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Introduction

In the recent years, an important research activity has been devoted to the study of stochastic differential games with a large number of players. In their pioneering articles [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF]Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF]Mean field games[END_REF], J-M. Lasry and P-L. Lions have introduced the notion of mean field games, which describe the asymptotic behavior of stochastic differential games (Nash equilibria) as the number N of players tends to infinity. In these models, it is assumed that the agents are all identical and that an individual agent can hardly influence the outcome of the game. Moreover, each individual strategy is influenced by some averages of functions of the states of the other agents. In the limit when N → +∞, a given agent feels the presence of the other agents through the statistical distribution of the states of the other players. Since perturbations of a single agent's strategy does not influence the statistical distribution of the states, the latter acts as a parameter in the control problem to be solved by each agent. Another kind of asymptotic regime is obtained by assuming that all the agents use the same distributed feedback strategy and by passing to the limit as N → ∞ before optimizing the common feedback. Given a common feedback strategy, the asymptotics are given by the McKean-Vlasov theory, [START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF][START_REF] Sznitman | Topics in propagation of chaos[END_REF] : the dynamics of a given agent is found by solving a stochastic differential equation with coefficients depending on a mean field, namely the statistical distribution of the states, which may also affect the objective function. Since the feedback strategy is common to all agents, perturbations of the latter affect the mean field. Then, having each player optimize its objective function amounts to solving a control problem driven by the McKean-Vlasov dynamics. The latter is named control of McKean-Vlasov dynamics by R. Carmona and F. Delarue [START_REF] Carmona | Control of McKean-Vlasov dynamics versus mean field games[END_REF][START_REF] Carmona | Mean field forward-backward stochastic differential equations[END_REF] and mean field type control by A. Bensoussan et al, [START_REF] Bensoussan | Control and Nash games with mean field effect[END_REF][START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF]. When the dynamics of the players are independent stochastic processes, both mean field games and control of McKean-Vlasov dynamics naturally lead to a coupled system of partial differential equations, a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation. For mean field games, the coupled system of partial differential equations has been studied by Lasry and Lions in [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF]Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF]Mean field games[END_REF]. Besides, many important aspects of the mathematical theory developed by J-M. Lasry and P-L. Lions on MFG are not published in journals or books, but can be found in the videos of the lectures of P-L. Lions at Collège de France: see the web site of Collège de France, [START_REF] Lions | Cours du Collège de France[END_REF]. One can also see [START_REF] Gomes | Mean field games models-a brief survey[END_REF] for a brief survey, and we mention [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF], a very nice article on weak solutions of Fokker-Planck equations and of MFG systems of partial differential equations. The analysis of the system of partial differential equations arising from mean field type control can be performed with rather similar arguments as for MFG, see [START_REF] Achdou | On the system of partial differential equations arising in mean field type control[END_REF] for a work devoted to classical solutions.

The class of MFG with congestion effects was introduced and studied in [START_REF] Lions | Cours du Collège de France[END_REF] in 2011, see also [START_REF] Achdou | Finite difference methods for mean field games, Hamilton-Jacobi equations: approximations, numerical analysis and applications[END_REF][START_REF] Achdou | On the system of partial differential equations arising in mean field type control[END_REF] for some numerical simulations, to model situations in which the cost of displacement of the agents increases in the regions where the density is large. A striking fact is that in general, MFG with congestion cannot be cast into an optimal control problem driven by a partial differential equation, in contrast with simpler cases. In the present paper, we aim at studying mean field type control with congestion, in a setting in which classical solutions of the system of partial differential equations seem difficult to obtain. But, in contrast with MFG, mean field type control can genuinely be seen as a problem of optimal control of a partial differential equation. This will allow us to use techniques from the calculus of variations. Inspired by the works of Cardaliaguet et al, see [START_REF] Cardaliaguet | Geodesics for a class of distances in the space of probability measures[END_REF][START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF], we will introduce a pair of primal and dual optimization problems, leading to a suitable weak formulation of the system of partial differential equations for which there exists a unique solution. Note that [START_REF] Cardaliaguet | Geodesics for a class of distances in the space of probability measures[END_REF] is devoted to some optimal transportation problems (i.e. finding the geodesics for a class of distances between probability measures), whereas [START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF] deals with some special cases of MFG with possibly degenerate diffusions to which the above mentioned techniques from the calculus of variations can be applied.

Model and assumptions

This paper is devoted to the analysis of the second order system

∂u ∂t (t, x) + ν∆u(t, x) + H(x, m(t, x), Du(t, x)) + m(t, x) ∂H ∂m (x, m(t, x), Du(t, x)) = 0, (1.1) ∂m ∂t (t, x) -ν∆m(t, x) + div m(t, •) ∂H ∂p (•, m(t, •), Du(t, •)) (x) = 0, (1.2) 
with the initial and terminal conditions

m(0, x) = m 0 (x) and u(T, x) = u T (x). (1.3) 
Assumptions We now list the assumptions on the Hamiltonian H, the initial and terminal conditions m 0 and u T . These conditions are supposed to hold in all what follows.

H1

The Hamiltonian H :

T d × (0, +∞) × R d → R is of the form H(x, m, p) = - |p| β m α + (x, m), (1.4) 
with 1 < β ≤ 2 and 0 ≤ α < 1, and where is continuous cost function that will be discussed below. It is clear that H is concave with respect to p. Calling β * the conjugate exponent of β, i.e.

β * = β/(β -1), it is useful to note that H(x, m, p) = inf ξ∈R d (ξ • p + L(x, m, ξ)) , (1.5) 
L(x, m, ξ) = (β -1)β -β * m α β-1 |ξ| β * + (x, m), (1.6) 
that L is convex with respect to ξ, and that

L(x, m, ξ) = sup p∈R d (-ξ • p + H(x, m, p)). (1.7)
H2 (conditions on the cost ) The function : T d × R + → R is continuous with respect to both variables and continuously differentiable with respect to m if m > 0. We also assume that m → m (x, m) is strictly convex, and that there exist q > 1 and two positive constants

C 1 and C 2 such that 1 C 1 m q-1 -C 1 ≤ (x, m) ≤ C 1 m q-1 + C 1 , (1.8) 1 C 2 m q-1 -C 2 ≤ m ∂ ∂m (x, m) ≤ C 2 m q-1 + C 2 .
(1.9)

Moreover, since we can always add a constant to L, we can assume that (x, m) ≥ 0, ∀x ∈ T d , ∀m ≥ 0.

(1.10)

The convexity assumption on m → m (x, m) implies that m → mH(x, m, p) is strictly convex with respect to m. Moreover, we assume that there exists a constant C 3 ≥ 0 such that

| (x, m) -(y, m)| ≤ C 3 (1 + m q-1 )|x -y|. (1.11)
H3 We assume that β ≥ q * . H4 (initial and terminal conditions) We assume that m 0 is of class

C 1 on T d , that u T is of class C 2 on
T d and that m 0 > 0 and

T d m 0 (x)dx = 1. H5 ν is a positive number.
Remark 1.1. Note that Assumption [H5] can be relaxed: all what follows can be generalized to degenerate diffusions, i.e. to the following system of PDEs:

∂u ∂t (t, x) + A i,j (x) ∂ 2 u ∂x i ∂x j (t, x) + H(x, m(t, x), Du(t, x)) + m(t, x) ∂H ∂m (x, m(t, x), Du(t, x)) = 0, (1.12) ∂m ∂t (t, x) -ν ∂ 2 ∂x i ∂x j (A i,j (•)m)(t, x) + div m(t, •) ∂H ∂p (•, m(t, •), Du(t, •)) (x) = 0, (1.13)
where

(A i,j ) 1≤i,j≤d (x) = 1 2 Σ(x)Σ T (x)
and Σ is a Lipschitz continous map from T d to R d×D with D possibly smaller than d. The necessary modifications can easily be found in [START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF].

A heuristic justification of (1.1)-(1.3)

Consider a probability space (Ω, A, P) and a filtration F t generated by a d-dimensional standard Wiener process (W t ) and the stochastic process (X t ) t∈[0,T ] in R d adapted to F t which solves the stochastic differential equation

dX t = ξ t dt + √ 2ν dW t ∀t ∈ [0, T ], (1.14) 
given the initial state X 0 which is a random variable F 0 -measurable whose probability density is m 0 . In (1.14), ξ t is the control, which we take to be

ξ t = v(t, X t ), (1.15) 
where v(t, •) is a continuous function on T d . As explained in [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF], page 13, if the feedback function v is smooth enough, then the probability distribution m t of X t has a density with respect to the Lebesgue measure, m v (t, •) ∈ P ∩L 1 (T d ) for all t, and m v is solution of the Fokker-Planck equation

∂m v ∂t (t, x) -ν∆m v (t, x) + div m v (t, •)v(t, •) (x) = 0, (1.16) 
for t ∈ (0, T ] and x ∈ T d , with the initial condition

m v (0, x) = m 0 (x), x ∈ T d .
(1.17)

We define the objective function

J (v) = E T 0 L(X t , m v (t, X t ), ξ t )dt + u T (X T ) = [0,T ]×T d L(x, m v (t, x), v(t, x))m v (t, x)dxdt + T d u T (x)m v (T, x)dx.
(1.18)

The goal is to minimize J (v) subject to (1.16) and (1.17). Following A. Bensoussan, J. Frehse and P.

Yam in [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF], it can be seen that if there exists a smooth feedback function v * achieving J (v * ) = min J (v) and such that m v * > 0 then

v * (t, x) = argmin v L(x, m v * (t, x), v) + ∇u(t, x) • v(t, x)
and (m v * , u) solve (1.1), (1.2) and (1.3). The issue with the latter argument is that we do not know how to guarantee a priori that m will not vanish in some region of (0, T ) × T d . Hereafter, we propose a theory of weak solutions of (1.1)- (1.3), in order to cope with the cases when m may vanish.

Remark 1.2. Note that the system of partial differential equations that arises in a mean field game is

∂u ∂t (t, x) + ν∆u(t, x) + H(x, m(t, x), Du(t, x)) = 0,
with (1.2) and (1.3). To the best of our knowledge, for such a system with the Hamiltonian given in (1.4), the existence of a solution is an open problem except in the stationary case with β = 2 and α = 1, see [START_REF] Gomes | Existence for stationary mean field games with quadratic hamiltonians with congestion[END_REF]; in the latter case, a very special trick can be used. Besides, the theory of weak solutions proposed below does not apply to MFG, because as explained above, MFG with congestion cannot be seen as an optimal control problem driven by a partial differential equation.

Two optimization problems

The first optimization is described as follows: consider the set K 0 :

K 0 = φ ∈ C 2 ([0, T ] × T d ) : φ(T, •) = u T
and the functional A on K 0 :

A(φ) = inf m ∈ L 1 ((0, T ) × T d ) m ≥ 0 A(φ, m) (2.1) 
where 

A(φ, m) = T 0 T d m(t,
+ T d m 0 (x)φ(0, x)dx (2.2)
with the convention that if m = 0 then mH(x, m, p) = 0. Then the first problem consists of maximizing

sup φ∈K0 A(φ). (2.3) 
For the second optimization problem, we consider the set K 1 :

K 1 =          (m, z) ∈ L 1 ((0, T ) × T d ) × L 1 ((0, T ) × T d ; R d ) : m ≥ 0 a.e ∂m ∂t -ν∆m + divz = 0, m(0, •) = m 0          (2.4)
where the boundary value problem is satisfied in the sense of distributions. We also define 

L(x, m, z) =    mL(x, m, z m ) if m > 0 0 if (m, z) = (0, 0) +∞ otherwise . (2.5) Note that (m, z) → L(x, m, z) is LSC on R × R d .
B(m, z), (2.7) 
where if

T 0 T d L(x, m(t, x), z(t, x))dxdt < +∞, B(m, z) = T 0 T d L(x, m(t, x), z(t, x))dxdt + T d m(T, x)u T (x)dx, (2.8) 
and if not, B(m, z) = +∞.

(2.9)

To give a meaning to the second integral in (2.8), we define w(t, x) = z(t,x) m(t,x) if m(t, x) > 0 and w(t, x) = 0 otherwise. From (1.6) and (1.8), we see that

T 0 T d L(x, m(t, x), z(t, x))dxdt < +∞ implies that m 1+ α β-1 |w| β * ∈ L 1 ((0, T ) × T d ), which implies that m|w| β β-1+α ∈ L 1 ((0, T ) × T d ).
In that case, the boundary value problem in (2.4) can be rewritten as follows:

∂m ∂t -ν∆m + div(mw) = 0, m(0, •) = m 0 , (2.10) 
and we can use the following Lemma which can be found in [START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF]:

Lemma 2.1. If (m, w) ∈ K 1 is such that T 0 T d L(
x, m(t, x), z(t, x))dxdt < +∞, then the map t → m(t) for t ∈ (0, T ) and t → m 0 for t < 0 is Hölder continuous a.e. for the weak * topology of P(T d ).

Remark 2.1. Following the proof of lemma 3.1 in [START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF], we see that the Hölder exponent in Lemma 2.1 is greater than or equal to min 1 2 , 1-α β .

This lemma implies that the measure m(t) is defined for all t, so the second integral in (2.8) has a meaning.

Lemma 2.2. sup φ∈K0 A(φ) = min (m,z)∈K1 B(m, z). (2.11)
Moreover the latter minimum is achieved by a unique (m * , z * ) ∈ K 1 , and m * ∈ L q ((0, T ) × T d ).

Proof. Let us reformulate the optimization problem (2.3): take

E 0 = C 2 ([0, T ] × T d ) and E 1 = C 0 ([0, T ] × T d ) × C 0 ([0, T ] × T d ; R d ).
We define the functional F on E 0 :

F(φ) = χ T (φ) - T d m 0 (x)φ(0, x)dx
where χ T (φ) = 0 if φ| t=T = u T and χ T (φ) = +∞ otherwise. Let us also define the linear operator Λ :

E 0 → E 1 by Λ(φ) = ∂φ ∂t + ν∆φ, Dφ . For (a, b) ∈ E 1 , let G(a, b) be defined by G(a, b) = - inf m ∈ L 1 ((0, T ) × T d ) m ≥ 0 T 0 T d m(t, x) (a(t, x) + H(x, m(t, x), b(t, x))) dxdt.
(2.12)

Note that the infimum with respect to m is in fact a minimum: indeed, from (1.4) and (1.8), we see

that m → T 0 T d m(t, x) (a(t, x) + H(x, m(t, x), b(t, x))) dxdt is convex, coercive and continuous in the set m ∈ L q ((0, T ) × T d ) : m ≥ 0 .
Hence, this map is lower semi-continuous for the weak convergence in {m ∈ L q ((0, T ) × T d ), m ≥ 0}. On the other hand, since a minimizing sequence (m n ) n∈N for (2.12) is bounded in L q ((0, T ) × T d ), we can extract a subsequence which converges weakly in L q ((0, T ) × T d ) to a nonnegative function. The weak limit achieves the minimum in (2.12). We now aim at characterizing the optimal m. Let us first characterize

K(x, γ, p) = min µ≥0 (µγ + µH(x, µ, p)) , (2.13) 
which is nonpositive and concave with respect to (γ, p); since µ → µH(x, µ, p) is C 1 , strictly convex on R + and tends to +∞ as µ → +∞, we see that for any x ∈ T d , if p = 0 and γ ∈ R, or if p = 0 and γ + (x, 0) ≤ 0, then there exists a unique µ = ψ(x, γ, p) ≥ 0 such that

γ + H(x, µ, p) + µH m (x, µ, p) = 0.
Note that if p = 0 and γ+ (x, 0) < 0, then µ = ψ(x, γ, 0) > 0 is characterized by γ+ (x, µ)+µ m (x, µ) = 0. We extend ψ by 0 in the set {(γ, 0) : γ + (x, 0) ≥ 0}. Therefore,

K(x, γ, p) = ψ(x, γ, p)γ + ψ(x, γ, p)H(x, ψ(x, γ, p), p), (2.14) 
with the convention that mH(x, m, p) = 0 if m = 0. We claim that the map (γ, p)

→ ψ(x, γ, p) is continuous in R × R d . Indeed,
1. the continuity of (γ, m, p) → γ + H(x, m, p) + µH m (x, m, p) and the fact that this map is strictly increasing w.r.t. m in (0, +∞) implies that (γ, p)

→ ψ(x, γ, p) is continuous in R × R d \{0}.
2. Similarly, the continuity of γ → ψ(x, γ, 0) stems from the continuity of the map (γ, m) → γ + (x, m) + m m (x, m) and its strictly increasing character w.r.t. m in (0, +∞).

3. Let us prove that if (γ, p) tends to (γ, 0) with p = 0, then lim

(γ, p)→(γ,0) ψ(x, γ, p) = ψ(x, γ, 0). ( 2.15) 
(a) If γ + (x, 0) < 0, then ψ(x, γ, 0) > 0 and we get (2.15) from the same argument as in point 1.

(b) Consider the case γ + (x, 0) > 0. Suppose that (γ, p) tends to (γ, 0) with p = 0, and set μ = ψ(x, γ, p) > 0. We see that

(1 -α)μ -α |p| β = γ + d dm (m → m (x, m))(μ) > γ + (x, 0) → γ + (x, 0).
This implies that μα |p| -β is bounded as (γ, p) → (γ, 0), hence (2.15).

(c) Finally, we consider the case when γ = -(x, 0) ≤ 0 and (γ, p) → (γ, 0) with p = 0; let us assume that for a subsequence, μ is bounded away from 0: passing to the limit in the identity

d dm (m → m (x, m))(μ) -(x, 0) -(1 -α)μ -α |p| β = γ -γ,
we obtain that lim

(γ, p)→(γ,0) d dm (m → m (x, m))(μ) = (x, 0),
which can happen only if μ → 0 and we reach a contradiction. Hence, (2.15) holds.

We have proved the continuity of ψ with respect to (γ, p). The continuity of ψ with respect to x follows from similar arguments, using the regularity assumptions on . Therefore, ψ is continuous in the set

T d × R × R d .
It is also useful to notice that

K(x, γ, p) = inf µ≥0 (µ(γ + H(x, µ, p)) = inf µ≥0 µγ + µ inf ξ (ξ • p + L(x, µ, ξ)) = inf (µ,z)∈R×R d µγ + z • p + L(x, µ, z)
and, from the Fenchel-Moreau theorem, see e.g. see [START_REF]Convex analysis[END_REF], that

L(x, µ, z) = sup (γ,p)∈R×R d (-µγ -z • p + K(x, γ, p)) .
(2.16)

Remark 2.2. Note that for all 0 = p ∈ R d and γ ∈ R, the map µ → µ (γ + H(x, µ, p)) is strictly decreasing in some interval [0, μ] where μ > 0 depends on p and γ, and that its derivative tends to -∞ as µ → 0 + . Hence, if µ * = 0 achieves the minimum of µ → µ (γ + H(x, µ, p)), then p must be 0. Similarly, γ must be such that γ + (x, 0) ≥ 0.

With (2.14), the optimality conditions for (2.12) yield that

G(a, b) = - T 0 T d K(x, a(t, x), b(t, x))dxdt. (2.17) 
From (2.14) and the continuity of ψ, we see that G is continuous on E 1 . We observe that

sup φ∈K0 A(φ) = -inf φ∈E0 (F(φ) + G(Λ(φ))) . (2.18) 
By choosing φ 0 (t, •) = u T , we see that F(φ 0 ) < +∞, G(Λ(φ 0 )) < +∞ and that G • Λ is continuous at φ 0 . We can thus apply Fenchel-Rockafellar duality theorem, see [START_REF]Convex analysis[END_REF]:

-inf φ∈E0 (F(φ) + G(Λ(φ))) = min (m,z)∈E * 1 (F * (Λ * (m, z)) + G * (-m, -z)) (2.19)
where E * 1 is the topological dual of E 1 i.e. the set of Radon measures (m, z) on (0, T )

× T d with values in R × R d . If E * 0 is the dual space of E 0 , the operator Λ * : E * 1 → E * 0 is the adjoint of Λ.
The maps F * and G * are the Legendre-Fenchel conjugates of F and G. Following [START_REF] Cardaliaguet | Second order mean field games with degenerate diffusion and local coupling[END_REF], we check that

F * (Λ * (m, z)) =      T d u T (x)dm(T, x) if ∂m ∂t -ν∆m + divz = 0, m(0, •) = m 0 +∞ otherwise.
where the boundary value problem is understood in the sense of distributions.

On the other hand, from Rockafellar, [START_REF] Rockafellar | Integrals which are convex functionals[END_REF] Theorem 5, and (2.16), see also [START_REF] Cardaliaguet | Geodesics for a class of distances in the space of probability measures[END_REF], we see that

G * (-m, -z) = T 0 T d L(x, m ac (t, x), z ac (t, x))dxdt + T 0 T d L ∞ x, dm sing dθ , dz sing dθ dθ,
where (m ac , z ac ) and (m sing , z sing ) respectively denote the absolutely continuous and singular parts of (m, z), θ is any measure with respect to which (m sing , z sing ) is absolutely continuous, (for instance m sing + |z sing |, and

L ∞ (x, •) is the recession function of L(x, •), i.e. L ∞ (x, m, z) = sup λ>0 1 λ L(x, λm, λz) = 0 if (m, z) = (0, 0), +∞ otherwise.
Therefore,

G * (-m, -z) =    T 0 T d L(x, m(t, x), z(t, x))dxdt if (m, z) ∈ L 1 ((0, T ) × T d ) × L 1 ((0, T ) × T d ; R d ) +∞ otherwise.
(2.20) Hence, min

(m,z)∈E * 1 (F * (Λ * (m, z)) + G * (-m, -z)) = min (m,z)∈K1 B(m, z).
and we obtain the desired result from (2.18) and (2.19).

Using (1.6), the strict convexity of m → m (x, m) assumed in (H2), the convexity of the map

(m > 0, z) → m 1+ α β-1 | z m | β * (see [2] paragraph 3.
2), and the convexity of K 1 , we obtain the uniqueness of m * such that (m * , z * ) ∈ K 1 achieves a minimum of B for some z * . Moreover, from the strict convexity of (m, z)

→ m 1+ α β-1 | z m | β * for m > 0, we deduce that z * m * is unique in {(t, x) : m * (t, x) > 0}. Since z * = 0 in {(t, x) : m * (t, x) = 0}, the uniqueness of z * follows. It is clear from (H2) that m * ∈ L q ((0, T ) × T d ).
3 A priori estimates for a maximizing sequence of (2.1)

Let M ∈ R be the optimal value in (2.1). Take a maximizing sequence (φ n ) n∈N for (2.1). For some > 0, it can be chosen in such a way that

M -< A(φ n ) ≤ M.
From the definition of A, we see that 

A(φ n ) ≤ A(φ n , m 0 ). Hence, M - ≤ T 0 T d m 0 (x) ∂φ n ∂t (t, x) + ν∆φ n (t, x) + H(x, m 0 (x), Dφ n (t, x)) dxdt + T d m 0 (x)φ n (0, x)dx = T 0 T d (-νDm 0 (x) • Dφ n (t, x) + m 0 (x)H(x, m 0 (x), Dφ n (t, x))) dxdt + T d m 0 (x)u T (x)
0 =        T 0 T d m n (t, x) ∂φ n ∂t (t, x) + ν∆φ n (t, x) dxdt + T 0 T d m n (t, x) (H(x, m n (t, x), Dφ n (t, x)) + m n (t, x)H m (x, m n (t, x), Dφ n (t, x))) dxdt. (3.2) 
From (3.2), we deduce that

A(φ n ) = - T 0 T d m 2 n (t, x)H m ((x, m n (t, x), Dφ n (t, x))dxdt + T d m 0 (x)φ n (0, x)dx.
From (H1) and (H2),

m 2 H m (x, m, p) ≥ 1 C 2 m q -C 2 m + m 1-α |p| β .
Hence,

T 0 T d 1 C 2 m q n (t, x) -C 2 m n (t, x) + m 1-α n (t, x)|Dφ n (t, x)| β dxdt - T d m 0 (x)φ n (0, x)dx ≤ -M + . (3.3) 
On the other hand, (3.1), (H1) and (H2) imply that for some constant C 4 > 0,

∂φ n ∂t (t, x) + ν∆φ n (t, x) + C 4 m q-1 n (t, x) + C 4 ≥ 0, a.e. ( 3.4) 
Multiplying (3.4) by (φ + n ) q * -1 e -λ(T -t) for λ large enough, integrating in (τ, T ) × T d , we obtain that

φ + n L ∞ (0,T ;L q * (T d )) ≤ C 1 + m n q-1 L q ((0,T )×T d ) + u + T L q * (T d ) , (3.5) 
and that

D((φ + n ) q * /2 ) 2 L 2 ((0,T )×T d ) ≤ C 1 + m n q L q ((0,T )×T d ) + u + T q * L q * (T d ) .
Remark 3.1. Note that the latter estimate does not hold with a degenerate diffusion as in Remark 1.1, but it will not be used hereafter.

This implies that

T d m 0 (x)φ + n (0, x)dx ≤ C m n q-1 L q ((0,T )×T d ) + 1 . (3.6) 
Combining (3.3) and (3.6), we obtain that

T 0 T d 1 C 2 m q n (t, x) -C 2 m n (t, x) + m 1-α n (t, x)|Dφ n (t, x)| β dxdt + T d m 0 (x)φ - n (0, x)dx ≤ -M + + C m n q-1 L q ((0,T )×T d ) + 1 .
The latter and (3.6) yield

T 0 T d m q n (t, x) + m 1-α n (t, x)|Dφ n (t, x)| β dxdt + T d |φ n (0, x)|dx ≤ C. (3.7) 
Let m(t, x) = 1 τ <t : since A(φ n , m) ≥ A(φ n ), we obtain that

M - ≤ t 0 T d ∂φ n ∂t (τ, x) + ν∆φ n (τ, x) + H(x, 1, Dφ n (τ, x)) dxdt + T d m 0 (x)φ n (0, x)dx = t 0 T d H(x, 1, Dφ n (τ, x))dxdτ + T d φ n (t, x)dx + T d (m 0 (x) -1)φ n (0, x)dx.
This implies that t → T d φ n (t, x)dx is bounded from below uniformly w.r.t. n. Combining with (3.5), we get that φ - n is bounded in L ∞ (0, T ; L 1 (T d )), and finally that φ n is bounded in

L ∞ (0, T ; L 1 (T d )). Finally, setting γ 1 n = -(•, m n ) -m n ∂ ∂m (•, m n ) and 0 ≤ γ 2 n = (1 -α) |Dφn| β m α n 1 {mn>0} , we see that the sequence (γ 1 n ) n is bounded in L q * ((0, T ) × T d
), and that

∂φ n ∂t + ν∆φ n ≥ γ 1 n + γ 2 n .
Integrating the latter on (0, T ) × T d , we obtain that

T 0 T d γ 2 n (t, x)dxdt ≤ T d u T (x)dx - T d φ n (0, x)dx - T 0 T d γ 1 n (t, x)dxdt, which implies that the sequence of positive function (γ 2 n ) n is bounded in L 1 ((0, T ) × T d ).
To summarize, we have proven the following lemma: Lemma 3.1. The maximizing sequence (φ n ) n∈N introduced at the beginning of § 3.1 is uniformly bounded in L β (0, T ; W 1,β (T d )) and in L ∞ (0, T ; L 1 (T d )). Noting m n the nonnegative function achieving A(φ n , m n ) = A(φ n ), the sequence (m n ) n∈N is uniformly bounded in L q ((0, T ) × T d ). Calling γ n (t, x) = -H(x, m n (t, x), Dφ n (t, x)) -m n (t, x)H m (x, m n (t, x), Dφ n (t, x)), with the convention that H(x, m, p) + mH m (x, m, p) = (x, 0) if m = 0 and p = 0, we can split γ n as follows:

γ n = γ 1 n + γ 2 n , where γ 1 n = -(•, m n )-m n ∂ ∂m (•, m n ) and γ 2 n = (1-α) |Dφn| β m α n 1 {mn>0} . The sequence (γ 1 n ) n∈N is uniformly bounded in L q * ((0, T ) × T d ). The function γ 2
n is nonnegative and the sequence (γ 2 n ) n∈N is uniformly bounded in L 1 ((0, T ) × T d ).

A relaxed problem 4.1 Definition and first properties

Let K be the set of pairs (φ, γ) such that

• φ ∈ L β (0, T ; W 1,β (T d )) ∩ L ∞ (0, T ; M(T d )) • γ ∈ M([0, T ] × T d ) and γ ac = γ 1 + γ 2 , with γ 1 ∈ L q * ((0, T ) × T d ) is non positive, γ 2 is non negative and γ 2 ∈ L 1 ((0, T ) × T d ) , γ sing ∈ M + ([0, T ] × T d ) • ∂φ ∂t + ν∆φ ≥ γ, and φ| t=T ≤ u T . (4.1)
It is clear that K is convex. The following lemma implies that φ has a trace in a very weak sense:

Lemma 4.1. Consider (φ, γ) ∈ K. For any Lipschitz continuous map ξ :

T d → R, the map t → T d ξ(x)φ(t, x)dx has a BV representative on [0, T ].
Moreover, if we note T d ξ(x)φ(t + , x)dx its right limit at t ∈ [0, T ), then the map ξ → T d ξ(x)φ(t + , x)dx can be extended to a bounded linear form on C 0 (T d ).

Proof. Consider first a nonnegative and Lipschitz continuous function ξ : T d → R + ; the following identity holds in the sense of distributions:

- d dt t → T d ξ(x)φ(t, x)dx -ν T d ∇φ(t, x) • ∇ξ(x)dx ≥ T d ξ(x)γ ac (t, x)dx,
The second and third integral in the latter inequality belong to L 1 ((0, T )). From this, we deduce that t → T d ξ(x)φ(t, x)dx has a BV representative. If now ξ is a Lipschitz continuous function that may change sign, ξ : T d → R, then we write ξ = ξ + -ξ - and use the above argument separately for ξ + and ξ -: we still obtain that t →

T d ξ(x)φ(t, x)dx = T d ξ + (x)φ(t, x)dx - T d ξ -(x)φ(t,
x)dx has a BV representative. The continuity of ξ → T d ξ(x)φ(t + , x)dx comes from the fact that φ ∈ L ∞ (0, T ; M(T d )). Thanks to Lemma 4.1, we may define the concave functional J on K by

J(φ, γ) = T 0 T d K(x, γ ac (t, x), Dφ(t, x))dxdt + T d m 0 (x)φ(0 + , x)dx, (4.2) 
and the relaxed optimization problem: sup

(φ,γ)∈K J(φ, γ). (4.3)
In (4.2), note that (x, t) → K(x, γ ac (t, x), Dφ(t, x)) is a measurable nonpositive function, so the first integral is meaningful and has a value in [-∞, 0]. Note also that, from (2.14), it is possible to restrict ourselves to the pairs (φ, γ) ∈ K such that γ ac (t, x) ≤ -(x, 0) for almost every (t, x) such that Dφ(t, x) = 0. Noting K the set 

K = {(φ, γ) ∈ K : γ ac (t, x) ≤ -(x,
T 0 T d K(x, γ ac (t, x), Dφ(t, x))dxdt > -∞,
for any (m, z) ∈ K 1 such that m ∈ L q ((0, T ) × T d ) and

T 0 T d L(x, m(t, x), z(t, x))dxdt < +∞,
the following holds: for almost any t ∈ (0, T ),

- T d m(T, x)u T (x)dx + T d m(t, x)φ(t, x)dx + T s=t T d m(s, x) (γ ac (s, x) + H(x, m(s, x), Dφ(s, x))) dxds ≤ T s=t T d L(x, m(s, x), z(s, x))dxds, (4.5) 
-

T d m(t, x)φ(t, x)dx + T d m 0 (x)φ(0 + , x)dx + t s=0 T d m(s, x) (γ ac (s, x) + H(x, m(s, x), Dφ(s, x))) dxds ≤ t s=0 T d L(x, m(s, x), z(s, x))dxds, (4.6) 
and the meaning of T d m(t, x)φ(t, x)dx will be explained in the proof. Moreover, if

- T d m(T, x)u T (x)dx + T d m 0 (x)φ(0 + , x)dx + T s=0 T d m(s, x) (γ ac (s, x) + H(x, m(s, x), Dφ(s, x))) dxds = T s=0 T d L(x, m(s, x), z(s, x))dxds, (4.7)
then z(t, x) = m(t, x)H p (x, m(t, x), Dφ(t, x)) holds almost everywhere. Remark 4.1. Before proving Lemma 4.2, note that the integrals of (s, x) → m(s, x) (γ ac (s, x) + H(x, m(s, x), Dφ(s, x))) in (4.5)-(4.7) have a meaning in (-∞, +∞], because m(s, x) (γ ac (s, x) + H(x, m(s, x), Dφ(s, x))) ≥ K(x, γ ac (s, x), Dφ(s, x)) a.e. and from the hypothesis of Lemma 4.2, the latter is integrable in (0, T ) × T d with a nonpositive integral.

Proof. We first extend m to [-1, T + 1] by setting m(t) = m 0 for t ≤ 0 and m(t) = m(T ) for t > T . Note that m(T ) is well defined from Lemma 2.1. Similarly, we extend z to [-1,

T + 1] by setting z(t) = 0 if t / ∈ (0, T ). Consider a regularizing kernel η (t, x) = -d-δ h 1 ( t δ )h 2 ( x ) where h 1 is a smooth even and nonnegative function supported in [-1/2, 1/2] such that R h 1 (t)dt = 1, h 2 is a smooth symmetric nonnegative function supported in [-1/2, 1/2] d such that R d h 2 (x)dx = 1
, and δ will be chosen later. We define m = η m and z = η z in (-1/2, T + 1/2) × T d . We can see that in (0,

T ) × T d , ∂m ∂t -ν∆ m 1 t∈(0,T ) + divz = divR (4.8)
where R = η Dm 1 t∈(0,T ) -1 t∈(0,T ) D(η m). From [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], we know that R → 0 in L q ((0, T ) × T d ) as → 0, because m ∈ L q ((0, T ) × T d ). We know that φ(T ) ≤ u T . Thus T d φ(T, x)m (T, x)dx ≤ T d u T (x)m (T, x)dx and the latter integral converges to T d u T (x)m(T, x)dx in view of Lemma 2.1. We know that m → m in L q ((0, T ) × T d ) and that φ ∈ L β ((0, T ) × T d ). From Assumption (H3), this implies that φm → φm in L 1 ((0, T ) × T d ). From Lemma 4.1, we know that out of a countable set, φ(t -) = φ(t + ) = φ(t) and that T d φ(t, x)m (t, x)dx is well defined. From the latter two observations, up to the extraction of a subsequence, we may assume that

T d φ(t, x)m (t, x)dx → T d φ(t, x)m(t, x)dx as → 0, with φ(t -) = φ(t + ) = φ(t)
, for almost all t ∈ (0, T ). Let t ∈ (0, T ) be such that the latter is true. Since (φ, γ) ∈ K,

T t T d φ(s, x) ∂m ∂t (s, x) + νDφ • D(1 s∈(0,T ) m (s, x)) dxds - T d u T (x)m (T, x)dx + T d φ(t, x)m (t, x)dx ≤ - T t T d γ ac (s, x)m (s, x)dxds (4.9)
On the other hand, from (4.8),

T t T d φ(s, x) ∂m ∂t (s, x) + νDφ • D(1 s∈(0,T ) m (s, x)) dxds = - T t T d Dφ(s, x) • R (s, x)dxds + T t T d Dφ(s, x) • z (s, x)dxds (4.10)
We deduce from (4.9) and (4.10) that

- T t T d Dφ(s, x) • R (s, x)dxds + T t T d Dφ(s, x) • z (s, x)dxds - T t T d m (s, x)H(x, m (s, x), Dφ(s, x))dsds - T d u T (x)m (T, x)dx + T d φ(t, x)m (t, x)dx ≤ - T t T d γ ac (s, x)m (s, x)dxds - T t T d m (s, x)H(x, m (s, x), Dφ(s, x))dsds. (4.11)
Finally, we use the fact that

T t T d (Dφ(s, x) • z (s, x) -m (s, x)H(x, m (s, x), Dφ(s, x))) dxds ≥ - T t T d L(x, m (s, x), z (s, x))dxds.
(4.12)

Combining this with (4.11), we find that 1. We have seen that the first line of (4.13) tends to - (γ ac (s, x) + H(x, m (s, x), Dφ(s, x))) m (s, x)dxds.

- T d u T (x)m (T, x)dx + T d φ(t, x)m (t, x)dx ≤ - T t T d m (s, x) (γ ac (s, x) + H(x, m (s, x), Dφ(s, x))) dsds + T t T d L(x, m (s, x), z (s, x))dxds + T t T d Dφ(s, x) • R (s, x)dxds.
T d u T (x)m(T, x)dx + T d φ(t,

3.

T t

T d Dφ(s, x) • R (s, x)dxds tends to 0 because R tends to 0 in L q ((0, T ) × T d ) and Dφ ∈ L β ((0, T ) × T d )) with β ≥ q * .
4. Finally, from the convexity of L with respect to (m, z) and from (1.11), we see that lim sup

→0 T t T d L(x, m (s, x), z (s, x))dxds ≤ T t T d L(x, m(s, x), z(s, x))dxds.
From (4.13) and all the points above, we deduce (4.5).

Similarly as for (4.13), we obtain that

- T d φ(t, x)m (t, x)dx + T d φ(0, x)m (0, x)dx ≤ - t 0 T d γ ac ( s, x)m (s, x)dxds - t 0 T d m (s, x)H(x, m (s, x), Dφ(s, x))dxds 
+ t 0 T d L(x, m (s, x), z (s, x))dxds + 
t 0 T d Dφ(s, x) • R (s, x)dxds, (4.14) 
in which T d φ(0, x)m (0, x)dx has a meaning from Lemma 4.1. We claim that T d φ(0, x)m (0, x)dx → T d φ(0, x)m 0 (x)dx as → 0: indeed, let ζ ∈ (0, 1) be the Hölder exponent in Lemma 2.1: in view of Remark 2.1, we know that ζ ≥ min(1/2, (1 -α)/β); calling h 2, (x) = -d h 2 ( x ) and h 1, (t) = -δ h 1 ( t δ ), we get that for all x ∈ T d ,

|m (0, x) -(h 2, m 0 )(x)| = (m(s, y) -m 0 (y))h 1, (-s)h 2, (x -y)dsdy ≤ C s δζ-d-1 h 1, (-s)ds ≤ C δζ-d-1 .
Choosing δ large enough, (i.e. such that δζ -d -1 > 0) and using the fact that

m 0 is C 1 , lim →0 h 2, m 0 -m 0 L ∞ (T d ) = 0. Therefore, lim →0 m (0, •) -m 0 L ∞ (T d ) = 0.
The claim follows from the continuity stated in Lemma 4.1.

The fact that T d φ(0, x)m (0, x)dx → T d φ(0, x)m 0 (x)dx and the arguments above imply (4.6). Let us now suppose that (4.7) holds: then the inequalities in (4.5) and (4.6) are equalities, for almost all t. For σ > 0 let us introduce the set

E σ (t) = (s, y) ∈ [t, T ] × T d : m(s, y)H(x, m(s, y), Dφ(s, y)) -L(y, m(s, y), z(s, y)) ≤ z(s, y) • Dφ(s, y) -σ . If |E σ (t)| > 0, then for > 0 small enough, |E ,σ (t)| > |E σ (t)|/2
, where

E ,σ (t) = (s, y) ∈ [t, T ] × T d : m (s, y)H(x, m (s, y), Dφ(s, y)) -L(y, m (s, y), z (s, y)) ≤ z (s, y) • Dφ(s, y) -σ 2 .
Then (4.12) becomes

T t T d (Dφ(s, x) • z (s, x) -m (s, x)H(x, m (s, x), Dφ(s, x))) dxds ≥ - T t T d L(x, m (s, x), z (s, x))dxds + σ 4 |E σ (t)|, (4.15) 
which implies that

- T d m(T, x)u T (x)dx + T d m(t, x)φ(t, x)dx + T s=t T d m(s, x) (γ ac (s, x) + H(x, m(s, x), Dφ(s, x))) dxds ≤ T s=t T d L(x, m(s, x), z(s, x))dxds - σ 4 |E σ (t)|,
in contradiction with the fact that there is an equality in (4.5).

Hence, m(s, y)H(x, m(s, y), Dφ(s, y)) -L(y, m(s, y), z(s, y)) = z(s, y) • Dφ(s, y) holds almost everywhere.

In view of (2.6), this shows that z(s, y) = m(s, y)H p (x, m(s, y), Dφ(s, y)) a.e. in {m > 0}. Furthermore, from (2.5) and the fact that

T 0 T d L(
x, m(t, x), z(t, x))dxdt < +∞, we see that z(s, y) = 0 a.e. in {m = 0}. Hence, z(s, y) = m(s, y)H p (x, m(s, y), Dφ(s, y)) a.e. in (0,

T ) × T d . Proposition 4.1. sup (φ,γ)∈K J(φ, γ) = sup φ∈K0 A(φ). Proof. It is clear that ∀φ ∈ K 0 , -∞ < A(φ) ≤ sup (φ,γ)∈K J(φ, γ): indeed consider m achieving A(φ, m) = A(φ), i.e. m = ψ ∂φ ∂t + ν∆φ, Dφ . We know that T 0 T d m 1-α |Dφ| β < +∞ and that T 0 T d m q < ∞. Let us take γ = γ 1 + γ 2 where γ 1 = -(•, m) -m ∂ ∂m (•, m) and γ 2 = (1-α) m α |Dφ| β 1 m>0 .
It is easy to check that (φ, γ) ∈ K and that A(φ) = J(φ, γ). Hence sup (φ,γ)∈K J(φ, γ) ≥ sup φ∈K0 A(φ). For the reverse inequality, consider (φ, γ) ∈ K such that J(φ, γ) > -∞. This implies that

T 0 T d K(x, γ ac (s, x), Dφ(s, x))dxds > -∞.
Let (m * , z * ) be the pair of functions achieving (2.7), see Lemma 2.2. From Lemma 4.2,

J(φ, γ) ≤ T 0 T d m * (t, x) (γ ac (t, x) + H(x, m * (t, x), Dφ(t, x))) dxdt + T d m 0 (x)φ(0 + , x)dx ≤ T s=0 T d L(x, m * (s, x), z * (s, x))dxds + T d m * (T, x)u T (x)dx = B(m * , z * ). Hence, J(φ, γ) ≤ min (m,z)∈K1 B(m, z) = sup φ∈K0 A(φ).
and we conclude using (4.4). Proof.

Existence of a solution of the relaxed problem

Step 1 Consider the maximizing sequence φ n for problem (2.3) described in Lemma 3.1 and call m n the function such that A(φ n ) = A(φ n , m n ). Also, let the functions γ 1 n and γ 2 n be defined as in Lemma 3.1. We know that ∂φ n ∂t

+ ν∆φ n = γ n ≥ γ 1 n + γ 2 n ,
and (φ n , γ n ) ∈ K. The definition of γ 1 n ensures that γ 1 n ≤ -(•, 0). Up to the extraction of a subsequence, we may assume that φ n φ in L β (0, T, W 1,β (T d )), m n m in L q ((0, T ) × T d ), γ 1 n γ 1 in L q * ((0, T ) × T d ), with γ 1 ≤ -(•, 0) a.e., γ 2 n γ2 in M((0, T ) × T d ) * . It is clear that γ2 is a positive Radon measure that we write γ2 = γ 2 + γ sing . We see that

∂φ ∂t + ν∆φ ≥ γ = γ 1 + γ 2 .
Thus for any function ξ in Lip(T d ), the function t → T d ξ(x)φ(t, x)dx has a BV representative. Moreover, since

t → ζ n (t) = T d ξ(x)φ n (t, x)dx is bounded in L ∞ ((0, T )) by C ξ L ∞ (T d )
, where C is independent of ξ, we can assume (up to the extraction of a subsequence) that ζ n ζ in L ∞ ((0, T )) weak *, and ζ L ∞ ((0,T )) ≤ C ξ L ∞ (T d ) . Since for all smooth function ψ : [0, T ] → R, we know that T 0

T d ξ(x)φ n (t, x)ψ(t)dxdt tends to T 0 T d ξ(x)φ(t, x)ψ(t)dxdt, we see that ζ = T d ξ(x)φ(•, x)dx. There- fore T d ξ(x)φ(t, x)dx ≤ C ξ L ∞ (T d )
. This shows that (φ, γ) ∈ K.

Step 2 It can be proved that the map (φ, γ) ∈ K → -

T 0 T d K(x, -γ ac (t, x), -Dφ(t, x))dxdt is the restriction to K of the convex conjugate of the map (µ, z) ∈ E 1 → T 0 T d L(x, µ(t, x), z(t, x))dxdt.
Therefore, the map (φ, γ) ∈ K → T 0 

T d K(x, γ ac (t,
dζ n dt (t) -ν T d Dm 0 (x)Dφ n (t, x)dx - T d γ 1 n (t, x)m 0 (x)dx ≥ 0.
Thanks to the a priori bounds on φ n and γ 1 n , this implies that

ζ n (t) ≥ ζ n (0) -C(t 1 β * + t 1 q ), ∀t ∈ [0, T ].
Letting n tend to +∞,

ζ(t) ≥ lim sup n→∞ ζ n (0) -C(t 1 β * + t 1 q ), a.e. t ∈ [0, T ]. Hence ζ(0) ≥ lim sup n→∞ ζ n (0), i.e. T d m 0 (x)φ(t, x)dx ≥ lim sup n→∞ T d m 0 (x)φ n (t, x)dx.
Step 4 By combining the results of steps 2 and 3, we see that

J(φ, γ) ≥ lim sup n→∞ A(φ n ) = sup φ∈K0 A( φ) = sup ( φ,γ)∈K J( φ, γ),
Using the fact that γ 1 ≤ -(•, 0) a.e. and (2.14), we can always decrease γ 2 where Dφ = 0 in such a way that (φ, γ) ∈ K and the value of J(φ, γ) is preserved.

5 Weak solutions to the system of PDEs Definition 5.1. A pair (φ, m) ∈ L β (0, T ; W 1,β (T d )) × L q ((0, T ) × T d ) with m ≥ 0 almost everywhere, is a weak solution of (1.1)- 

(1.3) if 1. m -α |Dφ| β 1 m>0 ∈ L 1 ((0, T ) × T d ),
φ(T, x) ≤ u T (x), (5.1) 
holds in the sense of distributions, with the convention that H(x, m, p) + mH m (x, m, p) = (x, 0) if m = 0 and p = 0.

(5.2)

3. The following:

∂m ∂t (t, x) -ν∆m(t, x) + div(m(t, •)H p (•, m(t, •), Dφ(t, •)))(x) = 0, m(0, x) = m 0 (x) (5.3)
holds in the sense of distributions 4. There exists a constant C such that for each function ξ ∈ Lip(T d ),

T d ξ(x)φ(t, x)dx L ∞ (0,T ) ≤ C ξ L ∞ (T d ) .
5. The following identity holds 

0 = T 0 T d m(t,
γ(t, x) = -H(x, m(t, x), D φ(t, x)) -m(t, x)H m (x, m(t, x), D φ(t, x)),
with the convention (5.2).

Proof. Let (m * , z * ) ∈ K 1 be the minimizer of (2.7), (which implies that m * ∈ L q ((0, T ) × T d ) and that T 0

T d L(x, m * (t, x), z * (t, x 
))dxdt < +∞) and (φ * , γ * ) ∈ K be a maximizer of (4.3). We know that T 0 

T d K(x, γ * ,ac (t, x), Dφ * (t, x))dxdt > -∞. Hence, T 0 T d L(x, m * (t, x), z * (t, x))dxdt + T d m * (T, x)u T (x)dx = T 0 T d K(x, γ * ,ac (t, x), Dφ * (t, x))dxdt + T d m 0 (x)φ * (0, x)dx ≤ T 0 T d m * (t, x) (γ
) -α |Dφ * | β 1 m * >0 ∈ L 1 ((0, T ) × T d ).
Using also (5.5), we see that

(m * ) 1-α |Dφ * | β ∈ L 1 ((0, T ) × T d ).
From the inequalities satisfied by γ * ,ac , we see that (5.1) holds. Finally, (5.4) is obtained by combining all the points above. We have proved that (φ * , m * ) is a weak solution in the sense of Definition 5.1.

Suppose now that ( φ, m) is a weak solution in the sense of Definition 5.1. Let us choose γ(t, x) = -H(x, m(t, x), D φ(t, x)) -m(t, x)H m (x, m(t, x), D φ(t, x)) always with the convention (5.2), (we split γ as follows: γ = γ1 + γ2 , where γ1

= -(•, m) -m ∂ ∂m (•, m), γ2 = (1 -α) |D φ| β mα 1 { m>0}
) and z(t, x) = m(t, x)H p (x, m(t, x), D φ(t, x)). It is clear that ( φ, γ) ∈ K and that ( m, z) ∈ K 1 .

From the definition of γ, we see that a.e., m(t, x) = argmin µ≥0 µγ(t, x) + µH(x, µ, D φ(t, x)) . Moreover, since a.e., H p (x, m(t, x), D φ(t, x)) = argmin ξ ξ • D φ(t, x) + L(x, m(t, x), ξ) , we see that a.e.

( m(t, x), z(t, x)) = argmin (µ,z) µγ(t, x) + z • D φ(t, x) + L(x, µ, z) , i.e. K(x, γ(t, x), D φ(t, x)) = m(t, x)γ(t, x) + z(t, x) • D φ(t, x) + L(x, m(t, x), z(t, x)).

(5.6)

Note also that 0 ≤ = m(t, x)γ(t, x) + z(t, x) • D φ(t, x) + L(x, m(t, x), z(t, x))

=K(x, γ(t, x), D φ(t, x))

where the second line is obtained using the definition of z and the third line is obtained using (5.6).

Combining the latter two observations, we see that max 3). We know that mH p (x, m, D φ1 ) = mH p (x, m, D φ2 ): this implies that |D φ1 (t, x)| β-2 D φ1 (t, x) = |D φ2 (t, x)| β-2 D φ2 (t, x) at almost every (t, x) such that m(t, x) > 0: hence at almost every (t, x) such that m(t, x) > 0, |D φ1 (t, x)| = |D φ2 (t, x)| and finally D φ1 (t, x) = D φ2 (t, x). Moreover, D φ1 (t, x) = D φ2 (t, x) = 0 at almost every (t, x) such that m(t, x) = 0. Therefore, D φ1 (t, x) = D φ2 (t, x) at almost every (t, x). This means that φ1 -φ2 only depends on t, and that γ1 = γ2 a.e., where γi (t, x) = -H(x, m(t, x), D φi (t, x)) -m(t, x)H m (x, m(t, x), D φi (t, x)), using convention (5.2). Using (5.4), we deduce from the previous points that φ1 (t = 0 + , •) = φ2 (t = 0 + , •) a.e. in T d . We set γ = γ1 = γ2 ∈ L 1 ((0, T ) × T d ) and z = mH p (x, m, D φ1 ) = mH p (x, m, D φ2 ). Going back to the proof of Lemma 4.2, we see that for almost all t, both ( φ1 , γ) and ( φ2 , γ) achieve the equality in (4.6) with (m, z) = ( m, z). From the previous points, this implies that

T d m(t, x) φ1 (t, x)dx = T d m(t, x) φ2 (t, x)dx
for almost every t. Since φ1 (t, x) -φ2 (t, x) only depends on t and m(t) is a probability measure, the latter implies that φ 1 = φ 2 holds almost everywhere.

Proposition 4 . 2 .

 42 The relaxed problem (4.3) has at least a solution (φ, γ) ∈ K.

Step 3

 3 x), Dφ(t, x))dxdt is upper semi-continuous for the weak * topology of L β (0, T ; W 1,β (T d )) × M, and therefore,T 0 T d K(x, γ ac (t, x), Dφ(t, x))dxdt ≥ lim sup n→∞ T 0 T d K(x, γ n (t, x), Dφ(t, x))dxdt. (4.16) Let ζ n = T d m 0 (x)φ n (t, x)dx and ζ = T d m 0 (x)φ(t, x)dx. We have seen that ζ n ζ in L ∞ ((0, T )) weak *; from the inequation satisfied by φ n , dζ n dt (t) -ν T d Dm 0 (x)Dφ n (t, x)dx -T d (γ 1 n (t, x) + γ 2 n (t, x))m 0 (x)dx ≥ 0, which implies that

T 0 T

 0 d m(t, x)γ 2 (t, x)dxdt < +∞ and thatT 0 T d |z(t, x) • D φ(t, x)|dxdt ≤ C T 0 T d m1-α (t, x)|D φ(t, x)| β dxdt < +∞.Let (m * , z * ) be the solution of (2.7). From Lemma 4.2,B(m * , z * ) = T 0 T d L(x, m * (t, x), z * (t, x))dxdt + T d m * (T, x)u T (x)dx ≥ T 0 T d m * (t, x) γ(t, x) + H(x, m * (t, x), D φ(t, x)) dxdt + T d m 0 (x) φ(0, x)dx.Hence,B(m * , z * ) ≥ T 0 T d K(x, γ(t, x), D φ(t, x))dxdt + T d m 0 (x) φ(0, x)dx = T 0 T d m(t, x) γ(t, x) + H(x, m(t, x), D φ(t, x)) dxdt + T d m 0 (x) φ(0, x)dx,where the first line comes from (5.6) and the definition of K, and the last line comes from the definition of γ. Finally, from the latter inequality and (5.4), we deduce thatB(m * , z * ) ≥ T 0 T d L(x, m(t, x), z(t, x))dxdt + T d m(T, x)u T (x)dx =B( m, z).Therefore ( m, z) achieves the minimum in (2.7) and m = m * , z = z * . It remains to prove that ( φ, γ) achieves the maximum in (4.3). We deduce from Lemma 2.2, Proposition 4.1 and the latter point that max(φ,γ)∈K J(φ, γ) = B( m, z) = T 0 T d L(x, m(t, x), z(t, x))dxdt + T d m(T, x)u T (x)dx = -x)H m (x, m(t, x), D φ(t, x))dxdt + T d m0 (x) φ(0 + , x)dx,where the last line comes from (5.4) and the definition of z. But, using the definition of γ, -m2 (t, x)H m (x, m(t, x), D φ(t, x)) = m(t, x)γ(t, x) + m(t, x)H(x, m(t, x), D φ(t, x))

Theorem 5 . 2 .

 52 , γ(t, x), D φ(t, x))dxdt + T d m0 (x) φ(0 + , x)dx = J( φ, γ),which concludes the proof. There exists a unique weak solution of (1.1)-(1.3).Proof. Existence is a direct consequence of Theorem 5.1, Proposition 4.2 and Lemma 2.2. From Theorem 5.1, we also see that any weak solution ( φ, m) of (1.1)-(1.3) is such that the pair ( m, mH p (x, m, D φ)) is the minimizer of (2.7). Thus ( m, mH p (x, m, D φ)) is unique. Consider now two weak solutions ( φ1 , m) and ( φ2 , m) of (1.1)-(1.

  x)m(t, x)dx.2. From Remark 4.1, or more precisely the facts that T 0 T d K(x, γ ac (t, x), Dφ(t, x))dxdt > -∞ and that γ ac (s, x) + H(x, m (s, x), Dφ(s, x))m (s, x) ≥ K(x, γ ac (s, x), Dφ(s, x)),

	we can use Fatou lemma and get that
	T		
			(γ ac (s, x) + H(x, m(s, x), Dφ(s, x))) m(s, x)dxds
	t	T d	
			T
	≤ lim inf →0	t	T d

  Dφ(t, x) = 0 a.e. in the region {(t, x) : m(t, x) = 0}, m 1-α |Dφ| β ∈ L 1 ((0, T ) × T d ) and

		T
			m(t, x)L (x, m(t, x), H p (x, m(t, x), Dφ(t, x))) dxdt < +∞.
		0	T d
	2. The following:
	∂φ ∂t	(t, x) + ν∆φ(t, x) + H(x, m(t, x), Dφ(t, x)) + m(t, x)H m (x, m(t, x), Dφ(t, x)) ≥ 0,

  But from Lemma 4.2 and especially (4.5)-(4.6), we see that the latter inequality is in fact an equality; then, from the last part of Lemma 4.2, this yields that z * (t, x) = m * (t, x)H p (x, m * (t, x), Dφ * (t, x)) and that L(x, m * (t, x), z * (t, x)) = L (x, m * (t, x), m * (t, x)H p (x, m * (t, x), Dφ * (t, x)) almost everywhere. We have proved that m * H p (•, m * , Dφ * ) ∈ L 1 ((0, T ) × T d ) and that (5.3) holds. Moreover * ,ac (t, x), Dφ * (t, x)) = m * (t, x) (γ * ,ac (t, x) + H(x, m * (t, x), Dφ * (t, x))) (5.5) almost everywhere. In view of Remark 2.2, this implies that Dφ * (t, x) = 0 almost everywhere in the region where m * (t, x) = 0, and that γ * ,ac (t, x) = -H(x, m * (t, x), Dφ * (t, x)) -m * (t, x)H m (x, m * (t, x), Dφ * (t, x)), a.e. where m

	T	T
	0 m This implies that T d K(x, γ * ,ac (t, x), Dφ * (t, x))dxdt = 0 T d
	K(x, γ	

* ,ac (t, x) + H(x, m * (t, x), Dφ * (t, x))) dxdt +

T d m 0 (x)φ * (0, x)dx * (t, x) (γ * ,ac (t, x) + H(x, m * (t, x), Dφ * (t, x))) dxdt. * (t, x) > 0

and with the convention (5.2), we see that

γ * ,ac (t, x) ≥ -H(x, m * (t, x), Dφ * (t, x)) -m * (t, x)H m (x, m * (t, x), Dφ * (t, x)),

a.e..

These observation imply that (m *

Acknowledgements

The first author was partially funded by the ANR projects ANR-12-MONU-0013 and ANR-12-BS01-0008-01.