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We present the results of a combined experimental and numerical study of the generation
of internal waves using the novel internal wave generator design of Gostiaux et al. (2007).
This mechanism, which involves a tunable source comprised of oscillating plates, has so
far been used for a few fundamental studies of internal waves, but its full potential
has yet to be realized. Our studies reveal that this approach is capable of producing
a wide variety of two-dimensional wave fields, including plane waves, wave beams and
discrete vertical modes in finite-depth stratifications. The effects of discretization by a
finite number of plates, forcing amplitude and angle of propagation are investigated, and
it is found that the method is remarkably efficient at generating a complete wave field
despite forcing only one velocity component in a controllable manner. We furthermore
find that the nature of the radiated wave field is well predicted using Fourier transforms
of the spatial structure of the wave generator.

1. Introduction

The study of internal waves continues to generate great interest due to the evolving
appreciation of their role in many geophysical systems. In the ocean, internal waves play
an important role in dissipating barotropic tidal energy (see Garrett & Kunze 2007, for
a review), whereas atmospheric internal waves are an important means of momentum
transport (Alexander, Richter & Sutherland 2006). In both the ocean and the atmosphere,
internal wave activity also impacts modern day technology (Osborne, Burch & Scarlet
1978). Many unanswered questions remain, however, particularly regarding the fate of
internal waves. For example: How much mixing do internal waves generate in the ocean,
and via what processes? And at what altitudes do atmospheric internal waves break and
deposit their momentum? The ability to reliably model internal wave dynamics is key to
tackling important questions such as these.
Internal waves come in a wide variety of forms. The simplest, a plane wave, is the

basis of many theoretical studies that provide fundamental insight (see Thorpe 1987,
1998; Dauxois & Young 1999, for instance), especially as any linear wave structure can
be decomposed into independent plane waves via Fourier transforms. While plane wave
solutions are the focus of many theoretical studies, laboratory experiments and field ob-
servations reveal that internal waves generated by a localized source, such as the tidal
flow past an ocean ridge (Bell 1975; Martin, Rudnick & Pinkel 2006) or deep tropical
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convection in the atmosphere (Walterscheid, Schubert & Brinkman 2001), produce coher-
ent wave beams that radiate away from the generation site. In vertically-finite domains,
such as the ocean, the internal wave field can be conveniently described using vertical
modes, i.e. horizontally propagating and vertically standing waves, whose spatial form
is dictated by the vertical stratification, as discussed in Echeverri et al. (2009). Finally,
localized solitary wave structures are also ubiquitous (New & Da Silva 2002).

Investigation of these different internal wave forms in laboratory experiments has
played a key role in internal wave research, starting with the pioneering work of Mow-
bray & Rarity (1967) on the wave beams generated by an oscillating cylinder. Since then,
internal waves have been generated using a variety of means. Delisi & Orlanski (1975)
performed an experimental study of the reflection of nominally plane waves, produced
by a paddle mechanism, from a density jump. A similar paddle mechanism was used
by Ivey, Winters & De Silva (2000) to study the dissipation caused by internal wave
breaking at a sloping boundary. Maas et al. (1997) used vertical oscillations of a tank
filled with salt-stratified water to parametrically excite internal waves, which eventually
focused onto internal wave attractors in the tank. With the ocean in mind, Gostiaux
& Dauxois (2007) and Echeverri et al. (2009) produced internal waves by side-to-side
oscillation of topography.

The aforementioned experimental methods of internal wave generation have three in-
herent shortcomings. Firstly, they produce wave fields that are invariant in one horizontal
direction, and thus nominally two-dimensional. In this paper, we too restrict ourselves
to the study of such situations, using z to refer to the vertical direction, antiparallel to
the gravity field g = −gez, and x to the horizontal direction; the possibility of gener-
ating three-dimensional wave fields using the novel generator is raised at the end of the
paper. The second shortcoming is that, with the exception of towed topography (Baines
& Hoinka 1985; Aguilar & Sutherland 2006), pre-existing methods radiate waves in mul-
tiple directions rather than in a single direction. This is due to the dispersion relation
for internal gravity waves,

ω2 = N2 sin2 θ , (1.1)

which relates the forcing frequency, ω, to the local angle of energy propagation with
respect to the horizontal, θ, via the Brunt-Väisälä frequency, N =

√

−g∂zρ/ρ, where
ρ is the background fluid density. Since waves propagating at angles ±θ and π ± θ all
satisfy (1.1) for a given frequency ratio ω/N , a two-dimensional localized source, such
as a vertically oscillating cylinder, generates internal waves propagating in four different
directions. Propagation in two of the four directions can be suppressed by either providing
oscillations along only one of the directions of propagation (i.e. θ and π+ θ) (Gavrilov &
Ermanyuk 1996; Ermanyuk & Gavrilov 2008) or by using a paddle system at a boundary
(Delisi & Orlanski 1975). These arrangements nevertheless still produce an undesirable
second set of waves that must somehow be dealt with in an experiment. The third, and
perhaps the most significant, shortcoming is that all pre-existing methods provide very
limited, if any, control of the spatial structure of an internal wave field.

A major advance in internal wave generation recently occurred with the design of a
novel type of internal wave generator (Gostiaux et al. 2007). This design uses a series of
stacked, offset plates on a camshaft to simultaneously shape the spatial structure of an
experimental internal wave field and enforce wave propagation in a single direction, as
illustrated in figure 1. The maximum horizontal displacement of each plate is set by the
eccentricity of the corresponding cam, and the spatio-temporal evolution is defined by
the phase progression from one cam to another and the rotation speed of the camshaft.
So far, this novel configuration has been used to study plane wave reflection from sloping
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Figure 1. A schematic showing the basic configuration of a novel internal wave generator.
Plates are vertically stacked on an eccentric camshaft. See text in section 2 for the definitions of
the different lengths W , ℓ and λ. The circular arrow at the top of the generator illustrates the
direction of rotation of the camshaft, the thick vertical arrows show the corresponding motion of
the wave form of the plates, and the dashed oblique arrows indicate the resulting local velocity
field. vφ and vg indicate the direction of phase and group velocity, respectively.

boundaries (Gostiaux 2006), diffraction through a slit (Mercier et al. 2008) and wave
beam propagation through nonuniform stratifications (Mathur & Peacock 2009). Despite
these early successes, however, there has been no dedicated study of the ability of this
arrangement to generate qualitatively different forms of internal wave fields, and several
important questions remain. For example, how does a stratified fluid that supports two-
dimensional waves respond to controlled forcing in only one direction (i.e. parallel to the
motion of the plates)?
In this paper, we present the results of a comprehensive study of two-dimensional

wave fields produced by different configurations of novel internal wave generators, and
reveal that this approach can accurately produce plane waves, wave beams and discrete
vertical modes. The results of experiments are compared with predictions based on the
Fourier transforms of the spatial structure of the wave generator, which proves to be a
very useful and simple tool for predicting wave fields, and numerical simulations, which
allow investigation of the boundary conditions imposed by the generator. The material
is organized as follows. Section 2 presents the experimental and numerical methods used
throughout the study. The generation of plane waves is addressed in § 3, followed by the
generation of self-similar wave beams and vertical modes in § 4 and § 5, respectively.
Our conclusions, and suggestions for future applications of the generator, are presented
in § 6.

2. Methods

2.1. Experiments

Throughout this paper, we consider the case of wave fields excited by a vertically stand-
ing generator with horizontally moving plates of thickness ℓ, as depicted in figure 1. This
scenario, which is possible because the direction of wave propagation is set by the dis-
persion relation (1.1), has two major advantages over the other possibility of a generator
tilted in the direction of wave propagation (Gostiaux et al. 2007; Mathur & Peacock
2009). First, it is far more convenient because it requires no mechanical components to
orient the camshaft axis and no change of orientation for different propagation angles.
Second, unwanted wave beams that are inevitably produced by free corners within the
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Generator Height Width Plate thick. Plate gap Max. eccentricity Num. of plates

Lyon 390.0 140.0 6.0 0.7 10.0 60
MIT 534.0 300.0 6.3 0.225 35.0 82

Table 1. Details of the wave generators at ENS de Lyon and MIT. Dimensions are in mm.

body of a stratified fluid are eliminated because the generator extends over the entire
working height of the fluid.
Two different laboratory experimental facilities, both using the double-bucket method

(Oster 1965) to create salt/density stratifications, were used. The first, at ENS de Lyon,
utilized a 0.8 m long, 0.170 m wide and 0.425 m deep wave tank. The wave generator,
whose characteristics are listed in table 1, was positioned at one end of the tank. On
each side of the wave generator there was a 0.015 m gap between the moving plates
and the side wall of the wave tank. Visualizations and quantitative measurements of
the density-gradient perturbation field were performed using the Synthetic Schlieren
technique (Dalziel et al. 2000). The CIV algorithm of Fincham & Delerce (2000) was
used to compute the cross-correlation between the real-time and the t = 0 background
images. Blocksom filter matting was used to effectively damp end wall reflections of
internal waves. The ENS Lyon setup was used to run experimental studies of the classical
Thomas–Stevenson wave beam profile (Thomas & Stevenson 1972), detailed in § 4.
The second system, at MIT, utilized a 5.5 m long, 0.5 m wide and 0.6 m deep wave

tank. A partition divided almost the entire length of the tank into 0.35 m and 0.15 m
wide sections, the experiments being performed in the wider section. The wave generator,
whose characteristics are given in table 1, was mounted in the 0.35 m wide section of the
tank with a gap of 0.025 m between the moving plates and either side wall. Parabolic
end walls at the ends of the wave tank reflected the wave field produced by the generator
into the 0.15 m wide section of the tank, where it was dissipated by Blocksom filter
matting. Visualizations and quantitative measurements of the velocity field in the vertical
midplane of the generator were obtained using a LaVision Particle Image Velocimetry
(PIV) system. This facility was used for studies of plane waves and vertical modes,
detailed in § 3 and § 5, respectively.
Examples of the amplitude and phase arrangements of the plates for the experiments

discussed in this paper are presented in figure 2. We use the following terminology: M
is the number of plates per period used to represent a periodic wave form of vertical
wavelength λ, W is the total height of the active region of the generator with nonzero
forcing amplitude, A(z) is the eccentricity of a cam located at height z, and φ(z) is the
phase of a cam set by the initial rotational orientation relative to the mid-depth cam
(φ = 0). The actual profile of the generator is given by Re

{

A(z)eiφ(z)
}

, where Re stands
for the real part. For a plane wave, A(z) is constant and φ(z) varies linearly over the
active region of the generator. For the Thomas & Stevenson profile there is a nontrivial
spatial variation in both A(z) and φ(z) over the active region, and elsewhere A(z) is zero.
Finally, for a mode-1 wave field, A(z) varies as the magnitude of a cosine over the entire
fluid depth, while φ(z) jumps by π at mid-depth.

2.2. Numerics

Complementary two-dimensional numerical simulations, in which excitation by the gen-
erator was modeled by imposing spatio-temporal variations of the velocity and buoyancy
fields along one boundary of the numerical domain, were performed. The simulations,
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Figure 2. Examples of the (a) eccentricity A(z) in cm, (b) phase φ(z) and (c) instantaneous
position of the cams for different profiles used throughout the paper. These include: plane waves
for M = 12 and W = 2λ (◦), Thomas & Stevenson beam (∗) and a mode-1 internal tide (⊳). Thin
lines drawn through the discrete points are the corresponding analytical forms being modeled.

which assumed a Newtonian fluid in the Boussinesq approximation, solved the incom-
pressible continuity, Navier–Stokes and energy equations

∇ · v = 0, (2.1a)

∂tv + (∇× v)× v = −∇q + bez + ν∇2v (2.1b)

and

∂tb+ (v · ∇) b = −N2v · ez + κ∇2b, (2.1c)

where v = (u,w) is the velocity field, v the corresponding velocity magnitude, p = q −
v2/2 the pressure, b the buoyancy field, related to the density by ρ = ρ0

(

1− g−1N2z − g−1b
)

where ρ0 is the density at z = 0, ν the kinematic viscosity and κ the diffusivity.
The code used was an extension of that developed for channel flow (Gilbert 1988),

to which the integration of the energy equation and the possibility of spatially varying
and time evolving boundary conditions on the plates were added, as already presented
in Martinand et al. (2006) for thermal convection. The method proceeds as follows. A
numerical solution in a rectangular domain [0, lx]× [0, lz] is obtained by a tau-collocation
pseudo-spectral method in space, using Fourier modes in the z-direction and Chebyshev
polynomials in the confined x-direction. This method very precisely accounts for the
dissipative terms. The nonlinear and diffusion terms are discretized in time by Adams–
Bashforth and Crank–Nicolson schemes, respectively, resulting in second order accuracy
in time. As the simulation focuses on the linear and weakly nonlinear dynamics, the
de-aliasing of the nonlinear term in the spatial expansion of the solution is not of crucial
importance and is omitted to decrease the computational cost. Owing to the assumption
of a divergence-free flow, the influence matrix method, introduced in Kleiser & Schumann
(1980, 1984), is used to evaluate the pressure and the velocity field; the pressure gradient
in the Navier–Stokes equation then being discretized by an implicit Euler scheme. Finally,
the buoyancy term is also discretized in time by an implicit Euler scheme, since the energy
equation is solved before the Navier–Stokes equations.
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Simulations were run by imposing forced boundary conditions on components of the ve-
locity and buoyancy fields at x = 0; no forcing was applied to the pressure, since its value
on the boundaries is an outcome of the numerical method. The governing equations (2.1)
were thus integrated together with Dirichlet boundary conditions

v (0, z, t) = vf (z, t) , b (0, z, t) = bf (z, t) ; (2.2)

while

v (lx, z, t) = 0, b (lx, z, t) = 0, (2.3)

were applied at x = lx. We note that this numerical forcing is Eulerian in nature, whereas
the corresponding experimental forcing is Lagrangian in spirit. The spectral method
introduces periodic conditions in the z-direction, which have to be accounted for to
avoid Gibbs oscillations. Therefore, the boundary conditions (2.2) were multiplied by a

polynomial “hat” function H (z) =
(

1− (2z/lz − 1)
30
)6

, vanishing at z = 0 and z = lz.

The choice of the exponents in H (z) is qualitative, the aim being that the variation of
the profile envelope be smooth compared to the spatial resolution, yet sharp enough to
keep a well-defined width of forcing.
The boundary conditions (2.3) imply wave reflection, with the reflected waves eventu-

ally interfering with the forced waves. Thus, the numerical domain was made sufficiently
large to establish the time-periodic forced wave field near the generation location long
before reflections became an issue. For a typical simulation, the domain was lx = 3.01 m
long and lz = 1.505 m high, and the number of grid points used was Nx = 1024 and
Nz = 512, giving a spatial vertical resolution of 2.9 mm that ensured at least two grid
points per plate. Satisfactory spectral convergence was confirmed for this spatial resolu-
tion and the time step was set to ensure stability of the numerical scheme.

2.3. Analysis

A detailed study of the impact of sidewall boundary conditions on the generation of shear
waves was performed by McEwan & Baines (1974). Here, we take a simpler approach and
show that a useful tool for investigating both theoretical and experimental internal wave
fields produced by the novel generator is Fourier analysis. This allows one to decompose
internal wave fields into constituent plane waves, and readily make predictions about the
radiated wave field.

For an unconfined, inviscid, two-dimensional system, any physical field variable asso-
ciated with a periodic internal wave field of frequency ω can be described by its Fourier
spectrum (Tabaei & Akylas 2003; Tabaei, Akylas & Lamb 2005), i.e.

ψ(x, z, t) =
e−iωt

2π

∫ +∞

−∞

∫ +∞

−∞

Q̃ψ(kx, kz)e
i(kxx+kzz) δ

(

(k2x + k2z)ω
2 −N2k2x

)

dkzdkx, (2.4)

where ψ(x, z, t) represents a field variable (e.g. b, u) and the Dirac δ-function ensures the
dispersion relation (1.1) is satisfied by the plane waves components. Propagating waves
in a single direction, say towards positive x-component and negative z-component for
the energy propagation, require

Q̃ψ(kx, kz) = 0 ∀kx ≤ 0 & ∀kz ≤ 0, (2.5)

as noted by Mercier et al. (2008).
At a fixed horizontal location x0, the values of ψ(x0, z, t) for all the field variables can

be considered as boundary conditions that force the propagating wave field ψ(x, z, t).
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Knowing the Fourier transform of the boundary forcing,

Qψ(x0, kz) =
eiωt√
2π

∫ +∞

−∞

ψ(x0, z, t) e
−ikzz dz, (2.6)

leads to complete description of the radiated wave field for x > x0:

ψ(x, z, t) =
e−iωt

2π

∫ +∞

0

∫ +∞

−∞

Qψ(x0, kz) e
i(kxx+kzz)δ

(

(k2x + k2z)ω
2 −N2k2x

)

dkz dkx, (2.7)

assuming that only right-propagating waves (i.e. kx ≥ 0) are possible.
In practice, the novel wave generator we consider forces only the horizontal velocity

field in a controlled manner, i.e.

ψ(0, z, t) = u(0, z, t) = Re
{

U(z)e−iωt
}

. (2.8)

As such, we expect the Fourier transform of this boundary condition to act only as a guide
for the nature of the radiated wave field, since it is not clear how the fluid will respond to
forcing of a single field variable. Throughout the paper, we perform the Fourier transform
along a specific direction using the Fast Fourier Transform algorithm. To compare spectra
from theoretical, numerical and experimental profiles with the same resolution, a cubic
interpolation (in space) of the experimental wave field is used if needed.
Unless otherwise stated, the experimental and numerical results presented are filtered

in time at the forcing frequency ω. The aim is to consider harmonic (in time) internal
waves for which we can define the Fourier decomposition in (2.4), and to improve the
signal-to-noise ratio, which lies in the range 102 − 101, with the best results for shallow
beam angles and small amplitude forcing. The time window ∆t used for the filtering is
such that ω∆t/2π ≥ 9 for A0 = 0.005 m and ω∆t/2π ≥ 4 for A0 = 0.035 m (where
A0 is the amplitude of motion of the plates defined in 3.1), ensuring sufficient resolution
in Fourier space for selective filtering. The recording was initiated at time t0 after the
start-up of the generator such that Nt0/2π ≃ 30 ≫ 1, ensuring no transients remained.
(Voisin 2003).

3. Plane waves

Since many theoretical results for internal waves are obtained for plane waves (e.g.
Thorpe 1987, 1998; Dauxois & Young 1999), the ability to generate a good approximation
of a plane wave in a laboratory setting is important to enable corresponding experimental
investigations. In order to generate a nominally plane wave, however, one must consider
the impact of the different physical constraints of the wave generator, which include:
the controlled forcing of only one velocity component by the moving plates, the finite
spatial extent of forcing, the discretization of forcing by a finite number of plates, the
amplitude of forcing, and the direction of wave propagation with respect to the camshaft
axis of the generator. In this section, we present the results of a systematic study of the
consequences of these constraints; a summary of the experiments is presented in table 2.

3.1. Analysis

Two-dimensional, planar internal waves take the form ψ (x, z, t) = Re
{

ψ0e
(ikxx+ikzz−iωt)

}

,
where k = (kx, kz) is the wave vector and ψ(x, z, t) represents a field variable. Being of
infinite extent is an idealization that is never realizable in an experiment. To investigate
the consequences of an internal wave generator being of finite extent, the horizontal ve-
locity boundary conditions used to produce a downward, right-propagating, nominally
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plane wave can be written as:

u(0, z, t) = Re
{

[Θ(z +W/2)−Θ(z −W/2)] A0ω ei(−ωt+kez)
}

, (3.1)

where ke > 0 is the desired vertical wave number, λe = 2π/ke the corresponding vertical
wavelength, −W/2 ≤ z ≤ W/2 the vertical domain over which forcing is applied, A0

the amplitude of motion of the plates, and Θ the Heaviside function. The spatial Fourier
transform of (3.1) is:

Qu(0, kz) = A0ω
W√
2π

sinc

(

(kz − ke)W

2

)

, (3.2)

with sinc(x) = sinx/x the sine cardinal function. In the limit W → ∞, Eq. (3.2) ap-
proaches a delta function, which is the Fourier transform of a plane wave. Owing to the
finite value of W , however, Qu(0, kz) does not vanish for negative values of kz, suggest-
ing that (3.1) will also excite upward propagating plane waves. Following the convention
usual in optics that Qu(0, kz) is negligible for |kz−ke|W/2 ≥ π, if ke ≫ 2π/W then (2.5)
is reasonably satisfied.
Another consideration is that the forcing provided by the wave generator is not spa-

tially continuous, but discretized by Np oscillating plates of width ℓ. Accounting for this,
the boundary forcing can be written as:

u(0, z, t) = Re







Np−1
∑

j=0

[Θ(z − zj)−Θ(z − zj + ℓ)]A(zj) e
i(kezj+keℓ/2−ωt)







, (3.3)

where zj = jℓ−W/2 and Npℓ =W . The Fourier transform of (3.3) for the specific case
of constant amplitudes A(zj) = A0ω, ∀j ∈ {0, · · · , Np − 1}, reduces to

Qu(0, kz) = A0ω
ℓ√
2π

sinc

(

kzℓ

2

) sin

(

(kz − ke)W

2

)

sin

(

(kz − ke)ℓ

2

) , (3.4)

a classical result often encountered for diffraction gratings. Consequently, the magnitudes
of W and ℓ in comparison to the desired vertical wavelength λe = 2π/ke characterize the
spread of the Fourier spectrum and the potential for excitation of upward propagating
waves.
In the following sections, we quantify the downward emission of waves using the pa-

rameter βd, defined as:

βd =

∫ +∞

0

|Qu(x0, kz)|2 dkz
∫ +∞

−∞

|Qu(x0, kz)|2 dkz
, (3.5)

which is essentially the ratio of the total kinetic energy of the downward-propagating
waves to the total kinetic energy of the radiated wave field.

3.2. Configuration

The MIT facility was used for these plane wave experiments (see table 1). A variety of
different configurations were tested and these are summarized in table 2. The fluid depth
was H = 0.56± 0.015 m and the background stratification was N = 0.85 rad s−1 for all
experiments. An example configuration of the cams (amplitude and phase evolution) is
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Expt. Experiment/Simulation Forcing M W/λe A0 (mm) θ (deg.)

Common case 1 exp./sim. partial 12 3 5.0 15

Forcing 2 sim. complete 12 3 5.0 45

Angle

3 exp./sim. partial 12 3 5.0 30
4 exp./sim. partial 12 3 5.0 45
5 exp./sim. partial 12 3 5.0 60
6 sim. partial 12 3 5.0 75

Width

7 exp./sim. partial 12 2 5.0 15
8 exp./sim. partial 12 1 5.0 15
9 exp./sim. partial 12 2 5.0 45
10 exp./sim. partial 12 1 5.0 45

Discretization
11 sim. partial ∞ 3 5.0 15
12 exp./sim. partial 4 3 5.0 15

Amplitude
13 exp./sim. partial 12 3 35.0 15
14 exp. partial 12 3 35.0 30
15 exp. partial 12 3 35.0 45

Table 2. Summary of experiments and numerical simulations. M is the number of plates used
for one wavelength, W/λe is the spatial extent of forcing expressed in terms of the dominant
wavelength, A0 is the eccentricity of the cams, and θ is the energy propagation angle. For
complete forcing, u, w and b were forced at the boundary.

presented in figure 2. Plane waves were produced by configuring the Np plates of the wave
generator with an oscillation amplitude A0 = 0.005 m, with the exception of experiments
13 to 15 for which A0 = 0.035 m. Results were obtained for different forcing frequencies
corresponding to propagating angles of 15, 30, 45 and 60◦. Visualization of the wave
field was performed using PIV, for which it was possible to observe the wave field in a
40 cm-wide horizontal domain over the entire depth of the tank, save for a 1 cm loss near
the top and bottom boundaries due to unavoidable laser reflections. The corresponding
numerical simulations were configured accordingly.

3.3. Results

3.3.1. Forcing

The consequences of forcing only a single component of the velocity field, which we
call partial forcing, in comparison to forcing both the velocity field components and the
buoyancy field (assuming they are related by the inviscid linear wave equation), which
we call complete forcing, were investigated first using the numerical simulations. Here, we
present the results of simulations performed using a sinusoidal boundary wave form with
W = 3λe, M = 12 and λe = 78.8 mm (experiments 2 and 4 of table 2). The magnitude
and frequency of the boundary condition for horizontal velocity were A0 = 5.0 mm and
ω = 0.601 rad s−1, the latter giving θ = 45◦.
Figures 3(a) and (b) present snapshots of the horizontal velocity fields u produced by

partial and complete boundary forcing, respectively, and there is excellent qualitative
agreement between the two. More quantitative comparisons are provided in figure 3(c),
which presents data along the vertical cuts C indicated in figures 3(a) and (b), located
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Horizontal velocity along the cut C in (a) and (b), located at xC = 0.05 m for complete (−) and
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at xC = 0.05 m; this location was chosen because it is close enough to the generator that
viscous damping has only an order 1% effect on the wave field (based on the linear viscous
theory for plane waves by Lighthill (1978)), yet is sufficiently far from the generator to
allow the wave field to adapt to the boundary forcing. The cross beam profiles in figure
3(c) show the amplitude of u is roughly 20% lower for the case of partial forcing compared
to complete forcing, but otherwise their forms closely match. Spectral information reveals
no other discernable difference between the two, and both cases give βd > 0.99, compared
to the theoretical prediction of βd = 0.97, revealing that almost all the energy is being
emitted downward. Qualitatively and quantitatively similar results to those presented in
figures 3(c) and (d) were obtained for different physical quantities (e.g. w and b) of the
wave fields, and for the other configurations of the generator listed in table 2.

3.3.2. Angle of emission

As one might expect, the quality of the wave field was best for shallower propagation
angles, for which the horizontal velocity is a more defining quantity, and degraded for
steep propagation angles, where w becomes the dominant velocity component. This is
demonstrated in a qualitative manner by figures 4(a)-(d), which present snapshots of
the experimental horizontal velocity fields for θ = 15, 30, 45 and 60◦, corresponding to
experiments 1, 3, 4 and 5 in table 2, respectively. Although the forcing velocity u = A0ω
is strongest for θ = 60◦, the wave field resulting from this partial forcing is not as strong
and coherent as those at lesser angles.
Another demonstration of the consequences of partial forcing is given in figure 5, which

presents the efficiency of the wave generator as a function of the forcing frequency for
experiments and numerics. The efficiency is defined as the magnitude of the horizontal
velocity component u (figure 5(a)), or the velocity in the direction of wave propagation u′

(figure 5(b)), averaged over the central 0.1 m of the cut C across the wave field, compared
to the forced horizontal velocity A0ω. For complete forcing, one expects the ratio u/A0ω
to be one, whereas a smaller value indicates a less efficient mechanism. The results show
that both u/A0ω and u′/A0ω decrease with increasing ω/N . A simple physical argument
for the decay of the response with the propagation angle could be that the generator
provides an initial amount of kinetic energy that is redistributed by the flow into both
horizontal and vertical motions. If all the energy is appropriately distributed, we expect
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the dashed lines to u′/(A0ω) = cos θ.

u′ = A0ω, and thus u = A0ω cos θ = A0ω
√

1− (ω/N)2, represented by solid lines in
both panels of figure 5. Below (ω/N)2 = 0.5 the experiments and numerics follow this
trend quite closely, but then depart from it significantly for higher frequency ratios. Also
plotted as dashed lines in figure 5 is the relation u′ = A0ω cos θ, implying u′/A0ω =
√

1− ω2/N2 and u/A0ω = 1− ω2/N2, which does a reasonable job of capturing the
trend of the results, especially at higher frequency ratios. This relation implies that the
energy associated with the motion of the plates along the direction of propagation is
primarily responsible for setting the strength of the wave field.
Finally, we analyze the evolution the wave field with increasing angle by computing βd.

For these experiments, the Fourier analysis in section 3.1 predicts βd = 0.97, independent
of the angle of emission. Although the numerical values concur with this prediction, with
βd > 0.99 for all angles, we obtain values of 0.99 for θ = 15◦, 0.98 for θ = 30◦ and
45◦, and 0.93 for θ = 60◦ for the experiments. One possible reason for this decrease
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in efficiency is the finite-amplitude lateral displacement of the plates of the generator,
which could partially block the propagation of steeper waves; this is not taken into
account in the numerics. Another possible reason is that at higher frequency of forcing
the Reynolds number for the oscillating plates is larger, increasing the likelihood of more
complex dynamics near the oscillating plates and thereby weakening their coupling to
wave generation. These issues are raised again in section 3.3.5.
Overall, the results in this section and the previous section reveal that partial (horizon-

tal) forcing by a vertically standing generator works well for θ ≤ 45◦. This gives the user
the freedom to perform experiments over a range of angles without having to re-orient
the generator. For larger angles, however, it would seem prudent to use a generator with
its perpendicular axis tilted toward the direction of propagation. This was confirmed by
a series of experiments similar to cases 1 and 3 to 5 in table 2, but with the generator
tilted at 15◦ to the vertical; these results are also included in figure 5. For angles smaller
than 45◦, there is almost no difference in the efficiency of the generator, but we found
that the 60◦ wave field produced by the tilted generator was noticeably stronger and
more coherent than that produced by the vertically-standing generator.

3.3.3. Finite extent

The Fourier analysis in section 3.1 predicts that a consequence of a generator inevitably
being of finite vertical extent is the production of undesirable waves that propagate in
the vertical direction opposite to the principal wave field. This can be seen in both
the numerical and experimental wave fields in figures 3 and 4, which contain a weak,
upward-propagating wave field in addition to the principal downward-propagating wave
field. Experiments were therefore performed for W/λe = 1, 2 and 3 to investigate how
the strength of the undesirable wave field was influenced by the vertical restriction of the
forcing, and to determine how well this was predicted by simple Fourier analysis. Except
for varyingW/λe and having θ = 15◦ , the configuration was the same as in the previous
subsection. The experiments are listed as experiments 1, 7 and 8 in table 2.
A direct comparison of experimental and numerical horizontal velocity fields forW/λe =

3 is presented in figure 6, demonstrating very good agreement between the two, provid-
ing confirmation that our numerical approach can reliably model the horizontal forcing
provided by the plates. The profiles presented in figure 6(c), obtained at the vertical
cuts indicated in figures 6(a) and 6(b), have only one small, but noticeable, difference:
slightly higher peaks at either end of the experimental velocity profile. A similar level of
agreement was obtained for the vertical velocity profile.
The normalized experimental spatial Fourier spectra Qu (xC , kz) at xC = 0.05 m and

the normalized theoretical spectra Qu (0, kz) are presented in figure 7. A standout fea-
ture of the results is that the theoretical Fourier transform does a remarkably good job
of predicting the spectrum of the experimental wave field. For W/λe = 1, the spectrum
is broadly centered around the expected vertical wavenumber ke = 79.9 m−1, and this
principal peak becomes increasingly sharp for W/λe = 2 and 3. This evolution is quanti-
fied by the half width δk, defined as the width of the principal spectral peak at half peak
amplitude, the values of which are listed in table 3 for the three different configurations.
Another notable feature of the spectra is that strength of the upward propagating

wavefield (kz < 0) significantly decreases with increasing W/λe. Computing the param-
eter βd for experimental and numerical cases 1, 7 and 8 of table 2 quantifies this trend.
As seen in table 3, 98% of the energy propagates in the desired direction for W/λe ≥ 2.
Furthermore, we computed δk/ke and βd for cases 4, 9 and 10 of table 2 too, and the
results presented in table 3 show that the influence of the width is more significant than
the influence of the angle of emission.
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δk/ke (15◦) βd (15◦) δk/ke (45◦) βd (45◦)
W/λe num. exp. theo. num. exp. theo. num. exp. theo. num. exp. theo.

1 1.67 1.11 1.21 0.97 0.94 0.94 1.31 1.08 1.21 0.97 0.92 0.94
2 0.58 0.57 0.60 0.99 0.97 0.96 0.61 0.58 0.60 0.99 0.96 0.96
3 0.37 0.39 0.40 0.99 0.99 0.97 0.40 0.39 0.40 0.99 0.98 0.97

Table 3. Relative half width, δk/ke, and relative energy of the downward propagating wave,
βd, for cases 1, 7 and 8 of table 2, corresponding to a propagation angle of 15◦, and experiments
4, 9 and 10 for a propagation angle of 45◦.

3.3.4. Discretization

To study the impact of spatially discretized, rather than continuous, forcing, experi-
ments were performed for W/λe = 3 with M = 4 and M = 12; these being experiments
12 and 1 in table 2. For comparison, corresponding numerical simulations were also per-
formed for these two configurations, as well as for the idealized case M → ∞, which is
listed as experiment 11 in table 2 and corresponds to forcing discretized on the scale of
the grid resolution in the numerical simulations.
Snapshots of the experimental and numerical wave fields for M = 4 are presented in

figures 8(a) and 8(b), respectively, while figure 8(c) presents vertical cuts of the horizontal
velocity field at xC = 0.05 m for these two data sets. Even for this coarse discretization,
there is still a remarkably smooth and periodic wave field that looks little different to that
obtained using M=12 (see figure 6). And once again there is good agreement between
experiment and numerics, with the slight exception of the outer edges of the profile where
the numerical peaks are a little larger amplitude.
Although the cross-section of the emitted downward-propagating, nominally plane

wave looks reasonable, the discretization does induce more of an undesired upward-
propagating wave, which can clearly be seen in figures 8(a) and 8(b). Fourier spectra for
experiments, numerics and theory corresponding to M=4, 12 and ∞ are presented in
figure 9 and, as predicted by (3.4), the strength of the negative wave numbers noticeably
increases with decreasing M . Most notably, for M = 4 (corresponding to ℓ = 19.6 mm)
the discretization introduces a peak around kz = −235(±4) m−1, which is strongest in the
theoretical spectrum but nevertheless evident in the experimental and numerical spectra.
By analogy with the theory of optical gratings, this value is in good agreement with the
canonical formula 2π/λe−2π/ℓ = −241 m−1, which can also be inferred from (3.4) when
ℓ ≪ λe. For all three cases the principal peak remains sharp, with δk/ke = 0.42. The
value of βd is 0.96 when M = 4, so a vast majority of the energy is still in the downward
propagating wave field.

3.3.5. Amplitude

All the results presented thus far have been for A0 = 5.0 mm. To investigate the impact
of a significantly larger amplitude of forcing on the quality of the radiated wave field, we
performed a series of experiments with the same parameters as experiments 1, 3 and 4,
with the exception of A0 = 35.0 mm; they are listed as experiments 13 to 15 in table 2.
We found that the qualitative level of agreement between experiment and numerics

for snapshots of the wave field was comparable to that presented in figure 6(a) and
(b). When a more quantitative comparison is made, however, some consequences of
the higher-amplitude forcing become apparent. For example, for vertical cuts located
at xC = 0.075 m the amplitude of the horizontal velocity component in the experiments
was 4.4 ± 0.9 mm s−1, compared to 5.50 ± 0.25 mm s−1 in the numerical simulations.
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Figure 9. Comparison between spatial spectra Qu (x, kz) computed from the experiments (◦)
and numerical simulations (−·) at station xC = 0.05 m ,and the theoretical expression (−)
computed from (3.4) on the boundary x = 0, for M = 4 (top), 12 (middle) and ∞ (bottom).

We also note that although the forcing amplitude was increased by a factor of 7, in the
experiments the wave amplitudes only increased by a factor of around 5. †

† We had to make these, and later, comparisons, for a vertical cross section further away from
the generator than in our previous studies because the much larger amplitude motion of the
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A0 = 0.005 m and (b) A0 = 0.035 m, for experiments (−−) and numerics (−).

Figure 10 presents vertically-averaged temporal spectra of the horizontal velocity for
the cuts at xC = 0.075 m, for both small and large amplitude forcing. The numerical
data, being at somewhat higher temporal resolution, has a lower noise level than the
experimental data. Both experimental and numerical spectra display the same qualitative
change; the large amplitude forcing introduces more significant higher harmonic content
into the wave field.
The normalized spatial spectra of the wave field for frequencies corresponding to θ =

15, 30 and 45◦ are presented for both small and large amplitude forcing in figure 11. The
angle of emission does not seem to significantly impact the quality of the wave field for
the small amplitude forcing, but this is not so for the larger amplitude forcing, for which
we find that βd decreases from 0.97 to 0.94 for θ = 15◦ and 30◦, respectively (although
δk/ke = 0.38 remains constant). For θ = 45◦ and A0 = 35.0 mm, the generator no
longer generates a clean plane wave, the main peak being centered around 41.5 m−1

and βd = 0.80. The cause of this breakdown is not easy to discern. One hypothesis is
that breakdown occurs at criticality, when the angle of wave propagation exceeds the

maximum slope angle of the face of the generator, θm = π
2 − arctan

(

2πA0

λe

)

. The reason

is not as simple as this, however, since θm = 20◦ for the experiments with A0 = 35.0 mm,
and yet the generator is still an efficient source of plane waves for θ = 30◦. Other factors,
such as the nonlinear coupling between the plates and the wave field, as characterized
by the Reynolds number of the plate motion, would also seem to play a role.

3.4. Summary

Through a systematic series of experiments, listed in Table 2, we can draw several conclu-
sions about the ability of the novel wave generator to generate plane waves. We find that
the spatial Fourier transform of the profile of the wave generator can reasonably predict a

plates created a more intense wave field very close to the generator, where it was not possible
to get reliable experimental data.
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Figure 11. Comparison between spatial spectra Qu (x, kz) computed from the experiments
with A0 = 0.035 m (×) and A0 = 0.005 m (−−) at station xC = 0.075 m and the theoretical
expression (−) computed from (3.4) on the boundary x = 0, for θ = 45◦ (top), 30◦ (middle)
and 15◦ (bottom).

priori the spectrum of the radiated wave field. If more comprehensive resources are avail-
able, a numerical simulation with boundary forcing applied at x=0 can reliably reproduce
the emitted wave field for small-amplitude forcing. As one might expect, the spectrum
of the wave field becomes increasingly sharp about the dominant wavelength, and thus
more akin to a plane wave, as the number of wavelengths excited increases, and even a
very crude spatial discretization of the desired wave form produces a remarkably smooth
and coherent wave field. For large amplitude forcing, the main impact is an increase of
the harmonic content of the wave field. Overall, we conclude that a vertically-standing
wave generator produces a radiated wave field of high quality provided θ ≤ 45◦.

4. Wave Beams

Wave beams are a common feature of internal wave fields in both laboratory experi-
ments (Peacock & Tabei 2005; Gostiaux & Dauxois 2007) and geophysical settings (Lam,
Maas & Gerkema 2004; Martin, Rudnick & Pinkel 2006), since they are readily generated
by periodic flow relative to an obstacle, be it a cylinder or an ocean ridge for example.
We choose to investigate the so-called Thomas–Stevenson profile (Thomas & Stevenson
1972), a viscous self-similar solution of (2.1) that can be considered as the far-field limit
of the viscous solution of elliptic cylinder oscillating in a stratified fluid (Hurley & Keady
1997). It has been shown that this profile describes oceanographically relevant internal
wave beams far from their generation site at the continental shelf (Gostiaux & Dauxois
2007); after their reflection at the bottom of the ocean, such wave beams are thought to
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be the cause of solitons generated at the thermocline (see New & Da Silva 2002; Gerkema
2001, for instance).

4.1. Analysis

Consider a downward-propagating, right-going beam at angle θ ∈ [0, π/2] with respect
to the horizontal, here θ being defined to be positive in a clockwise sense. Let ξ =
x cos θ− z sin θ+ l and η = x sin θ+ z cos θ be the coordinates parallel and transverse to
the wave beam, respectively, with l corresponding to the distance from the point source
to the origin of the cartesian frame at the center of the active region of the generator.
At leading order, the parallel and transverse velocity components and buoyancy fields of
the Thomas–Stevenson profile are:

u′ (ξ, η, t) = u0

(

ξN2 sin θ

g

)−2/3

Re

{
∫ ∞

0

k exp
(

−k3
)

exp

(

ikα
η

ξ1/3
− iωt

)

dk

}

, (4.1a)

v′ (ξ, η, t) = u0

(

ξN2 sin θ

g
ξα3/2

)−2/3

Re
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−i

∫ ∞
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k3 exp
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−k3
)
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− iωt

)

dk

}

,

(4.1b)
and

b (ξ, η, t) = Nu0

(

ξN2 sin θ

g

)−2/3

Re

{

−i

∫ ∞

0

k exp
(

−k3
)

exp

(

ikα
η

ξ1/3
− iωt

)

dk

}

,

(4.1c)

where u0 is the amplitude of the horizontal velocity and α = (2N cos θ/ν)
1/3

.
In principle, to most accurately reproduce (4.1) one should tilt the generator and

configure the profile of the forcing plates to match the transverse profile of the Thomas-
Stevenson beam. As stated earlier, however, we consider a vertically-standing wave gen-
erator, since one will typically want to investigate several wave beam angles in an ex-
periment and reconfiguring the system for each angle is impractical. Thus we seek to
reproduce the profile (4.1) by using only the longitudinal velocity profile (4.1a), instead
of the true horizontal velocity profile, to prescribe the forcing at x=0, i.e.

u (0, z, t) = u′ (l, z, t) . (4.2)

This is an approximation of the exact solution, which will become increasingly valid with
decreasing θ. For a given viscosity, stratification and forcing frequency that determine α,
equation (4.2) sets effective values for the parameters ℓ and u0 in (4.1).

4.2. Configuration

The experiments were performed using the ENS Lyon generator (see table 1) with a
background stratification N = 0.82 rad s−1 and forcing frequencies ω = 0.20 rad s−1,
0.44 rad s−1 and 0.58 rad s−1, corresponding to propagation angles of 14, 32 and 44◦

respectively. The arrangement used twenty-one plates to discretize the profile at x = 0,
thirteen of which covered the 9 cm active region. Based on the results of section 3.3.4,
this level of discretization is expected to be sufficient to resolve the structure of the wave
beam. The configuration of the cams (amplitude and evolution of the phase) is depicted
in figure 2, with the maximum amplitude of oscillation being 10 mm.
Experimental visualizations were performed using the Synthetic Schlieren method,

which gives direct measurements of the gradient of the buoyancy field. For the following
study, we integrate this data and compare the measured buoyancy field with the analytical
model (4.1c) and numerical results. For these simulations, the numerical domain was
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0.80 m long and 0.60 to 1.01 m high, with a vertical resolution ∆z = 0.79 mm. The
forcing on the boundary was discretized on the scale of the numerical grid.

4.3. Results

A direct comparison between experimental and numerical buoyancy fields for θ = 14◦ is
presented in figure 12. There is close qualitative agreement between the two, and it is
notable that there is no visible sign of any upward propagating beam coming from the
generator, due to the highly resolved, smooth boundary conditions that were used. For
a vertical cut at xC = 0.05 m of the vertical component of the density gradient, ∂zb, we
find that βd = 0.98 for the experiments and βd = 0.99 for the numerics. We note that the
maximum values of ∂zb are around 2% of the background stratification, and so the wave
field can reasonably be considered linear. Analysis of temporal spectra confirmed that
harmonics were at least one order of magnitude smaller than the fundemantal signal.
For a more quantitative comparison with the self-similar solution of Thomas–Stevenson,

we investigate the buoyancy field extracted along the cuts indicated in figures 12(a) and
(b). Specifically, we consider the normalized transverse profiles:

b(η/ξ1/3)

bm(ξ)
=

∫ ∞

0

k exp
(

−k3 + ikαη/ξ1/3
)

dk
∫ ∞

0

k exp
(

−k3
)

dk

, (4.3)

where

bm(ξ) = max
η

b (ξ, η, 0) = Nu0

(

ξN2 sin θ

g

)−2/3∫ ∞

0

k exp
(

−k3
)

dk (4.4)

is the maximum amplitude of the buoyancy perturbation (4.1c) along a transverse cut,
which lies at the center of the beam (η = 0). The results are presented in figure 13(a)
and (b), where it can be seen that both the experimental and numerical results evolved
spatially in a self-similar manner, with only small differences compared to the analytical
model.
We also confirmed the ability of the generator to produce waves beams for some steeper

angles, by performing experiments for θ = 32◦ and θ = 44◦. Comparisons with the
analytical solution revealed the same level of agreement as for the θ = 14◦ wave beam.
The wave generator still emitted a beam in only one direction, and the experimental
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values of βd were 0.99(8) for θ = 32◦ and 0.99(8) for θ = 44◦, with no discernable change
in the value of βd for the numerical simulations.

4.4. Summary

On the basis of this study, we conclude that the novel wave generator is capable of
producing a wave beam structure of a desired form, which demands excitation of a
prescribed Fourier spectrum. We have demonstrated this for the example of the Thomas–
Stevenson profile, and speculate that although it is not necessary, perhaps even closer
agreement with theory can be obtained using a tilted generator.

5. Vertical modes

Vertical internal wave modes play an important role in our current understanding of
internal tides in the ocean (Garrett & Kunze 2007). To date, however, there has been little
progress in producing high-quality vertical modes in laboratory experiments. Thorpe
(1968) generated a mode-1 disturbance by oscillating a flap hinged about a horizontal axis
at mid-depth; and Nicolaou et al. (1993) produced low modes in an essentially two-layer
system with a thermocline, but neither of these approaches can readily produce arbitrary
modes in an arbitrary stratification. Generalized forcing of a spectrum of vertical modes
was obtained by Echeverri et al. (2009), who used an oscillating Gaussian topography to
generate an internal wave field, and developed a robust algorithm for extracting modal
amplitudes from experimental data. Here, we demonstrate the ability of the novel wave
generator to reliably produce arbitrary internal wave modes.

5.1. Analysis

For a stratified fluid of constant N , the horizontal velocity field associated with the nth

vertical mode of frequency ω propagating from left to right is:

un(x, z, t) = Re
[

u0 cos
(nπz

H

)

exp
(

i
nπ

H cot θ
x− iωt

)]

, (5.1)

where u0 is a complex amplitude that sets both magnitude and phase, n is a positive
integer, z = 0 and z = H are the bottom and top boundaries, respectively, and θ is
the first-quadrant angle that satisfies the dispersion relation (1.1). Note that θ does not
specify the direction of energy propagation for a vertical mode and only plays a part in
setting the horizontal wavenumber (Gill 1982).
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The idealized boundary forcing of the horizontal velocity at x = 0 to excite the nth

vertical mode is:

u(0, z, t) = a cos
(nπz

H

)

cos(ωt) , (5.2)

where a is an arbitrary amplitude. To analyze the quality of the wave field generated by
this forcing, instead of Fourier transforms one uses modal analysis, which is equivalent
to Fourier series in a constant stratification. The horizontal velocity component of the
resulting wave field can be written as:

u(x, z, t) =
n=∞
∑

n=1

an cos
(nπz

H

)

cos
( nπx

H cot θ
− ωt+ φn

)

, (5.3)

where an and φn are the strength and the phase of the nth mode respectively. Similar
results exist for other physical variables, including vertical velocity and buoyancy fields.
From a practical point of view, one decomposes the experimental generated wave field

at a fixed x location into the vertical basis modes using the numerical algorithm described
and implemented in Echeverri et al. (2009). The modal decomposition is then performed
at several other x locations, and the variations in an and φn across various x locations
gives an estimate of the experimental errors in the results. One can reliably correct for
viscous dissipation of the modes, if needs be, by introducing in (5.3) a multiplicative
term of the type e−fnx, with

fn =
νn3

2ω

( π

H

)2
[

N2

N2 − ω2

]2

(5.4)

being the spatial damping rate (Thorpe 1968; Echeverri et al. 2009). In our experiments,
fn is very small (roughly 10−4 m−1 for mode-1 and 10−3 m−1 for mode-2) and hence
viscous dissipation can be neglected.
The discretization results for plane waves in section 3.3.4 suggest that there could be

limitations on the ability to resolve a vertical mode due to the discretization of the wave
generator. By computing the modal decomposition of the discrete plate arrangement, we
find that provided at least 3n equispaced plates are used to represent the nth mode, then
more than 95% of the boundary forcing is contained in the nth mode. To ensure good
quality of the generated wave field also requires one to account for the approximation
that the boundary forcing of horizontal velocity occurs at a fixed x location even though
the plates are actually moving. For this approximation to hold, the ratio of the maximum
amplitude of oscillations of the plates to the horizontal wavelength corresponding to the
nth mode should be much smaller than unity, i.e. nA0/(2H cot θ) ≪ 1. Provided these
two conditions are satisfied, a high-quality wave field is to be expected.

5.2. Configuration

The MIT facility was used for the experiments with Np = 64 of the total 82 plates
(see table 1). Individual vertical modes were produced by configuring the Np plates of
the wave generator to reproduce (5.2). The amplitude of oscillation of the jth plate
centered at vertical position zj = jℓ/2 of mode n was A(zj) = A0 cos(nπzj/H), with ℓ
being the plate thickness (see Fig. 2 for more details of the configuration). Experiments
were performed for modes 1 and 2. The spatial resolution of the forcing, relative to the
vertical wavelength of the mode being forced, was 1/64 in both experiments. The fluid
depth was H = 0.416 m, the maximum amplitude of oscillation was A0 = 2.5 mm and
the stratification was N ≃ 0.85 rad s−1. Visualization of the wave field was performed
using PIV technique. Using this arrangement it was possible to observe the wave field in
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z

x x

m s−1

Figure 14. Snapshots of experimental velocity fields for (a) mode-1 and (b) mode-2. The
location of the wave generator is x = 0 and the vertical dashed lines bound the domain over
which modal decomposition is performed. The x and z coordinates are in meters and the grey
scale is the velocity magnitude in m s−1. Arrows indicate local velocity direction.

a 45 cm-wide horizontal domain and covering the full depth of the tank. No corresponding
numerical simulations were performed in this case.

5.3. Results

We present detailed results for mode-1 and mode-2 wave fields with θ=45◦, for which
the horizontal wavelengths excited were kx = 7.55 m−1 and kx = 15.1 m−1, respectively.
Snapshots of the wave fields obtained in the vicinity of the generator are presented in
figure 14. One can clearly see the characteristic structure of a single vortex that covers
the entire vertical domain for mode-1 (figure 14(a)), whereas for mode-2 the structure
comprises stacked pairs of counter rotating vortices (figure 14(b)).
Modal decomposition of the experimental wave fields was performed at 81 x-locations

in the regions bounded by the vertical dashed lines in figures 14(a) and 14(b), and the
results are presented in figure 15. Since the maximum values of both u and w were the
same for these θ = 45◦ wave fields, reliable values of an and φn were obtained from
both components of the velocity field. The two wave fields were clearly dominated by
their mode number, with by far the largest detectable amplitude being for modes-1 and
modes-2 in the two respective experiments, and with very little variability across the
experimental domain, emphasizing the weak impact of viscosity in these experiments.
We also observed very little variability in the phase of the dominant mode across the
visualization window, implying that the wave fields were highly spatially coherent. Since
energy flux scales as a2n/n (Echeverri et al. (2009)) over 98.8 % of the energy was in the
desired mode in each experiment. The efficiency of conversion, defined as an/Aω, was 0.89
and 0.78 for the two experiments. The insets in figure 15 present the vertically-averaged
temporal Fourier spectrum of u. These are dominated by the fundamental frequency,
demonstrating that very little higher-harmonic content was generated by nonlinearity.

5.4. Summary

Overall, these experiments reveal that the novel wave generator is capable of producing
very high-quality radiating vertical modes in a linear stratification. For smaller angles
(i.e. lower frequencies), θ = 15◦ for example, we found that the wave field took longer
horizontal distances to evolve into established modal solutions, presumably due to the
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Figure 15. Modal decompositions of the wave fields presented in (a) figure 14(a), and (b) figure
14(b). Error bars are the standard deviation of modal amplitude for the 81 vertical cross-sections
studied between the dashed lines in figure 14. The insets show vertically averaged absolute value
of the temporal Fourier spectra of u at x = 10 cm and x = 5 cm in (a) and (b), respectively.

longer horizontal wave lengths of the modes. For higher frequencies, θ = 60◦ for example,
we observed high-quality modal solutions within our visualization window, but with a
small variation in the dominant modal strength for mode-2, possibly due to nonlinear
effects. For higher angles, therefore, it would seem prudent to decrease the maximum
amplitude of oscillations and/or reduce the stratification N (allowing for lower forcing
frequency) in an effort to produce as clean a wave field as possible. In principle, this
approach can be extended to experiments with nonlinear density stratifications, pro-
vided the stratification is known a priori so that the generator can be configured for the
appropriate vertical structure of the horizontal velocity field.

6. Conclusions

Through combined experimental, numerical and theoretical studies we have demon-
strated that the novel type of internal wave generator, comprising a series of stacked,
offset plates, can reliably shape the spatial structure of an experimental internal wave
field and enforce wave propagation. This approach is similar in spirit to multiple-paddle
techniques that have been developed for generating surface waves (see Naito 2006, for in-
stance). We have demonstrated the ability of the generator to produce three qualitatively-
different types of wave field: plane waves, wave beams and vertical modes. This new
technology therefore provides a very useful tool to study all manner of internal wave sce-
narios in the laboratory, in order to gain insight into geophysically important problems.
Furthermore, our studies reveal that the Fourier transform of the spatial profile of the
wave generator provides a reasonably accurate prediction of the form of emitted wave
field, making it a useful tool when designing experiments.
There are numerous examples of where this new found capability can now be utilized.

For example, observations in several locations, in particular in the Bay of Biscay (New &
Pingree 1990; New & Da Silva 2002), have determined that an internal tidal beam striking
the thermocline is responsible for the generation of solitons. A full understanding of
the generation mechanism has yet to be achieved, however, and laboratory experiments
using the Thomas–Stevenson beam profile impinging on a thermocline could provide
significant insight. Indeed, the interaction of wave beams with nonlinear features in the
density stratification is of widespread interest (Mathur & Peacock 2009), since this is also
relevant to how and where atmospheric internal waves break and deposit their momentum
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(Nault & Sutherland 2007). In regards to ocean mixing problems, an open issue is to
determine the fate of the internal tide which, among other things, can be scattered by
topography (Johnston & Merrifield 2003; Ray & Mitchum 1997). The ability to directly
generate vertical modes provides a new capability to study these important processes
in controlled settings. Other interesting avenues for research are the generation of shear
waves (McEwan & Baines 1974) and extensions to three-dimensional wave fields, which
could be achieved by introducing some horizontal spatial structure (in the y-direction)
to the leading edge of the moving plates.

Acknowledgments

We thank D. Le Tourneau, M. Moulin and A. Gallant for technical help, and Robert
Smith and Ian Curtis for their creative input and decisive inspiration. This work has been
partially supported by the ANR grant PIWO (ANR-08-BLAN-0113-01), the MIT-France
program, NSF grant 0645529 and ONR grant N00014-09-0282.

REFERENCES

Aguilar, D. A. & Sutherland, B. R. 2006 Internal wave generation from rough topography.
Phys. Fluids 18, 066603.

Alexander, M.J., Richter, J.H. & Sutherland, B.R. 2006 Generation and trapping of
gravity waves from convection with comparison to parameterization. J. Atmos. Sci. 63,
2963–2977.

Baines, P. G. & Hoinka, K. P. 1985 Stratified flow over two-dimensional topography in fluid
of infinite depth: a laboratory simulation. J. Atmospheric Sciences 42, 1614–1630.

Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid
Mech. 67, 705–722.

Dalziel, S. B., Hughes, G. O. & Sutherland, B. R. 2000 Whole-field density measurements
by ”synthetic Schlieren”. Exp. Fluids 28, 322–335.

Dauxois, T. & Young, W. R. 1999 Near-critical reflection of internal waves. J. Fluid Mech.
390, 271–295.

Delisi, D. P. & Orlanski, I. 1975 On the role of density jumps in the reflection and breaking
of internal gravity waves. J. Fluid Mech. 69, 445–464.

Echeverri, P., Flynn, M. R., Peacock, T. & Winters, K. B. 2009 Low-mode internal tide
generation by topography: An experimental and numerical investigation. J. Fluid Mech.
636, 91–108.

Ermanyuk, E. V. & Gavrilov, N. V. 2008 On internal waves generated by large-amplitude
circular and rectilinear oscillations of a circular cylinder in a uniformly stratified fluid. J.
Fluid Mech. 613, 329–356.

Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging velocimetry
algorithms. Exp. Fluids 29, S1.

Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid
Mech. 39, 57–87.

Gavrilov, N. V. & Ermanyuk, E. V. 1996 Internal waves generated by circular translational
motion of a cylinder in a linearly stratified fluid. J. App. Mech. Tech. Phys. 38, 224–227.

Gerkema, T. 2001 Internal and interfacial tides: beam scattering and local generation of solitary
waves. J. Mar. Res. 59, 227–255.

Gilbert, N. 1988 Transition von der laminaren in die turbulente Kanalströmung. PhD thesis,
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