
HAL Id: hal-01139661
https://hal.science/hal-01139661

Submitted on 6 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Short Hyperuniform Random Walks
Emanuele Casini, Gérard Le Caër, Andrea Martinelli

To cite this version:
Emanuele Casini, Gérard Le Caër, Andrea Martinelli. Short Hyperuniform Random Walks. Journal
of Statistical Physics, 2015, 160 (1), pp.254-273. �10.1007/s10955-015-1244-7�. �hal-01139661�

https://hal.science/hal-01139661
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Short hyperuniform random walks

Emanuele Casini · Gérard Le Caër ·
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Abstract Random walks of two steps, with fixed sums of lengths of 1, taken

into uniformly random directions in d-dimensional Euclidean spaces (d ≥ 2)

are investigated to construct continuous step-length distributions which make

them hyperuniform. The endpoint positions of hyperuniform walks are spread

out in the unit ball as the projections in the walk space of points uniformly

distributed on the surface of the unit hypersphere of some k-dimensional Eu-

clidean space (k > d). Unique symmetric continuous step-length distributions

exist for given d and k, provided that d < k < 2d. The walk becomes uni-

form on the unit ball when k = d + 2. The symmetric densities reduce to
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simple polynomials for uniform random walks and are mixtures of two pairs

of asymmetric beta distributions.
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1 Introduction

A planar random walk (RW) made of a sequence of n steps of unit lengths

taken into uniformly random directions was defined by Pearson in 1905 [30,31].

In spite of its idealized feature, the Pearson’s RW finds various applications

and was, for instance, used recently to characterize the cosmic microwave

background [35,16]. Generalizations of Pearson’s random walk involve space

dimensions higher than two, changes of step length distributions, deviations of

step orientations from a uniform repartition and introduction of correlations

between steps. These extended Pearson’s random walks are useful in diverse

fields such as physics, biology, ecology (see [4,5,8,34,36,38] and references

therein).

1.1 Dirichlet random walks

A large family of random walks of n steps in d–dimensional Euclidean spaces

(d ≥ 2) maintains the independence between successive steps and the uni-

formity of their orientations but step lengths are allowed to vary accord-

ing to some continuous probability law. Recent studies include an additional

modification in the form of a constraint on the sum of step lengths [4,8,10,

14,15,21–24]. These constrained step lengths are the components of a ran-

dom vector L(n) = (L1, L2, · · · , Ln) and their sum is fixed to a value S,∑n
i=1 Li = S = constant. In almost all cases considered hereafter, S will

be taken as equal to 1 without loss of generality. This L(n) belongs to the
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(n − 1) unit simplex. The previous constrained walks are related, in some of

their aspects, to random flights performed in d–dimensional Euclidean spaces

by particles which fly at a constant and finite speed c in some direction until

they choose instantaneously, at random times, a new direction according to

some probability law and fly again at speed c (see for istance [10–12,18–20,

29,32–34,38]). At a given time t, the lengths of all flights are identical and

equal to ct. Therefore, the conditional probability density function (pdf) of

the position of a particle which flies during t, given that it underwent n − 1

changes of direction, is identical, possibly after rescaling, to the pdf of the end-

point position of constrained walks of n steps. The problem of the step length

distribution of the considered family is related to the broken stick problem,

i.e. the problem of the random splitting of a unit interval.

Almost all previous studies chose the Dirichlet distribution as the distribu-

tion of the random vector L(n). The multivariate Dirichlet distribution, which

is applied for instance to model fragmentation or compositional data [2], is con-

veniently defined from gamma distributed random variables (see Appendix A).

The Dirichlet distribution of L(n) is,

fL (l1, l2, . . . , ln−1) =
Γ (
∑n
i=1 qi)∏n

i=1 Γ (qi)

(
1−

n−1∑
i=1

li

)qn n−1∏
i=1

lqi−1i ,

where li > 0, i = 1, . . . , n − 1,
∑n−1
i=1 li ≤ 1. This distribution, denoted here

as D(q1, q2, .., qn), depends on a n–dimensional vector of positive parameters

q(n) = (q1, q2, .., qn) which may be looked at as being the shape parame-

ters of the associated gamma distributions (see Appendix A), a name which

may be kept hereafter. When all shape parameters are equal to q > 0, the
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Dirichlet pdf becomes symmetric i.e. invariant under permutations. The re-

lated n–step random walks in d–dimensional Euclidean spaces [10,14,15,21–

24] are named “Dirichlet random walks” and will be denoted hereafter either as

W (d, n, q(n)) ≡W (d, n, (q1, q2, · · · , qn)) or simply W (d, n, q) when all Dirich-

let parameters are equal to q > 0. The early studies of Dirichlet random

walks dealt with a symmetric distribution for which q = 1. This case arises

for instance when particles move in random environments and undergo elastic

collisions at uniformly distributed point obstacles [10]. The associated random

flights or walks have exponential distributions of step lengths with equal scale

parameters. In addition, the sum of step lengths was constrained to be equal

to 1 [10]. The initial impetus for imposing this condition was to find couples

(d, n) for which the endpoints of such n-step walks, W (d, n, 1), are uniformly

distributed on the d–dimensional unit ball Bd1 [10]. Throughout the paper,

Bdr will designate the d-dimensional Euclidean ball of radius r centered at the

origin.

1.2 Definition of hyperuniform random walks

The projections on the walk space Rd of points uniformly distributed on the

surface of a unit sphere of a k-dimensional Euclidean space, whose dimension

k is larger than d, have a radial density which is given by [9,26]:

pd,k(r) =
2Γ (k/2)

Γ (d/2)Γ ((k − d)/2)
rd−1(1− r2)

k−d−2
2 , r ∈ [0, 1]. (1)
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The latter projections are uniformly distributed on the unit ball Bd1 if and

only if k = d + 2 as then pd,d+2(r) = drd−1. The dimension k will be named

from now on the “hyperspace dimension”.

As proposed by Letac and Piccioni [24], this property, which was named

“hypersherical uniform” by Le Caër [21], will be abbreviated hereafter to

“hyperuniform”. A n-step random walk in Rd (n ≥ 2), denoted henceforth

HUd(k), is said to be hyperuniform of type k > d if the endpoint of the walk

is scattered as is the projection of a point uniformly distributed on the surface

of the unit hypersphere of Rk. Then, the pdf of the distance between the origin

and the endpoint of a hyperuniform random walk HUd(k) is by definition given

by equation (1). The endpoint of the hyperuniform random walk HUd(d+ 2)

is then uniformly distributed on the ball Bd1 .

1.3 Hyperuniform Dirichlet random walks

Two families of Dirichlet random walks in Rd with symmetric step length

distributions D(q(i), q(i), . . . , q(i)), i = 1, 2, and only two, exhibit the hyper-

uniform property for any number of steps n ≥ 2 (a one–step random walk

is trivially hyperuniform with k = d) [21]. The shape parameter q(i) depends

solely on the walk space dimension d. By contrast, the hyperspace dimension

k(i) depends both on d and on n. These parameters are [21]:


(F1) : q(1) = d− 1, k(1) = n(d− 1) + 1 (d ≥ 2)

(F2) : q(2) = d/2− 1, k(2) = n(d− 2) + 2 (d ≥ 3)

(2)
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The focus of the present paper will be on two–step random walks (Section

1.4). For two–step Dirichlet random walks, the values of k(1) and of k(2) are

respectively 2d− 1 and 2d− 2.

We notice in passing that the pdf of the distance from the origin to the

endpoint is simply derived for the two–step Dirichlet random walks W (d, 2, q)

where q takes now any positive value [23] (see further Example 3, Section 3.1).

The latter walks are not hyperuniform except if q = d − 1 or q = d/2 − 1.

In addition, the pdf of the endpoint distance was obtained for two–step walks

with a beta step length distribution which depends now on two different scale

parameters q + s and q, where s is any positive integer [23].

1.4 General hyperuniform random walks

The focus of the present paper is on hyperuniform two-step random walks with

a fixed total step length of S = 1 and step lengths of L and 1−L. Its aim is then

to derive all continuous distributions of L which yield two–step hyperuniform

random walks, i.e. with distance distributions given by eq. (1). As justified

in section 2, the emphasis will be placed on symmetric distributions of L on

[0, 1] for which the two steps play equivalent roles. Our approach is thus the

converse of those which derive a distribution of the endpoint distance from

some step length distribution, for instance from a Dirichlet distribution. The

two parameters of the study are those which allow defining the pdf pd,k(r)

eq. (1): first the dimension d ≥ 2 of the walk space and second the dimension

k > d of the hyperspace whose actual range of variation will be shown to
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depend on d. Hyperuniform random walks in Rd of special interest are those

which yield uniform distributions of the endpoint on the unit ball Bd1 . The

unique continuous and symmetrical distributions of L associated to uniform

two-step random walks will be shown to have simple polynomial forms for any

d ≥ 3.

2 Why focus on symmetric step length distributions?

Let SL :=
∑n
i=1 UiLi, where U1, . . . ,Un are independent and identically dis-

tributed random unit vectors with uniform distribution on the sphere of Rd,

we call SL the random walk associated to L. The sum which gives SL is com-

mutative. To phrase briefly the question which is considered in detail below,

we notice that the n! possible attributions of a set of lengths (lk, k = 1, . . . , n)

to the steps numbered 1, 2, .., n result in undistinguishable walks. Thus, each

permutation should be given a probability of 1/n! so that all steps end up

with length distributions independently of their arbitrary order. To obtain

the latter distribution which is invariant under permutations, it suffices then

to symmetrize the initial distribution of L if the latter is asymmetric. Profit

will be taken from these symmetry considerations to restrict the study of step

length distributions which yield hyperuniform random walks to those which

are symmetric (Section 3).
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2.1 Random walks of n steps

Let Σ be the set of permutations of {1, . . . , n}. Given a random vector L ∈

Rn and a permutation σ ∈ Σ, we will denote by Lσ the random vector

(Lσ1
, . . . , Lσn). Furthermore, given a random permutation σ̃, that is a ran-

dom vector taking values in Σ, we denote by L̃ := Lσ̃ the vector obtained by

this random permutation. We notice that Lσ̃| (σ̃ = σ)
d
= Lσ (where

d
= means

equality in distribution).

In particular, we will denote by L∗ the random vector associated to σ̃ whose

distribution on Σ is uniform and we will call L∗ the symmetrized version of L.

Remark 1 It is easily seen that

1. L∗ is random vector invariant under permutations distribution;

2. for all σ ∈ Σ, we have (Lσ)
∗ d

= L∗ and this implies that
(
Lσ̃
)∗ d

= L∗ for all

random permutations σ̃.

If L is a continuous random vector, then the distribution of L̃ is obtained

from

fL̃ =
∑
σ∈Σ

fLσπ(σ)

where π is the distribution of σ̃ and fL̃ and fLσ are, respectively the distribu-

tions of L̃ and Lσ.

Example 1 Let L ∼ D (q1, q2, q, . . . , q), where q1 = q+ p1, q2 = q+ p2, p1, p2 ∈

N, p1 + p2 ≥ 2 and qi = q, i = 3, . . . , n. If σ̃ is a random permutation with
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distribution π, then

fL̃(`) =
Γ (nq) (nq)p1+p2
Γ (q)

n
(q)p1 (q)p2

∑
σ∈Σ

π(σ)

n∏
h=1

`
qσ(h)−1
h

=
Γ (nq) (nq)p1+p2
Γ (q)

n
(q)p1 (q)p2

∑
i 6=j

∑
σ∈Σij

π(σ)

 n∏
h6∈{i,j}

`q−1h

 `q+p1i `q+p2j

=
Γ (nq)

Γ (q)
n

n∏
h=1

`q−1h

(nq)p1+p2
(q)p1 (q)p2

∑
i 6=j

πij`
p1
i `

p2
j

where Σij := {σ ∈ Σ : σ(i) = 1&σ(j) = 2} is a partition of Σ and πij =

π (Σij).

In particular, if σ̃ is uniform, the density is

fL̃(`) =
Γ (nq)(n− 3)! (nq)p1+p2
n!Γ (q)

n
(q)p1 (q)p2

n∏
h=1

`q−1h

∑
i 6=j

`p1i `
p2
j

and this is a symmetric density, which is not a Dirichlet density, but is however

a mixture of Dirichlet densities. The symmetric Dirichlet distribution is ob-

tained only if there exists (πij)
n
i 6=j non–negative with the additional condition:

(nq)p1+p2
(q)p1 (q)p2

∑
i 6=j

πij`
p1
i `

p2
j ≡ 1.

Dirichlet distributions are therefore not closed with respect to the sym-

metrization except in the particular case of Example 2 (next section).

It is easily seen that SL
d
= SL

σ

for all σ ∈ Σ and this implies that, if σ̃

is a Σ–valued random variable independent of S, then SL
d
= SL

σ d
= S∗ where

S∗ := SL
∗

is the random walk whose step length distribution is symmetric.

This means that the distribution of the endpoint of a random walk is invariant

with respect to a random permutation of the components of the step–length

random vector. Thus, the common endpoint distribution is that of the random

walk whose step length distribution is symmetric.
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These remarks allow us to partition the set of n–dimensional random vec-

tors, denoted by Vn, in classes of equivalent vectors with respect to the fol-

lowing definition

Definition 1 Given X,Y ∈ Vn, X is in relation with Y , X ∼ Y , if there exist

two random permutations σ̃X and σ̃Y such that X σ̃X d
= Y σ̃Y .

By 2. of Remark 1, it follows that

Lemma 1 Given X,Y, Z ∈ Vn. If X ∼ Y and Y ∼ Z, then X∗ = Z∗ and ∼

is an equivalence relation on Vn.

The above have some important consequences:

1. The set of random vectors Vn can be partitioned into equivalence classes.

The distributions of all random vectors which belong to the same class

have associated symmetrized versions which are all equivalent. Any class

contains one and only one permutation invariant distribution which is taken

as the one representing the considered class.

2. If X and Y are in the same class, then SX
d∼ SY

To find the distribution of the endpoint of any random walk of a given class,

it suffices thus to the study the random walk whose step length distribution

is the representative permutation invariant distribution of that class.

This fact can be stated as follows too: we define the random walk applica-

tion at step n on Vn as

Definition 2 A random walk is an application S : Vn −→ V1 such that

S(L) = SL.
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From the point of view of distributions, it is equivalent to define S as above

or to define it on the quotient space.

2.2 Two–step random walks

We consider now two–step random walks whose sum of step lengths is fixed and

taken for convenience as equal to 1. The above definitions are thus simplified.

Indeed, if we denote by L the length of the first step, then the distribution of

the step length vector is symmetric if L
d
= 1 − L. Furthermore, the space of

permutation is given by Σ = {(1, 2), (2, 1)} and the distribution of a random

permutation σ̃ is completely identified by p := P (σ̃ = (1, 2)), then

fLσ̃ (`) = pfL(`) + (1− p)f1−L(`) = pfL(`) + (1− p)fL(1− `)

and the symmetrized version has density: fL∗(`) = (fL(`) + fL (1− `)) /2.

Example 2 The distribution of L is now taken to be an asymmetric Dirichlet

distribution, that is L ∼ D (q + s, q) , q, s > 0 (actually a beta distribution),

and we seek for the values of the parameters for which the associated symmetric

distribution is again a Dirichlet distribution. As expected, the symmetrized

distribution is the sole symmetric distribution which belongs to the family of

mixtures considered above. It suffices therefore to look for the existence of a

Dirichlet distribution only in the case where p = 1/2. Then it becomes

f∗(`) =
1

2B (q + s, s)

[
`q+s−1(1− `)q−1 + `q−1(1− `)q+s−1

]
=

1

2B (q + s, s)
`q−1(1− `)q−1 [`s + (1− `)s] .
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The distribution f∗ is a Dirichlet distribution if and only if `s + (1− `)s ≡ c,

where c is a constant, a condition which holds if and only if s = 1. When s

differs from 1, the distribution f∗ is a mixture of beta distributions.

The latter example, which is a particular case of Example 1, shows that

a two–step random walk with an asymmetric Dirichlet distribution of step

lengths, D (q1, q2), is equivalent to a random walk with a symmetric step length

Dirichlet distribution, D (q, q), with q = min (q1, q2) if and only if |q1 − q2| = 1

[23].

3 Two-step random walks: a simple geometrical approach

Using a simple geometrical approach, we derive below the cumulative distribu-

tion function and the pdf of the endpoint distance of a constrained two–step

random walk from its step length distribution. The case where the latter distri-

bution is continuous with an associated density is more particularly considered

(Corollary 1).

Let Sd(L) be the random vector

Sd(L) = LU1 + (1− L)U2 (3)

where U1, U2 , are independent and identically distributed (i.i.d.) random

unit vectors with uniform distribution on the sphere in Rd and L is a random

variable (r.v.) whose support is included in [0, 1].
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We denote by capd (θ) the hyperspherical cap of geodesic radius θ on the

boundary of Bd1 , and by Adcap(θ) its surface measure (see [25] for a simple

expression of Adcap(θ)).

In the next theorem we give a simple expression (4) to derive the distri-

bution of Sd(L). The inner integral in (4), for which L = l, can be obtained

for n = 2 from an integral given by Watson for a random walk of n a priori

unequal stretches in a d-dimensional space ([37], top of page 421). It depends

only on the measure of the intersection of a sphere with a ball in Rd, that

is the measure Adcap(θ). For the sake of clarity, we prove it here by a simple

geometrical argument which relies on the isotropy of the considered random

walk.

Theorem 1 For r ∈ [0, 1], let gd,L(r) denote the probability that Sd(L) falls

in the ball Bdr , then

gd,L(r) = P
(
Sd(L) ∈ Bdr

)
= Cd

∫ 1+r
2

1−r
2

[∫ θ(r,`)

0

sind−2(ϕ) dϕ

]
dPL(`) (4)

where Cd =
Γ( d2 )

√
πΓ( d−1

2 )
, PL is the probability distribution of L and θ(r, `) sat-

isfies

1 + cos (θ(r, `))

2
=

1− r2

4`(1− `)
. (5)

Proof The probability that Sd(L) falls in Bdr , is

gd,L(r) = P
(
Sd(L) ∈ Bdr

)
= E

[
P
(
LU1 + (1− L)U2 ∈ Bdr |L,U1

)]
= E

[
P
(
Le1 + (1− L)U2 ∈ Bdr |L

)] (6)

where e1 is the first vector of the standard base of Rd and the last equality

follows from isotropy of the uniform distribution.
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If the range of L is not in the interval [(1− r))/2, (1 + r)/2], then the

conditional probability that the walk falls inside the ball of radius r, that is

P
(
Le1 + (1− L)U2 ∈ Bdr |L

)
, is zero. Therefore

P
(
Le1 + U2 (1− L) ∈ Bdr |L

)
= P (U2 ∈ cap (θ (r, L)) |L) 1l[ 1−r

2 , 1+r2 ](L)

=
Adcap(θ (r, L))

Adcap (π)
1l[ 1−r

2 , 1+r2 ](L).

Recalling that Adcap(θ) = 2π(d−1)/2

Γ ((d−1)/2)
∫ θ
0

sind−2 (ϕ) dϕ (see [25]), we get:

P
(
Le1 + U2 (1− L) ∈ Bdr |L

)
=

Γ (d/2)√
πΓ ((d− 1)/2)

(∫ θ(r,L)

0

sind−2 (ϕ) dϕ

)
1l[ 1−r

2 , 1+r2 ](L).

and finally, we obtain

gd,L(r) =
Γ (d/2)√

πΓ ((d− 1)/2)
E

[∫ θ(r,L)

0

sind−2 (ϕ) dϕ

]
= Cd

∫ 1+r
2

1−r
2

[∫ θ(r,`)

0

sind−2(ϕ) dϕ

]
dPL(`).

ut

From now on, we will assume that the r.v. L has a continuous distribution

in [0, 1] with density fL. Applying Theorem 1 to this case, we obtain

Corollary 1 If L has a density function fL, for all r ∈ [0, 1], then

gd,L(r) = Cd

∫ 1+r
2

1−r
2

fL (`)

[∫ θ(r,`)

0

sind−2(ϕ) dϕ

]
d`. (7)

Furthermore, ‖Sd(L)‖ is a continuous random variable and it has the following

density

g′d,L(r) = 2r
(
1− r2

) d−3
2 Cd

∫ 1+r
2

1−r
2

fL(`)

(2`(1− `))d−2
[(

4`(1− `)− (1− r2)
)] d−3

2 d`.

(8)
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Proof Equation (7) is equation (4) assuming PL to be continuous. The distri-

bution function of ‖Sd(L)‖ is simply gd,L, which by hypothesis is a continuous

function. Thus, the associated probability density is

g′d,L(r) = Cd

{
1

2
fL

(
1 + r

2

)∫ θ(r, 1+r2 )

0

sind−2(ϕ) dϕ +

+
1

2
fL

(
1− r

2

)∫ θ(r, 1−r2 )

0

sind−2(ϕ) dϕ

+

∫ 1+r
2

1−r
2

fL(`)
∂θ

∂r
(r, `) sind−2 (θ(r, `)) d`

}

= Cd

∫ 1+r
2

1−r
2

fL(`)
∂θ

∂r
(r, `) sind−2 (θ(r, `)) d`

. (9)

where the last equality follows from (5) as θ
(
r, 1±r2

)
= 0.

Finally, from the derivative ∂θ
∂r (r, `) and from sin (θ) =

√
1−r2
√

4`(1−`)−(1−r2)
2`(1−`) ,

we obtain (8). ut

Example 3 Let fL(`) = 1
B(q,q) [`(1− `)]q−1, that is L ∼ D (q, q). This is a

symmetric continuous distribution and applying (8), we get

g′d,L(r) =
r
(
1− r2

) d−3
2 Cd

2d−1B (q, q)

∫ 1+r
2

1−r
2

[`(1− `)]q−d+1 [(
4`(1− `)− (1− r2)

)] d−3
2 d`

`=(1−y)/2
=

r
(
1− r2

) d−3
2 Cd

22q−d+2B (q, q)

∫ r

−r

(
1− y2

)q−d+1 (
r2 − y2

) d−3
2 dy

=
r
(
1− r2

) d−3
2 Cd

22q−d+1B (q, q)

∫ r

0

(
1− y2

)q−d+1 (
r2 − y2

) d−3
2 dy

z=y2

=
r
(
1− r2

) d−3
2 Cd

22q−d+2B (q, q)

∫ r2

0

z−1/2 (1− z)q−d+1 (
r2 − z

) d−3
2 dz

v=z/r2

=
rd−1

(
1− r2

) d−3
2 Cd

22q−d+2B (q, q)

∫ r2

0

v−1/2
(
1− r2v

)q−d+1
(1− v)

d−3
2 dv

=
rd−1

(
1− r2

) d−3
2 Cd

22(q+1)−d
B (1/2, (d− 1)/2)

B (q, q)
2F1

(
d− q − 1, 1/2; d/2; r2

)
=

2d−1rd−1
(
1− r2

) d−3
2

B(q, 1/2)
2F1

(
d− q − 1, 1/2; d/2; r2

)
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where the penultimate equality follows from 9.111 of [13]. The last expression

was recently derived by a different method in [23].

Hereafter, we write:

h1(r) := g′d,L(r)/
[
r(1− r2)

d−3
2

]
and hk+1(r) :=

h′k (r)

r
, k ≥ 1. (10)

The following proposition emphasizes the relationship between the sequence

hm and the density fL.

Proposition 1 Given any fL and g′d,L satisfying equation (8), if d = 2m+ 3,

m ≥ 0 and r ∈ (0, 1), we have

h′m+1(r) = C2m+3m!23m+1 fL
(
1+r
2

)
+ fL

(
1−r
2

)
(1− r2)2m+1

. (11)

In particular, in the symmetric case (fL = f1−L)

h′m+1(r) = C2m+3m!23m+2 fL
(
1+r
2

)
(1− r2)2m+1

. (12)

Moreover, if d = 2m+ 2, m ≥ 1, then we have:

hm+1(r) = 22mC2m+2(2m− 1)!!

∫ r

−r

fL
(
1+`
2

)
√
r2 − `2 (1− `2)

2m d`. (13)

Proof Applying (8) to the case d = 2m+ 3, we get

g′d,L(r) = C2m+3

∫ 1+r
2

1−r
2

rfL(`)

22m[`(1− `)]2m+1

[
(1− r2)

(
4`(1− `)− (1− r2)

)]m
d`.

Dividing by r(1 − r2)m, we obtain h1 and taking the derivative with respect

to r

h′1(r) =
mC2m+3

22m−1

∫ 1+r
2

1−r
2

rfL(`)

[`(1− `)]2m+1

(
4`(1− `)− (1− r2)

)m−1
d`. (14)
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Then, obviously,

h2(r) := h′1(r)/r =
mC2m+3

22m−1

∫ 1+r
2

1−r
2

fL(`)

[`(1− `)]2m+1

(
4`(1− `)− (1− r2)

)m−1
d`

and repeating the same procedure m− 1 times, we get

hm+1(r) =
C2m+3m!

2m+1

∫ 1+r
2

1−r
2

fL(`)

[`(1− `)]2m+1 d`.

Finally, taking the derivative another time with respect to r, we get (11) while

(12) is easily obtained from the symmetry condition.

If the dimension is even, d = 2m+ 2, we can proceed analogously. ut

4 Two–step hyperuniform random walks

The previous theorems are first applied to hyperuniform random walks of two

steps HUd(k) to determine the allowed range of the hyperspace dimension k

given the walk space dimension d. Then the step length pdf’s are explicitly

derived as a function of k and d.

4.1 The allowed range of k for HUd(k) walks

In the following proposition, the maximum dimension k of the HUd(k) random

walks of two steps is characterized.

Proposition 2 If a two–step random walk is HUd(k), then d+1 ≤ k ≤ 2d−1.

Proof Obviously, k ≥ d+1, so we prove only that k ≤ 2d−1. Suppose, contrary

to our claim, that there exists k ≥ 2d, such that the random walk is HUd(k).



Short hyperuniform random walks 19

Then, by (1),

g′d,L(r) =
2Γ (k/2)

Γ (d/2)Γ ((k − d)/2)
rd−1(1− r2)

k−d−2
2

and

h1(r) =
2Γ (k/2)

Γ (d/2)Γ ((k − d)/2)
rd−2(1− r2)

k−2d+1
2

its derivative is

h′1(r) =
2Γ (k/2)

Γ (d/2)Γ ((k − d)/2)
rd−3(1− r2)

k−2d−1
2

[
d− 2− (k − (d+ 1))r2

]
which is negative in the interval (

√
(d− 2)/(k − (d+ 1)), 1] if k ≥ 2d. Further-

more, from (14), noticing that it holds in the even and odd cases, it follows

that

h′1(r) =
2Cd

22d−3

∫ 1+r
2

1−r
2

rfL(`)

[`(1− `)]d−2
(
4`(1− `)− (1− r2)

)m−1
d`

then for all r in the above interval, there exists a set on which the integrand

must be negative. This implies that fL is negative on some set with non–null

measure and this is impossible, because fL is a density. ut

4.2 The continuous and symmetric step length densities for HUd(k) walks

Theorem 2 Given d + 1 ≤ k ≤ 2d − 1, the 2-step random walk Sd(L) =

LU1 + (1−L)U2 is a hyperuniform walk HUd(k) if and only if the symmetric

density function fL(l) of L satisfies:

fL(l) =
2d−1

B(d/2, (k − d)/2)
[l(1− l)]d−2×2F1

(
2d− k − 1

2
,
d

2
;

1

2
; 1− 4l(1− l)

)
.

(15)
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Proof Let Sd(L) = LU1 + (1− L)U2 and we set

R2 := Sd(L) · Sd(L) = 1− 2L (1− L) (1−U1 ·U2) .

Also let Θ be such that U1 ·U2 = cosΘ and

V = 1−R2 = 2L (1− L) (1− cosΘ)

Y = 4L(1− L)

Z =
1− cosΘ

2
= sin2

(
Θ

2

) .

With this notation

V = Y Z (16)

where Y and Z are independent random variables, being functions of indepen-

dent random variables. The problem of finding the distribution of Y given the

distributions of V and Z, where V, Y, Z are univariate continuous positive ran-

dom variables, belongs to the class of inverse problems of random scaling ([3]

and references therein). General considerations on the case where Z has a beta

distribution with positive parameters are given in [17] and in the references

therein.

Assuming that Sd(L) is HUd(k), then

V ∼ Beta
(
k − d

2
,
d

2

)
and Z ∼ Beta

(
d− 1

2
,
d− 1

2

)
.

where the first equality in distribution follows from (1) (see too [24]) and the

second one from the distribution of the polar angle Θ, which is, for θ ∈ [0, π]:

pΘ(θ) =
Γ (d/2)√

πΓ ((d− 1)/2)
sind−2(θ) =

2d−2Γ (d/2)√
πΓ ((d− 1)/2)

sind−2(θ/2) cosd−2(θ/2)

which yields immediately the distribution of Z.
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Now, we use the Mellin transform to find the distribution of Y . The Mellin

transform of Beta (α, β) with density f is

f∗(s) :=

∫ 1

0

zs−1f(z) dz =
Γ (α+ s− 1)Γ (α+ β)

Γ (α)Γ (α+ β + s− 1)
(17)

Then, we have

f∗Z(s) =
Γ (d−32 + s)Γ (d− 1)

Γ (d−12 )Γ (d− 2 + s)
and f∗V (s) =

Γ (k−d−22 + s)Γ (k/2)

Γ (k−d2 )Γ (k−22 + s)
.

By the independence of Y and Z, the Mellin transform of Y is

f∗Y (s) =
f∗V (s)

f∗Z(s)
=

Γ ((d− 1)/2)Γ (k/2)

Γ (d− 1)Γ ((k − d)/2)
×
Γ (k−d−22 + s)Γ (d− 2 + s)

Γ (k−22 + s)Γ (d−32 + s)
. (18)

By the Mellin inversion theorem, the density of Y is given by

fY (y) =
1

2πi

∫ γ+i∞

γ−i∞
f∗(s)x−s ds

=
1

2πi

Γ ((d− 1)/2)Γ (k/2)

Γ (d− 1)Γ ((k − d)/2)

∫ γ+i∞

γ−i∞

Γ (k−d−22 + s)Γ (d− 2 + s)

Γ (k−22 + s)Γ (d−32 + s)
x−s ds

=
Γ ((d− 1)/2)Γ (k/2)

Γ (d− 1)Γ ((k − d)/2)
G2,0

2,2

y
∣∣∣∣∣∣∣∣

k−2
2 , d−3

2

k−d−2
2 , d− 2


where the last equality follows from the definition of Meijer’s G function (see

9.3.1 of [13]). Furthermore, according to the following identity, for |z| < 1 (see

[27])

G2,0
2,2

z
∣∣∣∣∣∣∣∣
α1 + β1 − 1 , α2 + β2 − 1

α1 − 1 , α2 − 1

 =

=
zα2−1(1− z)β1+β2−1

Γ (β1 + β2)
2F1 (α2 + β2 − α1, β1;β1 + β2; 1− z)
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we obtain for y ∈ [0, 1]

fY (y) =
Γ ((d− 1)/2)Γ (k/2)

Γ (d− 1)Γ ((k − d)/2)

yd−2(1− y)−1/2√
π

2F1

(
2d− k − 1

2
,
d

2
;

1

2
; 1− y

)
.

Applying the Legendre duplication formula 8.335.1 of [13] to Γ (d− 1), we

get

fY (y) =
22−d

B(d/2, (k − d)/2)
yd−2(1− y)−1/2 2F1

(
2d− k − 1

2
,
d

2
;

1

2
; 1− y

)
.

(19)

Recalling that

Pr(Y ≤ y) = Pr

(
L ≤ 1−

√
1− y

2

)
+ Pr

(
L >

1 +
√

1− y
2

)

then taking the derivative, we have that fL must satisfies the following condi-

tion

fY (y) =
4√

1− y

{
fL

(
1−
√

1− y
2

)

)
+ fL

(
1 +
√

1− y
2

)}
.

Finally, from (19), we obtain for l ∈ [0, 1]

fL(l) =
2d−1

B(d/2, (k − d)/2)
[l(1− l)]d−2 2F1

(
2d− k − 1

2
,
d

2
;

1

2
; 1− 4l(1− l)

)
.

To prove the sufficient condition in the relevant case, i.e. in the symmetric

case (section 2), we assume that the step length distribution is given by eq.
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(15). Then applying eq. (8) we get:

g′d,L(r) =
4r
(
1− r2

) d−3
2 Cd

B
(
d
2 ,

k−d
2

) ×

×
∫ 1+r

2

1
2

2F1

(
2d− k − 1

2
,
d

2
;

1

2
; 1− 4l(1− l)

)[(
4`(1− `)− (1− r2)

)] d−3
2 d`

`,=(1+y)/2
=

2r
(
1− r2

) d−3
2 Γ

(
k
2

)
√
πΓ
(
d−1
2

)
Γ
(
k−d
2

) ∫ r

0

(
r2 − y2

) d−3
2

2F1

(
2d− k − 1

2
,
d

2
;

1

2
; y2
)

dy

y=r
√
w

=
2rd−1

(
1− r2

) d−3
2 Γ

(
k
2

)
√
πΓ
(
d−1
2

)
Γ
(
k−d
2

) ∫ 1

0

w−1/2 (1− w)
d−3
2

2F1

(
2d− k − 1

2
,
d

2
;

1

2
; r2w

)
dw

=
2rd−1

(
1− r2

) d−3
2 Γ

(
k
2

)
√
πΓ
(
d−1
2

)
Γ
(
k−d
2

) B

(
1

2
,
d− 1

2

)(
1− r2

)− 2d−k−1
2

=
2Γ
(
k
2

)
Γ
(
d
2

)
Γ
(
k−d
2

)rd−1(1− r2)
k−d−2

2

where we used formula 7.512.6 in [13]. The latter density is indeed seen to be

the density of the endpoint distance of the hyperuniform random walk HUd(k)

(eq. 1). ut

From now on, we denote by fd,k(l) the symmetric density of the step length

obtained in (15). When the first argument of the hypergeometric function of eq.

(15), 2F1 ((2d− k − 1)/2, d/2; 1/2; 1− 4l(1− l)), is made equal to zero, that

is k = 2d − 1, then the step length density reduces to a beta distribution,

namely:

fd,2d−1(l) =
2d−1 [l(1− l)]d−2

B(d2 ,
d−1
2 )

=
[l(1− l)]d−2

B(d− 1, d− 1)
. (20)

The classical transformation (eq. 9.131.1 of [13]) applied to 2F1((2d− k −

1)/2, d/2; 1/2; 1− 4l(1− l)) gives (4l(1− l))(k−3d+2)/2
2F1((k− 2d+ 2)/2, (1−

d)/2; 1/2; 1−4l(1− l)). The first argument of the transformed hypergeometric
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function is zero for k = 2d − 2 and the step length becomes again a beta

random variable:

fd,2d−2(l) =
[l(1− l)]

d−4
2

2B(d2 ,
d−2
2 )

=
[l(1− l)]

d−4
2

B(d2 − 1, d2 − 1)
. (21)

Distribution (21) is a Beta (d/2− 1, d/2− 1). Both results agree with those

on hyperuniform random walks given in [21].

4.3 The random walk HUd(d+ 2) with a uniform distribution on Bd1

A transformation is applied now to the hypergeometric function of (15) to

get a simpler explicit expression of the step length density for random walks

HUd(d + 2) whose endpoints are uniformly distributed on the ball Bd1 . We

notice that it is necessary to assume d ≥ 3 because, by Proposition 2, k can

take a unique value, k = 3, for d = 2. As a uniform random walk requires

k = d+ 2 = 4 for d = 2, the latter cannot be uniform. In sum, there exist no

uniform two–step random walk with a continuous step length distribution in

R2.

Inserting the following relation (eq. 15.8.27 of [28]):

2F1

(
α, β;

1

2
; z

)
=
Γ (α+ 1/2)Γ (β + 1/2)

2
√
πΓ (α+ β + 1/2)

×

×
(

2F1(2α, 2β;α+ β + 1/2;
1−
√
z

2
) + 2F1(2α, 2β;α+ β + 1/2;

1 +
√
z

2
)

)
into (15) yields another representation of the density:

fd,k(l) = C(d, k) [l(1− l)]d−2
{

2F1

(
2d− 1− k, d;

3d− k
2

; l

)
+

+ 2F1

(
2d− 1− k, d;

3d− k
2

; 1− l
)} (22)
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where

C(d, k) =
2d−2Γ

(
2d−k

2

)
Γ
(
d+1
2

)
√
πB
(
d
2 ,

k−d
2

)
Γ
(
3d−k

2

)
In particular, for k = d+ 2, applying the duplication formula to the latter

constant, we obtain

fd,d+2(l) =
d(d− 1)

2(d− 2)
[l(1− l)]d−2 { 2F1 (d− 3, d; d− 1; l) + 2F1 (d− 3, d; d− 1; 1− l)}

moreover, applying 9.131.1 of [13], i.e.

2F1(d−3, d; d−1;x) = (1−x)2−d 2F1(2,−1; d−1;x) = 2(1−x)2−d((d−1)/2−x)/(d−1),

we get a simple polynomial expression for the density:

fd,d+2(l) =
d

d− 2
×
{

(1− l)d−2
(
l +

d− 3

2

)
+ ld−2

(
1− l +

d− 3

2

)}
. (23)

where the symmetry between l and 1 − l has been purposely emphasized in

the writing of (23). After expanding the products in (23), we get

fd,d+2(l) =


d

2(d−2)

(∑d−4
n=0(−1)n(d− 3− n)

(
d−1
n

)
ln
)

if d is even

d
d−2

∑d−1
n=0 b

(d)
n ln if d is odd

where

b(d)n =


(−1)n

d− 3− n
2

(
d− 1

n

)
(0 ≤ n ≤ d− 4) (d ≥ 5)

(−1)n(d− 3− n)

(
d− 1

n

)
(d− 3 ≤ n ≤ d− 1) (d ≥ 3)

.

The moments obtained from (23) are linear combinations of beta functions.

Indeed:

E(Ln) =
d

d− 2
×
∫ 1

0

ln
{

(1− l)d−2
(
l +

d− 3

2

)
+ ld−2

(
1− l +

d− 3

2

)}
dl.
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Fig. 1 Step-length pdf’s fd,d+2(l) [see eq. (23)] which yield two–step random walks whose

endpoints are uniformly distributed on the unit ball Bd1 : 1) left axis, solid lines: rescaled

pdf’s , fd,d+2(l)/fd,d+2(0), with d = 4(f4,6(l) = 1), d = 5, 6, 7, 8, 9, 10, 15, 20, 50; 2) right

axis, dotted line, d = 3, f3,5(l) = 6l(1− l)

Therefore:

E(Ln) =
d

d− 2
× {B(n+ 2, d− 1) +B(n+ d− 1, 2)}+

+
d(d− 3)

2(d− 2)
×
{
B(n+ 1, d− 1) +

1

n+ d− 1

}
=
d
(
d2 + (n− 3)d− 3n+ 2

)
2(d− 2)(n+ d− 1)(n+ d)

+
(n+ d− 2)Γ (d+ 1)Γ (n+ 1)

2(d− 2)Γ (n+ d+ 1)

Furthermore, using the asymptotic relation for d→∞:

Γ (d+ 1)

Γ (d+ n+ 1)
∼ d−n

(
1− n(n+ 1)

2d
+ · · ·

)
we have,

lim
d→∞

E(Ln) =
1

2

The trend of L to concentrate around 0 and 1 when d becomes larger and

larger is clearly shown by the densities fd,d+2(l) in figure 1. The endpoints of
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such uniform two–step random walks tend to concentrate near the surface of

the unit ball as expected in high dimension.

4.4 Construction of arbitrary step length pdf’s for hyperuniform two–step

random walks

An infinity of asymmetric step length pdf’s f(l) can be constructed from a

given symmetric step length pdf fs(l) (fs(l) = fs(1 − l)) by adding to it an

antisymmetric function fa(l) (fa(l) = −fa(1− l)). The antisymmetric function

is arbitrary but chosen such that the resulting density f(l) is non-negative for

l ∈ [0, 1]. The latter can be written as:

f(l) = fs(l) + fa(l) =
f(l) + f(1− l)

2
+
f(l)− f(1− l)

2
(l ∈ [0, 1])

This is illustrated with the following example for a uniform walk on B3
1

with d = 3 and k = 5. The symmetric step length distribution is (23), fs(l) =

f3,5(l) = 6l(1− l) and the antisymmetric function is chosen to be:

fa(l) =


6l2 − 3l l ≤ 1/2

3(1− l)(2l − 1) l ≥ 1/2

Then

f(l) =


3l l ≤ 1/2

3(1− l)(4l − 1) l ≥ 1/2

An asymmetric pdf of step length constructed by the methods described

above gives rise to a random walk which is equivalent to the walk obtained from
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the reference symmetric density. The degree of freedom in the construction of

such asymmetric distributions may be used to tailor a convenient density for

Monte–Carlo simulations.

5 Conclusions

Two–step random walks in Euclidean space Rd, with fixed sums of step lengths,

taken as equal to 1, have been investigated with the aim of constructing in

a simple way continuous step length distributions which yield hyperuniform

random walks. For the latter walks, the endpoint positions are spread out

as are the projections in the walk space of points uniformly distributed on

the surface of the unit hypersphere in Rk with k > d. When k = d + 2,

a hyperuniform random walk becomes uniform on the unit ball of Rd. Two

random walks, the first with an asymmetric distribution of step length and the

second with a permutation invariant step length distribution associated with

the latter, have identical endpoint distributions. Symmetric distributions are

thus the true reference distributions of step length as the equivalence between

the two steps cancels an eventual initial asymmetry. As shown in section 4.4,

an infinity of continuous asymmetric step length pdfs can be constructed from

a given symmetric pdf. We have derived the unique symmetric continuous

distributions of step length on [0, 1] which yield hyperuniform two-step random

walks. We have proven that the latter walks exist only for d + 1 ≤ k ≤

2d− 1. Interestingly, the derived step length distributions for the two largest

possible values of k, 2d − 2, 2d − 1 are Dirichlet distributions which reduce
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to beta distributions in the case of two steps. The question naturally arises

as to whether it is possible to construct permutation invariant continuous

distributions of step lengths which yield hyperuniform walks for any space

dimension and any number of steps. In any case, the step length distributions

of uniform random walks cannot be of the Dirichlet type as soon as d ≥ 4

for a number of steps at least equal to three [10,19,21,29]. Indeed, uniform

three–step walks are obtained solely for the two following symmetric Dirichlet

densities (table 2 of [21]) (l3 = 1− l1− l2): D(1, 1, 1) with p (l1, l2) = 2 for d =

2 and D( 1
2 ,

1
2 ,

1
2 ) with p (l1, l2) = 1

2π
√
l1l2l3

for d = 3.

Appendix

A. Multivariate Dirichlet distribution from gamma distributions

The probability density function pX(x) of a gamma random variable X , is [9]

pX(x) =
xα−1 exp (−x/θ)

θαΓ (α)
(x > 0) (A.1)

We denote it here as X ∼ γ(α, θ) where α > 0 is the shape parameter and θ > 0 the

scale parameter while Γ (α) is the Euler gamma function. The characteristic function of X

is φX(t) = E(eitX) = 1
(1−iθt)α [9].

A sum G =
∑n
i=1Gi of n independent gamma random variables, Gi ∼ γ(qi, θ) (i =

1, · · · , n), with identical scale parameter θ and a priori different shape parameters qi (i =

1, · · · , n), is a gamma random variable G ∼ γ(nq̄, θ), where nq̄ is the sum
∑n
i=1 qi. This is

for instance deduced from the characteristic function of G,

φG(t) = E(eitG) =
1∏n

k=1 (1− itθ)qk
=

1

(1− itθ)nq̄

From the previous set of n = m + 1 independent gamma random variables, we define a

random vector L(n) = (L1, L2, · · · , Ln) whose components are Li = Gi/G. The distribution
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of L(n) is then called a Dirichlet distribution with parameters q(n) = (q1, · · · , qn), L(n) ∼

D(q(n)). Its pdf is shown to be ([9] p. 17)
f(l1, · · · , lm) =

(
Γ (nq̄)∏n
i=1 Γ (qi)

)∏n
i=1 l

qi−1
i

ln = 1−
∑m
i=1 li, li > 0, i = 1, · · · , n

(A.2)

When the shape parameters are all equal to q, i. e. when Gi ∼ γ(q, θ) (i = 1, · · · , n), the

pdf (A.2) becomes invariant under permutation, f(l1, · · · , lm) =
(
Γ (nq)
Γ (q)n

){∏n
i=1 li

}q−1
.

Finally, when the Gi’s are exponentially distributed, q = 1, the random vector L(n) is

uniformly distributed over the unit (n− 1) simplex as f(l1, · · · , lm) = m!.

B. Hypergeometrical differential equation characterization

We recall that F (l) := 2F1(a, b; c; l) is the solution of the following differential equation:

l(1− l)F ′′(l) + [c− (a+ b+ 1)l]F ′(l)− abF (l) = 0

so, letting 2F1

(
2d− 1− k, d; 3d−k

2
; l
)

= F (l), we have

l(1− l)F ′′(l) +

[
3d− k

2
− (3d− k)l

]
F ′(l)− d(2d− 1− k)F (l) = 0

and similarly

l(1− l)F ′′(1− l) +

[
3d− k

2
− (3d− k)(1− l)

]
F ′(1− l)− d(2d− 1− k)F (1− l) = 0

that is

l(1− l)F ′′(1− l)−
[

3d− k
2

− (3d− k)l

]
F ′(1− l)− d(2d− 1− k)F (1− l) = 0

Let G(l) =
fd,k(l)

[l(1−l)]d−2 , by (22), we get

G(l) = C {F (l) + F (1− l)} .

Taking the derivative two times, we obtain

G′(l) = C
{
F ′(l)− F ′(1− l)

}
and G′′(l) = C

{
F ′′(l) + F ′′(1− l)

}
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and substituting

l(1− l)G′′(l) +

[
3d− k

2
− (3d− k)l

]
G′(l)− d(2d− 1− k)G(l) = 0 (B.1)

It follows that G is also a solution of a hypergeometrical differential equation. For basic

results on these differential equations see [1], Table 15.5.

For −1 < r < 1 the change of variable l = 1+r
2

in (B.1) gives

(1− r2)F ′′(r)− (3d− k)rF ′(r)− d(2d− 1− k)F (r) = 0

where F (r) = G( 1+r
2

). This is the the Gegenbauer equation which has a unique symmetric

solution such that: F (0) = C and F ′(0) = 0. It is F (r) = C × 2F1( 2d−k−1
2

, d
2
, 1

2
, r2), see

[6], pag. 65, the density (15) is easily retrieved.

In the following proposition we prove that the only hyperuniform random walks HUd(k)

which are at the same time symmetric Dirichlet random walks are obtained for k = 2d− 1

and k = 2d− 2 as shown in eqs (20) and (21).

Proposition 3 Suppose that fL(l) = C [l(1− l)]α−1, then Sd(L) is HUd(k) if and only if

k = 2d− 1 and α = d− 1 or k = 2d− 2 and α = d
2
− 1.

Proof Suppose that fd,k(l) = C [l(1− l)]α−1. Then G(l) = C [l(1− l)]α−d+1 and we have

G′(l) = (α− d+ 1) [l(1− l)]α−d (1− 2l)

G′′(l) = (α− d+ 1) [l(1− l)]α−d−1 {(α− d)(1− 2l)2 − 2l + 2l2}

So from (B.1) we obtain:

(α−d+1){(α−d)(1−2l)2−2l+2l2}+
3d− k

2
(α−d+1)(1−2l)2−d(2d−1−k)(l− l2) = 0

which is of the form Bl2 −Bl +A = 0 with

A = (α− d+ 1){(α− d) +
3d− k

2
}

and

B = 4(α− d+ 1)(α− d) + 2(α− d+ 1) + 2(3d− k)(α− d+ 1) + d(2d− 1− k)
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From the condition A = B = 0, we get the only solutions

k = 2d− 1, α = d− 1 and k = 2d− 2, α =
d

2
− 1.

ut

These solutions were obtained by a different method in [21].
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