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Mathematical lists: from archiving to innovation 

Christine Proust (CNRS & Université Paris Diderot)1

Abstract 

 

Among Old Babylonian mathematical cuneiform texts, the “catalogues” and “series texts”, which contain 

lists of problem statements with no indication for their solution, constitute an interesting but little known corpus. 

Although catalogues and series texts do share strong stylistic similarities, the types of tablets used, the 

composition of the colophons, the structure of the lists, and the mechanisms which generate the statements differ. 

The differences between catalogues and series texts seem to reveal different intellectual projects, and probably 

reflect the fact that different communities of scribes produced them. These possible divergent traditions may 

relate to the hypothesized emergence of new mathematical practices at the end of the Old Babylonian period. 

Mathematical texts as lists 

Cuneiform mathematical texts are lists. This particular feature of ancient texts is well known by 

assyriologists. But historians of sciences have paid little to the fact that the majority of sources that come from 

Mesopotamia are in the form of lists: lists of problems, lists of statements, lists of instructions, lists of numerical 

results or data, and so on. Approaching mathematical texts as lists is of interest for several reasons. First, lists are 

omnipresent in scholarly cuneiform texts, thus the study of lists as such is an important aspect of the study of 

Mesopotamian intellectual history. Second, mathematical texts provide the pinnacle of list production, thus they 

offer us excellent material in order with which to study lists. Moreover, the logical structure of mathematical 

texts allows us to grasp mechanisms of list making which are not clear in other fields, such as omen texts. Third, 

the structures of the lists provide information that cannot be captured in isolated items such as problems, or 

statements.  However, oddly enough, mathematical texts have been little studied as lists. Historians of 

mathematics are mostly interested in results. They generally focus on problems, viewed as isolated items, 

                                                 
1 This paper is a synthesis of works I devoted to mathematical catalogues and series texts last years as a member of the Institute for 

Advanced Study, Princeton (2009), as a visiting scholar at the Institute for the study of the Ancient World, New York University (2010), and 

as a resident at the Institut Méditerranéen de Recherches Avancées (2010-2011). Part of this researche was developed in the frame of an 

ANR project on the “”History of Numerical Tables” headed by Dominique Tournès. In resulting articles, I addressed the following issues: 

How did ancient scribes work on mathematics with lists? (Proust to appear); How do paratextual elements, such as colophons, inform us on 

goals and uses of mathematical texts? (Proust 2012); What is a school text? (Proust in progress). On the basis of these results, this paper 

opens a new avenue of research focused on a historical issue: what was the impact of the collapse of the southern cities around the years 

1730 and 1720 on the transformation of mathematical traditions? Beyond the present summary of previous works, this question will be the 

topic of further investigation. 
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regardless of the set of problems that a scribe decided to bring together, in a given order, on a single tablet. But 

some crucial information lies in the very structure of these lists. This is especially true for mathematical texts 

which do not contain procedures for their resolution, such as lists of problem statements.  

In this paper, I will focus on catalogues and series texts, which are lists of statements without indication for 

their solution. In these cases, the mathematical content does not lie in the procedures, since they are absent, but 

in the processes used for making the statements. These processes cannot be detected on the scale of a single 

section, containing one statement, but rather on the scale of an entire collection of sections noted on a tablet or in 

a series of tablets. On the scale of the single section, catalogue and series texts seem very similar: both are lists 

of statements without procedures, they share the same style using almost exclusively Sumerograms, the same 

topics dealing with fields or excavation, and, apparently at least, the same mathematical content. As a 

consequence, both categories were not differentiated by the majority of modern scholars, primarily by 

Neugebauer and Sachs. 

Several of the texts which present large numbers of problems without giving answers bear colophons giving the tablets 

a serial number. This gave rise to the name “Series Texts” used in MKT for this whole group of tablets. We think it 

wise, however, to abandon this name because the new material makes it difficult to define the border of this group.”  

(MCT: 37) 

The “new material” Neugebauer and Sachs refer to here mainly consists of catalogues and related procedure 

texts kept at Yale and published in MCT. However, by examining the texts as lists, I will show that differences 

between catalogues and series texts are fundamental, and that they reveal distinct intellectual projects. The first 

is oriented toward an inventory of existing mathematical material, the second toward the creative exploration of 

new avenues of research. 

Catalogues 

Among mathematical catalogues, eight are kept in the Yale Babylonian Collection and were published by 

Neugebauer and Sachs in MCT. These eight tablets seem to have belonged to the same lot purchased by Albert 

Clay from the dealer Elias Géjou. They are written in Sumerian on single column tablets, namely “type S 

tablets” (Tinney 1999: 160). The tablets bear a colophon providing the number of statements and, sometimes, the 

topic of the catalogue, that is, bricks (sig4), field (a-ša3), stone (na4), canal (pa5-sig) or trench (ki-la2). Given all 

these common features, it is highly probable that these eight catalogues come from the same city. 

Tablet YBC 4657 provides a good illustration of what a mathematical catalogue is. The tablet contains 31 

statements dealing with the dimensions of a trench, and the work necessary to dig it. The tablet includes a short 

colophon, providing the number of statements (31 im-šu), and the topic of the statements (ki-la2). The first 

statement reads as follows2

                                                 
2 In this article, the transliterations and translations of the texts kept at the Yale Babylonian Collection are based on collations I made in 

:  
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YBC 4657 #1 

1. [ki]-la2 [5 ninda uš 1 1/2] ninda sag 1/2 ninda bur3-bi 10 gin2 sahar eš2-kar3 6 še [a2-bi lu2-huğ-ga2] 

2. gagar sahar-[hi-a erim-hi-a] u3 ku3-babbar en-[nam] 7 1/2 gagar 45 sahar-hi-a 

3. 4(geš2) 30 [erim-hi-a] 9 gin2 ku3-babbar 

Translation 

1. A trench. [5 ninda is the length, 1 ½] ninda the width, 1/2 ninda its depth, 10 gin2 the volume of assignment (for 

each worker), 6 še (silver) [the wage of a hired man]. 

2. The area, the volume, [the number of workers], and the (total expenses in) silver what? 7 1/2 (sar) is the area, 45 

(sar) the volume. 

3. 4×60 + 30 [is the number of workers], 9 gin2 the (total expenses) in silver. 

The 31 statements deal with the same topic, but, from a mathematical point of view, they are not homogeneous. 

They can be grouped into four sets of problems, as shown in Table 1.  
 

Groups (sections) Mathematical content 

I (#1-8) Volume of a prism (direct and reverse problems), simple 

proportionality, homogeneous quadratic equations.  

II (#9-18 Volume of a prism (direct and reverse problems), homogeneous and 

non-homogeneous quadratic equations. 

III (#19-28) Simple and double proportionality 

IV (#29-31) Varia 
Table 1: groups in catalogue YBC 4657  

The very interesting point is that some of these groups do in fact correspond to known procedure texts 

(MCT: 73). Indeed, the first group in catalogue YBC 4657 (#1-8) is parallel to the procedure text YBC 4663, 

which contains exactly the same statements, each statement being followed by the detailed procedure for its 

resolution. There is the same correspondence between the third group in the catalogue (#19-28) and another 

procedure text held at Yale. One can easily imagine that groups II and IV in the catalogue would correspond to 

lost procedure texts.  

Associated procedure texts 

Let us look at these procedure texts more closely. For example, the first section of procedure text YBC 

4663, which corresponds to Group I of the catalogue, contains the following text3

YBC 4663 #1  

: 

1. ki-la2 5 ninda uš 1 1/2 ninda <sag> 1/2 ninda bur3-bi 10 <gin2> sahar eš2-kar3 6 ⌈še⌉ [a2-bi] 

2. gagar sahar-hi-a erim-hi-a u3 ku3-babbar en-nam za-e in-da-zu-de3 

                                                                                                                                                         

2009 and 2010 thanks to the courtesy of Pr Benjamin Foster and Ulla Kasten. These readings are my own, but very closely follow MCT.  
3 Collation : line 2, I read in-da-zu-de3 instead of kid9-da-zu-de3 (MCT: 69). 
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3. uš sag UR-UR-ta 7.30 i-na-ad-di-ik-ku 

4. 7.30 a-na bur3-bi i-ši 45 i-na-ad-di-ku 

5. igi eš2-gar3 du8 6 i-na-ad-di-ku a-na 45 ⌈i⌉-ši 4.30 i-na-di-ku 

6. 4.30 a-na i-di i-ši 9 i-na-di-ku ki-a-am ⌈ne2-pe-šu⌉ 

Translation 

1. A trench. 5 ninda is the length, 1 ½ ninda the width, 1/2 ninda its depth, 10 gin2 the volume of assignment (for each 

worker), 6 še (silver) [the wages of a hired man]. 

2. The area, the volume, the number of workers, and the (total expenses in) silver what? You, in your procedure, 

3. The length and the width multiply each other. This will give you 7.30. 

4. 7.30 to its depth raise. This will give you 45. 

5. The reciprocal of the assignment detach. This will give you 6. To 45 raise. This will give you 4.30 

6. 4.30 to the waves raise. This will give you 9. Such is the procedure. 

As we see, the statement is exactly the same as in the catalogue. While the statement is written in Sumerian, the 

procedure is written in Akkadian. The problem is quite simple, and the procedure consists in a short sequence of 

multiplications and divisions.  

The second problem on the tablet derives from the first by circular permutations of the parameters, that is, 

some given data become unknowns and vice-versa. The six other problems in group I result from the same 

process. Thus the set of 8 problems forms a systematic exploration of all the facets of a linear situation. This 

kind of procedure text seems to reflect teaching practices in scribal schools. The use of a type S tablet, which are 

thought to have been used in the advanced stage of education, at least in Nippur, supports this interpretation 

(Tinney 1999; Delnero 2010).  

To sum up, the characteristic features of the eight catalogues kept at Yale are the following: 

- They are written in Sumerian. 

- They bear a colophon providing the number of statements. 

- They are composed of several groups of statements, corresponding to procedure texts. 

- The associated procedure texts seem to be collections of exercises used in mathematics education. 

Catalogues are composite, and appear to be compilations of statements collected from several procedure 

texts. The fact that the number of problems is carefully noted in a colophon evokes archival practice, perhaps 

linked to library management, or to the organization of the mathematical curriculum, or both. 

Series texts 

Series texts are often confused with catalogues; nevertheless, as we will see, they bear witness to a very 

different approach to mathematical problems by the ancient scribes. The series are lists of problem statements, as 

are the catalogues, but they are much longer and they run on several numbered tablets. Twenty series tablets are 

known to date. Of these, 14 are kept at Yale, two are in Chicago, two in Berlin and two in Paris. Series tablets 
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have a different physical appearance to the catalogues: they are written on multi-column tablets or “type M” 

(Tinney 1999: 160). The writing is smaller and more cursive than is used in the catalogues. 

AO 9071 

Let us consider the tablet from the Louvre AO 9071 (published in Proust 2009). The colophon informs us 

that the tablet contains 95 sections and that the tablet is the seventh in a series.  

The first section of the text reads as follows: 

The length and the width I added: 50 ninda 

The length exceeds the width by 10 ninda. 

The statements provide the relationship between a length and a width. No information is given about the 

concrete situation that these statements refer to. There is no question, no procedure, and no answer. But it is easy 

to guess that the length and the width are the dimensions of a rectangle, and that the implicit question is: what 

are the length and the width? Anyway, the wording is quite synthetic and abstract. Section 1 provides two 

relations that can be translated into modern mathematical language by a system of two equations with two 

unknowns (where x is the length and y is the width). 





=−
=+

10
50

yx
yx

 

This is an easy problem, well known to the scribes of that time. The solution is: The length is 30 ninda, the width 

is 20 ninda. 

Section 2 reads as follows: 

2/3 of the length: the width. 

This section contains only one relation. The other relation is missing. In fact, the other relation has already been 

given in the first section. So, the complete statement which section 2 refers to is: 

<The length and the width I added: 50 ninda>  (given in section 1) 

2/3 of the length: the width. 

This statement could be translated into the modern formula below: 







=

=+

yx

yx

3
2

50  

 As we advance through the text the wording becomes increasingly elliptic and the equations increasingly 

complex. So much so that, when we reach section 59, we read:  

I subtracted: 45 (ba-zi-ma: 45) 

After all the information in the relevant sections has been collected, section 59 refers to the complete statement 

reconstructed in Table 2. 

 
Block Given in section 

The length 3 times repeated, 
The width 2 times repeated 

35 
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I accumulated, its 13th  
To the length I added: 40. 
To the length 25 ninda I added,  
the width, 1.30 and the length I subtracted, 
the length, the width and 35 I added. 
The 11th, the length 3 times repeated, 
the 7th, the length 2 times repeated, 
the 16th, the length and the width,  
2 times repeated, 
the length and the width I accumulated, I subtracted, 
its remain, 
3 times the length 
and 2 times the width I subtracted, 
its 7th   

50 

[to the length and the width] 57 
I subtracted: 45. 59 

Table 2: complete statement which section 59 refers to 

As we see, extremely brief formulations may represent highly developed statements. How is this feat possible? 

The process is as follows. The statements are broken down into four blocks: the first block corresponds to the 

first equation of a linear system of two equations with two unknowns. The other blocks correspond to segments 

of the second equation. The second block is a linear combination of the two unknowns, the length and the width. 

The third block corresponds to another linear combination of the unknowns. The last block is a relationship 

between the second block and the third block. The list of statements is produced by successive variations of the 

four blocks. 

These variations produce a list with a tree-like structure with four levelstree structured list with four levels. 

An elliptic distribution of the information is grafted onto this tree-like structure. The information is given in each 

level of the tree, and omitted in subsequent dependant levels. As we see, this text cannot be captured by a linear 

reading. The reader has to move back and forth in order to reconstruct the complete statements. How did the 

scribes identify the sections where they would find the relevant information? The cuneiform text does not 

provide any visual assistance. In fact, in this text, the most useful markers are the syntactic ones. As shown 

before, the statements are made up of four elements. These elements occupy different functions and can, 

therefore, be distinguished by means of lexical and grammatical indicators. Evidently, the ancient readers of the 

mathematical series needed some particular skills in order to understand them.  

The process used to produce the list is based on the building of the statements, without taking the resolution 

procedures into account. In other words, the list is not organized according to the methods of resolution, as is the 

case for procedure texts and catalogues, but according to the formal characteristics of the statements. This simple 

observation is enough to cast doubt on whether this text was intended to provide data for mathematical education 

(see also below the remarks about the “impossible problems”). 

The description just given for the Louvre tablet could be applied to all the series texts. The main features of 

these lists are: 

- The list has a tree-like structure. 

- The distribution of the information is elliptic. 
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- The language is very artificial. It imitates the style of the catalogues, but the Sumerian grammatical 

elements are almost absent, and unusual forms, that is, kinds of "neologisms", are introduced. 

Other very strange phenomena occur in the mathematical series texts. I will limit myself to mention only 

some of them. 

The super series 

Fundamentally, the process of producing the statements is based on the systematic variation of the 

coefficients in the equations. This process allows a virtually unlimited development of the lists of statements. It 

seems that the authors of the series were particularly interested in this potential. Indeed, we know a higher order 

series which brings together several series. Neugebauer (MKT I: 385) called this an "Oberserie". In these “super 

series”, such as YBC 4668 (MKT I: 420) the tablets contain hundreds of individual statements, and a complete 

series would probably bring together thousands of statements. The existence of super series reflects a kind of 

headlong rush in the hopeless quest for an exhaustive list of all possible equations having the same solution. 

Impossible problems 

Problem 59 on the Louvre tablet has no equivalent elsewhere in the known corpus of cuneiform 

mathematical texts. There is no evidence of how such a baroque "equation" was reduced in order to be resolved. 

Worse, in some series, there are problems leading to 3rd, 4th or 5th degree equations, which cannot be reduced into 

lower degree. These problems were clearly not resolved by their author (s). Can we believe that in these cases, 

they were created for teaching? 

A classificatory process 

As we have seen, the process for generating a list consists in varying coefficients in the equations, while still 

maintaining the same solutions. Thus, the process produces two effects:  first, groups of equivalent equations; 

second, a kind of systematic classification of equations. These two results are interesting in themselves, because 

they imply a reflection on the equations as such. 

The grammar of the structures 

We have seen an example of a tree-like structure with the Louvre tablet. These structures present various 

features. Some structures have many levels, others only two. Some are very repetitive, with the same patterns 

reproduced many times, and therefore any damaged parts of the text can easily be reconstructed. Some others are 

bushy and the text cannot be guessed. What do these different patterns mean? The syntax of these structures 

remains to be described and interpreted, and the result of such a study may be useful for other kinds of texts. 

To conclude this brief evocation of mathematical series texts, it seems clear that they are not collections of 

problems for mathematical education. The series were written by erudite scribes of a very high level, having a 
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perfect command of the Old-Babylonian mathematics tradition. The series texts were probably not aimed at 

students, but at their fellow scribes. 

A new mathematical culture between antiquarism and innovation 

When looking at the mathematical texts as lists, we find that they do not all fulfil the same intellectual 

project. They do not target the same groups of readers, nor do they pursue the same objectives. Catalogues seem 

to reflect archival practices, while series texts bear witness to speculative inquiry, which produces new material. 

These issues could be important for the intellectual history of Mesopotamia at the end of the Old Babylonian 

period. Do the series reflect a different mathematical culture to that developed in the Old Babylonian scribal 

schools? Evidence such as paleography, serialization and the use of an artificial language imitating Sumerian 

argue for a quite late dating of the mathematical series texts, that is, the end of the Old Babylonian period 

(Høyrup 2002: 351). The authors of the series texts were familiar with the mathematical tradition of Southern 

Mesopotamia,  the language and topics of which they seemingly imitate. At the same time, series texts are 

completely innovative in their language as well as in their mathematical content. 

From these remarks, some hypotheses about the context of the series texts could be suggested. It is possible 

that these texts come from communities of scribes who had fled southern Mesopotamian cities , such as Ur, Uruk 

and Larsa, after they were destroyed at the end of the 18th century. It is well known that some people from the 

south had resettled in northern Babylonia, for example in Sippar, Kish and Babylon, transferring some cultural 

elements (Finkelstein 1972: 11-13; Charpin 1986: 403-415). The authors of the series texts may have been 

members of these new scribal communities of Kish or Sippar, imbibed with southern culture.  

Anyway, the series texts are the result of an original intellectual project, quite different from those of the 

ancient tradition of the south. By writing the mathematical series, the scribes produced new material, which 

represents a considerable extension of the known mathematical corpus produced in previous periods. The interest 

of the scribes moved from solving the equations to the statements themselves, in an attempt to embrace every 

possibility.  
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