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Internal waves are believed to be of primary importance as they affect ocean mixing
and energy transport. Several processes can lead to the breaking of internal waves and
they usually involve non linear interactions between waves. In this work, we study ex-
perimentally the parametric subharmonic instability (PSI), which provides an efficient
mechanism to transfer energy from large to smaller scales. It corresponds to the desta-
bilization of a primary plane wave and the spontaneous emission of two secondary
waves, of lower frequencies and different wave vectors. Using a time-frequency analy-
sis, we observe the time evolution of the secondary waves, thus measuring the growth
rate of the instability. In addition, a Hilbert transform method allows us to measure the
different wave vectors. We compare these measurements with theoretical predictions,
and study the dependence of the instability with primary wave frequency and ampli-
tude, revealing a possible effect of the confinement due to the finite size of the beam, on
the selection of the unstable mode.

1. Introduction
An essential ingredient of the thermohaline circulation is the mechanism by which the

denser water that was produced in the high latitude regions (colder and saltier), once
it has flowed down the continental slopes towards the abyssal ocean, can come back
to the surface to close the loop. This process involves an energy input to provide the
gain of potential energy necessary to lift this denser water. It is believed that turbulent
mixing, generated by wind and tides, is the mechanism that performs this task (Munk
1966; Munk & Wunsch 1998). One possible way is via the breaking of internal gravity
waves (Staquet & Sommeria 2002), ubiquitous in the ocean, allowing a transfer of energy
from large scales to small scales, where this energy is partly dissipated in heat and partly
converted in potential energy through diapycnal mixing.

The detailed mechanisms for energy dissipation of internal gravity waves is still de-
bated. Parametric subharmonic instability is one of the major mechanisms (MacKinnon
& Winters 2005; Alford et al. 2007) proposed together with reflection on sloping bound-
aries (Dauxois & Young 1999), scattering by mesoscale structures (Rainville & Pinkel
2006b) or small scale bathymetry (Kunze & Smith 2004; Johnston et al. 2003; Peacock
et al. 2009). The importance of these four possible dissipative processes has to be es-
timated and compared precisely. It is likely that a combination of them might be the
correct answer but the usual physicists’ approach, aiming at separating the different
processes one by one, is presumably appropriate in a first stage.
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Parametric subharmonic instability (PSI) is the resonant mechanism by which a pri-
mary wave is unstable to infinitesimal perturbations, transferring energy through the
quadratic nonlinearity of the Navier-Stokes equation to two secondary waves, satisfy-
ing temporal and spatial resonant conditions. More precisely, PSI is the class of resonant
wave-wave interactions wherein energy is transferred from large scale to smaller scales
and where the frequency of the secondary waves are near half the primary frequency.
Studying the particular case of a primary plane wave is very interesting since a plane
wave is solution of the full inviscid nonlinear equation for any amplitude. However, as
will be discussed below, this solution becomes unstable above a given threshold, which
can be computed analytically (McEwan et al. 1972).

Initially, this instability was considered only for the gravity or capillary waves (Mc-
Goldrick (1965)). However, Hasselmann (1967) proved that this instability could be ob-
served in many physical systems, and in particular for internal waves. Following this
initial report, several theoretical studies have been developed for this phenomenon,
deriving in particular the expression for the growth rate in presence (or absence) of
viscosity (Thorpe 1968; McEwan 1971; McEwan et al. 1972; McEwan & Plumb 1977).
At the same time, the first experimental observations of the instability have been re-
ported (McEwan 1971; McEwan et al. 1972; McEwan & Plumb 1977; Benielli & Som-
meria 1998). These first observations allowed to determine the amplitude threshold of
the instability and the temporal evolution of the secondary waves amplitude. With the
apparition of more powerful computers, numerical simulations have been developed
on this subject (Bouruet-Aubertot et al. 1995; Carnevale et al. 2001; Koudella & Staquet
2006) to estimate the energy transfer between the different scales and to determine dif-
ferent scaling laws. Finally, only very recently new experiments using a vertical mode-1
wave have been performed by Joubaud et al. (2012), allowing to measure precisely the
frequencies and the wave vectors of the secondary waves and to compare theses mea-
surements to the viscous theory. Note that a study of PSI in the very similar context of
inertial waves in a rotating fluid has recently been reported by Bordes et al. (2012).

In this paper, we present a comprehensive study of two-dimensional parametric sub-
harmonic instability. The results of experiments are compared with theoretical predic-
tions. The paper is organized as follows. The experimental observations for plane waves
are presented in § 2, followed by the presentation of the theoretical derivation of thresh-
old, resonant conditions and growth rates in § 3. A careful comparison between experi-
ment and theory is discussed in § 4. After having studied the dependence with primary
wave frequency and amplitude in § 5, we present our conclusions and draw some per-
spectives .

2. Propagation of plane waves: experimental observations
2.1. Experimental setup

A tank, 160 cm long and 17 cm wide, is filled with linearly stratified salt water with
constant buoyancy frequency N using the standard double bucket method. An internal
wave is generated using a wave generator similar to the one employed in previous ex-
periments, described in Gostiaux et al. (2007) and characterized in Mercier et al. (2010).
The generator is composed of stacked plates set in motion thanks to eccentered cams ro-
tating inside the plates at constant frequency around a shaft. The motion of these plates
imposes a moving boundary condition generating the desired wave.

The main difference with the generator described previously is that the present ver-
sion allows the eccentricity of each cam to be varied. The same set of cams can there-
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Figure 1: (color online) Sketch of the experimental setup showing the wave generator
lying horizontally at the top of the wave tank. The dashed lines delimit the expected
domain of propagation of the left to right propagating wave beam, once it has been
emitted from the generator. For the sake of clarity, the direction of propagation of the
phase and group velocities are also indicated. The tilted grey rectangle corresponds to
the analysis area for the time-frequency study of section 4.2. The plot on the right shows
the experimentally measured modification of the density due to salt, ∆ρ = ρ− 1000, as
a function of the water depth z. Points correspond to experimental measurements while
the straight line is a linear fit.

fore be used to generate different profiles, as well as identical profiles with different
amplitudes. In the experiments presented here, the wave generated is a plane wave of
wavelength λ=72 mm. In this case, the generator is placed horizontally as shown in
Fig. 1. The motion of the plates is thus defined by a vertical velocity w(x, z = 0, t) =
aω0 cos(ω0t− 2πx/λ), ω0 being the excitation frequency, a the amplitude of oscillation
of the plates and H the water depth. Note that to avoid spurious emission of internal
waves on the extremities of the moving region, the amplitude of the plates is constant
over two wavelengths in the central region, while one half-wavelength with a smooth
decrease of the amplitude is added on each sides.

The motion of the fluid is captured by the synthetic schlieren technique using a dotted
image behind the tank (Dalziel et al. 2000). A camera is used to acquire images of this
background at 1.875 frames per second. The CIVx algorithm (Fincham & Delerce 2000)
computes the cross-correlation between the real-time and the t = 0 background images,
when the fluid is at rest. This algorithm gives the variation of the horizontal, ρ̃x(x, z, t) =
∂x(ρ(x, z, t)− ρ0(z)), and vertical, ρ̃z(x, z, t) = ∂z(ρ(x, z, t)− ρ0(z)), density gradients,
where ρ(x, z, t) and ρ0(z) are the instantaneous and initial fluid densities.

2.2. Direct observation
In an experimental configuration where the tank is filled with a linear stratification pro-
ducing a Brunt-Väisälä frequency N = 0.91 rad/s, a plane wave is generated at a fre-
quency ω0/N = 0.74, with an amplitude of the plates motion of a = 0.5 cm. Figure 2(a)
shows a snapshot of the density gradient field, obtained 10 oscillating periods after the
wave generator was started. One can observe a plane wave extending over two wave-
lengths, propagating from the top left corner to the bottom right corner of the field of
view, while the phase propagates from bottom left to top right. Note that the wave has
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Figure 2: (color online) Snapshots of the vertical density gradient field for t = 10T0 (a)
and t = 50T0 (b) where T0 = 2π/ω0 is the primary wave period. The wave is propagat-
ing from left to right. On the left panel, the direction of the phase velocity −→vφ and the
group velocity−→vg are indicated. Note that the shade scale (color scale online) is the same
in both panels. The Brunt-Väisälä frequency is N = 0.91 rad/s, the wave frequency is
ω0/N = 0.74 and the motion amplitude of the plates of the generator is 0.5 cm.

reached a steady state in the visualization window. Forty oscillating periods later, a
strong perturbation of the plane wave can be observed, as shown in Fig. 2(b) (see the
movie in the online supplementary material). Smaller scale patterns have formed over
the whole area that was initially occupied by the plane wave beam; interestingly, these
patterns extend even slightly outside of this area, in the top left corner.

2.3. Analysis
The measured density gradient fields are analyzed using a time-frequency representa-
tion (Flandrin 1999) calculated at each spatial point

Sr(ω, t) =

〈∣∣∣∣∫ +∞

−∞
du ρ̃r(u) eiωu h(t− u)

∣∣∣∣2
〉

xz

, (2.1)

where r stands for x or z and h is a smoothing Hamming window of energy unity. A
large (resp. small) window provides good frequency (resp. time) resolution. To increase
the signal to noise ratio, the data is averaged on the entire area of observation. In the
following, we will consider only the analysis of the vertical density gradient field, but
the results are similar for the horizontal one.

Figure 3(a) shows the time-frequency spectrum for the experiment corresponding to
the snapshots presented in Fig. 2. One can clearly observe that initially, only the fre-
quency ω0/N = 0.74 is present: it corresponds to the wave produced by the generator,
which we will call the primary wave. After about 10 oscillation periods, one notices the
growth of two secondary waves, with the frequencies ω1/N = 0.50 and ω2/N = 0.24. In
order to allow a better observation of these three frequencies, we present on Fig. 3(b) a
vertical cut of the time-frequency spectrum at time t/T0 = 50. As can be noticed, the
frequencies satisfy the condition ω1 + ω2 = ω0. We will come back to this feature in
the following sections. It is interesting to notice that although the two secondary fre-
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Figure 3: (color online) (a) Time frequency spectrum Sz(ω, t) of the gradient density
field. (b) Frequency spectrum Sz(ω, t = 50T0). The quantity S0 is defined as the time
average of the main component S0 = 〈Sz(ω0, t)〉t.

quencies seem to shift slightly in the long time range, the resonance condition prevails.
In addition, the amplitude of the two secondary waves seems to decrease after some
time. Two other frequencies, ω/N = 0 and ω/N = 0.98, have non vanishing contribu-
tions to the signal. The first one corresponds to the mean flow generated by the plates
of the wave generator via an Archimedes’ screw type of entrainment. A second possible
source of mean flow could be the reflection of the primary wave at the bottom of the
tank. The other additional frequency, ω/N = 0.98, can be attributed to the non-linear
interaction between the waves with frequencies ω2/N = 0.24 and ω0/N=0.74.

To extract more information on the various waves involved in this flow, one can filter
the density gradient field around the three measured frequencies ω0, ω1 and ω2. This
filtering operation is performed using the Hilbert transform method that was developed
in Mercier et al. (2008). This method consists in a first demodulation step with a Fourier
transform in time, a time filtering around the desired frequency and then returning to
real space by an inverse Fourier transform. In a second step, the signal is filtered in
space, allowing to separate the waves corresponding to the four possible propagation
directions for a given frequency. The result of this operation applied to our measured
density fields is shown in Fig. 4. The density gradient filtered fields associated with
each frequency are shown in the top row, at a fixed time. Note that for the three dif-
ferent cases, we have kept only one quarter of the possible wavevectors as shown in
the sketches of Fig. 4. Phase and group velocities being orthogonal, the propagation di-
rection is deduced by a rotation of 90◦, the sense of rotation being chosen to have the
vertical components of the phase and group velocities of opposite signs. For the two
left columns, it corresponds to a propagation from the the top left corner to the bottom
right one, while for the right column the wave beam goes from the bottom right cor-
ner to the top left one. One can clearly observe that the filtering operation allowed to
restore three distinct waves, each associated with its corresponding propagation angle.
As mentioned, the Hilbert transform allows to identify the orientation of the propaga-
tion of each wave, showing that the wave at frequency ω2 propagates from right to left,
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Figure 4: (color online) Top row: primary (left) and two secondary waves (center and
right) obtained by applying the Hilbert spatial and temporal filtering to the density
gradient field at t/T0 = 50. The sketches on top indicate the domain of wavevector
(`, m) which are kept during the spatial Hilbert filtering for each column. Bottom row,
corresponding phases associated to each frequency. The phase is displayed only where
the wave amplitude is larger than 3% of the maximum. The experimental parameters
are N = 0.91, ω0 = 0.74 N and a = 0.5 cm.

contrary to the two others. This explains why we observe signal outside the primary
wave beam in the top left corner of Fig. 2(b).

This procedure also allows to extract the phase φi of the signal at a given frequency,
φi(t, x, z) = ωit± `ix±miz, where (`i, mi) are the horizontal and vertical components of
the wavevector~ki. This is shown at t = 50 T0 in the bottom row of Fig. 4. Again, one can
clearly observe a pattern of stripes parallel to the direction of propagation of each wave,
corresponding to a phase propagating in the perpendicular direction. At a fixed time
and x (respectively z), the phase is linear with the position z (resp. x). The components
`i and mi of the wave vectors for each wave can then be obtained by differentiating
φi(t, x, z) with respect to z (resp. x). For the experiment presented in Fig. 2, one obtains
(`1 + `2)/`0 = 0.89 ± 0.17 and (m1 + m2)/m0 = 0.99 ± 0.07. It is striking that the
three vectors also satisfy a resonance condition:

−→
k0 =

−→
k1 +

−→
k2 . Note that the larger error

on the measurement of `, compared to m, is related to the fact that the secondary waves
are rather horizontal (small angle w.r.t. the x direction), yielding a poorer measurement
of the horizontal component of their wavevector.

As a conclusion of this first set of experimental observations, we can say that the two
secondary waves that are generated from the primary wave are the result of a resonant
triad interaction. We will therefore study analytically in the next section the conditions
under which such a triad interaction can develop.
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3. Parametric subharmonic instability theory
3.1. Derivation of the equations

The two-dimensional dynamics (in the x, z coordinates) of a Boussinesq fluid is usually
described by the following two equations

∂b
∂t

+ J(b, ψ) = −N2 ∂ψ

∂x
, (3.1)

∂∇2ψ

∂t
+ J(∇2ψ, ψ) =

∂b
∂x

+ ν∆2ψ , (3.2)

where ψ is the streamfunction, while b ≡ gρ/ρ̄ is the buoyancy perturbation and J the
jacobian term defined as J( f1, f2) = ∂x f1∂z f2 − ∂z f1∂x f2. The velocity field is expressed
as −→v = (−∂zψ, 0, ∂xψ).

We seek solutions of the form

b =
2

∑
j=0

Rj(t)e
i(~kj ·~r−ωjt) + c.c. , (3.3)

ψ =
2

∑
j=0

Ψj(t)e
i(~kj ·~r−ωjt) + c.c. . (3.4)

Introducing these solutions into Eq. (3.1) and Eq. (3.2), one gets

2

∑
j=0

[Ṙj − iωjRj + iN2`jΨj]e
i(~kj ·~r−ωjt) + c.c. = −J(b, ψ) , (3.5)

2

∑
j=0

[−κ2
j (Ψ̇j − iωjΨj)− i`jRj − νκ4

j Ψj]e
i(~kj ·~r−ωjt) + c.c. = −J(∇2ψ, ψ) , (3.6)

if Ṙ denotes the derivative of the amplitude R.
The usual inviscid linear dynamics of (3.5) provides the polarization expression

Rj =
N2`j

ωj
Ψj for j = 0, 1 or 2 (3.7)

with the dispersion relation

ωj = sjN|`j|/
√
`2

j + m2
j (3.8)

where sj = ±1 defines the sign of the wave j. However, the linear system is forced on
the right-hand side of Eqs. (3.5) and (3.6). After some calculations, the Jacobian terms
can be written as

J(b, ψ) =
2

∑
p=0

∑
q 6=p

[(−`pmq + mp`q)RpΨq]ei[(~kp+~kq)·~r−(ωp+ωq)t]

−[(−`pmq + mp`q)RpΨ∗q ]e
i[(~kp−~kq)·~r−(ωp−ωq)t] + c.c. , (3.9)

J(∇2ψ, ψ) =
2

∑
p=0

∑
q 6=p

[(`pmq −mp`q)κ
2
pΨpΨq]ei[(~kp+~kq)·~r−(ωp+ωq)t]

−[(`pmq −mp`q)κ
2
pΨpΨ∗q ]e

i[(~kp−~kq)·~r−(ωp−ωq)t] + c.c. . (3.10)

We obtain now the evolution of a particular wavenumber component (~kr, ωr) associated
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with the stream function Ψr, in which r = 0, 1 or 2, by averaging both the left hand side
and the right hand side over the period of that wave. The resonant terms on the right
hand side that will balance the left hand side will be the waves fulfilling two conditions:
a spatial resonance condition

~k0 =~k1 +~k2 (3.11)

and a temporal resonance one

ω0 = ω1 + ω2 . (3.12)

Collecting resonant terms and using the polarization expression (3.7), the Jacobian
term (3.9) can then be written as

J(b, ψ) = −(`1m2 −m1`2)N2
(
`1

ω1
− `2

ω2

)
Ψ1Ψ2ei(~k0·~r−ω0t)

+(`0m2 −m0`2)N2
(
`0

ω0
− `2

ω2

)
Ψ0Ψ∗2ei(~k1·~r−ω1t)

+(`0m1 −m0`1)N2
(
`0

ω0
− `1

ω1

)
Ψ0Ψ∗1ei(~k2·~r−ω2t)

+NRT , (3.13)

where NRT stands for non resonant terms that are not important in the problem. In the
same way, one gets the Jacobian term (3.10)

J(∇2ψ, ψ) = (`1m2 −m1`2)(κ
2
1 − κ2

2)Ψ1Ψ2ei(~k0·~r−ω0t)

−(`0m2 −m0`2)(κ
2
0 − κ2

2)Ψ0Ψ∗2ei(~k1·~r−ω1t)

−(`0m1 −m0`1)(κ
2
0 − κ2

1)Ψ0Ψ∗1ei(~k2·~r−ω2t)

+NRT . (3.14)

Introducing this result into equation (3.6), one obtains the three following relations be-
tween Ψr and Rr for each individual phase exp[i(~kr ·~r−ωrt)] in which r = 0, 1 or 2

R0 =
i
`0

[
κ2

0(Ψ̇0 − iω0Ψ0) + νκ4
0Ψ0 − γ0α0Ψ1Ψ2

]
, (3.15)

R1 =
i
`1

[
κ2

1(Ψ̇1 − iω1Ψ1) + νκ4
1Ψ1 − γ1α1Ψ0Ψ∗2

]
, (3.16)

R2 =
i
`2

[
κ2

2(Ψ̇2 − iω2Ψ2) + νκ4
2Ψ2 − γ2α2Ψ0Ψ∗1

]
, (3.17)

where γ0 = +1, γ1,2 = −1 and αr = (`pmq −mp`q)(κ2
p − κ2

q) , in which p, q, r = 0, 1, 2 or
any circular permutation.

3.2. Slow amplitude variation

Experimental results have strongly suggested that the amplitude of Ψ varies slowly
with respect to the period of the primary wave. It is therefore appropriate to consider
Ψ̇j � iωjΨj so that differentiating (3.7) leads to

Ṙj ≈
ωj

`j
κ2

j Ψ̇j . (3.18)
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One gets for Eq. (3.5)

i
`0

[
(N2`2

0 −ω2
0κ2

0)Ψ0 − 2iω0κ2
0Ψ̇0 − iω0νκ4

0Ψ0 + iω0s0α0(Ψ1Ψ2)
]

= (`1m2 −m1`2)N2
(
`1

ω1
− `2

ω2

)
Ψ1Ψ2 , (3.19)

i
`r

[
(N2`2

r −ω2
r κ2

r )Ψr − 2iωrκ2
r Ψ̇r − iωrνκ4

r Ψr + iωrsrαr(Ψ0Ψ∗p)
]

= −(`0mp −m0`p)N2
(
`0

ω0
− `p

ωp

)
Ψ0Ψ∗p . (3.20)

Each wave satisfies the dispersion relation, N2`2
r = ω2

r κ2
r . After some calculations, one

gets

2iω0κ2
0Ψ̇0 =

[
iω0s0α0 −

`0

i
(`1m2 −m1`2)N2

(
`1

ω1
− `2

ω2

)]
Ψ1Ψ2 − iω0νκ4

0Ψ0 (3.21)

= i(`1m2 −m1`2)

[
s0ω0(κ

2
1 − κ2

2) + `0N2
(
`1

ω1
− `2

ω2

)]
Ψ1Ψ2 − iω0νκ4

0Ψ0 , (3.22)

which can be simplified as

Ψ̇0 = I0Ψ1Ψ2 −
ν

2
κ2

0Ψ0. (3.23)

Similar calculations for waves 1 and 2 lead to

Ψ̇1 = −I1Ψ0Ψ∗2 −
ν

2
κ2

1Ψ1 , (3.24)

Ψ̇2 = −I2Ψ0Ψ∗1 −
ν

2
κ2

2Ψ2 , (3.25)

where

Ir =
`pmq −mp`q

2ωrκ2
r

[
ωr(κ

2
p − κ2

q) + lr N2
(
`p

ωp
− `q

ωq

)]
. (3.26)

3.3. Solution
We consider that Ψ0 corresponds to the primary wave and is constant in early times
since amplitudes of the secondary waves, Ψ1 and Ψ2 are negligible with respect to Ψ0.
One can combine equations (3.24) and (3.25) to get

Ψ̈1 = I1 I2Ψ2
0Ψ1 −

ν2

4
κ2

2κ2
1Ψ1 −

ν

2
(κ2

1 + κ2
2)Ψ̇1 . (3.27)

The solution of Eq. (3.27) leads to the expression Ψ1,2(T) = A1,2 eσ+T + B1,2eσ−T , by
introducing the growth rate

σ± = −ν

2
(κ2

1 + κ2
2)±

√
ν2

4
(κ2

1 − κ2
2)

2 + I1 I2|Ψ0|2. (3.28)

A vanishingly small amplitude noise induces the growth of two secondary waves. In
conclusion, a primary plane wave can be unstable by a parametric subharmonic mech-
anism. The growth rate of the instability is not only function of the characteristics of the
primary wave, namely its wavevector and its frequency through the coefficients I1 and
I2, but also its amplitude Ψ0 and the viscosity ν.
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Figure 5: (color online) The curves represent the location of (`1, m1) satisfying Eq. (3.29)
for the three possible combinations of signs, once the wavevector

−→
k0 = (`0, m0) of the

primary wave is given. The curves are represented by solid lines when the growth rates
have a positive real part, while the dashed lines corresponds to the neutrally stable
cases, for which the real part of the growth rate is always zero in a non viscous case and
negative when viscosity sets in.

3.4. Resonance loci and growth rates
In the following, we consider that only the primary wave Ψ0, of given frequency ω0,
wavevector

−→
k0 = (`0, m0) and sign s0, is present initially in the system, while Ψ1,2 is

experimentally only present as the noise. Without loss of generality, we can choose
s0 = +1 (which is given by the experimental configuration, or more precisely by the
direction of rotation of the cams). The two secondary waves (s1, ω1,

−→
k1 ) and (s2, ω2,

−→
k2 )

which could form a resonant triad with the primary wave have to be determined us-
ing the resonance conditions (3.11) and (3.12). From the dispersion relation for internal
waves (3.8), the resonance conditions lead to

s0
|`0|√
`2

0 + m2
0

= s1
|`1|√
`2

1 + m2
1

+ s2
|`0 + `1|√

(`0 + `1)2 + (m0 + m1)2
. (3.29)

For a given primary wave (s0, `0, m0), the solution of this equation for each sign com-
bination (s0, s1, s2) is a curve in the (`1, m1) plane which is presented in Fig. 5. Since
s0 = +1, it is then necessary to consider four sign combinations for (s1, s2): (−,−),
(+,−), (−,+) and (+,+). However, there is no solution of equation (3.29) in the (−,−)
case. In addition, the combinations (+,−) and (−,+) are neutrally stable, i.e. the real
part of σ is always zero in a non viscous case and negative when viscosity sets in. For
this reason, in what follows, we will focus only on the (+,+) combination.

Any point of the solid curve corresponds to the tip of the
−→
k1 vector for a possible tri-

adic resonance. However, to predict which is the one expected to be seen experimentally,
one has to determine the largest growth rate. For a given sign of m1, three distinct parts
of the (+,+) curves can be observed in Fig. 5, corresponding to `1/`0 > 1, `1/`0 < 0
and 0 < `1/`0 < 1. It will prove convenient in what follows to separate the study
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Figure 6: (color online) Growth rates σ computed from Eq. (3.28), as a function of the
wave vector modulus κ1 in panel (a) and as a function of the wave frequency ω1 in panel
(b). The three possible sign combinations have been superimposed. The primary wave
vector~k0 is chosen arbitrarily, as well as its amplitude, which value, normalized by the
viscosity, is Ψ0/ν = 100. κ0 and ω0 are respectively the wave vector modulus and the
frequency of the primary wave.

in these three regions, in order to evidence the direction of energy transfer (towards
smaller scales or larger scales).

In Fig. 6, the predicted growth rates σ are plotted as a function of κ1/κ0 and ω1/ω0
only for the (+,+) combination, with distinct line types for the different regions defined
above. There are two curves for each line type, corresponding to different signs of m1
(top half and bottom half in Fig. 5).

One can notice that in both plots, the solid curve (`1/`0 > 1) and the dashed curve
(`1/`0 < 0) reach the same maximum value. Moreover, one can observe in Fig. 6(b) that
the maximum are obtained for ω1 = 0.37 ω0 (dashed curve) and for ω1 = 0.63 ω0 (solid
curve), two frequencies which sum is equal to ω0. More generally, Fig. 6(b) shows that
the solid and dashed curves are mutually symmetric with respect to the central value
ω/ω0 = 0.5. It shows that if

−→
k1 is selected on the solid curve,

−→
k2 will be selected on the

dashed curve and conversely. In an arbitrary way, we will always take
−→
k1 on the solid

curve (largest wavenumber) and consequently
−→
k2 will be determined by the dashed

curve (lowest wavenumber).
As to the dotted dashed curve, one can notice that it has two maxima. The two sec-

ondary wave vectors are, in this case, selected in the same area (0 < `1/`0 < 1). For all
the curves, one notices that the growth rates become negative when κ1 → ∞ (because
of viscosity).

Interestingly, the growth rate is positive for a broad range of wavenumbers and it
is rather flat on the maximum, emphasizing that the parametric resonance is weakly
selective in this regime. The values of κ1 corresponding to significant growth rates are
of the same order of magnitude as the primary wavenumber κ0, indicating that the
viscosity has a significant effect on the selection of the excited resonant triad, preventing
any large wave number secondary wave to grow from the instability. For the frequency
value considered, the maximum growth rate is obtained for κ1 = 2.5 κ0 and κ2 = 1.62 κ0.
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Figure 7: (color online) (a) The solid blue curve represents the resonance loci for the
secondary wave vector

−→
k1 , in the case where the primary wave vector

−→
k0 corresponds to

the experiment presented in § 2, i.e. `0 = 66± 2 m−1, m0 = 59±2 m−1 and ω0/N = 0.74.
The three arrows represent the experimental measurement of the three wave vectors−→
k0 (black),

−→
k1 (red) and

−→
k2 (green). (b) Growth rates σ computed from Eq. (3.28), as

a function of the wave vector modulus, in the case where the primary wave vector−→
k0 corresponds to the experiment presented in section 2, as well as the primary wave
amplitude (Ψ0/ν = 28). The two horizontal lines mark the maximum growth rate and
90% of the maximum. The thick lines on the left panel show the regions corresponding
to a growth rate belonging to this interval.

4. Comparison with the experiment
4.1. Wave vectors

In section 2, we observed that the experimental values of frequencies and wave vectors
satisfy the conditions of temporal and spatial resonance (3.11) and (3.12). The theoretical
derivation gives us the dependence of the growth rate with the wave vector of one of
the secondary waves (the second wave is then defined by the resonance condition). We
can now check if the observed wave vectors correspond to the largest growth rates, as
could be expected. For pedagogical reasons, the value of Ψ0 used to compute the plots in
section 3 was arbitrarily chosen to enhance the case (external branches of the resonance
loci) where the energy transfer goes from large scales to smaller scales. The vector

−→
k0

was also chosen arbitrarily. In this section, we will use the experimental values for
−→
k0

as well as for the amplitude Ψ0. This last quantity is measured using the modulus of
the Hilbert Transform of the density gradient field for the primary wave, calculated in
the same area used for the measurement of the growth rate. Figure 7(a) shows the the-
oretical resonance loci (blue curve) computed identically to the one in Fig. 5, but using
the experimental

−→
k0 . The three arrows correspond to the experimental measurement of

the three wave vectors. As mentioned in section 2, it can be observed that the spatial
resonance condition is satisfied. Figure 7(b) represents the evolution of the growth rate
with κ1. Comparing Fig. 6(a) and 7(b), is interesting to note that the reduction of the pri-
mary wave amplitude by a factor of 4 results in an enhancement of the (0 < `1/`0 < 1)
type of instability, with respect to the (`1/`0 > 1) type.

According to the theory, the secondary waves generated by the instability should be
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Figure 8: (color online) Amplitude of time frequency representation, Sz(ω, t) of the sec-
ondary wave ω1 and ω2 normalized by the amplitude of the primary wave. The dashed-
dotted lines show the linear fit, from which the experimental value of the growth rate
σ is extracted. The quantity S0 is defined as the time average of the main component
S0 = 〈Sz(ω0, t)〉t.

the ones corresponding to the largest growth rate. However, an instability is initially
generated via a very small amplitude noise and because of the specific experimental
conditions, not all temporal and spatial frequencies will be present in this noise with
the same amplitude. In addition, as can be seen in Fig. 7(b), the growth rate curve in
the case of the (0 < `1/`0 < 1) type of instability, although it has a slightly higher
maximum, is much less broad than the curve for the other type. For these reasons, we
will introduce a less constrained selection criteria by allowing the unstable wave vectors
to be associated with a growth rate belonging to an interval between 90% and 100% of
the maximum growth rate. This selection criteria is illustrated in Fig. 7 (b) by thicker
line and the loci for the corresponding wave vectors are represented in Fig. 7 (a) by thick
black segments. It is interesting to note that this procedure allows a selection of wave
vectors in different regions of the resonance loci curve. The measured wave vectors,
within their experimental error, fall on one pair of these selected regions, namely on
the external branches of the resonance loci. This selection corresponds, as mentioned
earlier, to a slightly lower growth rate than the maximum, but to a broader curve.

4.2. Growth rates
We will now compare the experimental and theoretical values of the growth rate. The
experimental determination of the growth rate σ is obtained by calculating a time-
frequency spectrum of an area taken inside the primary wave beam, as defined in Fig. 1
by the grey area. Then, the time evolution of each partial component frequency is plot-
ted. Figure 8 shows this evolution for the same experimental run used in § 2. The growth
rate is then defined as the slope of the growth region. It must be noted that the ampli-
tude of the primary plane wave is not constant on the entire beam because of the viscous
damping. For this reason, the position of the area where the spectrum is computed will
influence the result for the determination of σ. An estimate of the error due to this effect
is therefore performed by varying this position.
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For the theoretical evaluation of the growth rate, a necessary ingredient is the ampli-
tude Ψ0 of the primary wave. This amplitude cannot be obtained directly from the am-
plitude of oscillation of the generator plates, since there is a conversion factor between
both described by Mercier et al. (2010). This factor is not well known, and strongly de-
pends on the wave frequency, because of the change of angle it implies of the wave
propagation, while the generator motion is only vertical. For this reason, Ψ0 has to be
measured experimentally, introducing an experimental error in the prediction. It leads
to a theoretical prediction for the growth rate σ = 0.087 ± 0.005 s−1, while the exper-
imental measurement gives σ = 0.08 ± 0.02 s−1. The agreement between theory and
experiment is rather good.

5. Dependence with primary wave frequency and amplitude
So far the experimental results shown correspond to a given amplitude, frequency

and wave vector for the primary wave. It seems appropriate to study the effect of a
variation of these parameters.

First, we have observed, based on the theoretical study, that the value of κ0 has no
effect on the selection of the secondary waves. It leaves unchanged the shape of the
growth rate evolution with κ1 and ω1 (Fig. 6). The only effect of an increase of κ0 is an
increase of the overall value of the growth rate. For this reason, it was not necessary to
perform a systematic experimental study of the dependence of the growth rate with κ0.

In a first part, we will discuss the dependence with the primary wave frequency ω0.
Figure 9 shows the evolution with ω0/N of the (normalized) norms κ1 and κ2 of the
secondary waves corresponding to the maximum growth rate. One pair of curves (solid
lines) corresponds to wave vectors on the external branches of the resonance loci and
the other pair (dashed-dotted lines) to wave vectors on the central part of the resonance
loci. These curves are obtained in the case where the primary wave amplitude is fixed at
the value of the experimental run described in section 2. We can observe that in this case,
when the secondary wave vectors belong to the external branches, there exist a range of
frequency (for ω0/N > 0.78) where the secondary wavelengths are both smaller than
the primary wavelength, corresponding to an energy transfer to smaller scales. On the
contrary, when the secondary wave vectors belong to the central part of the resonance
loci (dashed-dotted lines), one of the secondary wavelengths is always larger than the
primary wavelength, while the other is smaller, allowing for energy transfer to both
smaller and larger scales.

Out of these two sets of secondary wave vectors, the one which corresponds to the
largest growth rate is illustrated on the graph by a thicker line. There is therefore a
transition frequency (in this case around ω0/N = 0.77) for which the instability “jumps”
from one solution to the other.

As mentioned, this change in behavior is observed for a given value of the ampli-
tude Ψ0. As this amplitude varies, the transition frequency changes. Figure 10 shows
(solid line) the evolution of this transition frequency as a function of the amplitude.
Above this curve, the secondary waves are selected on the outer region of the resonance
loci, while below the curve the secondary waves are selected in the central zone.

On the same figure, we superimposed the experimental points obtained for different
values of ω0 and Ψ0, showing in which cases the parametric subharmonic instability
(PSI) was observed. Three different wave generator amplitudes were used to produce
these series of points (cam eccentricities of 0.1, 0.5 and 0.75 cm). These three series corre-
spond to the three almost vertical series of black symbols on the graph. One must keep
in mind that the wave amplitude is computed from the measured signals, therefore a
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Figure 9: Evolution of κ1/κ0 and κ2/κ0 with the pulsation ω0 for a fixed amplitude. Solid
curve: Configuration where the triad is formed on the external branches of the resonance
loci (see illustration in the top inset). Dashed dotted curve: configuration where the triad
is formed on the central part of the resonance loci (see illustration in the bottom inset).
The thick part of curves represent the region where the growth rate is larger in this
configuration, compared to the other.

fixed amplitude of the wave generator does not correspond exactly to a fixed wave am-
plitude.

It can be noted that for large enough excitation amplitudes, PSI is observed, but
mostly above the transition line. Actually, after careful observation, it turns out that
the only point with PSI below this line is also a case of PSI with wave vectors on the
external branches of the resonance loci. This feature may be related to the uncertainty
on the frequency selection mentioned in section 4.1.

Our guess is that PSI cannot develop in the present experimental tank when one of
the secondary waves has a larger wavelength than the primary wave. No cascade to
larger scale is allowed. The reason for this behavior could be the too reduced number of
wavelengths which is excited by the generator.

For the smallest excitation amplitude, no PSI was observed during the recording.
Equation (3.28) shows that unstable solutions are possible only if the amplitude of the
primary wave exceeds a viscous threshold value given by 2

√
νκ1κ2/(I1 I2). However,

the excitation amplitude is one or two orders of magnitude larger than this viscous
threshold which cannot explain the absence of the instability. This behavior could again
be related to, the size of the expected wavelengths at this amplitude. Indeed, it can be
observed in Fig. 9 that the lower solid line crosses the ordinate 1 at a given frequency.
Below this frequency, as in the case of the dashed-dotted lines, a transfer to larger scales
is involved. We have computed theoretically, as a function of the wave amplitude, the
threshold frequency under which the triad belongs to this case. It is plotted in Fig. 10 as
a dashed line. The small amplitude series, where no PSI is observed, happens to be on
the left of this line, therefore in the region involving transfer to larger scales. As in the
case of small frequencies, this might explain the absence of observed PSI.
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Figure 10: (color online) Phase diagram showing the dependence of the PSI instability
with excitation frequency and primary wave amplitude. The solid line represents the
transition between the configuration where the triad forms on the external branches
of the resonance loci and the configuration where the triad is on the central part. The
dashed line represents the cutoff frequency under which energy transfer to larger scales
is involved in the PSI. Symbols correspond to experimental data points: (◦) observed
PSI, (+) no apparent PSI.

6. Discussion
Using a synthetic schlieren technique in a linearly stratified fluid, we have observed

the production, from a primary internal plane wave, of two secondary waves of smaller
frequency and wavelength. The mechanism at play is a 3-wave resonant interaction,
satisfying a temporal resonance condition for the three pulsations ω0 = ω1 + ω2 and a
spatial resonance condition for the three wave vectors,

−→
k0 =

−→
k1 +

−→
k2 . This resonant in-

teraction can be developed analytically, in order to produce theoretical predictions that
we compare to our measurements, which are derived from applying a time-frequency
spectrum and a Hilbert transform to our data. A good agreement was found for the
wave vectors of the secondary waves, as well as for the instability growth rate.

The relevance of PSI for oceanic internal waves has been recently renewed by several
numerical simulations with realistic conditions (see for example Hibiya et al. (2002)
or MacKinnon & Winters (2005)), which have been followed by very interesting field
measurements which also pointed to the presence of PSI activity in the ocean. One might
in particular refer to measurements close to Hawaii by Rainville & Pinkel (2006a), Carter
& Gregg (2006) or Alford et al. (2007).

However, in the ocean, due to the large spatial scales, the role of viscosity is reduced
compared to the experiment. In order to illustrate this point, let us consider a typi-
cal oceanic internal wave, measured in situ by observing the periodic oscillations of
isotherms (see figure 1 in Cairns & Williams (1976) or figure 6.13 in Sutherland (2010)).
Theses oscillations have an amplitude of about 20 m, with a period of about half a day.
Ocean internal waves typically have wavelengths from hundreds of meters to tens of
kilometers (Garrett & Munk 1972; LeBlond & Mysak 1978; Susanto et al. 2005): as a typ-
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Figure 11: (color online) Growth rates σ as a function of the wave vector modulus κ1
in panel (a) and as a function of the wave frequency ω1 in panel (b) for typical oceanic
parameters (see text).

ical value, we shall take 1000 m. Compared to our experiment, it yields an amplitude of
the stream function Ψ0/ν about four orders of magnitude larger. We therefore recom-
puted as an example (see Fig. 11) the curves of Fig. 7(b), as well as the corresponding
plots as a function of the wave frequency, for an amplitude 10000 times larger than the
experiment. As can be observed in Fig. 11(a), the most unstable mode corresponds to
the situation where the norm of both secondary wave vectors are much larger (10 to 20
times in our example) than the norm of the primary wave vector, leading to

−→
k1 '

−→
k2

and correspondingly (Fig. 11(b)) to ω1 ' ω2 ' ω0/2. This is what led historically to
call this resonant interaction "Parametric subharmonic instability”, because of the sim-
ilarity with parametric instability, like that occurring for a pendulum with oscillating
suspension.

In our experimental tank, with dimensions orders of magnitude smaller than in the
ocean, we observe that viscosity has a much larger effect on the selection of the unstable
modes. Indeed, because of viscosity, κ1 and κ2 are of the same order of magnitude as
κ0. In addition, a second effect of viscosity is to allow two different behaviors for the in-
stability. First, the instability can generate two new internal waves whose wavelengths
are smaller than the primary wavelength. We have then an energetic transfer to smaller
scales, as is the case in the ocean. But theoretically, when Ψ0/ν is small enough, the in-
stability can also generate two secondary internal waves with one of the wavelengths
larger than the primary wavelength, and the other one smaller. In this case, the ener-
getic transfer will be to larger and smaller scales simultaneously. However, we never
observed experimentally this second behavior, although it was expected from the ana-
lytical study. We observe the instability, on a plane wave, only when the theory predicts
two smaller wavelengths. It is possible that the finite size of the beam impedes the de-
velopment of the secondary wave, which has a larger wavelength. It could be interesting
to perform some numerical simulations, with a confined beam to confirm this behavior.

Another issue that needs to be discussed is the physical location of the birth of the
secondary waves. In all the experiments performed, the instability appears first in a
region very close to the wave generator. This is understandable because it is the location
where the primary wave first appears and where its amplitude is maximum. Then it
occupies the whole volume.

In addition to the importance of the mechanism for the dissipation of waves, an effect
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on the background media in which waves are propagating can be expected: indeed, the
primary wave could give rise through this instability to two secondary waves which
are above the overturn threshold. Because of the latter, the stratification will evolve
through these mixing events, influencing through this feedback effect the threshold for
the mechanism itself.
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