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MULTIPLE SHAPE REGISTRATION USING CONSTRAINED OPTIMAL CONTROL

SYLVAIN ARGUILLÈRE, EMMANUEL TRÉLAT, ALAIN TROUVÉ, AND LAURENT YOUNES

ABSTRACT. Lagrangian particle formulations of the large deformation diffeomorphic metric map-
ping algorithm (LDDMM) can be numerically challenging when the number of particles is large.
In this paper, we introduce and discuss numerical schemes useful for surface and image matching,
which are based on representing the Eulerian velocity over a finite-dimensional basis that deforms
in time. The method is described within the optimal control formalism, and optimality conditions
are derived, together with the equations that are needed to implement gradient-based methods. Ex-
perimental results are shown, both with surfaces and images.

1. INTRODUCTION

The large deformation diffeomorphic metric mapping (LDDMM) approach to shape match-
ing is a powerful topology-preserving registration method with an increasing record of success-
ful applications in medical imaging. It was first described in [38] for point sets and in [17, 59,
46, 8] for images and has become widely used in the medical imaging literature and other ap-
plications. While deeper understanding and extensions of the underlying theoretical framework
was pursued [47, 22, 10, 48, 70, 21, 71, 9, 2] and alternative numerical methods were designed
[5, 14, 60, 49, 29, 64, 4, 28, 18], LDDMM has been applied to medical imaging data including
brain [45, 77, 52, 11, 54], heart [1, 6] and lung [65] images. This algorithm provides a non-rigid
registration method between various types of objects (point sets, curves surfaces, functions, vector
fields. . . ) within a unified framework driven by Grenander’s concept of deformable templates [25].
It optimizes a flow of diffeomorphisms that transform an initial object (shape) into a target one.

The practical importance of shape registration is underlined by the increasing amount of work
that has flourished in the literature over the past few years. LDDMM is one among many methods
that have been proposed to perform this task. Several such methods are based on elastic matching
energies [7, 16], and other, like LDDMM, inspired by viscous fluid dynamics [12, 57, 62, 3, 63].
For surfaces, which will be our main focus, several authors have developed approaches to find
approximate conformal parametrizations with respect to the unit disk or sphere [33, 31, 36, 26,
37, 68, 34, 27, 35]. More recently, quasi-conformal parametrizations based on the minimization of
the Beltrami coefficient have been designed [75, 41, 67]. Another class of non-rigid registration
methods include those based on optimal mass transportation [30, 32, 39, 40], while [44, 42, 43]
introduce comparison methods based on Gromov–Hausdorff or Gromov–Wasserstein distances.
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Computational methods based on integer programming and graph optimization have also been
recently introduced [76, 78, 23]. We also refer the reader to the survey papers [79, 15, 69, 72] and
textbooks [24, 71] for additional entries on the literature.

In this paper, we discuss an extension of the LDDMM framework, in which multiple shapes are
registered simultaneously within a deformation scheme involving contact constraints among the
shapes. This is represented and solved as a constrained optimal control problem, in the spirit of
the general framework recently introduced in [2].

Indeed, one of the characteristics of LDDMM is that it derives shape deformation from a global
diffeomorphisms of the whole ambient space considered as a homogeneous medium, and does not
allow for a differentiation of the deformation properties assumed by the shapes, or, more precisely,
the objects they represent. This crude modeling may provide results that are not realistic in some
applications. Consider the situation in which one studies several shapes, representing, for example,
different sub-structures of the brain. In this case, if one assumes that all shapes are deformed by a
single flow of diffeomorphisms, shapes coming too close to one another will undergo a tremendous
deformation, which creates artifacts that can mislead subsequent analyses. One would rather asso-
ciate a different diffeomorphism to each shape, independent from the others, but the issue is that
the resulting collection of diffeomorphisms may not be consistent: the shapes could overlap along
the deformation. The solution briefly introduced in [2] and developed in this paper is the following:
embed the shapes into a ”background”, complement of the shapes, deformed by a new, indepen-
dent deformation, and add constraints such that, as all the shapes are simultaneously transformed,
their boundary moves with the boundary of the background so that the configuration consistency
is preserved. This is the approach that we develop here, focusing on surface registration. Note that
a multi-diffeomorphism approach has been recently developed for image matching [55], each dif-
feomorphism being restricted to a fixed region of the plane. The main (and fundamental) contrast
with what we develop here is that, in our case, these subregions are variable and optimized, while
they were fixed in [55]. The models along which sliding constraints are addressed in this paper
and ours also differ.

This paper is organized as follows. We start by recalling the classical LDDMM algorithm in Sec-
tion 2, setting the definitions, notation and appropriate framework for the rest of the paper. Then,
in Section 3, we introduce rigorously the concept of multishape, describe identity and sliding back-
ground constraints, and describe the augmented Lagrangian algorithm for general constraints that
will be used for in our numerical simulations. Section 4 follows, specializing the algorithm to the
case of identity and sliding constraints in great details. Finally, Section 5 applies our method to
synthetic examples to to real data as well.

2. LARGE DEFORMATION DIFFEOMORPHIC METRIC MAPPING

2.1. Notation. In this paper, we define a shape as a Cp embedding q : M → Rd, where M is a
compact manifold. We denote byM the corresponding shape space, which is an open subset of
the Banach space Q = Cp(M,Rd).

Typical examples are as follows:
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• M = {1, . . . ,m} is finite, and q can be identified with a collection q1, . . . , qm of distinct
points in Rd.
• M = [0, 1] and q is a curve in Rd.
• M = Sd−1 (the unit sphere in Rd) and q is a hypersurface.

Our goal is to discuss models in which several shapes can deform, while being subject to contact
constraints. The deformation process will be similar to the one designed for large deformation
diffeomorphic metric mapping (LDDMM), which can be formulated as an optimal control problem.
Before introducing our general framework, it will be easier to start with a description of the now
well explored single-shape problem upon which we will build. For this, we let (V, ‖ · ‖V ) be a
Hilbert space of vector fields on Rd, assumed to be continuously imbedded in the space B :=
Cp

0 (Rd,Rd), the completion of the space of smooth compactly supported vector fields for the norm
‖ · ‖p,∞, which denotes the sum of supremum norms of derivatives of order p or less, with p ≥ 1.
Then V possesses a reproducing kernel, that is a mapping K : (x, y) 7→ K(x, y), defined over
Rd×Rd, with values in the space of d× d matrices, such that all partial derivatives with order less
than p with respect to each variable exist and

K(·, y)a ∈ V with 〈K(·, y)a , w〉V = aTw(y),

for all (a, y) ∈ (Rd)2. The LDDMM algorithm uses flows of time-dependent vector fields v(·) ∈
L2(0, 1;V ).

2.2. Registering Two Shapes Using LDDMM.

2.2.1. General Problem. The general LDDMM problem is formulated as the infinite-dimensional
optimal control problem consisting of minimizing the cost functional

(1) F (v) =
1

2

∫ 1

0

‖u(t)‖2V dt+ U(q(1)),

subject to the constraint

∂tq(t) = u(t) ◦ q(t) for a.e. t ∈ [0, 1],

q(0) = qinit .
(2)

This differential constraint is a control system, where the control is the time-dependent vector
field u(·) ∈ L2(0, 1;V ), the solution of which is q(t, ·) = ϕ(t, qinit(·)) where ϕ is the flow of
diffeomorphisms generated by u(·), defined as the unique solution of the Cauchy problem ∂tϕ(t) =
u(t)◦ϕ(t), ϕ(0) = idRd . For every time t, we have ϕ(t, ·) ∈ Diff p, the set of p-times differentiable
diffeomorphisms in Rd.

The function U is a matching cost function, that is, a penalization that pushes the solution of
(1)-(2) towards a target. It will be assumed to be Fréchet differentiable from Q to R. To simplify
the discussion, and because this covers most of the interesting cases in practice, we will assume
that there exists some fixed measure νM on M such that its derivative, denoted dU(q) or dUq
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when evaluated at q ∈ Q, can be expressed in the form dUq = zqνM for some (νM -measurable)
zq : M → Rd, meaning that

∀h ∈ Cp(M,Rd), (dUq |h) =

∫
M

h(m) · zq(x) dνM(x).

Throughout the paper, for any Banach space X , the notation (µ | v) will be used to designate the
application µ(v) of a linear form µ ∈ X∗ to a vector v ∈ X .

Under these assumptions, one can prove that the gradient of the objective function F defined by
(1) (which is a mapping on L2([0, 1], V )) is given by

∇V F̃ (u)(t, ξ) = u(t, ξ)−
∫
M

K(ξ, q(t, x))α(t, x) dνM(x),

where K is the reproducing kernel of V , and α : [0, 1] ×M → Rd is a time-dependent function
defined by α(1, ·) = −zq(1) and

(3) ∂tα = −(du ◦ q)Tα.

This result implies, in particular, that the solutions of (1)-(2) must satisfy the Pontryagin maxi-
mum principle (see [51, 58]), which is the following first-order necessary condition for optimality.
Let Hu be the Hamiltonian defined by

Hu(ρ, q) = (ρ |u ◦ q)− 1

2
‖u‖2V ,

for every u ∈ V , every q ∈ Q and every ρ ∈ Q∗. If u(·) is an optimal control, solution of the
optimal control problem (1)-(2), then it must be such that

(4) u(t) = argmaxwHw(ρ(t), q(t)),

where (ρ, q) are solutions of {
∂tq(t) = ∂ρHu(ρ(t), q(t)),

∂tρ(t) = −∂qHu(ρ(t), q(t)),

(ρ is the so-called co-state, or adjoint state) and ρ(1) = −dUq(1). Indeed, it suffices to take
ρ(·) = α(·)νM and to use properties of the reproducing kernel to check that all the conditions are
satisfied. Moreover, (4) then implies that u =

∫
M
K(·, q(x))α(x) dνM at every time.

2.2.2. Examples of shapes and matching cost functions.
Example 1. To start with a simple example, letM = {1, . . . ,m} so that a shape q = (q(1), . . . , q(m))
is a collection of landmarks, and consider the landmark matching cost function defined by U(q) =∑m

k=1 |q(k) − yk|2, for fixed y = (y1, . . . , ym) ∈ RN , in which | · | is the Euclidean norm on Rd.
We then have

(dUq |h) = 2
m∑
k=1

(q(k)− yk)Th(k) ,
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or, to interpret this result in the general form provided above, dUq = zνM with z(k) = 2(q(k)−yk)
and νM the counting measure on {1, . . . ,m}.

Example 2. If µ is a scalar measure on Rd and z a µ-integrable Rd-valued function defined on
support(µ), we will denote by zµ the vector measure such that

(zµ |w) =

∫
support(µ)

z · w dµ,

where z · w denotes the standard euclidean dot product.
Vector measures of the form zµ are continuous linear forms over any space that is continuously

imbedded in C0
0(Rd,Rd), and in particular over any reproducing kernel Hilbert space W . For such

a space, equipped with a reproducing kernel χ, the operator norm of zµ is given by

‖zµ‖2χ =

∫∫
z(x) · (χ(x, y)z(y)) dµ(x) dµ(y),

and more generally, the norm of the difference between two such measures is

‖zµ− z̃µ̃‖2χ =

∫∫
z(x) · (χ(x, y)z(y)) dµ(x) dµ(y)

− 2

∫∫
z(x) · (χ(x, y)z̃(y)) dµ(x) dµ̃(y) +

∫∫
z̃(x) · (χ(x, y)z̃(y)) dµ̃(x) dµ̃(y).

Note that W and V have no relationship one to each other, except that both have a continuous
inclusion in C0

0(Rd,Rd), so that χ is different from K.
One can deduce from this the surface-matching cost function introduced in [61], in which an

oriented surface S is represented as a geometric current and a dual-RKHS norm between currents
is used. Identifying surface currents with vector measures, this leads to the representation of S
given by µS = NSσS , where NS is the unit normal to S and σS its volume form. Assume that M
(the parameter space) is an oriented 2D manifold so that S = q(M) is a surface, and let η be a
positively oriented volume form on M . For m ∈ M let Nq(x) ∈ R3 denote the “area-weighted
normal” to S = q(M) at q(x), defined by Nq(x) = dqxe1 × dqxe2 where (e1, e2) is an arbitrary
basis of TxM such that ηx(e1, e2) = 1. Then

(µS |w) =

∫
M

(w ◦ q ·Nq) dη,

for every w ∈ C0
0(R3,R3).

Now, given a reproducing kernel χ and a target surface S̃ = q̃(M), we define the surface-
matching cost by

U(q) = ‖µq(M) − µq̃(M)‖2χ.
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Example 3. This cost function is actually a special case of the most general framework in which
one compares compact k-dimensional oriented submanifolds of Rd, which we briefly discuss here-
after. Given such a manifold, S, with a global parametrisation q : M → S, one can associate
to any ω ∈ Cp

0 (Rd, (ΛkRd)∗) (the set of Cp differential k-forms on Rd that vanish at infinity), its
integral

(CS |ω) =

∫
S

ω =

∫
M

q∗ω,

where q∗ω denotes the pull-back of ω on M . An RKHS, W̃ , of such forms, is a Hilbert space
continuously embedded in Cp

0 (Rd, (ΛkRd)∗), with kernel χ̃(x, y) taking values in the space of
bilinear functions on ΛkRd×ΛkRd. The linear form CS then belongs in W̃ ∗, and is a special form
of a geometric current, as defined in [20]. If S = q(M) and S̃ is a target manifold, they can be
compared using the operator norm

(5) U(q) = ‖Cq(M) − CS̃‖
2
W̃ ∗
.

Now, if we consider q̂ : M̂
.
= (−1, 1) ×M → Rd a smooth perturbation of q such that qε =

q + εδq + o(ε) where qε(x) = q̂(ε, x) for ε ∈ (−1, 1) and x ∈M , we have, for Mε
.
= {ε} ×M ,

(dUq | δq) =
d

dε

(∫
M

q∗εω

)
|ε=0

=
d

dε

(∫
Mε

q̂∗ω

)
|ε=0

=

∫
M0

L∂/∂ε(q̂∗ω),

where L∂/∂ε is the Lie derivative along the vector field ∂
∂ε

on M̂ (which is equal to (1, 0) ∈ R ×
TmM at any location (ε, x) ∈ M̂ ) and

(6) ω = 2KW̃ (Cq(M) − CS̃),

with KW̃ the isometry from W̃ ∗ to W̃ . We next show that

(dUq | δq) =

∫
M

αq · δq volM +

∫
∂M

βq · δq vol∂M,

where volM and vol∂M are the positive Riemannian volume forms on M and ∂M , and αq : M →
Rd (resp. βq : ∂M → Rd) is such that αq(x) is normal to S = q(M) (resp. βq(x) is normal to
∂S = q(∂M)) at q(x). Using the Cartan magic formula we get

L∂/∂ε(q∗ω) = i∂/∂εd(q∗ω) + d(i∂/∂ε(q
∗ω)) ,

so that, applying the Stokes theorem,

(dUq | δq) =

∫
M0

i∂/∂ε(q̂
∗dω) +

∫
∂M0

i∂/∂ε(q̂
∗ω),

where i∂/∂ε denotes the contraction operator. Note that, for ξ1, . . . , ξk ∈ TxM ,

i∂/∂ε(q̂
∗dω)(0,x)(ξ1, · · · , ξk) = dωq(x)(δq(x), dqxξ1, . . . , dqxξk)

= dωq(x)(δq
⊥(x), dqxξ1, . . . , dqxξk),
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where δq⊥(x) denotes the projection of δq(x) on Tq(x)S
⊥ (since the form vanishes if δq(x) ∈

Tq(x)S = Tq(x)q(M)). Since the set of k-forms is a one-dimensional space on M , this means that
we can write, for some function αq such that αq(x) ∈ (Tq(x)S)⊥, with x ∈M ,

i∂/∂ε(q
∗dω)(0,x) = ((δq · αq) volM)x .

Similarly,
i∂/∂ε(q

∗ωq)(0,x) = ((δq · βq)vol∂M)x,

for βq(x) ∈ (Tq(x)∂S)⊥.
The data term defined in (5) is derived from this general construction, using the fact that two-

forms in R3 (or (d − 1)-forms in Rd) can be identified with vector fields via ωx(e1, e2) = w(x) ·
(e1 × e2). The current CS is then identified with the vector measure µS . The form ω introduced in
(6) becomes, introducing a global parametrizaion q̃ : M → S̃ of the target S̃, the vector field

w(·) = 2

∫
Rd
χ(·, y) d(µq(M) − µq̃(M))(y).

With this identification, we have αq = div(w) ◦ q Nq where Nq is the oriented “area-weighted”
normal to S at q(x) defined previously, and βq = τq × w ◦ q, where τq is the oriented “length-
weighted” tangent to q(∂M) given as τq(x) = dqxe1, where e1 is the unit positively oriented
tangent vector at x along ∂M .

Example 4. Returning to surfaces, the discrete case, in which triangulated surfaces are compared,
is, for practical purposes, even more important. We here also consider the case M = {1, . . . ,m},
with an additional family F of facets, which are ordered triples (i, j, k) with i, j, k ∈ M . (We
assume that F is a consistent with a manifold structure: The set Vi of indices that share a facet with
i must form a chain and no pair of indices can be included in more than two facets.)

Given a one-to-one mapping q : M → R3, define Sq as the collection of triangles Sq =
{(q(i), q(j), q(k)), (i, j, k) ∈ F}. If f = (i, j, k), let q(f) = (q(i), q(j), q(k)), Nq(f) = (q(j) −
q(i)) × (q(k) − q(i)) and cq(f) = (q(i) + q(j) + q(k))/3 respectively denote the triangle, area-
weighted normal and center associated to the facet f . Following [61], we define the vector measure
associated to q by

µq =
∑
f∈F

Nq(f)δcq(f).

Here, δx (with x ∈ R3) denotes the atomic measure of mass 1 with support {x}. The (discrete)
surface matching cost associated to a target q̃ is then defined by

U(q) = ‖µq − µq̃‖2χ.
Note that q̃ does not need to be consistent with q, and can be defined on a different set of indices,
M̃ = {1, . . . , m̃} and triangle structure F̃ . One then has dUq = αqνM , where, as above, νM is the
counting measure on M , and

αq(i) =
∑

f∈F,i∈f

(dZT
cq(f)Nq(f)/3 + eq(f, i)× Z(cq(f))),
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with eq(f, i) = q(k)− q(j) the oriented edge opposed to q(i) in q(f), and

Z(·) =
∑
f∈F

χ(·, cq(f))Nq(f)−
∑
f̃∈F̃

χ(·, cq̃(f̃)Nq̃(f̃).

2.2.3. Reduced Problem. Since the optimal control must satisfy

(7) v =

∫
M

K(·, q(t, x))α(t, x) dνM

for some function α defined on M , it is natural to parametrize v by α and use this function as a
new control. We define the inner product

〈α , β〉q =

∫
M×M

α(x)TK(q(x), q(x̃))β(x̃) dνM(x) dνM(x̃)

between two measurable functions α and β defined on M . If v is given by (7), the reproducing
property of the kernel implies that ‖v‖2V = ‖α‖2q . The optimal control problem (1)-(2) is then
equivalent to the reduced problem consisting of minimizing the cost functional

(8) F (α) =
1

2

∫ 1

0

‖α(t)‖2q(t) dt+ U(q(1)),

subject to the constraint (control system)

(9) ∂tq(t, x) =

∫
M

K(q(t, x), q(t, x̃))α(t, x̃)dνM(x̃),

almost everywhere over the time interval [0, 1].
According to [6, 13, 61, 73], we have∇F (α) = α−p, where p (the co-state) is a time-dependent

vector-valued measurable function on M such that p(1)νM = −dUq(1) and

∂tp(t) = −∂q
(
〈p(t) , α(t)〉q − ‖α(t)‖2q(t)/2

)
,

where q is defined by (9). Here, the gradient is computed with respect to the inner product 〈· , ·〉q.

3. MULTIPLE SHAPE PROBLEMS

3.1. Motivating Examples. In the previous formulation, the shape evolution was controlled by
a single, smooth vector field v, inducing a single diffeomorphism of Rd restricted to the con-
sidered shape. This approach has been successfully used to model variations of single, homo-
geneous shapes, and led to important applications in computational anatomy, including, among
many other examples, the impact of pathologies like Huntington disease [74], schizophrenia [53],
and Alzheimer’s disease [66, 19, 54] on brain structures. This deformation model, however, is
not well adapted in situations in which several shapes interact, or situations in which shapes have
heterogeneous parts. Let us review some motivating examples.
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(1) Consider a schematic representation of a kite, or a manta ray, composed with a two-
dimensional surface, representing the body, and an open curve attached to it represent-
ing the tail. When comparing two such objects, the body is assumed to only show small
differences in shape, while the tail can vary widely.

(2) Consider a two-dimensional representation of a mouth, with two curves representing the
upper and lower lip. Because the mouth can be wide open or closed, it is not possible to
consider its deformations as resulting from the restriction of a smooth diffeomorphism of
R2.

(3) Finally, it is natural, when analyzing multiple organs in the human body, to consider multi-
ple shapes, each of them being relatively stable (only subject to small deformations) while
their position with respect to each other is subject to larger variations, so that the back-
ground (the intersection of their complements) is subject to very large deformations. Here
again, modeling the whole process with a single diffeomorphism is not adequate.

These examples suggest using multiple deformations applied to each component of the con-
sidered model. Generalizing (1)-(2), consider parameter spaces M1, . . . ,Mn for an n-component
model. Each shape, or component, is a mapping q(k) ∈ Qk : Mk → Rd. The shape space will
then be Q = Q1 × · · · × Qn. To each shape, associate a control uk ∈ Vk, where Vk is an RKHS
embedded in Cp

0 (Rd,Rd) with the state evolution equation ∂tq(k) = uk ◦ q(k). We can then choose
each Vk according to how “wildly” we want to allow the k-th shape to deform. These evolutions,
however, must be consistent with each other, implying contact constraints that we will consider in
two forms:

• Identity constraints: These are constraints that make a subset of the k-th shape stay
stitched to a subset of the l-th shape, so that these subsets coincide in Rd and move identi-
cally along the deformation. Given some pair (k, l) ∈ {1, . . . , n}2, and given a one-to-one
mapping gkl : Akl ⊂Mk → Alk = gkl(Akl) ⊂Ml, one has q(k)(x) = q(l)(gkl(x)) for every
x ∈ Akl.
• Sliding constraints: These are constraints that force a closed submanifold of the k-th

shape to slide on a corresponding submanifold of the l-th shape along the deformation, for
all (k, l). Here, we assume that all parameter spaces are orientable differential manifolds,
and that all q(k)’s are immersions. Given some pair (k, l) ∈ {1, . . . , n}, and a closed
submanifold without boundary Akl ⊂ Mk, there exists a diffeomorphism gkl : Akl →
Alk ⊂ Ml onto a fixed closed submanifold Alk of Ml such that q(k)(x) = q(l)(gkl(x)) for
every x ∈ Akl.

Let us turn back to the examples mentioned at the beginning of the section. For Example (1),
we can take M1 = S2 and M2 = [0, 1], and, letting x0 represent the north pole in S2, impose
q(1)(x0) = q(2)(0). We can then assign different deformation models to q(1) and q(2) via the metrics
on V1 and V2.

Example (2) requires a slightly more complex construction, that only imperfectly addresses
the issue. Let M1 = M2 = [0, 1] and M3 = {1, 2} × [0, 1]. Let q(1) represent the upper lip,
q(2) the lower one and q(3) their union. We use the identity constraints q(1)(1) = q(2)(0) and
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q(2)(1) = q(1)(0) for the extremities of each lip, and q(3)(1, ·) = q(1)(·), q(3)(2, ·) = q(2)(·). We
take V1 = V2 and choose V3 such that the latter allows for large deformations at a small cost. With
this model, it becomes easier to “almost” close the mouth, although the deformation inside the
mouth must remain diffeomorphic, so that the closing cannot go all the way.

For Example (3), there are n shapes, n − 1 of which are associated with the organs, and the
last of which represents the background. For example, we can take Mk = S2 for k = 1, . . . , n −
1, and Mn = {1, . . . , n − 1} × S2. Assuming that the shapes do not intersect, we can define
identity or sliding constraints for the background, enforcing q(n)(k, ·) = q(k)(·) or q(n)({k}×S2) =
q(k)(S2) = Sk for k ∈ {1, . . . , n− 1} during the deformation.

3.2. Induced Constraints. The previous constraints can be reformulated as equality constraints
involving the state and control. Identity constraints q(k)(x) = q(l)(g(x)) are equivalent (taking time
derivatives) to uk(t, q(k)(t, x)) = ul(t, q

(l)(t, g(x))) as soon as the constraints are satisfied at time
t = 0, which we obviously assume.

Making the same assumption, sliding constraints can be expressed as

(10) N (k)(t, q(k)(t, x))T (uk(t, q
(k)(t, x))− ul(t, q(k)(t, x))) = 0,

where N (k)(t, q(k)) is a d× (d−dim(Akl)) matrix consisting of independent vectors perpendicular
to Tq(k)Bkl(t) (e.g, a normal frame to Bkl), with Bkl = q(k)(Akl) for every (k, l). Let us briefly
justify this statement.

We express the sliding constraint as q(k)(t, x) = q(l)(t, g(t, x)) for some diffeomorphism g(t, ·) :
Akl → Alk, assuming a differentiable dependency on time. Taking time derivatives, we get

uk(t, q
(k)(t, x)) = ul(t, q

(l)(t, g(t, x))) + dq(l)(t, g(t, x))∂tg(t, x), x ∈Mk.

Since q(l)(t, g(t, x)) = q(k)(t, x), we obtain

uk(t, q
(k)(t, x))− ul(t, q(k)(t, x)) = dq(l)(t, g(t, x))∂tg(t, x)

= dq(k)(t, x)dg(t, x)−1∂tg(t, x),

which is tangent to Bkl at x. Note that, since the image of g(t, ·) is Alk for every time t, we do have
∂tg(t, x) ∈ Tg(t,x)Alk = dg(t, x)(TxAkl), so dg(t, x)−1∂tg(t, x) is well-defined.

Conversely, assume that (10) holds for every x ∈ Akl, with q(k)(0, x) = q(l)(0, g0(x)) for some
diffeomorphism g0 : Akl → Alk ⊂Ml. Then for every time t, the mapping

w : x ∈ Akl 7→ dq(k)(t, x)−1(uk(t, q
(k)(t, x))− ul(t, q(k)(t, x))︸ ︷︷ ︸

∈ T
q(k)(x)

Bkl

) ∈ TxAkl

defines a time-dependent vector field on Akl. Since Akl is a closed manifold, this vector field is
complete, and we denote its flow by h(t, ·) : Akl → Akl. Then

∂tq
(k)(t, h(t, x)) = uk(t, q

(k)(t, h(t, x))) + dq(k)(t, h(t, x))∂th(t, x)

= ul(q
(k)(t, h(t, x))),
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where the last identity holds for every x ∈ Akl, so that q(k)(t, h(t, x)) and q(l)(t, g0(x)) satisfy the
same differential equation with the same initial condition and therefore coincide. Hence, letting
g(t, x) = g0(h

−1(t, x)), we obtain q(l)(t, g(t, x)) = q(k)(t, x) for every x ∈ Akl.
It is possible to extend this construction to the case where Akl is a compact manifold with

boundary. In this case, the matrix N (k)(t) must consist of a normal frame along ∂Bkl(t) and
possesses therefore an extra column, and we get an additional constraint along the boundary of
Akl.

We will need the constraints to depend smoothly on q, and therefore we will need a smooth
representation of the normal space to q (a smooth map q 7→ N(q)) in order to be able to use (10).
When this is not possible (or convenient), one can also use the alternative approach of introducing
a new state, say N (k)(t, x), evolving according to

(11) ∂tN
(k) = −duk(q(k))TN (k),

which ensures that N (k)(t, x) remains perpendicular to Tq(k)(t,x)Sk as soon as this holds true at
t = 0. The constraint N (k)(t, x)T (uk(t, q

(k)(t, x)) − ul(t, q(k)(t, x))) is now a smooth function of
the extended state.

The two problems that we consider are therefore special cases of the general problem considered
in [2], which is the problem of minimizing the cost functional

(12)
1

2

n∑
k=1

∫ 1

0

‖uk(t)‖2Vk dt+
n∑
k=1

Uk(q
(k)(1)),

subject to the constraints

(13) ∂tq
(k)(t) = uk(t, q

(k)(t)), and C(q(t))u(t) = 0,

almost everywhere over the time interval [0, 1], where C :M→ L(V,Y) takes values in the space
of bounded linear operators from V to a Banach space Y . Here, we have V = V1 × · · · × Vn and
q = (q(1), . . . , q(n)).

The study of this constrained optimal control problem, and in particular, the derivation of its
first-order optimality conditions (of the type of Pontryagin maximum principle), is challenging in
this infinite-dimensional setting. In [2], it is proved that, under some differentiability conditions,
and under the important assumption that C(q) is surjective for every q ∈ M, optimal solutions
must be such that there exist p = (p(1), . . . , p(n)) ∈ H1([0, 1],Q∗) and λ ∈ L2([0, 1],Y∗) that
satisfy

(14)



∂tq
(k) = uk(q

(k)),

∂tp
(k) = −∂q(k)

(
p(k) |uk(q(k))

)
− ∂q(k)(λ |C(q)u),

〈uk, v〉Vk = −
(
p(k) | v ◦ q(k)

)
− (λ |Ck(q)v), v ∈ Vk,

n∑
k=1

Ck(q)uk = 0,
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where Ck(q)uk = C(q)(0, . . . , 0, uk, 0, . . . , 0).
Unfortunately, the constraints C(q) that correspond to our identity or contact constraints are,

in general, not surjective, and the results of [2] cannot be applied in a fully general infinite-
dimensional context. However, surjectivity becomes almost straightforward when these constraints
are discretized to a finite number. They are true as soon as the points involved in the constraints are
all distinct, which is a mild assumption. We now proceed to the description of a discrete version
of this approach.

4. DISCRETE APPROXIMATIONS

4.1. Augmented Lagrangian. As an example, and to simplify the presentation, we detail our
implementation for multi-shape problems in which shapes interact (through constraints) with a
background, but not directly with each other. Direct interactions between shapes can be handled in
a similar way. Our constrained optimization method uses the augmented Lagrangian method (see,
e.g., [50]). In a nutshell, in order to minimize a function u 7→ F (u) subject to multi-dimensional
equality constraints C(u) = 0, the augmented Lagrangian method consists of considering the
functional

L(u) = F (u)− λ · C(u) +
µ

2
|C(u)|2,

in which λ lives in the dual space of the space of constraints Y , and µ is a positive real number.
Each iteration of the algorithm consists in minimizing L with fixed λ and µ (our implementation
using nonlinear conjugate gradient) until the gradient norm passes below some upper bound, and
then in updating λ according to the rule

λ← λ− µC(u),

before running a new minimization of L. The constant µ is increased only if needed, i.e., if the
norm of the constraint did not decrease enough during the minimization. More details can be found
in [50].

We first apply this to identity constraints, which only require the shapes to be discretized into a
sets of points. We will then discuss sliding constraints, which will require more structure in order
to define normal frames to the boundary.

4.2. Identity Constraints. We consider n− 1 objects, discretized into point sets, so that Mk is a
finite set of indices for each k. Let x(k)

j = q(k)(j) and x(k) = (x
(k)
1 , . . . , x

(k)
mk), for k = 1, . . . , n− 1,

with mk = |Mk|. We add as n-th object the background, defined on Mn = ({1} ×M1) ∪ · · · ∪
({n − 1} ×Mn−1). We let z(k)

j = q(n)(k, j), z(k) = (z
(k)
1 , . . . , z

(k)
mk) and z = (z(1), . . . , z(n−1)) (a

collection of m = mn = m1 + . . .+mn−1 points).
Assume that end-point cost functions U1(x

(1)), . . . , Un−1(x
(n−1)) are defined, typically measur-

ing the discrepancy between each collection of points and an associated target. We assume similar
functions Ũ1(z

(1)), . . . , Ũn−1(z
(n−1)) for the background, typically using Uj = Ũj . The associated
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constrained optimal control problem consists in minimizing the cost functional

1

2

n∑
k=1

∫ 1

0

‖uk(t)‖2Vk dt+
n−1∑
k=1

Uk(x
(k)(1)) +

n−1∑
k=1

Ũk(z
(k)(1)),

subject to the constraints (almost everywhere along [0, 1])
∂tx

(k)
j = uk(x

(k)
j ) j = 1, . . . ,mk, k = 1, . . . , n− 1,

∂tz
(k)
j = un(z

(k)
j ), j = 1, . . . ,mk, k = 1, . . . , n− 1,

z(k) = x(k), k = 1, . . . , n− 1.

For y and y′ ordered families of points in Rd, let K(k)(y, y′) be the matrix formed with all d× d
blocks KVk(yi, y

′
j), and let K(k)(y) = K(k)(y, y), for k = 1, . . . , n, where KVk is the kernel of Vk.

Since the problems only depend on the values taken by u1, . . . , un on their corresponding point set
trajectories x(1), . . . , x(n−1), z, the optimal vector fields take the form

uk(·) = K(k)(·, x(k))α(k), k = 1, . . . , n− 1,

un(·) = K(n)(·, z)β,

for some families of d-dimensional vectors α(1), . . . , α(n−1), β. The problem can therefore be re-
duced to the finite-dimensional optimal control problem consisting in minimizing the cost func-
tional

E(α, β, x, z) =
1

2

n−1∑
k=1

∫ 1

0

α(k) · (K(k)(x(k))α(k)) dt+
1

2

∫ 1

0

β · (K(n)(z)β) dt

+
n−1∑
k=1

Uk(x
(k)(1)) +

n−1∑
k=1

Ũk(z
(k)(1))

subject to the constraints (almost everywhere along [0, 1])
∂tx

(k) = K(k)(x(k))α(k),

∂tz = K(n)(z)β,

z(k) = x(k), k = 1, . . . , n− 1.

Extending E with the augmented Lagrangian method, we introduce coefficients λ(k), k =
1, . . . , n− 1 (where λ(k) has the same dimension as x(k)) and µ > 0, defining

L(α, β, x, z) =
1

2

n−1∑
k=1

∫ 1

0

α(k) · (K(k)(x(k))α(k)) dt+
1

2

∫ 1

0

β · (K(n)(z)β) dt+
n−1∑
k=1

Uk(x
(k)(1))

+
n−1∑
k=1

Ũk(z
(k)(1))−

n−1∑
k=1

∫ 1

0

λ(k) · (x(k) − z(k)) dt+
µ

2

n−1∑
k=1

∫ 1

0

|x(k) − z(k)|2 dt,
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which will be minimized subject to the constraints (almost everywhere along [0, 1]){
∂tx

(k) = K(k)(x(k))α(k),

∂tz = K(n)(z)β.

From the constraints, L can be considered as a function of α and β only, and its differential
with respect to these variables can be computed via the adjoint method as follows. Denoting the
co-states by px,k, k = 1, . . . , n− 1, and pz, the associated Hamiltonian is

H =
n−1∑
k=1

∫ 1

0

px,k ·K(k)(x(k))(α(k)) dt+

∫ 1

0

pz ·K(n)(z)β dt− L.

The computation of the gradient of L follows the same general scheme as the one described in
Section 2.2 for the basic LDDMM algorithm. Given α and β and the associated trajectories x and
z, one has solve the adjoint equations

∂tp
x,k = −∂x(k)H, px,k(1) = −∇Uk(x(k)(1)), k = 1, . . . , n− 1,

∂tp
z = −∂zH, pz,k(1) = −∇Ũk(z(k)(1)), k = 1, . . . , n− 1.

The computation of the differential system gives

∂tp
x,k
i = −

mk∑
j=1

∇1(p
x,k
i ·K(k)(x

(k)
i , x

(k)
j )α

(k)
j )−

mk∑
j=1

∇1(α
(k)
i ·K(k)(x

(k)
i , x

(k)
j )px,kj )

+ 2

mk∑
j=1

∇1(α
(k)
i ·K(k)(x

(k)
i , x

(k)
j )α

(k)
j )− (λ(k) − µ(x(k) − z(k))),

and

∂tp
z,k
i = −

n−1∑
l=1

ml∑
j=1

∇1(p
z,k
i ·K(n)(z

(k)
i , z

(l)
j )β

(l)
j )−

n−1∑
l=1

ml∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , z

(l)
j )pz,lj )

+ 2
n−1∑
l=1

ml∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , z

(l)
j )β

(l)
j ) +

n∑
l=1

(λ(l) − µ(x(l) − z(l)))

The gradient of L with respect to (α, β) is then deduced from the partial differentials of H with
respect to these variables, yielding

∇α(k)L = K(k)(x(k))(α(k) − px,k),
∇βL = K(n)(z)(β − pz).
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Alternatively, on may choose to use the gradient relative to the dot product on V1 × . . . × Vn,
which is simply given by

∇α(k)L = α(k) − px,k,
∇βL = β − pz.

The latter choice is simpler, and generally more efficient numerically.

4.3. Sliding Interface. Assume that the parameter setsMk are vertices of pure oriented, simplicial
complexes Tk of dimension rk < d (we will however only provide implementation details for
codimension d− rk = 1). We let Fk denote the set of facets of the k-th complex. We also assume
that T1, . . . , Tn−1 are disjoint and that Tn is their union, Tn =

⋃n−1
k=1 Tk. We also let F =

⋃n−1
k=1 Fk

(disjoint union).
The associated shape space is formed by functions qk : Mk → Rd such that qk(f) is not de-

generate (i.e., has maximal dimension) for all f ∈ Fk. Each object is allowed to slide against
the background. We will write x(k) = q(k)(Mk), k = 1, . . . , n − 1, and z(k) = q(n)(Mk),
z = (z(1), . . . , z(n−1)), in accordance with our previous notation. If f ∈ Fk is a facet in Tk ⊂ Tn,
we discretize (10) into

(15) N (n)(f) ·

(∑
j∈f

(uk(z
(k)
j )− un(z

(k)
j ))

)
= 0,

whereN (n)(f) is a d×(d−rk) matrix spanning the normal space to q(n)(f), assumed to be defined
as a smooth function of q(n). If rk = d− 1, this is always possible, since N (n) is a vector that can
be taken as the cross product of zf,2 − zf,1, . . . , zf,d − zf,1 where zf,1, . . . , zf,d is any labeling of
the vertices of q(n)(f) ordered consistently with the orientation.

We now restrict to this case, with d = 3, so that shapes are triangulated surfaces in R3, as
discussed in Section 2.2. For f ∈ Fk and j ∈ f , we denote by ej,f the edge (z

(k)
j′′ − z

(k)
j′ ) where

j′ and j′′ are the other two vertices of f such that (j, j′, j′′) is positively oriented. Similarly, let
e′j,f = (z

(k)
j′ − z

(k)
j ) and e′′j,f = (z

(k)
j′′ − z

(k)
j ) be the two edges stemming from z

(k)
j so that

e′j,f × e′′j,f = 2 area(q(n)(f))N (n)(f) =: Ñ (n)(f)

is the area-weighted positively oriented normal to f in q(n)(Mk). Note that ej,f = e′′j,f − e′j,f .
With this notation, we can rewrite the constraint in the form∑

j∈f

det(e′j,f , e
′′
j,f , uk(z

(k)
j )− un(z

(k)
j )) = 0.

holding for all f ∈ Fk and k = 1, . . . , n− 1.
Introducing a Lagrange multiplier λf for each of these constraints, after reduction of the vector

fields, which proceeds similarly to the identity constraints case, the augmented Lagrangian takes
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the form

L(α, β, x, z) =
1

2

n−1∑
k=1

∫ 1

0

α(k) · (K(k)(x(k))α(k)) dt+
1

2

∫ 1

0

β · (K(n)(z)β) dt+
n−1∑
k=1

Uk(x
(k)(1))

+
n−1∑
k=1

Ũk(z
(k)(1))−

n−1∑
k=1

∑
f∈Fk

∫ 1

0

(λfΓ
(k)
f (x(k), z)− µ

2
Γ

(k)
f (x(k), z)2) dt,

with

Γ
(k)
f (x(k), z) :=

∑
j∈f

det
(
e′j,f , e

′′
j,f , K

(k)(z
(k)
j , x(k))α(k) −K(n)(z

(k)
j , z)β

)
.

We now compute the evolution equations for the co-states, as done with identity constraints. For
f ∈ Fk and i ∈Mk, we have

(16) ∂
x
(k)
i

Γ
(k)
f =

∑
j∈f

∇1(α
(k)
i ·K(k)(x

(k)
i , z

(k)
j )Ñ (n)(f)).

Denoting

δ(k)(f) :=
∑
j∈f

(uk(z
(k)
j )− un(z

(k)
j )),

if i ∈ f ∈ Fk, then

(17) ∂
z
(k)
i

Γ
(k)
f = −ei,f × δ(k)(f)−

n−1∑
l=1

ml∑
j=1

∇1(Ñ
(n)(f) ·K(n)(z

(k)
i , z

(l)
j )β

(l)
j )

+

mk∑
j=1

∇1(Ñ
(n)(f) ·K(k)(z

(k)
i , x

(k)
j )α

(k)
j )−

n−1∑
l=1

ml∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , z

(l)
j )Ñ (n)(f)).

Let px,1, . . . , px,n−1 and pz = (pz,1, . . . , pz,n−1) be the co-states. Let γ(k)
f = λf − µΓ

(k)
f . For

i ∈Mk, let Fk(i) = {f ∈Mk : i ∈ f}. Then

∂tp
x,k
i = −

Nk∑
j=1

∇1(p
x,k
i ·K(k)(x

(k)
i , x

(k)
j )α

(k)
j )−

Nk∑
j=1

∇1(α
(k)
i ·K(k)(x

(k)
i , x

(k)
j )px,kj )

+ 2

Nk∑
j=1

∇1(α
(k)
i ·K(k)(x

(k)
i , x

(k)
j )α

(k)
j )−

∑
f∈Fk

γ
(k)
f ∂

x
(k)
i

Γ
(k)
f ,
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and

∂tp
z,k
i = −

N∑
j=1

∇1(p
z,i
i ·K(n)(z

(k)
i , zj)βj)−

N∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , zj)p

z
j)

+ 2
N∑
j=1

∇1(β
(k)
i ·K(n)(z

(k)
i , zj)βj)−

∑
f∈Fk

γ
(k)
f ∂

z
(k)
i

Γ
(k)
f ,

where ∂
x
(k)
i

Γ
(k)
f and ∂

z
(k)
i

Γ
(k)
f are given by (16) and (17).

For f ∈ Fk (k = 1, . . . , n− 1), we have

∂α(k)Γ
(k)
f =

∑
j∈f

K(k)(x(k), z
(k)
j )Ñ

(n)
j (f),

∂βΓ
(k)
f = −

∑
j∈f

K(n)(z, z
(k)
j )Ñ

(n)
j (f),

Letting θ(k)
j =

∑
f∈Fk:j∈f γ

(k)
f N

(n)
j (f), the gradient of L in α and in β is then given by

∇α(k)L = K(k)(x(k))(α(k) − px,k)−K(k)(x(k), z)θ,

∇βL = K(n)(z)(β − pz) +K(n)(z, z)θ

or, taking the Hilbert gradient,

∇α(k)L = α(k) − px,k −K(k)(x(k))−1K(k)(x(k), z)θ,

∇βL = β − pz +K(n)(z, z)θ.

In spite of it requiring the inversion of a linear system in the first equation, we found the latter
version preferable to the L2 gradient in our experiments.

4.4. Remarks.

Existence of constrained solutions. It is important to note that, according to [2, Theorem 1], there
always exists at least one solution of (12)-(13) satisfying the constraints.

Convergence to surfaces. A question naturally arising is whether our discrete approximation using
triangulations converges to the smooth setting as triangles get smaller and smaller. More precisely,
assume that smooth initial surfaces Skinit = q

(k)
init(Mk) are triangulated, with increasingly fine trian-

gulations q(k,`)
init : Mk,` → R3, ` = 1, 2, . . ., where Mk,` labels the vertices of a simplicial complex

Tk,` whose faces are Fk,`. We discuss whether minimizers (uk,`, k = 1, . . . , n) of the discrete prob-
lems have a subsequence that converges to a minimizer (uk, k = 1, . . . , n) of the limit problem.

Assume that the following condition holds for the sequence of triangulations:
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(i) We assume that for all k and `, and for every f ∈ Fk,`, there exists an embedding ψfk,` :

tfk,` → S
(k)
init = q

(k)
init(Mk) (where tfk,` is the interior of the triangle qk,`(f)) such that

(ψfk,`(t
f
k,`), f ∈ Fk,`) partitions S(k)

init up to a negligible set and maxf ‖ψfk,`− idtk,`‖1,∞ → 0
when `→∞.

This conditions ensure that data attachment terms like those described in section 2.2.2 computed
at diffeomorphic transformations ϕk,` ◦ q(k,`)

init converge to the same term computed at ϕk ◦ q(k)
init

as soon as ϕ(k,`) converges to ϕ(k) in C1(R3). Given this, we sketch the argument leading to the
consistency of the discrete approximations.

For identity constraints, one can use [2, Proposition 5], which proves that, if the triangulations
are nested (every vertex at step ` lies on the limit surface and is also a vertex at step `+ 1), then
one can extract, from a corresponding sequence of identity-constrained optimal vector fields, a
subsequence that converges towards an identity-constrained solution of (12)-(13).

For sliding constraints, one cannot directly apply [2, Proposition 5], because the constraints
are not nested, even when the triangulations are. To obtain a consistent approximation, we need
to relax the discrete problems. More precisely, let t 7→ (u1(t), . . . , un(t)) ∈ V1 × · · · × Vn
be a minimizer of the continuous problem with sliding constraints, and let (ϕ1, . . . , ϕn) denote
the corresponding flow with q(k)(t) = ϕk(t) ◦ q(k)

init the corresponding deformation of q(k)
init, and

N (k)(t, x) = dϕk(t)
TN

(k)
init(x) a normal to Sk(t) = q(k)(t)(Mk) at q(k)(t, x). In particular we have,

for every k = 1, . . . , n, every x ∈Mk, and almost every time t,

N (k)(t, x) · (uk(t, q(k)(t, x))− un(t, q(k)(t, x)) = 0.

Moreover, as
∑n

k=1 ‖uk(t)‖2 is constant, both uk(t) and duk(t) are α-Lipschitz for some positive
constant α that does not depend on t or k.

Now let q(k,`)(t) = ϕk(t) ◦ q(k,`)
init be the corresponding deformation of the discretization at step

`. Recall that N (k,`)(t, f) denotes the unit normal to the triangle q(k,`)(t, f). We will prove:
(ii) The discretized deformations at step ` satisfy the following relaxed sliding constraints∣∣∣∣∣N (k,`)(f) ·

(∑
j∈f

(uk(z
(k,`)
j )− un(z

(k,`)
j )

)∣∣∣∣∣ ≤ ε`

at almost every t and for every face f in Fk,`, for a suitably chosen sequence ε` > 0 going
to 0 as ` goes to∞.

Indeed, fix a face f and an integer `. Define

N̄ (k,`)(t, f) =
dϕk(t)

TN (k,`)(0, f)

|dϕk(t)TN (k,`)(0, f)|
for every time t. Note that assumption (i) implies that

|N (k,`)(t, f)− N̄ (k,`)(t, f)| ≤ γ`,
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for some sequence γ`, independent of f and t, and going to 0 as ` goes to infinity. Assumption (i)
also implies that there exists a sequence η`, independent of f and going to 0 as ` → ∞ such that
for y ∈ ψfk,`(f), and q(k)

init(x) = y, we have

|N (k)
init(x)−N (k,`)(0, f)|+

∑
j∈f

|q(k)
init(x)− z(k,`)

j (0)| ≤ η`.

Some triangle inequalities, Gronwall’s lemma, and the fact that uk and duk are α−Lipschitz then
imply ∣∣∣∣∣N (k,`)(t, f) ·

(∑
j∈f

(uk(t, z
(k,`)
j )− un(t, z

(k,`)
j )

)∣∣∣∣∣ ≤ ε`,

with ε` = αη`e
α + γ` going to 0 as ` goes to infinity.

Consequently, if (u1,`, . . . , uk,`) is a sequence of minimizers of the discretized problem at step `
with relaxed sliding constraints∣∣∣∣∣N (k,`)(t, f) ·

(∑
j∈f

(uk,`(t, z
(k,`)
j (t))− un,`(t, z(k,`)

j (t))

)∣∣∣∣∣ ≤ ε`,

we see that the infimum limit over ` of the respective discretized costs of (u1,`, . . . , un,`) is smaller
than or equal to the cost of a minimizer of the continuous problem with sliding constraints. So to
prove that a limit point of that sequence is a minimizer of the cost for the continuous problem with
sliding constraints, all we need is to check that any such limit point does satisfy the constraints.

So let (u1,`, . . . , un,`) be a sequence of minimizers of the relaxed discrete problem at step `1 that
weakly converges to (u1, . . . , un) in V1×· · ·×Vn (which is true for at least one subsequence of any
minimizing sequence), then the associated flows ϕk,` and their first two space derivatives converge
uniformly in time and space to the flows ϕk and their first two derivatives.

From this it is easy to see that any sequence approximating q
(k)
init(x) as in assumption (i) is

such that q(k,`)(t, j`) → q(k)(t, x) and N (k,`)(t, j`) → N (k)(t, x) at all times. Moreover, such a
minimizing sequence must be, like all geodesics, such that

∑n
k=1 ‖uk,`(t)‖2Vk is constant in time,

and smaller than the cost function associated to, say, uk = 0 for all k. This implies that the
vector fields uk,`(t) are continuous uniformly in k, ` and t, which, combined with the continuity
of the evaluation functionals in an RKHS implies that uk,`(q(k,`)(t, j`)) → uk(q

(k)(t, x)) for all
times. Consequently, one easily checks that each (u1,`, . . . , un,`) satisfy a relaxed version of the
continuous version of the constraints, with a precision that goes to 0 as ` goes to infinity. This
finishes proving that the constraints are satisfied with exactitude at the limit.

Kernel derivatives. Expressions similar to∇1(n ·K(x, y)α) appear at multiple times in the previ-
ous computation (for some vectors n and α). For radial kernels (K(x, y) = G(|x − y|2)IdRd), we
have

∇1(n ·K(x, y)α) = 2G′(|x− y|2)(n · α)(x− y),

1It is easy to prove that such minimizers exist using the same method as that of [2], and replacing equality constraints
with inequality constraints.
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which (slightly) simplifies the expressions.

Sliding Interface – Alternate Version. As discussed in Section 3, the sliding constraint can also be
handled by introducing a new state variableN that tracks a vector (or frame) normal to the interface
via (11). In the discrete case, one can discretize this equation by introducing states N(f), f ∈ F ,
indexed by the facets of M , and evolving according to

∂tN(f) = − 1

|f |
∑
i∈f

du(n)(zi)
TN(f),

where |f | is the number of vertices in f . The sliding constraints are now expressed in terms of the
state variables in a more direct way, but with a new co-state variable for the normals, bringing in an
extra degree of complexity and increasing the computational cost. Note that the finite-dimensional
reduction is still possible in this case, so that u(n)(·) = K(n)(·, z)β, and the evolution of the
normals can be expressed in a form involving the differential of the kernel. This yields an adjoint
system involving second derivatives of the kernel. We will not detail the computations in this
paper, since they follow the same pattern as the other two that were already discussed (see [56] for
more examples on how higher-order variables can be handled in similar contexts). Note that this
alternate version of the sliding constraints is slightly more general than the one discussed in the
previous section, since it does not require a definition of a normal field that smoothly depends on
the manifolds.

5. EXPERIMENTAL RESULTS

5.1. Synthetic Example. The first example is described in Figure 1. In this synthetic example,
the template has two identical balls initially close to each other. In the target, the first ball (referred
to as “Ball A”) gets bigger, and “impacts” the other one (referred to as “Ball B”), which assumes
an oblong, non-convex shape (the target shapes slightly overlap, so that an exact homeomorphic
match cannot be achieved).

FIGURE 1. Template and target shapes for synthetic example
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Our results, provided in Figures 2 to 5, illustrate our multishape deformation method, and use
two complementary deformation indexes:

(i) the tangent Jacobian, which is the Jacobian determinant of the surface-to-surface transfor-
mations, and which measures the ratio between the areas of elementary surface patches at
each point before and after deformation;

(ii) the normal Jacobian, which is the ratio of the Jacobian determinant (of the 3D diffeomor-
phism) to the tangent Jacobian, and which measures the ratio between the length of an
infinitesimal line element normal to the surface after and before transformation.

These indexes are mapped on the deformed template image, which is close to the target.
Figure 2 compares the normal Jacobian of the shape and background deformations when using

identity constraints. While shape diffeomorphisms characterize each shape transformation (uni-
form variation for Ball A, expansion at the top and compression otherwise for Ball B), the effect
of compressing the space is clearly visible in the background deformation, when the two shapes
get close to each other.

Figure 3 provides the corresponding tangent Jacobian, which is identical for shape and back-
ground transformation since we are using identity constraints.

Figures 4 and 5 compare the normal and tangent Jacobians for the synthetic experiment with
sliding constraints. Regarding the former, the most notable difference is with Ball B, which shows
an expansion pattern at the tips in its shape diffeomorphism which is inverse of the one observed
with identity constraints. One plausible explanation is that sliding constraints allow the two shapes
to use translation-like motion to position themselves differently, without the need for limiting the
amount of shear in the background that would have resulted from identity constraints. The second
notable difference can be noted in the background diffeomorphism, in which compression is mostly
observed with Ball B. In contrast with the identity constraints, the tangent Jacobians are very
different between shape and background diffeomorphisms. Note that Figure 5 uses two different
color scales for the left and right panels because of the strong difference between the ranges of the
Jacobians in each case. The background deformation, in particular, has a huge tangent expansion
around the impact location, which cannot be observed in the shape deformations. Note that both
patterns in the sliding case are very different from the one that was observed in the identity case.

For comparison purposes, Figure 6 provides the result of the LDDMM algorithm using a single
diffeomorphism. One observes a very strong compression effect for the normal jacobian resulting
in an expansion observed on the tangent jacobian on Ball B, that was not observed in any of the
constrained examples. The nice uniform expansion in Ball A that could be observed in the sliding
constraint case is not observed either.

5.2. Subcortical Structures. We now describe an example mapping a group of three subcortical
structures: hippocampus, amygdala and entorhinal cortex (ERC). The template and target sets
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FIGURE 2. Three views of the normal Jacobian with identity constraints: shape
diffeomorphisms (left) and background diffeomorphism (right).
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FIGURE 3. Tangential Jacobian: shape and background diffeomorphisms (identity constraints).

are represented in Figure 7. One can observe shape changes in each structure, combined with a
significant displacement of the ERC relative to the other two structures when comparing template
to target. Because the structures were segmented independently, there is some overlap between the
target hippocampus and amygdala.

Figures 8 and 9 provide the normal and tangent Jacobian obtained with identity constraints,
while Figures 10 and 11 provide this information for sliding constraints. The two types of con-
straints provide similar deformation indices, especially for the normal jacobians (Figures 8 and
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FIGURE 4. Three views of the normal Jacobian with sliding constraints: shape
diffeomorphisms (left) and background diffeomorphism (right).
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FIGURE 5. Three views of the tangent Jacobian with sliding constraints: shape
diffeomorphisms (left) and background diffeomorphism (right).
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FIGURE 6. Three views of the Normal (left) and tangential Jacobians (right) when
using a single diffeomorphism.

10). Minor differences in the tangent jacobian can be observed (Figures 9 and 11). The deforma-
tion patterns associated to using a single diffeomorphism (Figure 12) are significantly different,
though, exhibiting very strong compression, for example, where shapes are close to each other.
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FIGURE 7. Template (blue) and target (red) shapes for subcortical structures. The
hippocampus is the central shape, with the amygdala on its left and the ERC on its
right.

6. DISCUSSION

The previous approach provides a solution, using constrained optimal control, of the important
issue of dealing with multiple objects with varying deformation properties for registration. We have
focused on surface matching, numerically dealing with constraints using an augmented Lagrangian
method. Note that a similar approach was introduced for plane curves in [2].

The formulation is quite general and can accommodate constraints in various forms, includ-
ing the examples discussed in Section 3. The investigation of these additional applications will
be the subject of future work. One of the limitations of the present implementation is the slow
convergence of the augmented Lagrangian procedure, for which each minimization step is, in ad-
dition, high dimensional and computationally demanding. One possible alternative can be based
on solving the optimality conditions (14) (which hold in the discrete case) by means of a numerical
shooting method. This approach has, however, its own numerical challenges, because solving (14)
requires the determination of λ such that the last equation (constraint) is satisfied, and this leads to
a possibly ill-posed problem for systems in large dimension (see [2] for additional details).

We have illustrated our examples using deformation markers derived from the jacobian deter-
minant. This markers are routinely used in shape analysis studies and led to important conclusion
in computational anatomy. When dealing with multiple shapes, however, figures 6 and 12 show
that, when using the classical LDDMM method with multiple shapes, these markers becomes as
much, if not more, influenced by interactions between the shapes as by the changes in the shapes
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FIGURE 8. Three views of the normal Jacobian with identity constraints: First
Row: Shape diffeomorphisms; Second Row: Background diffeomorphism.

themselves. For this reason, multi-shape computational anatomy studies have applied registra-
tion methods separately to each shape, without ensuring that the obtained diffeomorphisms are
consistent with each other. This limitation is addressed in the present paper, in which we exhibit
deformation markers that are meaningful in describing tangential and normal surface stretching,
while being consistently associated to a global transformation of the space.
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FIGURE 9. Three views of the tangent Jacobian with identity constraints: Shape
and background diffeomorphisms.
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FIGURE 12. Three views of the normal (up) and tangent Jacobians (down) when
using a single diffeomorphism.
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[19] Stanley Durrleman, Xavier Pennec, Alain Trouvé, Guido Gerig, and Nicholas Ayache. Spatiotemporal atlas esti-
mation for developmental delay detection in longitudinal datasets. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2009, pages 297–304. Springer, 2009.

[20] Herbert Federer and Herbert Federer. Geometric measure theory, volume 1996. Springer New York, 1969.
[21] Joan Glaunès, Anqi Qiu, Michael I Miller, and Laurent Younes. Large deformation diffeomorphic metric curve

mapping. International journal of computer vision, 80(3):317–336, 2008.



MULTIPLE SHAPE REGISTRATION 33

FIGURE 13. Midpoint of the optimal deformation with multishape identity con-
straints (left), multishape sliding constraints (center) and single diffeomorphism
(right).

[22] Joan Glaunès, Marc Vaillant, and Michael I Miller. Landmark Matching via Large Deformation Diffeomorphisms
on the Sphere. Journal of Mathematical Imaging and Vision, 20:179–200, 2004.

[23] Ben Glocker, Nikos Komodakis, Georgios Tziritas, Nassir Navab, and Nikos Paragios. Dense image registration
through mrfs and efficient linear programming. Medical image analysis, 12(6):731–741, 2008.

[24] A Ardeshir Goshtasby. Image Registration: Principles, Tools and Methods. Springer, 2012.
[25] Ulf Grenander. General pattern theory: A mathematical study of regular structures. Clarendon Press Oxford,

1993.
[26] Xianfeng Gu, Yalin Wang, Tony F Chan, Paul M Thompson, and Shing-Tung Yau. Genus zero surface conformal

mapping and its application to brain surface mapping. In Information Processing in Medical Imaging, pages
172–184. Springer, 2003.

[27] Xianfeng Gu, Yalin Wang, Tony F. Chan, Paul M. Thompson, and Shing-Tung Yau. Genus zero surface conformal
mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging, 23(8):949–958,
2004.

[28] Andreas Günther, Hans Lamecker, and Martin Weiser. Flexible shape matching with finite element based lddmm.
International Journal of Computer Vision, pages 1–16, 2012.

[29] Andreas Günther, Hans Lamecker, Martin Weiser, et al. Direct lddmm of discrete currents with adaptive finite
elements. In Proceedings of the Third International Workshop on Mathematical Foundations of Computational
Anatomy-Geometrical and Statistical Methods for Modelling Biological Shape Variability, pages 1–14, 2011.

[30] Eldad Haber, Gallagher Pryor, John Melonakos, Allen Tannenbaum, et al. 3d nonrigid registration via optimal
mass transport on the gpu. Medical image analysis, 13(6):931–940, 2009.

[31] Steven Haker, Sigurd Angenent, Allen Tannenbaum, Ron Kikinis, Guillermo Sapiro, and Michael Halle. Confor-
mal surface parameterization for texture mapping. IEEE Transactions on Visualization and Computer Graphics,
6(2):181–189, 2000.

[32] Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass transport for registration and
warping. International Journal of Computer Vision, 60(3):225–240, 2004.
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S. ARGUILLÈRE: CENTER FOR IMAGING SCIENCE AND DEPARTMENT OF APPLIED MATHEMATICS AND STA-
TISTICS, JOHNS HOPKINS UNIVERSITY, 3400 N. CHARLES ST. BALTIMORE MD 21218

E-mail address: sarguillere@gmail.com
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