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Introduction

A planar random walk (RW) made of a sequence of n steps of unit lengths taken into uniformly random directions was defined by Pearson in 1905 [START_REF] Pearson | The problem of the random walk[END_REF][START_REF] Pearson | A mathematical theory of random migration[END_REF].

In spite of its idealized feature, the Pearson's RW finds various applications and was, for instance, used recently to characterize the cosmic microwave background [START_REF] Stannard | Random-walk statistic and the spherical harmonic representation of CMB Maps[END_REF][START_REF] Hansen | Pearson's random walk in the space of the CMB phases: Evidence for parity asymmetry[END_REF]. Generalizations of Pearson's random walk involve space dimensions higher than two, changes of step length distributions, deviations of step orientations from a uniform repartition and introduction of correlations between steps. These extended Pearson's random walks are useful in diverse fields such as physics, biology, ecology (see [START_REF] Chandrasekhar | Stochastic problems in physics and astronomy[END_REF][START_REF] Codling | Random walk models in biology[END_REF][START_REF] Dutka | On the problem of random flights[END_REF][START_REF] Stadje | The exact probability distribution of a two-dimensional random walk[END_REF][START_REF] Viswanathan | The Physics of foraging. An introduction to random searches and biological encounters[END_REF][START_REF] Zoia | Collision densities and mean residence times for d-dimensional exponential flights[END_REF] and references therein).

Dirichlet random walks

A large family of random walks of n steps in d-dimensional Euclidean spaces (d ≥ 2) maintains the independence between successive steps and the uniformity of their orientations but step lengths are allowed to vary according to some continuous probability law. Recent studies include an additional modification in the form of a constraint on the sum of step lengths [START_REF] Chandrasekhar | Stochastic problems in physics and astronomy[END_REF][START_REF] Dutka | On the problem of random flights[END_REF][START_REF] Franceschetti | When a random walk of fixed length can lead uniformly anywhere inside a hypersphere[END_REF][START_REF] De Gregorio | A family of random walks with generalized Dirichlet steps[END_REF][START_REF] De Gregorio | Flying randomly in R d with Dirichlet displacements[END_REF][START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF][START_REF] Le Caër | A New Family of Solvable Pearson-Dirichlet Random Walks[END_REF][START_REF] Le Caër | Two-step Dirichlet random walks[END_REF][START_REF] Letac | Dirichlet random walks[END_REF]. These constrained step lengths are the components of a random vector L (n) = (L 1 , L 2 , • • • , L n ) and their sum is fixed to a value S, n i=1 L i = S = constant. In almost all cases considered hereafter, S will be taken as equal to 1 without loss of generality. This L (n) belongs to the (n -1) unit simplex. The previous constrained walks are related, in some of their aspects, to random flights performed in d-dimensional Euclidean spaces by particles which fly at a constant and finite speed c in some direction until they choose instantaneously, at random times, a new direction according to some probability law and fly again at speed c (see for istance [10-12, 18-20, 29, 32-34, 38]). At a given time t, the lengths of all flights are identical and equal to ct. Therefore, the conditional probability density function (pdf) of the position of a particle which flies during t, given that it underwent n -1 changes of direction, is identical, possibly after rescaling, to the pdf of the endpoint position of constrained walks of n steps. The problem of the step length distribution of the considered family is related to the broken stick problem, i.e. the problem of the random splitting of a unit interval.

Almost all previous studies chose the Dirichlet distribution as the distribution of the random vector L (n) . The multivariate Dirichlet distribution, which is applied for instance to model fragmentation or compositional data [START_REF] Aitchison | The Statistical Analysis of Compositional Data[END_REF], is conveniently defined from gamma distributed random variables (see Appendix A).

The Dirichlet distribution of L (n) is,

f L (l 1 , l 2 , . . . , l n-1 ) = Γ ( n i=1 q i ) n i=1 Γ (q i ) 1 - n-1 i=1 l i qn n-1 i=1 l qi-1 i ,
where l i > 0, i = 1, . . . , n -1, n-1 i=1 l i ≤ 1. This distribution, denoted here as D(q 1 , q 2 , .., q n ), depends on a n-dimensional vector of positive parameters q(n) = (q 1 , q 2 , .., q n ) which may be looked at as being the shape parameters of the associated gamma distributions (see Appendix A), a name which may be kept hereafter. When all shape parameters are equal to q > 0, the Dirichlet pdf becomes symmetric i.e. invariant under permutations. The related n-step random walks in d-dimensional Euclidean spaces [START_REF] Franceschetti | When a random walk of fixed length can lead uniformly anywhere inside a hypersphere[END_REF][START_REF] De Gregorio | A family of random walks with generalized Dirichlet steps[END_REF][START_REF] De Gregorio | Flying randomly in R d with Dirichlet displacements[END_REF][START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF][START_REF] Le Caër | A New Family of Solvable Pearson-Dirichlet Random Walks[END_REF][START_REF] Le Caër | Two-step Dirichlet random walks[END_REF][START_REF] Letac | Dirichlet random walks[END_REF] are named "Dirichlet random walks" and will be denoted hereafter either as

W (d, n, q (n) ) ≡ W (d, n, (q 1 , q 2 , • • • , q n ))
or simply W (d, n, q) when all Dirichlet parameters are equal to q > 0. The early studies of Dirichlet random walks dealt with a symmetric distribution for which q = 1. This case arises for instance when particles move in random environments and undergo elastic collisions at uniformly distributed point obstacles [START_REF] Franceschetti | When a random walk of fixed length can lead uniformly anywhere inside a hypersphere[END_REF]. The associated random flights or walks have exponential distributions of step lengths with equal scale parameters. In addition, the sum of step lengths was constrained to be equal to 1 [START_REF] Franceschetti | When a random walk of fixed length can lead uniformly anywhere inside a hypersphere[END_REF]. The initial impetus for imposing this condition was to find couples 

Definition of hyperuniform random walks

The projections on the walk space R d of points uniformly distributed on the surface of a unit sphere of a k-dimensional Euclidean space, whose dimension k is larger than d, have a radial density which is given by [START_REF] Fang | Symmetric multivariate and related distributions[END_REF][START_REF] Lord | The Distribution of Distance in a Hypersphere[END_REF]:

p d,k (r) = 2Γ (k/2) Γ (d/2)Γ ((k -d)/2) r d-1 (1 -r 2 ) k-d-2 2 , r ∈ [0, 1]. (1) 
The latter projections are uniformly distributed on the unit ball B d 1 if and only if k = d + 2 as then p d,d+2 (r) = dr d-1 . The dimension k will be named from now on the "hyperspace dimension".

As proposed by Letac and Piccioni [START_REF] Letac | Dirichlet random walks[END_REF], this property, which was named "hypersherical uniform" by Le Caër [START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF], will be abbreviated hereafter to

"hyperuniform". A n-step random walk in R d (n ≥ 2), denoted henceforth HU d (k)
, is said to be hyperuniform of type k > d if the endpoint of the walk is scattered as is the projection of a point uniformly distributed on the surface of the unit hypersphere of R k . Then, the pdf of the distance between the origin and the endpoint of a hyperuniform random walk HU d (k) is by definition given by equation [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. The endpoint of the hyperuniform random walk

HU d (d + 2)
is then uniformly distributed on the ball B d 1 .

Hyperuniform Dirichlet random walks

Two families of Dirichlet random walks in R d with symmetric step length distributions D(q (i) , q (i) , . . . , q (i) ), i = 1, 2, and only two, exhibit the hyperuniform property for any number of steps n ≥ 2 (a one-step random walk is trivially hyperuniform with k = d) [START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF]. The shape parameter q (i) depends solely on the walk space dimension d. By contrast, the hyperspace dimension k (i) depends both on d and on n. These parameters are [START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF]:

       (F 1 ) : q (1) = d -1, k (1) = n(d -1) + 1 (d ≥ 2) (F 2 ) : q (2) = d/2 -1, k (2) = n(d -2) + 2 (d ≥ 3) (2) 
The focus of the present paper will be on two-step random walks (Section 1.4). For two-step Dirichlet random walks, the values of k (1) and of k (2) are respectively 2d -1 and 2d -2.

We notice in passing that the pdf of the distance from the origin to the endpoint is simply derived for the two-step Dirichlet random walks W (d, 2, q)

where q takes now any positive value [START_REF] Le Caër | Two-step Dirichlet random walks[END_REF] (see further Example 3, Section 3.1).

The latter walks are not hyperuniform except if q = d -1 or q = d/2 -1.

In addition, the pdf of the endpoint distance was obtained for two-step walks with a beta step length distribution which depends now on two different scale parameters q + s and q, where s is any positive integer [START_REF] Le Caër | Two-step Dirichlet random walks[END_REF].

General hyperuniform random walks

The focus of the present paper is on hyperuniform two-step random walks with a fixed total step length of S = 1 and step lengths of L and 1-L. Its aim is then to derive all continuous distributions of L which yield two-step hyperuniform random walks, i.e. with distance distributions given by eq. ( 1). As justified in section 2, the emphasis will be placed on symmetric distributions of L on [0, 1] for which the two steps play equivalent roles. Our approach is thus the converse of those which derive a distribution of the endpoint distance from 2 Why focus on symmetric step length distributions?

Let S L := n i=1 U i L i ,
where U 1 , . . . , U n are independent and identically distributed random unit vectors with uniform distribution on the sphere of R d , we call S L the random walk associated to L. The sum which gives S L is commutative. To phrase briefly the question which is considered in detail below, we notice that the n! possible attributions of a set of lengths (l k , k = 1, . . . , n)

to the steps numbered 1, 2, .., n result in undistinguishable walks. Thus, each permutation should be given a probability of 1/n! so that all steps end up with length distributions independently of their arbitrary order. To obtain the latter distribution which is invariant under permutations, it suffices then to symmetrize the initial distribution of L if the latter is asymmetric. Profit will be taken from these symmetry considerations to restrict the study of step length distributions which yield hyperuniform random walks to those which are symmetric (Section 3).

Random walks of n steps

Let Σ be the set of permutations of {1, . . . , n}. Given a random vector L ∈ R n and a permutation σ ∈ Σ, we will denote by L σ the random vector (L σ1 , . . . , L σn ). Furthermore, given a random permutation σ, that is a random vector taking values in Σ, we denote by L := L σ the vector obtained by this random permutation. We notice that

L σ | (σ = σ) d = L σ (where d = means equality in distribution).
In particular, we will denote by L * the random vector associated to σ whose distribution on Σ is uniform and we will call L * the symmetrized version of L.

Remark 1 It is easily seen that 1. L * is random vector invariant under permutations distribution;

2. for all σ ∈ Σ, we have (L σ ) * d = L * and this implies that L σ * d = L * for all random permutations σ.

If L is a continuous random vector, then the distribution of L is obtained from

f L = σ∈Σ f L σ π(σ)
where π is the distribution of σ and f L and f L σ are, respectively the distributions of L and L σ .

Example 1 Let L ∼ D (q 1 , q 2 , q, . . . , q), where

q 1 = q + p 1 , q 2 = q + p 2 , p 1 , p 2 ∈ N, p 1 + p 2 ≥ 2 and q i = q, i = 3, . . . , n. If σ is a random permutation with distribution π, then f L( ) = Γ (nq) (nq) p1+p2 Γ (q) n (q) p1 (q) p2 σ∈Σ π(σ) n h=1 q σ(h) -1 h = Γ (nq) (nq) p1+p2 Γ (q) n (q) p1 (q) p2 i =j σ∈Σij π(σ)   n h ∈{i,j} q-1 h   q+p1 i q+p2 j = Γ (nq) Γ (q) n n h=1 q-1 h (nq) p1+p2 (q) p1 (q) p2 i =j π ij p1 i p2 j
where

Σ ij := {σ ∈ Σ : σ(i) = 1&σ(j) = 2} is a partition of Σ and π ij = π (Σ ij ).
In particular, if σ is uniform, the density is

f L( ) = Γ (nq)(n -3)! (nq) p1+p2 n!Γ (q) n (q) p1 (q) p2 n h=1 q-1 h i =j p1 i p2 j
and this is a symmetric density, which is not a Dirichlet density, but is however a mixture of Dirichlet densities. The symmetric Dirichlet distribution is obtained only if there exists (π ij ) n i =j non-negative with the additional condition:

(nq) p1+p2 (q) p1 (q) p2 i =j π ij p1 i p2 j ≡ 1.
Dirichlet distributions are therefore not closed with respect to the symmetrization except in the particular case of Example 2 (next section).

It is easily seen that S L d = S L σ for all σ ∈ Σ and this implies that, if σ is a Σ-valued random variable independent of S, then S L d = S L σ d = S * where S * := S L * is the random walk whose step length distribution is symmetric.

This means that the distribution of the endpoint of a random walk is invariant with respect to a random permutation of the components of the step-length random vector. Thus, the common endpoint distribution is that of the random walk whose step length distribution is symmetric.

These remarks allow us to partition the set of n-dimensional random vectors, denoted by V n , in classes of equivalent vectors with respect to the following definition

Definition 1 Given X, Y ∈ V n , X is in relation with Y , X ∼ Y , if there exist
two random permutations σX and σY such that

X σX d = Y σY . By 2. of Remark 1, it follows that Lemma 1 Given X, Y, Z ∈ V n . If X ∼ Y and Y ∼ Z, then X * = Z * and ∼ is an equivalence relation on V n .
The above have some important consequences:

1. The set of random vectors V n can be partitioned into equivalence classes.

The distributions of all random vectors which belong to the same class have associated symmetrized versions which are all equivalent. Any class contains one and only one permutation invariant distribution which is taken as the one representing the considered class. This fact can be stated as follows too: we define the random walk application at step n on V n as Definition 2 A random walk is an application S :

V n -→ V 1 such that S(L) = S L .
From the point of view of distributions, it is equivalent to define S as above or to define it on the quotient space.

Two-step random walks

We consider now two-step random walks whose sum of step lengths is fixed and taken for convenience as equal to 1. The above definitions are thus simplified.

Indeed, if we denote by L the length of the first step, then the distribution of the step length vector is symmetric if

L d = 1 -L.
Furthermore, the space of permutation is given by Σ = {(1, 2), (2, 1)} and the distribution of a random permutation σ is completely identified by p := P (σ = (1, 2)), then

f L σ ( ) = pf L ( ) + (1 -p)f 1-L ( ) = pf L ( ) + (1 -p)f L (1 -)
and the symmetrized version has density:

f L * ( ) = (f L ( ) + f L (1 -)) /2.

Example 2

The distribution of L is now taken to be an asymmetric Dirichlet distribution, that is L ∼ D (q + s, q) , q, s > 0 (actually a beta distribution), and we seek for the values of the parameters for which the associated symmetric distribution is again a Dirichlet distribution. As expected, the symmetrized distribution is the sole symmetric distribution which belongs to the family of mixtures considered above. It suffices therefore to look for the existence of a Dirichlet distribution only in the case where p = 1/2. Then it becomes

f * ( ) = 1 2B (q + s, s) q+s-1 (1 -) q-1 + q-1 (1 -) q+s-1 = 1 2B (q + s, s) q-1 (1 -) q-1 [ s + (1 -) s ] . The distribution f * is a Dirichlet distribution if and only if s + (1 -) s ≡ c,
where c is a constant, a condition which holds if and only if s = 1. When s differs from 1, the distribution f * is a mixture of beta distributions.

The latter example, which is a particular case of Example 1, shows that a two-step random walk with an asymmetric Dirichlet distribution of step lengths, D (q 1 , q 2 ), is equivalent to a random walk with a symmetric step length Dirichlet distribution, D (q, q), with q = min (q 1 , q 2 ) if and only if |q 1 -q 2 | = 1 [START_REF] Le Caër | Two-step Dirichlet random walks[END_REF].

3 Two-step random walks: a simple geometrical approach Using a simple geometrical approach, we derive below the cumulative distribution function and the pdf of the endpoint distance of a constrained two-step random walk from its step length distribution. The case where the latter distribution is continuous with an associated density is more particularly considered (Corollary 1).

Let S d (L) be the random vector

S d (L) = LU 1 + (1 -L)U 2 (3) 
where U 1 , U 2 , are independent and identically distributed (i.i.d.) random unit vectors with uniform distribution on the sphere in R d and L is a random variable (r.v.) whose support is included in [0, 1].

We denote by cap d (θ) the hyperspherical cap of geodesic radius θ on the boundary of B d 1 , and by A d cap (θ) its surface measure (see [START_REF] Li | Concise formulas for the area and volume of a hyperspherical cap[END_REF] for a simple expression of A d cap (θ)).

In the next theorem we give a simple expression (4) to derive the distribution of S d (L). The inner integral in (4), for which L = l, can be obtained for n = 2 from an integral given by Watson for a random walk of n a priori unequal stretches in a d-dimensional space ( [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF], top of page 421). It depends only on the measure of the intersection of a sphere with a ball in R d , that is the measure A d cap (θ). For the sake of clarity, we prove it here by a simple geometrical argument which relies on the isotropy of the considered random walk.

Theorem 1 For r ∈ [0, 1], let g d,L (r) denote the probability that S d (L) falls in the ball B d r , then

g d,L (r) = P S d (L) ∈ B d r = C d 1+r 2 1-r 2 θ(r, ) 0 sin d-2 (ϕ) dϕ dP L ( ) (4) 
where

C d = Γ ( d 2 ) √ πΓ ( d-1 2 )
, P L is the probability distribution of L and θ(r, ) satisfies

1 + cos (θ(r, )) 2 = 1 -r 2 4 (1 -) . (5) 
Proof The probability that S d (L) falls in B d r , is

g d,L (r) = P S d (L) ∈ B d r = E P LU 1 + (1 -L)U 2 ∈ B d r |L, U 1 = E P Le 1 + (1 -L) U 2 ∈ B d r |L (6) 
where e 1 is the first vector of the standard base of R d and the last equality follows from isotropy of the uniform distribution.

If the range of L is not in the interval [(1 -r))/2, (1 + r)/2], then the conditional probability that the walk falls inside the ball of radius r, that is

P Le 1 + (1 -L) U 2 ∈ B d r |L , is zero. Therefore P Le 1 + U 2 (1 -L) ∈ B d r |L = P (U 2 ∈ cap (θ (r, L)) |L) 1 l [ 1-r 2 , 1+r 2 ] (L) = A d cap (θ (r, L)) A d cap (π) 1 l [ 1-r 2 , 1+r 2 ] (L).
Recalling that

A d cap (θ) = 2π (d-1)/2
Γ ((d-1)/2) θ 0 sin d-2 (ϕ) dϕ (see [START_REF] Li | Concise formulas for the area and volume of a hyperspherical cap[END_REF]), we get:

P Le 1 + U 2 (1 -L) ∈ B d r |L = Γ (d/2) √ πΓ ((d -1)/2) θ(r,L) 0 sin d-2 (ϕ) dϕ 1 l [ 1-r 2 , 1+r 2 ] (L).
and finally, we obtain

g d,L (r) = Γ (d/2) √ πΓ ((d -1)/2) E θ(r,L) 0 sin d-2 (ϕ) dϕ = C d 1+r 2 1-r 2 θ(r, ) 0 sin d-2 (ϕ) dϕ dP L ( ).
From now on, we will assume that the r.v. L has a continuous distribution in [0, 1] with density f L . Applying Theorem 1 to this case, we obtain Corollary 1 If L has a density function f L , for all r ∈ [0, 1], then

g d,L (r) = C d 1+r 2 1-r 2 f L ( ) θ(r, ) 0 sin d-2 (ϕ) dϕ d . (7) 
Furthermore, S d (L) is a continuous random variable and it has the following density

g d,L (r) = 2r 1 -r 2 d-3 2 C d 1+r 2 1-r 2 f L ( ) (2 (1 -)) d-2 4 (1 -) -(1 -r 2 ) d-3 2 d . (8) 
Proof Equation ( 7) is equation ( 4) assuming P L to be continuous. The distribution function of S d (L) is simply g d,L , which by hypothesis is a continuous function. Thus, the associated probability density is

g d,L (r) = C d 1 2 f L 1 + r 2 θ(r, 1+r 
2 )

0 sin d-2 (ϕ) dϕ + + 1 2 f L 1 -r 2 θ(r, 1-r 2 ) 0 sin d-2 (ϕ) dϕ + 1+r 2 1-r 2 f L ( ) ∂θ ∂r (r, ) sin d-2 (θ(r, )) d = C d 1+r 2 1-r 2 f L ( ) ∂θ ∂r (r, ) sin d-2 (θ(r, )) d . ( 9 
)
where the last equality follows from (5) as θ r, 1±r 2 = 0.

Finally, from the derivative ∂θ ∂r (r, ) and from sin (θ) =

√ 1-r 2 √ 4 (1-)-(1-r 2 ) 2 (1-)
, we obtain [START_REF] Dutka | On the problem of random flights[END_REF].

Example 3 Let f L ( ) = 1 B(q,q) [ (1 -)] q-1 , that is L ∼ D (q, q)
. This is a symmetric continuous distribution and applying (8), we get

g d,L (r) = r 1 -r 2 d-3 2 C d 2 d-1 B (q, q) 1+r 2 1-r 2 [ (1 -)] q-d+1 4 (1 -) -(1 -r 2 ) d-3 2 d =(1-y)/2 = r 1 -r 2 d-3 2 C d 2 2q-d+2 B (q, q) r -r 1 -y 2 q-d+1 r 2 -y 2 d-3 2 dy = r 1 -r 2 d-3 2 C d 2 2q-d+1 B (q, q) r 0 1 -y 2 q-d+1 r 2 -y 2 d-3 2 dy z=y 2 = r 1 -r 2 d-3 2 C d 2 2q-d+2 B (q, q) r 2 0 z -1/2 (1 -z) q-d+1 r 2 -z d-3 2 dz v=z/r 2 = r d-1 1 -r 2 d-3 2 C d 2 2q-d+2 B (q, q) r 2 0 v -1/2 1 -r 2 v q-d+1 (1 -v) d-3 2 dv = r d-1 1 -r 2 d-3 2 C d 2 2(q+1)-d B (1/2, (d -1)/2) B (q, q) 2 F 1 d -q -1, 1/2; d/2; r 2 = 2 d-1 r d-1 1 -r 2 d-3 2 B(q, 1/2) 2 F 1 d -q -1, 1/2; d/2; r 2
where the penultimate equality follows from 9.111 of [START_REF] Gradshteyn | Table of integrals, series, and products. Elsevier[END_REF]. The last expression was recently derived by a different method in [START_REF] Le Caër | Two-step Dirichlet random walks[END_REF].

Hereafter, we write:

h 1 (r) := g d,L (r)/ r(1 -r 2 ) d-3 2 and h k+1 (r) := h k (r) r , k ≥ 1. ( 10 
)
The following proposition emphasizes the relationship between the sequence h m and the density f L .

Proposition 1 Given any f L and g d,L satisfying equation ( 8), if d = 2m + 3, m ≥ 0 and r ∈ (0, 1), we have

h m+1 (r) = C 2m+3 m!2 3m+1 f L 1+r 2 + f L 1-r 2 (1 -r 2 ) 2m+1 . ( 11 
)
In particular, in the symmetric case (f

L = f 1-L ) h m+1 (r) = C 2m+3 m!2 3m+2 f L 1+r 2 (1 -r 2 ) 2m+1 . (12) 
Moreover, if d = 2m + 2, m ≥ 1, then we have:

h m+1 (r) = 2 2m C 2m+2 (2m -1)!! r -r f L 1+ 2 √ r 2 -2 (1 -2 ) 2m d . ( 13 
)
Proof Applying (8) to the case d = 2m + 3, we get

g d,L (r) = C 2m+3 1+r 2 1-r 2 rf L ( ) 2 2m [ (1 -)] 2m+1 (1 -r 2 ) 4 (1 -) -(1 -r 2 ) m d .
Dividing by r(1 -r 2 ) m , we obtain h 1 and taking the derivative with respect to r

h 1 (r) = mC 2m+3 2 2m-1 1+r 2 1-r 2 rf L ( ) [ (1 -)] 2m+1 4 (1 -) -(1 -r 2 ) m-1 d . ( 14 
)
Then, obviously,

h 2 (r) := h 1 (r)/r = mC 2m+3 2 2m-1 1+r 2 1-r 2 f L ( ) [ (1 -)] 2m+1 4 (1 -) -(1 -r 2 ) m-1 d
and repeating the same procedure m -1 times, we get

h m+1 (r) = C 2m+3 m! 2 m+1 1+r 2 1-r 2 f L ( ) [ (1 -)] 2m+1 d .
Finally, taking the derivative another time with respect to r, we get ( 11) while ( 12) is easily obtained from the symmetry condition.

If the dimension is even, d = 2m + 2, we can proceed analogously. Proof Obviously, k ≥ d+1, so we prove only that k ≤ 2d-1. Suppose, contrary to our claim, that there exists k ≥ 2d, such that the random walk is HU d (k).

Then, by (1),

g d,L (r) = 2Γ (k/2) Γ (d/2)Γ ((k -d)/2) r d-1 (1 -r 2 ) k-d-2 2
and

h 1 (r) = 2Γ (k/2) Γ (d/2)Γ ((k -d)/2) r d-2 (1 -r 2 ) k-2d+1 2 
its derivative is

h 1 (r) = 2Γ (k/2) Γ (d/2)Γ ((k -d)/2) r d-3 (1 -r 2 ) k-2d-1 2 d -2 -(k -(d + 1))r 2 which is negative in the interval ( (d -2)/(k -(d + 1)), 1] if k ≥ 2d.
Furthermore, from ( 14), noticing that it holds in the even and odd cases, it follows that

h 1 (r) = 2C d 2 2d-3 1+r 2 1-r 2 rf L ( ) [ (1 -)] d-2 4 (1 -) -(1 -r 2 ) m-1 d
then for all r in the above interval, there exists a set on which the integrand must be negative. This implies that f L is negative on some set with non-null measure and this is impossible, because f L is a density.

4.2

The continuous and symmetric step length densities for HU d (k) walks

Theorem 2 Given d + 1 ≤ k ≤ 2d -1, the 2-step random walk S d (L) = LU 1 + (1 -L)U 2 is a hyperuniform walk HU d (k) if and only if the symmetric density function f L (l) of L satisfies: f L (l) = 2 d-1 B(d/2, (k -d)/2) [l(1 -l)] d-2 × 2 F 1 2d -k -1 2 , d 2 ; 1 2 ; 1 -4l(1 -l) . ( 15 
)
Proof Let S d (L) = LU 1 + (1 -L)U 2 and we set

R 2 := S d (L) • S d (L) = 1 -2L (1 -L) (1 -U 1 • U 2 ) . Also let Θ be such that U 1 • U 2 = cos Θ and                  V = 1 -R 2 = 2L (1 -L) (1 -cos Θ) Y = 4L(1 -L) Z = 1 -cos Θ 2 = sin 2 Θ 2 .
With this notation

V = Y Z ( 16 
)
where Y and Z are independent random variables, being functions of independent random variables. The problem of finding the distribution of Y given the distributions of V and Z, where V, Y, Z are univariate continuous positive random variables, belongs to the class of inverse problems of random scaling ( [START_REF] Balakrishnan | On the use of bivariate Mellin transform in bivariate random scaling and some applications[END_REF] and references therein). General considerations on the case where Z has a beta distribution with positive parameters are given in [START_REF] Hashorva | Tail asymptotics under beta random scaling[END_REF] and in the references therein.

Assuming that S d (L) is HU d (k), then

V ∼ Beta k -d 2 , d 2 and Z ∼ Beta d -1 2 , d -1 2 . 
where the first equality in distribution follows from (1) (see too [START_REF] Letac | Dirichlet random walks[END_REF]) and the second one from the distribution of the polar angle Θ, which is, for θ ∈ [0, π]:

p Θ (θ) = Γ (d/2) √ πΓ ((d -1)/2) sin d-2 (θ) = 2 d-2 Γ (d/2) √ πΓ ((d -1)/2) sin d-2 (θ/2) cos d-2 (θ/2)
which yields immediately the distribution of Z. Now, we use the Mellin transform to find the distribution of Y . The Mellin transform of Beta (α, β) with density f is

f * (s) := 1 0 z s-1 f (z) dz = Γ (α + s -1) Γ (α + β) Γ (α) Γ (α + β + s -1) (17) 
Then, we have

f * Z (s) = Γ ( d-3 2 + s)Γ (d -1) Γ ( d-1 2 )Γ (d -2 + s) and f * V (s) = Γ ( k-d-2 2 + s)Γ (k/2) Γ ( k-d 2 )Γ ( k-2 2 + s)
.

By the independence of Y and Z, the Mellin transform of Y is

f * Y (s) = f * V (s) f * Z (s) = Γ ((d -1)/2)Γ (k/2) Γ (d -1)Γ ((k -d)/2) × Γ ( k-d-2 2 + s)Γ (d -2 + s) Γ ( k-2 2 + s)Γ ( d-3 2 + s) . (18) 
By the Mellin inversion theorem, the density of Y is given by

f Y (y) = 1 2πi γ+i∞ γ-i∞ f * (s)x -s ds = 1 2πi Γ ((d -1)/2)Γ (k/2) Γ (d -1)Γ ((k -d)/2) γ+i∞ γ-i∞ Γ ( k-d-2 2 + s)Γ (d -2 + s) Γ ( k-2 2 + s)Γ ( d-3 2 + s) x -s ds = Γ ((d -1)/2)Γ (k/2) Γ (d -1)Γ ((k -d)/2) G 2,0 2,2     y k-2 2 , d-3 2 k-d-2 2 , d -2    
where the last equality follows from the definition of Meijer's G function (see 9.3.1 of [START_REF] Gradshteyn | Table of integrals, series, and products. Elsevier[END_REF]). Furthermore, according to the following identity, for |z| < 1 (see [START_REF] Mathai | A handbook of generalized special functions for statistical and physical sciences[END_REF])

G 2,0 2,2     z α 1 + β 1 -1 , α 2 + β 2 -1 α 1 -1 , α 2 -1     = = z α2-1 (1 -z) β1+β2-1 Γ (β 1 + β 2 ) 2 F 1 (α 2 + β 2 -α 1 , β 1 ; β 1 + β 2 ; 1 -z) we obtain for y ∈ [0, 1] f Y (y) = Γ ((d -1)/2)Γ (k/2) Γ (d -1)Γ ((k -d)/2) y d-2 (1 -y) -1/2 √ π 2 F 1 2d -k -1 2 , d 2 ; 1 2 ; 1 -y .
Applying the Legendre duplication formula 8.335.1 of [START_REF] Gradshteyn | Table of integrals, series, and products. Elsevier[END_REF] to Γ (d -1), we get

f Y (y) = 2 2-d B(d/2, (k -d)/2) y d-2 (1 -y) -1/2 2 F 1 2d -k -1 2 , d 2 ; 1 2 ; 1 -y . (19) 
Recalling that

Pr(Y ≤ y) = Pr L ≤ 1 - √ 1 -y 2 + Pr L > 1 + √ 1 -y 2 
then taking the derivative, we have that f L must satisfies the following condition

f Y (y) = 4 √ 1 -y f L 1 - √ 1 -y 2 ) + f L 1 + √ 1 -y 2 .
Finally, from [START_REF] Kolesnik | Random motions at finite speed in higher dimensions[END_REF], we obtain for l ∈ [0, 1]

f L (l) = 2 d-1 B(d/2, (k -d)/2) [l(1 -l)] d-2 2 F 1 2d -k -1 2 , d 2 ; 1 2 ; 1 -4l(1 -l) .
To prove the sufficient condition in the relevant case, i.e. in the symmetric case (section 2), we assume that the step length distribution is given by eq. [START_REF] De Gregorio | Flying randomly in R d with Dirichlet displacements[END_REF]. Then applying eq. ( 8) we get:

g d,L (r) = 4r 1 -r 2 d-3 2 C d B d 2 , k-d 2 × × 1+r 2 1 2 2 F 1 2d -k -1 2 , d 2 ; 1 2 ; 1 -4l(1 -l) 4 (1 -) -(1 -r 2 ) d-3 2 d , =(1+y)/2 = 2r 1 -r 2 d-3 2 Γ k 2 √ πΓ d-1 2 Γ k-d 2 r 0 r 2 -y 2 d-3 2 2 F 1 2d -k -1 2 , d 2 ; 1 2 ; y 2 dy y=r √ w = 2r d-1 1 -r 2 d-3 2 Γ k 2 √ πΓ d-1 2 Γ k-d 2 1 0 w -1/2 (1 -w) d-3 2 2 F 1 2d -k -1 2 , d 2 ; 1 2 ; r 2 w dw = 2r d-1 1 -r 2 d-3 2 Γ k 2 √ πΓ d-1 2 Γ k-d 2 B 1 2 , d -1 2 1 -r 2 -2d-k-1 2 = 2Γ k 2 Γ d 2 Γ k-d 2 r d-1 (1 -r 2 ) k-d-2 2 
where we used formula 7.512.6 in [START_REF] Gradshteyn | Table of integrals, series, and products. Elsevier[END_REF]. The latter density is indeed seen to be the density of the endpoint distance of the hyperuniform random walk HU d (k) (eq. 1).

From now on, we denote by f d,k (l) the symmetric density of the step length obtained in [START_REF] De Gregorio | Flying randomly in R d with Dirichlet displacements[END_REF]. When the first argument of the hypergeometric function of eq. ( 15), 2 F 1 ((2d -k -1)/2, d/2; 1/2; 1 -4l(1 -l)), is made equal to zero, that is k = 2d -1, then the step length density reduces to a beta distribution, namely:

f d,2d-1 (l) = 2 d-1 [l(1 -l)] d-2 B( d 2 , d-1 2 ) = [l(1 -l)] d-2 B(d -1, d -1) . (20) 
The classical transformation (eq. 9.131.1 of [START_REF] Gradshteyn | Table of integrals, series, and products. Elsevier[END_REF]) applied to 2 F 1 ((2d -k -

1)/2, d/2; 1/2; 1 -4l(1 -l)) gives (4l(1 -l)) (k-3d+2)/2 2 F 1 ((k -2d + 2)/2, (1 - d)/2; 1/2; 1 -4l(1 -l))
. The first argument of the transformed hypergeometric function is zero for k = 2d -2 and the step length becomes again a beta random variable:

f d,2d-2 (l) = [l(1 -l)] d-4 2 2B( d 2 , d-2 2 ) = [l(1 -l)] d-4 2 B( d 2 -1, d 2 -1) 
.

Distribution ( 21) is a Beta (d/2 -1, d/2 -1). Both results agree with those on hyperuniform random walks given in [START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF]. Inserting the following relation (eq. 15.8.27 of [START_REF] Olver | NIST handbook of mathematical functions[END_REF]):

2 F 1 α, β;

1 2 ; z = Γ (α + 1/2)Γ (β + 1/2) 2 √ πΓ (α + β + 1/2) × × 2 F 1 (2α, 2β; α + β + 1/2; 1 - √ z 2 ) + 2 F 1 (2α, 2β; α + β + 1/2; 1 + √ z 2 )
into [START_REF] De Gregorio | Flying randomly in R d with Dirichlet displacements[END_REF] yields another representation of the density:

f d,k (l) = C(d, k) [l(1 -l)] d-2 2 F 1 2d -1 -k, d; 3d -k 2 ; l + + 2 F 1 2d -1 -k, d; 3d -k 2 ; 1 -l (22) 
where

C(d, k) = 2 d-2 Γ 2d-k 2 Γ d+1 2 √ πB d 2 , k-d 2 Γ 3d-k 2
In particular, for k = d + 2, applying the duplication formula to the latter constant, we obtain

f d,d+2 (l) = d(d -1) 2(d -2) [l(1 -l)] d-2 { 2 F 1 (d -3, d; d -1; l) + 2 F 1 (d -3, d; d -1; 1 -l)}
moreover, applying 9.131.1 of [START_REF] Gradshteyn | Table of integrals, series, and products. Elsevier[END_REF], i.e.

2 F 1 (d-3, d; d-1; x) = (1-x) 2-d 2 F 1 (2, -1; d-1; x) = 2(1-x) 2-d ((d-1)/2-x)/(d-1),
we get a simple polynomial expression for the density:

f d,d+2 (l) = d d -2 × (1 -l) d-2 l + d -3 2 + l d-2 1 -l + d -3 2 . ( 23 
)
where the symmetry between l and 1 -l has been purposely emphasized in the writing of [START_REF] Le Caër | Two-step Dirichlet random walks[END_REF]. After expanding the products in ( 23), we get

f d,d+2 (l) =        d 2(d-2) d-4 n=0 (-1) n (d -3 -n) d-1 n l n if d is even d d-2 d-1 n=0 b (d) n l n if d is odd where b (d) n =          (-1) n d -3 -n 2 d -1 n (0 ≤ n ≤ d -4) (d ≥ 5) (-1) n (d -3 -n) d -1 n (d -3 ≤ n ≤ d -1) (d ≥ 3)
.

The moments obtained from ( 23) are linear combinations of beta functions.

Indeed:

E(L n ) = d d -2 × 1 0 l n (1 -l) d-2 l + d -3 2 + l d-2 1 -l + d -3 2 dl.
Fig. 1 Step-length pdf's f d,d+2 (l) [see eq. ( 23)] which yield two-step random walks whose endpoints are uniformly distributed on the unit ball B Therefore:

E(L n ) = d d -2 × {B(n + 2, d -1) + B(n + d -1, 2)} + + d(d -3) 2(d -2) × B(n + 1, d -1) + 1 n + d -1 = d d 2 + (n -3)d -3n + 2 2(d -2)(n + d -1)(n + d) + (n + d -2)Γ (d + 1)Γ (n + 1) 2(d -2)Γ (n + d + 1)
Furthermore, using the asymptotic relation for d → ∞:

Γ (d + 1) Γ (d + n + 1) ∼ d -n 1 - n(n + 1) 2d + • • • we have, lim d→∞ E(L n ) = 1 2
The trend of L to concentrate around 0 and 1 when d becomes larger and 

f (l) = f s (l) + f a (l) = f (l) + f (1 -l) 2 + f (l) -f (1 -l) 2 (l ∈ [0, 1])
This is illustrated with the following example for a uniform walk on B 3 1 with d = 3 and k = 5. The symmetric step length distribution is (23), f s (l) = f 3,5 (l) = 6l(1 -l) and the antisymmetric function is chosen to be:

f a (l) =        6l 2 -3l l ≤ 1/2 3(1 -l)(2l -1) l ≥ 1/2 Then f (l) =        3l l ≤ 1/2 3(1 -l)(4l -1) l ≥ 1/2
An asymmetric pdf of step length constructed by the methods described above gives rise to a random walk which is equivalent to the walk obtained from the reference symmetric density. The degree of freedom in the construction of such asymmetric distributions may be used to tailor a convenient density for Monte-Carlo simulations. It follows that G is also a solution of a hypergeometrical differential equation. For basic results on these differential equations see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], Table 15.5. These solutions were obtained by a different method in [START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF].

  (d, n) for which the endpoints of such n-step walks, W (d, n, 1), are uniformly distributed on the d-dimensional unit ball B d 1 [10]. Throughout the paper, B d r will designate the d-dimensional Euclidean ball of radius r centered at the origin.

  some step length distribution, for instance from a Dirichlet distribution. The two parameters of the study are those which allow defining the pdf p d,k (r) eq. (1): first the dimension d ≥ 2 of the walk space and second the dimension k > d of the hyperspace whose actual range of variation will be shown to depend on d. Hyperuniform random walks in R d of special interest are those which yield uniform distributions of the endpoint on the unit ball B d 1 . The unique continuous and symmetrical distributions of L associated to uniform two-step random walks will be shown to have simple polynomial forms for any d ≥ 3.

2 .

 2 If X and Y are in the same class, then S X d ∼ S Y To find the distribution of the endpoint of any random walk of a given class, it suffices thus to the study the random walk whose step length distribution is the representative permutation invariant distribution of that class.

4Proposition 2

 2 Two-step hyperuniform random walks The previous theorems are first applied to hyperuniform random walks of two steps HU d (k) to determine the allowed range of the hyperspace dimension k given the walk space dimension d. Then the step length pdf's are explicitly derived as a function of k and d. 4.1 The allowed range of k for HU d (k) walks In the following proposition, the maximum dimension k of the HU d (k) random walks of two steps is characterized. If a two-step random walk is HU d (k), then d+1 ≤ k ≤ 2d-1.

4. 3 1 A

 31 The random walk HU d (d + 2) with a uniform distribution on B d transformation is applied now to the hypergeometric function of (15) to get a simpler explicit expression of the step length density for random walks HU d (d + 2) whose endpoints are uniformly distributed on the ball B d 1 . We notice that it is necessary to assume d ≥ 3 because, by Proposition 2, k can take a unique value, k = 3, for d = As a uniform random walk requires k = d + 2 = 4 for d = 2, the latter cannot be uniform. In sum, there exist no uniform two-step random walk with a continuous step length distribution in R 2 .

d 1 : 1 )

 11 left axis, solid lines: rescaled pdf's , f d,d+2 (l)/f d,d+2 (0), with d = 4(f 4,6 (l) = 1), d = 5, 6, 7, 8, 9, 10, 15, 20, 50; 2) right axis, dotted line, d = 3, f 3,5 (l) = 6l(1 -l)

  larger is clearly shown by the densities f d,d+2 (l) in figure 1. The endpoints of such uniform two-step random walks tend to concentrate near the surface of the unit ball as expected in high dimension. 4.4 Construction of arbitrary step length pdf's for hyperuniform two-step random walksAn infinity of asymmetric step length pdf's f (l) can be constructed from a given symmetric step length pdf f s (l) (f s (l) = f s (1 -l)) by adding to it an antisymmetric function f a (l) (f a (l) = -f a (1-l)). The antisymmetric function is arbitrary but chosen such that the resulting density f (l) is non-negative for l ∈ [0, 1]. The latter can be written as:

5 Conclusions

 5 Two-step random walks in Euclidean space R d , with fixed sums of step lengths, taken as equal to 1, have been investigated with the aim of constructing in a simple way continuous step length distributions which yield hyperuniform random walks. For the latter walks, the endpoint positions are spread out as are the projections in the walk space of points uniformly distributed on the surface of the unit hypersphere in R k with k > d. When k = d + 2, a hyperuniform random walk becomes uniform on the unit ball of R d . Two random walks, the first with an asymmetric distribution of step length and the second with a permutation invariant step length distribution associated with the latter, have identical endpoint distributions. Symmetric distributions are thus the true reference distributions of step length as the equivalence between the two steps cancels an eventual initial asymmetry. As shown in section 4.4, an infinity of continuous asymmetric step length pdfs can be constructed from a given symmetric pdf. We have derived the unique symmetric continuous distributions of step length on [0, 1] which yield hyperuniform two-step random walks. We have proven that the latter walks exist only for d + 1 ≤ k ≤ 2d -1. Interestingly, the derived step length distributions for the two largest possible values of k, 2d -2, 2d -1 are Dirichlet distributions which reduce and substituting l(1 -l)G (l) + 3d -k 2 -(3d -k)l G (l) -d(2d -1 -k)G(l) = 0 (B.1)

For - 1 2 F 1 (Proposition 3 1 .

 12131 < r < 1 the change of variable l = 1+r 2 in (B.[START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] gives(1 -r 2 )F (r) -(3d -k)rF (r) -d(2d -1 -k)F (r) = 0 where F (r) = G( 1+r2 ). This is the the Gegenbauer equation which has a unique symmetric solution such that: F (0) = C and F (0) = 0. It is F (r) = C × , pag. 65, the density (15) is easily retrieved.In the following proposition we prove that the only hyperuniform random walks HU d (k) which are at the same time symmetric Dirichlet random walks are obtained for k = 2d -1 and k = 2d -2 as shown in eqs (20) and[START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF].Suppose that f L (l) = C [l(1 -l)] α-1 , then S d (L) is HU d (k) if and only if k = 2d -1 and α = d -1 or k = 2d -2 and α = d 2 -Proof Suppose that f d,k (l) = C [l(1 -l)] α-1 . Then G(l) = C [l(1 -l)] α-d+1and we haveG (l) = (α -d + 1) [l(1 -l)] α-d (1 -2l) G (l) = (α -d + 1) [l(1 -l)] α-d-1 {(α -d)(1 -2l) 2 -2l + 2l 2 }So from (B.1) we obtain:(α -d + 1){(α -d)(1 -2l) 2 -2l + 2l 2 } + 3d -k 2 (α -d + 1)(1 -2l) 2 -d(2d -1 -k)(l -l 2 ) = 0 which is of the form Bl 2 -Bl + A = 0 with A = (α -d + 1){(α -d) + 3d -k 2 } and B = 4(α -d + 1)(α -d) + 2(α -d + 1) + 2(3d -k)(α -d + 1) + d(2d -1 -k)From the condition A = B = 0, we get the only solutionsk = 2d -1, α = d -1 and k = 2d -2, α = d 2 -1.

to beta distributions in the case of two steps. The question naturally arises as to whether it is possible to construct permutation invariant continuous distributions of step lengths which yield hyperuniform walks for any space dimension and any number of steps. In any case, the step length distributions of uniform random walks cannot be of the Dirichlet type as soon as d ≥ 4 for a number of steps at least equal to three [START_REF] Franceschetti | When a random walk of fixed length can lead uniformly anywhere inside a hypersphere[END_REF][START_REF] Kolesnik | Random motions at finite speed in higher dimensions[END_REF][START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF][START_REF] Orsingher | Random Flights in Higher Spaces[END_REF]. Indeed, uniform three-step walks are obtained solely for the two following symmetric Dirichlet densities (table 2 of [START_REF] Le Caër | A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths[END_REF]

Appendix

A. Multivariate Dirichlet distribution from gamma distributions

The probability density function p X (x) of a gamma random variable X , is [START_REF] Fang | Symmetric multivariate and related distributions[END_REF] p

We denote it here as X ∼ γ(α, θ) where α > 0 is the shape parameter and θ > 0 the scale parameter while Γ (α) is the Euler gamma function. The characteristic function of

with identical scale parameter θ and a priori different shape parameters

, where nq is the sum n i=1 q i . This is for instance deduced from the characteristic function of G,

From the previous set of n = m + 1 independent gamma random variables, we define a random vector

. Its pdf is shown to be ( [START_REF] Fang | Symmetric multivariate and related distributions[END_REF] p. 17)

When the shape parameters are all equal to q, i. e. when G i ∼ γ(q, θ)

Finally, when the G i 's are exponentially distributed, q = 1, the random vector L (n) is uniformly distributed over the unit (n -1) simplex as

B. Hypergeometrical differential equation characterization

We recall that F (l) := 2 F 1 (a, b; c; l) is the solution of the following differential equation:

[l(1-l)] d-2 , by [START_REF] Le Caër | A New Family of Solvable Pearson-Dirichlet Random Walks[END_REF], we get

Taking the derivative two times, we obtain G (l) = C F (l) -F (1 -l) and G (l) = C F (l) + F (1 -l)