufacturing process. Fig. 4 shows drawings and photographs of the torsional resonator with which first measurements in ten different liquids were obtained.

As for the single coil type rotor, which was investigated in air, one hundred turns of a copper wire with a diameter of 80 µm were wound on a 3D printed bobbin. Two tungsten rods with a diameter of 0.58 mm serve as torsional springs with a spring length of 14 mm each. Each rod is brazed to a brass cylinder with 10 mm diameter and 10 mm height. Both tungsten rods carry a brazed brass platelet and are put into the bobbin on both sides ensuring no contact of both torsional springs. Each end of the coil is glued with electrical conductive glue to one of these brass platelets which are furthermore used for a form-fitted connection with epoxy resin poured into both sides of the bobbin which in turn is put into a POM-C (polyacetal) plastics jacket with an outer diameter of 10 mm and 25 mm length. As mentioned before, it is essential that the tungsten rods do not get in contact in order not to shortcut the coil. The torsional resonator is put into a milled POM-C plastics frame with a well for containing the sample liquids. The brass cylinders are clamped with brass screws, which in turn are used for further electrical connection for power supply and read-out. Two neodymium magnets are used for providing a magnetic field necessary for excitation and read-out based on Lorentz-forces.

Modeling

Mechanical model 4.1.1. Structural mechanics

Considering the rotor's moment of inertia J 0 , the torque resulting from the tungsten rods' torsional stiffnesses M T , the excitation torque M ex , a torque M c , representing the intrinsic dissipative losses of the resonator and a torque M F accounting for the torque due to the liquid loading, the principle of momentum equilibrium yields, cf. Fig. 5 J 0 d 2 ϕ(t)

dt 2 + 2 M T + M c + M F = M ex ( 3 
)
where ϕ is the twisting angle of the rotor. For a cylindrical rod with shear modulus G, radius r s , length l s and twisting angle ϕ the torsional torque reads [START_REF] Weaver | Vibration Problems in Engineering[END_REF] 

M T = k * T ϕ. ( 4 
)
l s l r M T J M T M c M F M ex
is the torsional spring constant of one torsional spring and k T = 2 k * T is the spring constant of both torsional springs in our case. Dissipative losses are considered by a loss coefficient c 0 and the associated loss torque is

M c = c 0 dϕ dt . (6) 

Fluid dynamics

As we are facing a rotational problem, the solution of the fluid forces acting on the oscillating cylinder contains Hankel functions which make the obtained equations difficult to interpret. For this reason, the fluid forces acting on the cylinder are approximated by one dimensional shear waves of an in-plane oscillating plate which yields a negligible error if the cylinder's radius r c is significantly larger than the penetration depth [START_REF] Landau | Fluid Mechanics[END_REF], also termed decay length [START_REF] Martin | Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading[END_REF] 

δ = 2η ρ ω (7) 
where η and ρ are the liquid's viscosity and mass density, respectively and ω is the angular frequency of the oscillation.

A comparison of the relative deviations ε of the solutions for the cylindrical and the planar case over the ratio r c /δ are depicted in Fig. 6. The complete derivation for the fluid forces is only given for the planar case in this contribution. For aqueous liquids at 1 kHz the penetration depth is 18 µm approximately. Considering the cylinder's radius of the manufactured demonstrator r c = 5 mm it follows r c /δ = 280 and thus ε = 3.8 • 10 -3 which substantiates the applicability and the validity of the approximated solution.

Under the assumptions of an infinitely extended plate oscillating only in x-direction (thus imposing only shear stress in x-direction), that gravitational forces are negligible, and that the liquid is incompressible, the equation of motion and the shear stress T xz in liquids can be expressed as a one dimensional problem and reads [START_REF] Martin | Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading[END_REF][START_REF] Heinisch | A suspended plate in-plane resonator for rheological measurements at tunable frequencies[END_REF]:

ρ ∂ 2 u x ∂t 2 = ∂T xz ∂z with T xz = η ∂ 2 u x ∂z ∂t . (8) 
Here, ρ is the mass density of the liquid, u x is the displacement of the liquid in x-direction, t is the time variable. Substituting T xz in the equation of motion, transforming the problem to the frequency domain assuming a time dependence e j ω t and solving the linear differential equation of second order yields the solution for the x-displacement propagating in z-direction

u x (z, t) = u 0 e - z δ e -j z δ -ω t (9) 
where u 0 is the amplitude of the oscillation. With this solution for u x , the shear stress at the liquid-solid interface (i.e., z = 0) in the frequency domain reads on an oscillating cylinder and an in-plane oscillating plate, respectively. For both cases, the same surface interacting with the liquid is considered. In case of the solution for the cylinder, Hankel functions are obtained which make an intuitive interpretation of the obtained equations difficult. For high ratios of the cylinder's radius r c and the penetration depth δ, the difference between both solutions is negligibly small.

T xz (z = 0) = u x (1 -j) η ρ ω 3 2 . ( 10 
)
Expressing the planar deflection in rotational form, i.e. u x → ϕ r c and assuming M F = -r c T A c , where A c is the cylinder's surface, the torque acting on the oscillating cylinder can be expressed as

M F = -ω 2 η ρ 2 ω r 2 c A c + jω η ρ ω 2 r 2 c A c ϕ(ω). (11) 
Eqs. 4 and 6 are substituted in Eq. 3. and after transformation of the obtained expression to the frequency domain, Eq. 11 can be considered in the equation of the moment equilibrium

-ω 2 J + k T + jω c ϕ(ω) = M ex ( 12 
)
where J and c have been introduced and read

J = J 0 + η ρ 2 ω r 2 c A c and c = c 0 + η ρ ω 2 r 2 c A c .( 13 
)
As the torsional resonator is operated close to its (fundamental) angular resonance frequency ω 0 , these expressions can be approximated by

J ≈ J 0 + η ρ 2 ω 0 r 2 c A c and c ≈ c 0 + η ρ ω 0 2 r 2 c A c .( 14 
)
Substituting these relations into Eq. 12 yields a closed form model of the oscillating cylinder in liquids and is beneficial for design purposes. However, as the model consists of a relatively 4.2. Reduced order models 4.2.1. One dimensional shear waves Combining factors and variables in Eq. 14 in single factors and neglecting the ω 0 dependence allows writing J and c in reduced form as follows

J ≈ J 0 + J * ηρ √ η ρ and c ≈ c 0 + c * ηρ √ η ρ. ( 15 
)
With this, the angular speed Ω(ω) = jωϕ(ω) can be expressed as

Ω(ω) = M ex /c 1 + j Q ω ω 0 -ω 0 ω ( 16 
)
with angular resonance frequency

ω 0 = k T J = 1 J 0k + J * ηρk √ η ρ (17) 
and quality factor

Q = √ J k T c = 1 ω 0 k T c = J 0k + J * ηρk √ η ρ c 0k + c * ηρk √ η ρ . ( 18 
)
where the subscript k denotes that the factors in Eq. 15 have been divided by k T to obtain these solutions for ω 0 and Q.

For resonators, which are readout via a motion induced voltage (which is proportional to the oscillator's velocity, see Sec. 4.3.2) the maximum peak frequency and the frequency of free, undamped oscillations (usually termed ω 0 ) are identical. For this reason, we may call ω 0 resonance frequency. For read-out principles evaluating the resonator's deflection using e.g. optical methods [START_REF] Baù | Cost-effective system for the characterization of microstructures vibrating in out-of-plane modes[END_REF], the frequency of free, undamped oscillations and the maximum peak frequency of deflection amplitude are not identical.

Generalized model

In [START_REF] Heinisch | Reduced order models for resonant viscosity and mass density sensors[END_REF] a similar reduced order model was presented which considers not only one dimensional shear waves but convexly shaped, oscillating objects in general and reads

ω 0 = 1 m 0k + m ρk ρ + m ηρk η ρ ω 0 (19) 
and

Q = 1 ω 0 • 1 c 0k + c ηk η + c ηρk √ ω 0 η ρ , (20) 
where m xk and c xk are coefficients and m ρk as well as c ηk are zero in case of pure one-dimensional shear waves.

Simplified generalized equations

Equation 19 is an implicit equation for ω 0 , which makes an exact evaluation of ω 0 for given η and ρ difficult. Therefore, the equations are simplified by considering that the frequency dependence of certain parameters occurring in the analysis is negligible as they are virtually constant within the bandwidth of the resonant system. Doing so, we obtain the following expressions for the angular resonance frequency

ω 0 = 1 m 0k + m ρk ρ + m * ηρk √ η ρ (21) 
and the quality factor

Q = m 0k + m ρk ρ + m * ηρk √ η ρ c 0k + c ηk η + c * ηρk √ η ρ . ( 22 
)
Thus if ω 0 and Q for given η and ρ using Eqs. 19 and 20 have to be calculated, numerical, (e.g., iterative) methods can be used. Alternatively, the above simplified expressions give remedy. Conversely, if η and ρ have to be determined from measured f r = ω 0 /(2 π) and Q, Eqs. 19 and 20 can be used directly.

The advantage of such reduced order models is that in comparison with completely closed form models, only a few variables have to be determined by means of a parameter fit.

In Sec. 5 these models are fit to experimental results. By means of a comparison of the fitted models it will be shown that the generalized models fit the measured data better than the model considering shear waves only. This supposedly is due to the fact that in addition to one dimensional shear waves, spurious effects such as liquid trapping [START_REF] Martin | Sensing liquid properties with shear-mode resonator sensors[END_REF][START_REF] Jakoby | Physical sensors for liquid properties[END_REF] may be present.

Electrical model 4.3.1. Excitation torque

The Lorentz force on a charge q moving with velocity v in the presence of a magnetic field with magnetic flux density B and an electric field E is (bold variables denote vectors) [START_REF] Griffiths | Introduction to Electrodynamics[END_REF] 

F L = q (v × B + E). ( 23 
)
Assuming perpendicular conditions between the excitation current I ex , i.e. the charges moving in a wire of length l r , and the external magnetic field, it follows that the force acting on the wire is given by

F ex = B l r I ex . ( 24 
)
With this, the excitation torque can be expressed as

M ex ≈ 2 N B r r l r I ex ( 25 
)
where N is the number of turns of the excitation coil and r r is the radius of the coil, see Fig. 7. 

Motion induced voltage

Using Faraday's law of induction and the equation for Lorentz forces, the motion induced voltage on the coil can be expressed as:

V M (t) = - coil (v × B) • ds. ( 26 
)
Assuming the magnetic flux density to be symmetric in the air gap, constant along the coil's length and aligned in parallel with the coil for ϕ = 0, see Fig. 7, it follows

V M (t) = 2 N r r cos ϕ dϕ dt B l r . (27) 
For small twisting angles, the motion induced voltage in the frequency domain using the angular speed Eq. 16 reads

V M (ω) ≈ 2 N r r B l r Ω(ω). ( 28 
)
This equation for the motion induced voltage is used for modeling the measurable output voltage V out for the single as well as for the double coil setup in Eqs. 1 and 2.

Experimental investigation

Measurements in liquids

The demonstrator discussed in Sec. 3 has been used to experimentally test the principle operation of such a torsional resonator in liquids and to investigate the effect of different mass densities and viscosities on recorded frequency responses. Amplitudes as well as evaluated quality factors and resonance frequencies for two different sets of liquid series are depicted in Fig. 8. There, the results of the fitted models performing a linear fitting procedure, see [START_REF] Chong | An introduction to optimization[END_REF], for f r = ω 0 /(2 π) and Q using Eqs. 17, 18, 21 and, 22 are depicted as well. The values for the examined liquids' viscosities η and mass densities ρ (which were determined with an Anton Paar SVM 3000) as well as the mean values of the associated, evaluated resonance frequencies f r and quality factors Q are given in Tab. 1. The SVM 3000 features a reproducibility of 0.35 % for viscosity and 0.0005 g/cm 3 for mass density. The measurements were performed at 25 • C. The values for f r and Q were evaluated from the recorded frequency responses using a fitting algorithm described in [START_REF] Niedermayer | Methods for the robust measurement of the resonant frequency and quality factor of significantly damped resonating devices[END_REF]. The used liquid series are the socalled viscosity series and mass density series in the following. The first is a mixture of isopropanol and acetone covering a viscosity range of 0.21 mPa•s to 2.05 mPa•s for mass densities of roughly 0.78 g/cm 3 . The percentage of mass isopropanol m I and mass acetone m A is given in the left column of Tab. 1. The mass density series cover a range of mass densities of 0.79 g/cm 3 to 1.01 g/cm 3 for viscosities of roughly 1 mPa•s and were prepared using acetone, isopropanol, ethanol, DI-water and glycerol. After mixing, the liquids were investigated with the SVM 3000. These two liquid series are used to separately investigate experimentally the effect of varying viscosities or mass densities on f r and Q.

The results obtained with both liquid series clearly show the effect of mass density and viscosity on the experimentally obtained values for f r and Q. Deviations of the measured from the modeled values as well as slight variations in f r and Q can be observed. These supposedly originate from imperfections in the prototype setup. These imperfections are associated with the fact that first, during cleaning and refilling of the sensor, the A c c e p t e d M a n u s c r i p t resonator may have been detuned due to an insufficiently stable clamping, second, the open experimental well, which allows evaporation of the liquid during the measurements, and third, geometrical imperfections such as e.g., surface roughnesses and a not perfect alignment of the oscillating cylinder with the torsional springs. For Q, both models yield approximately the same results, where for f r , the generalized model clearly yields better results. This finding can be explained by surface roughness, which yields so-called liquid trapping [START_REF] Martin | Sensing liquid properties with shear-mode resonator sensors[END_REF][START_REF] Jakoby | Physical sensors for liquid properties[END_REF] and thus a higher sensitivity to mass density. This effect might be beneficial, as the effect of η and ρ on f r and Q cannot be separated with devices yielding pure one-dimensional shear waves without liquid trapping. Despite the discussed drawbacks in the presented setup, a rough estimation of the device's sensitivity can be made. We define the relative sensitivity of a quantity X(y i ) to an independent variable y i as

Viscosity Series T = 25 • C m I m A +m I / % η/(mPa•s) ρ/(g/cm 3 ) f r /Hz Q η/(mPa•s) ∆ η/(mPa•s) ∆ η rel ρ/(g/cm 3 ) ∆ ρ/(g/cm
S X,y i = ∂X ∂y i • y i X (29) 
where X either stands for f r or Q and y i for η and ρ, yielding four different sensitivities which are evaluated from the fitted generalized model Eqs. 21 and 22. The four sensitivities S f r ,η , S f r ,ρ , S Q,η and S Q,ρ are not constant but depend on η as well as on ρ and thus are depicted as bands in Fig. 9 for the experimentally evaluated range of viscosities and mass densities. The upper boundary of the bands in the plots on the left hand side (i.e., S f r ,η and S Q,η ) are the values for ρ = 1.01 g/cm 3 , the lower boundary for ρ = 0.79 g/cm 3 . On the right hand side (i.e., S f r ,ρ and S Q,ρ ) the upper and lower boundaries of the bands represent the evaluated values for η = 0.21 mPa•s and η = 2.05 mPa•s, respectively. In Fig. 9 the sensitivities obtained with the torsional resonator are depicted in comparison with the sensitivities achieved with circular and rectangular cross sectioned steel tuning forks oscillating at 400 Hz in liquids approximately, a U-shaped wire sensor ( f r ≈ 930 Hz) [START_REF] Heinisch | A u-shaped wire for viscosity and mass density sensing[END_REF], and a quartz tuning fork ( f r ≈ 32.7 kHz) [START_REF] Toledo | Application of quartz tuning forks and extensional microresonators for viscosity and density measurements in oil/fuel mixtures[END_REF].

Measurement accuracy

Equations 19 and 20 were used to calculate η and ρ for evaluated f r and Q. The fitted model parameters using a linear fitting procedure described in [START_REF] Heinisch | Reduced order models for resonant viscosity and mass density sensors[END_REF][START_REF] Chong | An introduction to optimization[END_REF] are given in Tab. more accurate measurement results for viscosity. However, the purpose of this work was a feasibility study of torsional, resonant viscosity and mass density sensors, their modeling and first designs of promising demonstrators. In [START_REF] Heinisch | Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements[END_REF] the advantages and capability of resonant viscosity and mass density sensors using conventional steel tuning forks with circular and rectangular cross sections was demonstrated.

Cross sensitivity to temperature

Mechanical resonators can show a significant dependence of their resonance frequency to temperature. This dependence is mainly due to the thermal expansion of the resonator and the temperature dependence of the resonator's Young's modulus. For doubly clamped structures such e.g. bridges [START_REF] Etchart | Mems sensors for density-viscosity sensing in a low-flow microfluidic environment[END_REF][START_REF] Riesch | Micromachined Viscosity Sensors[END_REF] and straight wire resonators [START_REF] Seibt | Schwingdrahtviskosimeter mit integriertem ein-senkkörperdichtemessverfahren für untersuchungen an gasen in größeren temperatur-und druckbereichen[END_REF][START_REF] Heinisch | Tunable resonators in the low khz range for viscosity sensing[END_REF], the cross sensitivity of the resonance frequency to temperature becomes large if significant thermal pre-stresses are induced. The dependence of the resonance frequency to temperature can be positive as well as negative. In [START_REF] Larsen | Ultrasensitive string-based temperature sensors[END_REF], micro-machined vibrating strings are used as ultrasensitive temperature sensors. For the case of resonant viscosity sensors, this cross sensitivity directly limits the sensor's accuracy and thus should be kept as low as possible. The dependence of the torsional resonator's resonance frequency has been evaluated in a temperature range from 5 • C to 60 • C in 5 • C temperature steps. Figure 10 shows the magnitude of measured frequency responses as well as evaluated resonance frequencies at these temperatures. In Tab. 3 a comparison of the resonance frequency's dependence to temperature is given for different resonators. The first five sensors, i.e a U-shaped tungsten wire sensor, U (W), [START_REF] Heinisch | A u-shaped wire for viscosity and mass density sensing[END_REF], a U-shaped gold coated silicon res- onator, U(Si, Au), [START_REF] Stifter | Mems heterodyne amf detection with capacitive sensing[END_REF], a steel tuning fork, TF (steel), a silicon cantilever, CL (Si), [START_REF] Wasisto | Airborne engineered nanoparticle mass sensor based on a silicon resonant cantilever[END_REF] and a gold coated silicon cantilever, CL (Si, Au), [START_REF] Sandberg | Temperature and pressure dependence of resonance in multi-layer microcantilevers[END_REF] are singly clamped structures and thus show a relatively small dependence of the resonance frequency to temperature. The last two sensors i.e., the torsional resonator, TR, and a straight tungsten wire sensor, SW (W), [START_REF] Heinisch | Tunable resonators in the low khz range for viscosity sensing[END_REF] are doubly clamped structures and thus, show a much higher dependence of the resonance frequency to temperature. However, this dependence is much lower for the torsional resonator compared to the straight wire sensor. To reduce this cross sensitivity, using only one torsional spring instead of two may be a possible approach.

Sensor Table 3: Cross sensitivities of the resonance frequency (fundamental mode) to temperature. f 0 : nominal resonance frequency, ∆ f r = f r (T 0 )f r (T 1 ): resonance frequency shift, ∆T = T 0 -T 1 difference of temperatures T 0 and T 1 , ∆ f r,rel = ∆ f r / f 0 : relative resonance frequency shift, 't.w.' designates this work.

f 0 ∆ f r /∆T ∆ f

Conclusion and outlook

A first study of the electromagnetically driven and read out torsional oscillator in air showed the advantages of using one single coil for both, excitation and readout. The advantages are mainly based on the manufactural benefit that in case of using one coil (instead of two) only two wires have to be electrically connected for power supply and readout which in this case is implemented by contacting the torsional springs. The feasibility of such a torsional resonator for viscosity and mass density sensing applications has been shown by measurements in ten different liquids. For design purposes, a complete analytical model comprising the structural and fluid mechanics and relating output to input signals has been elaborated. Therefrom, reduced order models have been derived which relate resonance frequency and quality factor to viscosity and mass density, respectively. The advantage of such models is that only four to six factors have to be determined to describe the sensors characteristics. The comparison of both fitted model results shows that the generalized model yields significantly better results for f r which can be explained by liquid trapping due to surface roughnesses of the cylinder shell. A first estimation of the device's sensitivity and its cross sensitivity of its resonance frequency has been made and compared to other resonant viscosity and mass density sensors.

Regarding future work, a more reliable clamping and housing has to be designed and manufactured aiming to obtain more stable and accurate results. By means of further experiments, the maximum measurable viscosities and resolution have to be investigated. 
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Figure 1

 1 Figure 1: a) Principle and photographs of first demonstrators allowing to record frequency responses in air, b) cross section and electrical equivalent circuit of the demonstrator with a rotor carrying a single coil for excitation and readout by means of Lorentz-forces. I in : input (excitation) current, B: external magnetic field, V g : voltage of the signal generator, 50 Ω: output resistance of the signal generator, R s : series resistance, R c , L c : coil's resistance and inductance, V M : motion induced voltage, 10 MΩ: input resistance c) cross section and electrical equivalent circuit of the rotor carrying two coils. One coil is used for excitation, the other for read out., V ct : induced voltage due to inductive crosstalk.

Figure 2 :

 2 Figure2: Examples for recorded frequency responses in air using a single coil for excitation and read-out. These experiments were performed to estimate achievable signal strengths and resonance frequencies for different spring diameters and spring lengths.

Figure 3 :

 3 Figure 3: Frequency responses measured with the single coil (a) and the double coil (b) setup. The recorded spectra between 100 Hz and 10 kHz as well as detailed plots of the resonance are shown for both setups.

Figure 4 :

 4 Figure 4: a) Exploded view of the torsional resonator used for measurements in liquids. The coil is electrically connected via the torsional springs and the brazed brass cylinders, which are clamped with brass screws to which connecting wires are soldered. b) shows an illustration of the assembled, clamped setup, the direction of the external magnetic field as well as the torsional oscillation. c) The upper photograph shows the manufactured torsional oscillator. The lower photograph shows the complete setup including both permanent magnets and the torsional oscillator placed in the experimental well which was filled with the sample liquids.

Figure 5 :

 5 Figure 5: Torques considered in the principle of moment equilibrium. A double arrow illustrates an acting torque.

Figure 6 :

 6 Figure6: Comparison of the solutions for the fluid forces F c and F p acting on an oscillating cylinder and an in-plane oscillating plate, respectively. For both cases, the same surface interacting with the liquid is considered. In case of the solution for the cylinder, Hankel functions are obtained which make an intuitive interpretation of the obtained equations difficult. For high ratios of the cylinder's radius r c and the penetration depth δ, the difference between both solutions is negligibly small.

A c c e p t e d M a n u s c r i p t

  large amount of variables, which are usually not exactly known, constants and variables are combined in single factors where possible to reduce the amount of variables which have to be determined in a parameter fit.

Figure 7 :

 7 Figure 7: Rotor cross section

Figure 8 :

 8 Figure 8: Measured amplitudes as well as evaluated resonance frequencies and quality factors for two liquid series. The one dimensional shear wave model as well as the generalized model are fit to the measured data. The model parameters are given on the right hand side.

2 .

 2 Despite their limited accuracy, the mean values for f r and Q given in Tab. 1 are used to calculate the values for viscosity and mass density for both liquid series. The evaluation of absolute and relative errors given in Tab. 1 shows that with the present setup, absolute and relative accuracies for viscosity in the range of |∆ η| min , |∆ η| max = [0.003, 0.484] mPa•s and |∆ η rel | min , |∆ η rel | max = [0.003, 0.493], respectively are obtained. For the calculated mass densities the obtained accuracies are |∆ ρ| min , |∆ ρ| max = [0.0045, 0.0058] g/cm 3 and |∆ ρ rel | min , |∆ ρ rel | max = [0.005, 0.065]. This evaluation substantiates the need for setup improvement, especially to obtain

Figure 9 :

 9 Figure 9: Sensitivities to viscosity and mass density:The sensitivities of f r and Q to η and ρ are not constant but dependent both on η and ρ. For this reason the sensitivities are depicted as bands, in the experimentally investigated range of viscosities and mass densities. In the plots for S fr,η and S Q,η the upper boundary of the bands are the values for ρ = 1.01 g/cm 3 , the lower boundary for ρ = 0.79 g/cm3 . In the plots for S fr,ρ and S Q,ρ the upper and lower boundaries of the bands represent the evaluated values for η = 0.21 mPa•s and η = 2.05 mPa•s, respectively.
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Figure 10 :

 10 Figure 10: Cross sensitivity of the resonance frequency to temperature. The upper figure shows the magnitudes of recorded frequency responses, the lower figure evaluated resonance frequencies versus temperature.
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 9 well as evaluated resonance frequencies and quality factors for two liquid series. The one dimensional shear wave model as well as the generalized model are fit to the measured data. The model parameters are given on the right hand side. . . . . . . . . 7 Sensitivities to viscosity and mass density: The sensitivities of f r and Q to η and ρ are not constant but dependent both on η and ρ. For this reason the sensitivities are depicted as bands, in the experimentally investigated range of viscosities and mass densities. In the plots for S f r ,η and S Q,η the upper boundary of the bands are the values for ρ = 1.01 g/cm 3 , the lower boundary for ρ = 0.79 g/cm 3 . In the plots for S f r ,ρ and S Q,ρ the upper and lower boundaries of the bands represent the evaluated values for η = 0.21 mPa•s and η = 2.05 mPa•s, respectively. 8 10 Cross sensitivity of the resonance frequency to temperature. The upper figure shows the magnitudes of recorded frequency responses, the lower figure evaluated resonance frequencies versus temperature. . . . . . . . . . . . . . . . . . . . 9

Table 1 :

 1 Upper part: Acetone-isopropanol solutions for viscosity measurements. Lower part: Solutions for mass density measurements. The plus-minus values are evaluated typical errors (single standard deviations). x are the calculated values for viscosity and mass density using Eqs. 19 and 20 and evaluated mean values for f r and Q. ∆ x = xx and ∆ x rel = ∆ x/x are absolute and relative deviations from the values for viscosity and mass density, respectively.

	3 )	∆ ρ rel

Table 2 :

 2 Fitted model parameters using Eqs.19 and 20. 
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