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Erratum to

“Nonparametric estimation of the stationary density and the transition

density of a Markov chain” Stochastic Process. Appl. 118 (2008)

Claire Lacour

New proof of Proposition 1

The result of Proposition 1 is true but the proof must be modified in the following way.
We replace Lemma 10 by

Lemma 10 Under the assumptions of Proposition 1, and if (Xn) has an atom A,∑
λ∈Λm

E|Sj(ϕλ)|2 ≤ r2
0EA(τ 2)Dm.

Proof of Lemma ??: Using a convex inequality, we can write

∑
λ∈Λm

E|Sj(ϕλ)|2 ≤
∑
λ∈Λm

Eµ

∣∣∣∣∣∣
τ(2)∑
i=τ+1

ϕλ(Xi)

∣∣∣∣∣∣
2

≤
∑
λ∈Λm

Eµ

(τ(2)− τ)
τ(2)∑
i=τ+1

ϕ2
λ(Xi)


Assumption M2 entails ‖

∑
λ∈Λm

ϕλ‖∞ ≤ r2
0Dm. Then

∑
λ∈Λm

E|Sj(ϕλ)|2 ≤ Eµ

(τ(2)− τ)
τ(2)∑
i=τ+1

r2
0Dm

 ≤ r2
0Eµ

(
(τ(2)− τ)2

)
Dm

To conclude, recall that by the Markov property,

Eµ
(
(τ(2)− τ)2

)
=
∑
k

∑
l>k

(l − k)2Pµ(τ = k, τ(2) = l)

=
∑
k

∑
l>k

(l − k)2P(Xk+1 /∈ A, . . . , Xl−1 /∈ A,Xl ∈ A|Xk ∈ A)Pµ(X1 /∈ A, . . . , Xk ∈ A)

=
∑
k

∑
l>k

(l − k)2PA(X1 /∈ A, . . . , Xl−k−1 /∈ A,Xl−k ∈ A)Pµ(τ = k)

=
∑
k

∑
j>0

j2PA(τ = j)Pµ(τ = k) = EA(τ 2).
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We can then give the bound∑
λ∈Λm

E(ν(3)
n (ϕλ)

2) ≤ r2
0EA(τ 2)Dm

n
.

Finally E‖fm − f̂m‖2 ≤ CDm/n with C = 4[8r2
0(Eµ(τ 2) + µ(A)EA(τ 4)) + r2

0EA(τ 2)].

New proof of Theorem 3

The result of Theorem 3 is true but the proof must be modified in the following way.
Proposition 12 must be replaced by:

Proposition 12 Let (Xn) be a Markov chain which satisfies A1–A5 and (Sm)m∈Mn be
a collection of models satisfying M1–M3. We suppose that (Xn) has an atom A. Let
B(m,m′) = {t ∈ Sm + Sm′ , ‖t‖ = 1} and

p(m,m′) = Kµ(A)EA(τ 2)r2
0

dim(Sm + Sm′)

n

(where K is a numerical constant). Then

∑
m′∈Mn

E

[
sup

t∈B(m,m′)

ν2
n(t)− p(m,m′)

]
+

= O(n−1).

Remark 1 This gives a penalty in Theorem 3 of the form

pen(m) = Kµ(A)EA(τ 2)r2
0

Dm

n
, for some K > K0

with K0 a numerical constant. Note that this penalty is simpler than in the previous
version of this theorem. In particular, it does not depend on ‖f‖∞.

Remark 2 As it can be seen in the proof, Assumption M1 can be relaxed, it is now
sufficient to assume that each Sm is a linear subspace of (L∞ ∩L2)([0, 1]) with dimension
Dm ≤ n. This entails an improvement on the smoothness assumption for Corollary 5 :
α > 0 is sufficient. In the same way, M1’ can be relaxed and the condition for Corollary
8 is only α > 0.

Proof of Proposition ??: The heart of the proof is to use Theorem 7 in ? which
is a concentration inequality for Markov chains. In our case T1 = τ(1) = τ and T2 =
τ(2)− τ(1). Let us check that our assumptions allow us to use this theorem.
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• We can easily prove that our assumption A4 implies the Minorization Condition
with m = 1 in ?. Indeed, since

∫
hdµ > 0, there exists C with measure µ(C) > 0

and δ > 0 such that h is larger than δ on C. Then for all x in C and all event
B, P (x,B) ≥ h(x)ν(B) ≥ δν(B). Moreover, fixing x ∈ R, for n large enough, the
ergodicity of the chain gives

|P n(x,C)− µ(C)| ≤ µ(C)

2
,

which implies P n(x,C) ≥ µ(C)/2 > 0.

• As noticed at the very beginning of his Section 3.5, the assumption of finitness of
Orlicz norm of T1 and T2, which is required to apply the theorem, is equivalent to
existence of a number s > 1 such that

Eµ(sτ ) <∞, Eν(sτ ) <∞. (1)

Now, we use condition A5 of geometric ergodicity. Theorem 15.4.2 in ? shows
that there exists a full absorbing set S such that S is geometrically regular, i.e.
supx∈S Ex(sτ ) <∞ for some s > 1 (depending on A). Since S is full absorbing, and
µ is the limit distribution of the chain µ(S) = 1. Moreover µ(C ∩ S) > 0, where C
is the set introduced in the Minorization Condition. So we can find an x ∈ C ∩ S
and δν(Sc) ≤ P (x, Sc) = 0. Thus ν(S) = 1 too. This implies condition (??).

Now we write an integrated version of the concentration inequality. We denote νn(t) =
n−1

∑n
i=1[t(Xi)− 〈t, f〉] where f is the stationary density of the chain and we consider a

countable class B of measurable functions t. Let a and H such that

sup
t∈B
‖t− 〈t, f〉‖∞ ≤ a, E

(
sup
t∈B
|νn(t)|

)
≤ H.

Let the variance term

σ2 = EA(τ)−1 sup
t∈B

EA

( τ∑
i=1

t(Xi)− 〈t, f〉

)2
 .

Then we prove the existence of a numerical constant c > 0 such that

E[sup
t∈B
|νn(t)|2 − cH2]+ ≤ K1

(
1

n2
+
σ2

n
e−K2

nH2

σ2 +
a2(log n)2

n2
e−K3

nH
a logn

)
(2)

where K1, K2, K3 are depending on the chain. Indeed we compute, for c = 8K2,

E
[
sup
t∈B
|νn(t)|2 − cH2

]
+

=

∫ ∞
0

P

(
sup
t∈B
|νn(t)|2 ≥ cH2 + x

)
dx

≤
∫ ∞

0

P

(
sup
t∈B
|νn(t)| ≥

√
c/2H +

√
x/2

)
dx ≤

∫ ∞
0

P

(
Z ≥

√
c/2EZ + n

√
x

2

)
dx

≤
∫ ∞

0

P

(
Z ≥ KEZ +KEZ + n

√
x

2

)
dx
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where Z = n supt∈B |νn(t)|. If x ≥ 2n−2, t = KEZ + n
√
x/2 ≥ 1 so that we can apply

Theorem 7. Moreover∫ 2n−2

0

P

(
Z ≥ KEZ +KEZ + n

√
x

2

)
dx ≤ 2n−2.

Thus

E
[
sup
t∈B
|νn(t)|2 − cH2

]
+

≤ 2

n2

+

∫ ∞
0

K exp

(
− 1

K ′
min

(
[KEZ + n

√
x/2]2

nσ2
,
KEZ + n

√
x/2

a log n

))
dx

≤ 2

n2
+

1

K2

e−
K2(EZ)2

nσ2

∫ ∞
0

e−
K2nx

σ2 dx+
1

K3

e−
K3EZ
a logn

∫ ∞
0

e−
K3n

√
x

a logn dx

≤ 2

n2
+K4

σ2

n
e−

K2nH
2

σ2 +K5
(a log n)2

n2
e−

K3nH
a logn

This gives inequality (??). This result can be extended to a non-countable class B with
classical density arguments. So we apply it with B = B(m,m′). Moreover, the result of
? is also true when replacing EZ = nE(supt∈B |νn(t)|) by nE(supt∈B |ν ′n(t)|) with

ν ′n(t) =
1

n

b3n/EA(τ)c∑
j=1

Sj(t)

(see in the proof of Theorem 7, p 1020). Thus (??) is also valid withH ≥ E (supt∈B |ν ′n(t)|).
It remains to compute a,H and σ2. We denote D(m,m′) = max(Dm, Dm′) the dimension
of the space Sm+Sm′ (recall that the models are nested) and (ϕλ)λ∈Λ(m,m′) an orthonormal
basis of Sm + Sm′ .

• Computation of a. If t ∈ Sm+Sm′ , ‖t‖∞ ≤ r0

√
D(m,m′)‖t‖. Then a = 2r0

√
D(m,m′).

• Computation of H2. Since any t ∈ B(m,m′) can be written t =
∑

λ∈Λ(m,m′) aλϕλ,

E

(
sup

t∈B(m,m′)

ν ′n(t)
2

)
≤

∑
λ∈Λ(m,m′)

E(ν ′n(ϕλ)2) ≤
∑

λ∈Λ(m,m′)

E

 1

n

b3n/EA(τ)c∑
j=1

Sj(ϕλ)

2 .

Recall that the Sj(t) are independent identically distributed and centered. Then,
using (new) Lemma 10,

E

(
sup

t∈B(m,m′)

ν ′n(t)
2

)
≤ b3n/EA(τ)c

n2
r2

0EA(τ 2)D(m,m′).

Finally, since µ(A) = EA(τ)−1, we setH2 = CD(m,m′)/n with C = 3µ(A)EA(τ 2)r2
0.
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• Computation of σ2.We use the following inequality, given in ?, subsection 17.4.3:

µ(A)EA

( τ∑
i=1

t(Xi)− 〈t, f〉

)2
 = 2

∫
(t− 〈t, f〉)t̂dµ−

∫
(t− 〈t, f〉)2dµ

where

t̂(x) := Ex

(
σA∑
i=0

t(Xi)− 〈t, f〉

)
and σA = inf{n ≥ 0, Xn ∈ A}. Then, since µ(A) = EA(τ)−1,

σ2 ≤ sup
t∈B(m,m′)

2

∫
(t− 〈t, f〉)t̂dµ ≤ sup

t∈B(m,m′)

2

(∫
(t− 〈t, f〉)2dµ

∫
t̂2dµ

)1/2

.

But
∫
(t− 〈t, f〉)2dµ ≤

∫
t2f ≤ ‖f‖∞‖t‖2 and

t̂2(x) ≤ Ex

( σA∑
i=0

t(Xi)− 〈t, f〉

)2
 ≤ 4‖t‖2

∞Ex((σA + 1)2).

with Ex((σA + 1)2) ≤ Ex((τ + 1)2). Then

σ2 ≤ 4
√

Eµ((τ + 1)2)
√
‖f‖∞ sup

t∈B(m,m′)

‖t‖∞‖t‖

so that
σ2 ≤ 4

√
Eµ((τ + 1)2)

√
‖f‖∞r0

√
D(m,m′).

Now, we can use inequality (??): it implies existence of positive constants K ′1, K ′2, K ′3
such that

E[sup
t∈B
|νn(t)|2 − cCD(m,m′)/n]+ ≤

K ′1

(
1

n2
+

√
D(m,m′)

n
e−K

′
2

√
D(m,m′) +

D(m,m′)(log n)2

n2
e−K

′
3

√
n

logn

)
.

Using thatD(m,m′) = max(Dm, D
′
m) ≤ n, we obtain that

∑
m′∈Mn

√
D(m,m′)e−K

′
2

√
D(m,m′)

and
∑

m′∈Mn
D(m,m′)(log n)2n−1e−K

′
3

√
n

logn are bounded. Moreover |Mn|n−2 = O(n−1).
Thus ∑

m′∈Mn

E[sup
t∈B
|νn(t)|2 − cCD(m,m′)/n]+ = O(n−1)

�
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New proof of Theorem 9

The result of Theorem 9 is true but the proof must be modified in the following way.
Recall that we denote En = {‖f − f̃‖∞ ≤ χ/2} and Ec

n its complementary. We have

E‖π − π̃‖2 ≤ 8

χ2

(
E‖g − g̃‖2 + ‖π‖2

∞E‖f − f̃‖2
)
+ (an + ‖π‖∞)2P (Ec

n)

so that it is sufficient to bound (an + ‖π‖∞)2P (Ec
n). We have proven that, for n large

enough,

P (Ec
n) ≤ P

(
‖fm̂ − f̂m̂‖∞ >

χ

4

)
≤ P

(
‖fm̂ − f̂m̂‖ >

χ

4r0

√
Dm̂

)
.

But

‖fm̂ − f̂m̂‖ = sup
t∈Sm̂,‖t‖≤1

∫
t(f̂m̂ − fm̂) = sup

t∈Sm̂,‖t‖≤1

νn(t).

Let Sm0 the largest model with dimension Dm0 ≤ n1/4.

P (Ec
n) ≤ P

(
sup

t∈Sm̂,‖t‖≤1

νn(t)
2 >

χ2

16r2
0Dm̂

)
≤ P

(
sup

t∈Sm0 ,‖t‖≤1

νn(t)
2 >

χ2

16r2
0Dm0

)
.

As shown in the (new) proof of Proposition 12, our assumptions allow us to use Theorem
7 in ?. Then, reasoning as in the proof of Proposition 12, we can show the existence of a
numerical constant c > 0 and constants depending on the chain K1, K2, K3 > 0 such that

P

(
sup

t∈Sm0 ,‖t‖≤1

νn(t)
2 ≥ c

2
H2

)
≤ K1

(
e−K2

√
Dm0 + e−K3

√
n/ log(n)

)
where H2 = 3µ(A)EA(τ 2)r2

0Dm0/n. Now, for n large enough, since D2
m0

= o(n),

χ2

16r2
0Dm0

≥ 3cµ(A)EA(τ 2)r2
0

2

Dm0

n
.

Then

P (Ec
n) ≤ P

(
sup

t∈Sm0 ,‖t‖≤1

νn(t)
2 ≥ c

2
H2

)
≤ K1

(
e−K2

√
Dm0 + e−K3

√
n/ log(n)

)
so that (an+ ‖π‖∞)2P (Ec

n) = o(n−1). Note that it is sufficient to have Dm0 = bn1/2−εc to
obtain the result.
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