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Abstract

In order to assess whether eroded carbon is a net source or sink of atmospheric CO2,
characterisation of the chemical composition and residence time of eroded organic
matter (EOM) at the landscape level is needed. This information is crucial to evaluate
how fast EOM can be decomposed by soil microbes during its lateral transport. This5

study considers a continuum of scales to measure the fate of EOM during its trans-
port, across a steep hillslope landscape of the Mekong basin, with intense erosion.
Here we show that changes in the chemical composition of EOM (measured by NMR
spectroscopy) and in its 13C and 15N isotope composition provide consistent evidence
for EOM decomposition during the lateral transport of carbon on time scales of less10

than 50 yr across distances of 10 km. Between individual soil units (1 m2) to a small
watershed (107 m2), the observed 28 % decrease of the C/N ratio and the enrichment
of 13C and 15N isotopes in EOM is of similar magnitude than the enrichment with depth
in soil profiles due to soil organic matter “vertical” decomposition. Radiocarbon mea-
surements indicated that these changes are not related to the slow transformation of15

soil carbon during pedogenesis, but rather to an acceleration of the SOM stabilisation
process during its journey through the watershed.

1 Introduction

The decomposition of soil organic matter is one of the most important processes con-
trolling the response of the global carbon cycle to climate and land use change (e.g.,20

Lal et al., 2004). The paradigm of one-dimensional microbial decomposition occurring
only at depth in the soil profile, as adopted by all global models, is however highly ques-
tionable because of lateral transport of soil organic matter during hydrologic erosion. In
this context, it remains controversial whether eroded organic matter (EOM) is a source
or a sink of carbon (Van Oost et al., 2007, 2008; Lal and Pimentel, 2008; Kuhn et al.,25

2009). Organic matter erosion has long been considered to represent a major source
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of atmospheric CO2 (Jacinthe and Lal, 2001), but recent modelling evidence suggests
that agricultural erosion could lead to a removal of 0.06–0.27 Pg of C from the atmo-
sphere per year (Van Oost et al., 2007; Berthe et al., 2007) because erosion transports
otherwise labile carbon into landscape elements where its decomposition is slowed
down. Therefore, the lability of EOM needs to be quantified and understood. Recent5

studies suggest that EOM is not mineralised during the erosion event but rather re-
deposited within or exported from the catchment (Wang et al., 2010). There is general
consensus that organic matter of the light particulate fraction is subject to preferential
detachment and transport by erosion (Gregorich et al., 1998; Rodriguez-Rodriguez
et al., 2004). This erodible SOM fraction is usually composed of structurally labile10

plant litter compounds, such as proteins and polysaccharides, with minor contribution
of more recalcitrant structures, such like lignin and cutin (Kölbl and Kögel-Knabner,
2004). As a result the potential carbon mineralisation from eroded sediments is usu-
ally enhanced after detachment compared to bulk soil (Jacinthe et al., 2002; Mora
et al., 2007; Juarez et al., 2011). The actual mineralisation in the field may however be15

smaller than often thought, due to formation of dense erosion crusts (Van Hemelryck
et al., 2011). Morover, contribution of highly stable organic matter compounds, such as
black carbon, found in fire-affected soils under slash and burn agriculture, may remain
stable during erosion and transport (Rumpel et al., 2006a).

Ultimately, it is the relative contribution of labile vs. other stable organic matter types20

to the eroded carbon flux, and their evolution during transport through the landscape,
which determines the net C source or sinks balance of EOM.

In this study, we tracked EOM compositional changes of eroded sediments collected
at different nested scales in a tropical sub-watershed of the Mekong river, one of the
most biochemically active regions of the world because of high erosion rates and25

tropical climate conditions. Specifically, we measured the elemental, isotopic and bulk
chemical composition of sediments eroded from 6 nested scales of observation, going
from pedon units of one square meter to the watershed (107 m2). Data for every scale
were recorded during 34 rainfall events of the rainy season of 2003. Depending on the
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rainfall intensity SOC transport can be fast during thunderstorms leading to massive
soil loss. The aim of the study was to assess the changes occurring in biochemical
composition and mean residence time of EOM recovered from different scales (hori-
zontal direction) and to compare them to changes occurring during SOM stabilisation
from top- to subsoil horizons (vertical direction).5

2 Material and methods

2.1 Study area (geology and climate)

This study was performed in an easily accessible typical sloping land area of northern
Laos under traditional slash-and-burn agriculture. The study area is a watershed of
10 km2 (i.e., 1×107 m2) forming part of the Mekong river basin. It shows high relief10

formed within silty to sandy shales. Altitudes (Z) range from 280 m at the watershed
outlet to 1331 m in the southern part characterized by limestone cliffs. The median Z
is 521 m and the coefficient of variation of Z is 78 %. Hill-slopes exhibit steep slopes
(average slope gradient of 32 %) and are marked by an asymmetry with short gentle
hill-slopes in the northern part and long and steep slopes in the southern part. Alfisols15

(Soil Survey Staff, 1999) developed from shales are the most common soils in the
watershed (Chaplot et al., 2005).

The area is under traditional shifting cultivation and slash and burn agriculture (SBA),
where patches of secondary forest and woody/bushy fallows are cleared, the ground
residues are burnt to enable cultivation for a short period before the land is allowed20

to revert to fallow re-growth. Secondary forests cover about 15 % of the whole surface
area, mostly on the crest tops.

The climate is marked by a study area has a tropical climate with two distinct sea-
sons. The 30 yr average annual rainfall is 1403 mm and the mean annual temperature
is 25 ◦C. Rainfall exceeds evapo-transpiration throughout the rainy season. The months25

from November to April are the driest. During the study period in 2003, 34 rainstorms
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occurred from 25 May to 2 October with a cumulative rainfall amount of 1044 mm.
These events exhibited amounts of between 4 and 127 mm and eight events had a cu-
mulative rainfall over 40 mm.

2.2 Plot establishment

In a tributary of the Mekong river, we selected 6 nested scales from 1 m2; 2.5 m2;5

0.6×104 m2, 30×104 m2, 60×104 m2 and 1×107 m2 in an attempt to investigate the dif-
ferent erosion mechanisms of the detachment, transport and sedimentation and those
involved in the decomposition of the eroded SOC. While both sediment detachment
and runoff generation are certainly point phenomena and may be assessed on micro-
plots, sedimentation or EOM decomposition is only operative at a certain distance from10

the “source” (Bloschl and Sivalapan, 1995). Thus the different observation points as-
sociated with the various nested scales along the downstream transport of sediments
allowed the localization and the quantification of the sedimentation together with an
assessment of the potential fate of EOM during its downstream transfer.

At the hill-slope level, twelve enclosed micro-plots of 1 m2 and eight plots of 2.5 m2
15

were installed at 4 positions from the back-slope to the upslope. These micro-plots
are part of the micro-catchment of 0.6×104 m2 under the third year of rice production
following a 4 yr fallow period. The weir of the 0.6×104 m2 micro-catchment was con-
structed within the hill-slope, at the back-slope position and collected surface runoff
and sediments. It exited in the main Houay Pano flume with a permanent flow to the20

watershed outlet. In this paper the term “micro-plot” is used for the 1 m2 areas, and
“plot” for the 2.5 m2. The term “micro-catchment” is used for an area of 0.6×104 m2,
“catchment” for both the 30×104 and 64×104 m2 surfaces and “watershed” for the
1×107 m2 surface area.

Field measurements were carried out from May immediately after the sowing of rain-25

fed rice to November following the harvest. The plots were weeded in mid June, late
July and at the end of August. Weeding was performed by shallow tilling (0–2 cm) with
a hoe.
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2.3 Soil sampling for the estimation of SOC content

Soil surface samples (0–5 cm) of the bare soil were collected in twelve 1 m2 plots and
eight 2.5 m2 plots. Three randomly chosen sampling locations were selected in the
vicinity of each plot. The samples were collected manually, mixed, air-dried at room
temperature, and passed through a 2 mm sieve for further analysis of the soil organic5

carbon.

2.4 Estimation of runoff, sediment and SOC losses by water erosion

The amount of runoff, sediment and EOM discharged from each of the nested scales
was estimated by using buckets for the 1 and 2.5 m2 plots and an automatic water level
recorder and water sampler that sampled continuously during flooding events at the10

weirs installed from 0.6×104 to 1×107 m2.
After each rainfall event, aliquots were collected in the buckets from the 1 and 2.5 m2

plots. All the water samples were oven-dried to estimate sediment concentration and
sediment discharge. These samples were later analyzed for total OC, and elemental,
chemical and isotopic compositions. Since the surface areas studied were not identical,15

the different fluxes were compared by calculating the amount of eroded C per surface
unit rather than by calculating the total amount eroded from the total surface area.
Thus, at all scales, erosion values were estimated in gm−2.

2.5 Elemental and stable isotope analysis of carbon and nitrogen

OC and N contents were determined by the dry combustion method using a CHN20

auto-analyser (CHN NA 1500, Carlo Erba) coupled to an isotopic ratio mass spec-
trometer (VG Sira 10) yielding the ratio of stable OC isotopes (δ13C). Stable N iso-
tope ratios (δ15N) were determined with a CHN analyser coupled to an Isochrom III
Isotopic mass spectrometer (Micromass-GVI Optima). Results for isotope abundance
were reported in per mil (‰) relative to the Pee Dee Belemnite standard (PDB) and25

18180

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/18175/2013/bgd-10-18175-2013-print.pdf
http://www.biogeosciences-discuss.net/10/18175/2013/bgd-10-18175-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 18175–18192, 2013

Composition of
eroded C

C. Rumpel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

relative to air N2 for δ13C and δ15N, respectively. Analytical precision was ±0.1 mgg−1

for OC and ±0.05 mgg−1 for N content. Analytical precision for isotope measurements
was ±0.3 ‰.

2.6 14C activity measurements

Measurements of 14C activity were performed to assess the mean residence time of C5

within the system. The 14C activity was measured on CO2 obtained by combustion of
solid samples at the accelerated mass spectrometer “AMS” facility “Artemis” in Saclay,
France.

2.7 Chemical composition

The chemical composition of EOM was analysed by 13C CPMAS NMR spectroscopy10

after demineralisation with 10 % hydrofluoric acid. This treatment was found not to alter
the chemical composition of organic matter as seen by NMR spectroscopy (Rumpel
et al., 2006b). The spectra were recorded on a Bruker DSX-200 NMR spectrome-
ter. Cross polarization with magic angle spinning (CPMAS) (Schaefer and Stejskal,
1976) was applied at 6.8 kHz. The 13C chemical shifts were referenced to tetramethyl-15

silane. A contact time of 1 m was used and the pulse delay was 400 ms. Solid-state
13C NMR signals were recorded as free induction decay (FID) and Fourier transformed
to yield the NMR spectra. The spectra were integrated using the integration routine of
the spectrometer. The chemical shift regions 0–45 ppm, 45–110 ppm, 110–140 ppm,
140–160 ppm and 160–220 ppm corresponded to alkyl C, O-alkyl C, C substituted aryl20

C, O substituted aryl C and carboxylic C, respectively (Wilson, 1987).
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3 Results and discussion

The amount of EOM, and its isotopic and chemical composition collected across a con-
tinuum of spatial scales across the small watershed suggest changes in the biogeo-
chemical properties during its transport by erosion (Figs. 1 and 2). Firstly, we observed
an increase in the carbon content of eroded sediments from 1 to 2.5 m2 scale, fol-5

lowed by a decrease at larger scales. The C/N ratio of EOM decreased significantly
towards larger scales, going from C/N=14 at the 1 m2 scale down to C/N=10 at the
107 m2 scale. This suggests either preferential removal of C relative to N by microbial
decomposition, or enrichment in nitrogen during EOM transport.

The action of microbial decomposition on EOM at larger scales is evidenced by10

changes in the stable carbon and nitrogen isotopic ratios, which both increase towards
larger horizontal scales (Fig. 2), by 4–5 ‰ for 13C and 1–2 ‰ for 15N respectively. An
isotopic enrichment of similar magnitude is usually observed within soil profiles during
organic matter decomposition and stabilisation due to “vertical” microbial processing of
labile carbon compounds (Rumpel and Kögel-Knabner, 2011). The biggest increase in15
13C and 15N content of SOC are found at the scale of 30×104 m2. Further, changes
in the radiocarbon content of the samples also occur in horizontal direction, i.e. follow-
ing transport. The 14C of EOM tends to continue to decrease from 108 to 104 pMC
between soil pedon and watershed scale (Table 1). Overall, the 14C data indicate that
EOM is recent (less than 50 yr old).20

Chemical composition of EOM was analysed using solid state 13C nuclear mag-
netic resonance spectroscopy. This method gives a good overview of the quantitative
contribution of alkyl, O-alkyl, aromatic and carboxyl SOM compounds. Data (Fig. 3)
show that the dominant signals representing between 31 and 44 % of the signal in-
tensity in the spectra of soils and sediments collected throughout the rainy season at25

the different spatial scales were those of O-alkyl C (45–105 ppm). These signals are
most likely to be related to the presence of polysaccharides (Kögel-Knabner, 1997).
The peaks between 0–45 ppm correspond to the presence of lipids, cutin, suberin and
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other aliphatic bio-macromolecules, all grouped as alkyl C components. The main sig-
nal at 32 ppm corresponds to long-chain methylene structures whereas that at 23 ppm
corresponded to short-chain or branched structures synthesized by microorganisms
during biodegradation (Baldock et al., 1989; Golchin et al., 1996). Signals between
110–160 ppm corresponded to aryl C, mainly lignin-derived phenols: protonated, C-5

substituted and O-substituted aromatic C (Knicker et al., 1993). The main signal at
130 ppm represented C-substituted aromatic C, which may be derived from stable aro-
matic compounds, such as black carbon (e.g. Skjemstad et al., 1996). No distinct signal
was found between 130 and 160 ppm, in the spectrum area corresponding to tannins
and tannin-like structures.10

13C CPMAS NMR spectroscopy indicated that at 1 and 2.5 m2 scale, EOM is domi-
nated by an aromatic signal between 110 and 160 ppm most likely related to the pres-
ence of fire-derived black carbon, produced during slash-and-burn agriculture (Rumpel
et al., 2006b). Towards larger scales this signal is decreasing in favour of O-alkyl C
structures, indicators of easily degradable polysaccharide material and alkyl C (Fig. 4).15

This is illustrated by and increasing O-alkyl/aryl ratio (Table 1). Moreover, the alkyl/O-
alkyl ratio is decreasing at greater scales. Consistent with the elemental and stable
isotope data, the O-alkyl and alkyl compounds may be microbial-derived.

It is interesting to note, that changes in chemical and stable isotope composition
observed during erosion are also occurring with depth in soil profiles (Rumpel et al.,20

2008). Quantitative evaluation of carbon erosion showed, that only 2 % of the initially
EOM reaches the outlet of the watershed (Chaplot et al., 2005). Estimates on the car-
bon remaining in soil following humification and stabilisation processes are in a similar
range (Rasse et al., 2006). However, the timescales on which these changes are oc-
curring are quite different in vertical and horizontal direction (> 500 yr in vertical and25

< 50 yr in horizontal direction). Our data suggest in accordance with other work on
OM compounds stabilised by pedogenic processes (e.g. Kiem and Kögel-Knabner,
2003; Spielvogel et al., 2008; Rumpel et al., 2010) that EOM compounds are mainly
microbial-derived carbohydrates, which are stabilised due to interaction with the min-
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eral phase. Desorption and in turn mineralisation of these labile compounds when
reaching fresh and/or saltwater systems is limited (Butman et al., 2007). We conclude
that OM stabilisation is greatly accelerated during the erosion process.
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Table 1. 14C activity and ratios of chemical groups as seen by 13C CPMAS NMR spectroscopy
determined for soil and eroded sediments at different scales.

Scale Size 14C activity alkyl C/O-alkyl C O-alkyl C/aryl C
ha pmC

Sol 112.1±0.6 0.69 1.14
Microplot 1 m2 n.d. 0.74 1.03
Plot 2.5 m2 n.d. 0.71 1.35
Micro-catchment 0.6×104 m2 108.1±0.6 0.63 2.05
Catchment 30×104 m2 108.3±0.6 0.57 2.10

64×104 m2 109.0±0.6 0.56 2.44
Watershed 1×107 m2 104.5±0.6 0.60 2.69
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 1 
 2 
Figure 1. Boxplot of organic carbon content (A), nitrogen content (B) and C/N ratio (C) for 3 

the bulk soil and for sediments collected at the different spatial scales under study. Mean 4 

values, standard errors and standard deviations were computed from the different plot 5 

repetitions and from the 34 rainfall event under study. 6 

Fig. 1. Boxplot of organic carbon content (A), nitrogen content (B) and C/N ratio (C) for the
bulk soil and for sediments collected at the different spatial scales under study. Mean values,
standard errors and standard deviations were computed from the different plot repetitions and
from the 34 rainfall event under study.
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 1 

Figure 2. Boxplot of d13C (A), d15N (B) for the bulk soil and for sediments collected for the 2 

soil and at the different spatial scales under study. Mean values, standard errors and standard 3 

deviations were computed from the different plot repetitions and from the 34 rainfall event 4 

under study.  5 

 6 

 7 

Fig. 2. Boxplot of d13C (A), d15N (B) for the bulk soil and for sediments collected for the soil and
at the different spatial scales under study. Mean values, standard errors and standard deviations
were computed from the different plot repetitions and from the 34 rainfall event under study.
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 1 
 2 

 3 

Figure 3. Chemical composition of OC in soil and eroded sediments at different scales. Note 4 

that at three scales sediments sampled at several dates throughout the rainy season were 5 

analysed. 6 

Fig. 3. Chemical composition of OC in soil and eroded sediments at different scales. Note that
at three scales sediments sampled at several dates throughout the rainy season were analysed.
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Figure 4. Proportion of signal intensity of EOM collected at different spatial scales assigned 13 

to aryl C, alkyl C and O-alkyl C 14 
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Fig. 4. Proportion of signal intensity of EOM collected at different spatial scales assigned to
aryl C, alkyl C and O-alkyl C.
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