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Abstract

In this paper, we continue our study on a general time-inconsistent stochastic

linear–quadratic (LQ) control problem originally formulated in [6]. We derive a

necessary and sufficient condition for equilibrium controls via a flow of forward–

backward stochastic differential equations. When the state is one dimensional and

the coefficients in the problem are all deterministic, we prove that the explicit equi-

librium control constructed in [6] is indeed unique. Our proof is based on the derived

equivalent condition for equilibria as well as a stochastic version of the Lebesgue

differentiation theorem. Finally, we show that the equilibrium strategy is unique for
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a mean–variance portfolio selection model in a complete financial market where the

risk-free rate is a deterministic function of time but all the other market parameters

are possibly stochastic processes.

Key words. time-inconsistency, stochastic linear–quadratic control, uniqueness of

equilibrium control, forward–backward stochastic differential equation, mean–variance port-
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1 Introduction

Time inconsistency in dynamic decision making is often observed in social systems and

daily life. The study on time inconsistency by economists dates back to Strotz [9] in the

1950s, who proposed the formulation of a time-inconsistent decision problem as a game

between incarnations of the controller at different time instants.

The game formulation is fairly straightforward and easy to understand when the time

setting is discrete. In a continuous-time setup, the formulation can be generalized in dif-

ferent ways. Yong [11] and Ekeland and Pirvu [3] define equilibrium controls in the class

of feedback policies for problems involving hyperbolic discounting, and prove the existence

of equilibria. Grenadier and Wang [4] investigate optimal stopping with, again, hyperbolic

discounting. Björk and Murgoci [1] formulate a general Markovian stochastic control prob-

lem with time inconsistent terms, and establish sufficient conditions for equilibria through

a generalized HJB equation system. They then present some special cases including a

linear–quadratic (LQ) control problem in which solutions are constructed. Björk, Mur-

goci and Zhou [2] further derive analytically an equilibrium strategy for a mean–variance

portfolio selection model with state-dependent risk aversion.

In our previous paper, [6], we formulate a general non-Markovian stochastic LQ control

problem, where the objective functional includes terms leading to time-inconsistency, and

derive a general sufficient condition for equilibria through a system of forward–backward

stochastic differential equations (FBSDEs). Based on this condition, we construct explicitly

an equilibrium control when the state is scalar-valued and all the coefficients are non-

random. In contrast to the aforementioned works where an equilibrium control is defined
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within the class of feedback controls, we define our equilibrium via open-loop controls.

Most of the existing literature on game formulation of time-inconsistent problems has

focused on existence of equilibria, and the only paper according to our best knowledge that

mentions about the uniqueness is Vieille and Weibull [10], in which the authors show that

the uniqueness does not hold in a discrete-time model. Uniqueness is important in both

practice and theory. In applications, multiple equilibria lead to multiple value processes,1

and there is an issue of the choice of the one to use and implement. Theoretically speaking,

when a new, weak notion of a solution is introduced the uniqueness is always important, for

it is one of the touchstones of the appropriateness of the new definition (non-uniqueness is

a sign that the notion may be too weak to be useful). On the other hand, mathematically,

proving uniqueness of a weaker notion is almost always challenging.2

In this paper, we take on the challenge of establishing the uniqueness of equilibrium

control for the same time-inconsistent model formulated in [6]. First, we derive a general

necessary and sufficient condition for equilibrium controls. A key step in the derivation is

to prove a stochastic version of the Lebesgue differentiation theorem which is interesting in

its own right and potentially useful for other stochastic control problems. Then, we focus

on the case in which the state is one dimensional and the coefficients in the problem are

all deterministic. Thanks to the derived equivalent condition for equilibria we show that

the explicit equilibrium control constructed in [6] is indeed unique. Finally, we prove that

the equilibrium strategy, again constructed in [6], is unique for a mean–variance portfolio

selection model in a complete financial market where the risk-free rate is a deterministic

function of time but all the other market parameters are possibly stochastic processes.

The rest of this paper is organized as follows. In Section 2, we recall the formulation of

the time-inconsistent LQ control problem studied in our previous work [6]. We then derive

an equivalent characterization of equilibrium controls in terms of the solution to a system

of FBSDEs in Section 3. In Section 4 we prove that the equilibrium obtained in [6] is the

unique one. Section 5 is devoted to the uniqueness for a mean–variance portfolio selection

model. Finally, Section 6 concludes. Some technical derivations are placed in appendices.

1The value of an equilibrium control is the corresponding objective functional value.
2A good example is the uniqueness of viscosity solution for a nonlinear PDE; see [12].
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2 Problem Formulation

Let (Wt)0≤t≤T = (W 1
t , · · · ,W

d
t )0≤t≤T be a d-dimensional Brownian motion on a probability

space (Ω,F ,P). Denote by (Ft) the augmented filtration generated by (Wt).

We will use the same notation as in our previous paper [6], which we list here for the

reader’s convenience:

Sl: the set of symmetric l × l real matrices.

L2
G(Ω; R

l): the set of random variables ξ : (Ω,G) → (Rl,B(Rl))

with E [|ξ|2] < +∞.

L∞
G (Ω; Rl): the set of essentially bounded random variables

ξ : (Ω,G) → (Rl,B(Rl)).

L2
G(t, T ; R

l): the set of {Gs}s∈[t,T ]-adapted processes

f = {fs : t ≤ s ≤ T} with E

[

∫ T

t
|fs|

2 ds
]

<∞.

L∞
G (t, T ; Rl): the set of essentially bounded {Gs}s∈[t,T ]-adapted processes.

L2
G(Ω; C(t, T ; R

l)): the set of continuous {Gt}s∈[t,T ]-adapted processes

f = {fs : t ≤ s ≤ T} with E
[

sups∈[t,T ] |fs|
2
]

<∞.

We will often use vectors and matrices in this paper, where all vectors are column

vectors. For a matrix M , define

M ′: transpose of a matrix M .

|M | =
√

∑

i,j m
2
ij : Frobenius norm of a matrix M .

The time-inconsistent LQ control model under consideration in this paper was intro-

duced in [6]. Here we recall the formulation.
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Let T > 0 be given and fixed. The controlled system is governed by the following

stochastic differential equation (SDE) on [0, T ]:

(2.1) dXs = [AsXs +B′
sus + bs]ds+

d
∑

j=1

[Cj
sXs +Dj

sus + σj
s]dW

j
s ; X0 = x0,

where A is a bounded deterministic function on [0, T ] with value in Rn×n, B,Cj, Dj are all

essentially bounded adapted processes on [0, T ] with values in Rl×n, Rn×n, Rn×l, respec-

tively, and b and σj are stochastic processes in L2
F(0, T ;R

n). The process u ∈ L2
F (0, T ; R

l)

is the control, and X ∈ L2
F(Ω; C(0, T ; R

n)) is the corresponding state process with initial

value x0 ∈ Rn.

When time evolves to t ∈ [0, T ], we need to consider the controlled system starting

from t and state xt ∈ L2
Ft
(Ω; Rn):

(2.2) dXs = [AsXs +B′
sus + bs]ds+

d
∑

j=1

[Cj
sXs +Dj

sus + σj
s]dW

j
s , Xt = xt.

For any control u ∈ L2
F (t, T ;R

l), there exists a unique solutionX t,xt,u ∈ L2
F(Ω; C(t, T ;R

n)).

At t with the system state Xt = xt, our aim is to minimize

J(t, xt; u)
△
=

1

2
Et

∫ T

t

[〈QsXs, Xs〉+ 〈Rsus, us〉] ds+
1

2
Et[〈GXT , XT 〉]

−
1

2
〈hEt [XT ] ,Et [XT ]〉 − 〈µ1xt + µ2,Et [XT ]〉(2.3)

over u ∈ L2
F(t, T ; R

l), where X = X t,xt,u, and Et [·] = E [·|Ft]. In the above Q and R are

both positive semi-definite and essentially bounded adapted processes on [0, T ] with values

in Sn and Sl respectively, G, h, µ1, µ2 are constants in Sn, Sn, Rn×n, Rn respectively, and

moreover G is positive semi-definite.

We define an equilibrium (control) in the following manner. Given a control u∗, for any

t ∈ [0, T ), ε > 0 and v ∈ L2
Ft
(Ω; Rl), define

(2.4) ut,ε,vs = u∗s + v1s∈[t,t+ε), s ∈ [t, T ].

Definition 2.1 Let u∗ ∈ L2
F (0, T ; R

l) be a given control and X∗ be the state process

corresponding to u∗. The control u∗ is called an equilibrium if

lim inf
ε↓0

J(t, X∗
t ; u

t,ε,v)− J(t, X∗
t ; u

∗)

ε
≥ 0,

where ut,ε,v is defined by (2.4), for any t ∈ [0, T ) and v ∈ L2
Ft
(Ω; Rl).
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Notice that here we have changed lim in [6] to lim inf in this definition, resulting in a

weaker definition. As a result, the sufficient condition derived in [6] is also sufficient for

this new definition. On the other hand, the uniqueness result to be established for the

new definition will also imply the uniqueness for the old one. For these reasons, the above

definition appears to be more appropriate.

3 Necessary and Sufficient Condition of Equilibrium

Controls

In our previous paper, [6], a sufficient condition is derived via the second-order expansion in

the local spike variation, in the same spirit of proving the stochastic Pontryagin’s maximum

principle [7, 8, 12]. In this section, we present a general necessary and sufficient condition

for equilibria. This condition is made possible by a stochastic Lebesgue differentiation

theorem involving conditional expectation. The latter theorem, interesting in its own

right, is new according to our best knowledge.

To proceed, we start with some relevant known result from our previous paper [6]. Let

u∗ be a fixed control andX∗ be the corresponding state process. For any t ∈ [0, T ), define in

the time interval [t, T ] the processes (p(·; t), (kj(·; t))j=1,··· ,d) ∈ L2
F (t, T ;R

n)×(L2
F(t, T ;R

n))d

as the unique solution to

(3.1)







































dp(s; t) = −[A′
sp(s; t) +

∑d
j=1(C

j
s)

′kj(s; t) +QsX
∗
s ]ds

+
∑d

j=1 k
j(s; t)dW j

s , s ∈ [t, T ],

p(T ; t) = GX∗
T − hEt [X

∗
T ]− µ1X

∗
t − µ2.

Furthermore, define (P (·; t), (Kj(·; t))j=1,··· ,d) ∈ L2
F (t, T ; S

n) × (L2
F (t, T ; S

n))d as the
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unique solution to

(3.2)



























































dP (s; t) = −
{

A′
sP (s; t) + P (s; t)As

+
∑d

j=1[(C
j
s)

′P (s; t)Cj
s + (Cj

s )
′Kj(s; t) +Kj(s; t)Cj

s ] +Qs

}

ds

+
∑d

j=1K
j(s; t)dW j

s , s ∈ [t, T ],

P (T ; t) = G.

The following estimate under local spike variation is reproduced from [6, Proposition

3.1].

Proposition 3.1 For any t ∈ [0, T ), ε > 0 and v ∈ L2
Ft
(Ω; Rl), define ut,ε,v by (2.4).

Then

(3.3) J(t, X∗
t ; u

t,ε,v)− J(t, X∗
t ; u

∗) = Et

∫ t+ε

t

(

〈Λ(s; t), v〉+
1

2
〈H(s; t)v, v〉

)

ds+ o(ε)

where Λ(s; t)
△
= Bsp(s; t)+

∑d
j=1(D

j
s)

′kj(s; t)+Rsu
∗
s and H(s; t)

△
= Rs+

∑d
j=1(D

j
s)

′P (s; t)Dj
s.

In view of Proposition 3.1 and the fact that H(s; t) � 0, it is straightforward to get the

following characterization of an equilibrium.

Corollary 3.2 A control u∗ ∈ L2
F(0, T,R

l) is an equilibrium if and only if

(3.4) lim
ε↓0

1

ε

∫ t+ε

t

Et [Λ(s; t)] ds = 0, a.s., ∀t ∈ [0, T ).

The next result provides a key property for the solution to the BSDE (3.1), and repre-

sents the process Λ(s; t) in a special form.

Proposition 3.3 For any given pair of state and control processes (X∗, u∗), the solution

to (3.1) satisfies k(s; t1) = k(s; t2) for a.e. s ≥ max (t1, t2). Moreover, there exist λ1 ∈

L2
F (0, T ;R

l), λ2 ∈ L∞
F (0, T ;Rl×n) and ξ ∈ L2(Ω;C(0, T ;Rn)), such that Λ(s; t) has the

representation

Λ(s; t) = λ1(s) + λ2(s)ξt.
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Proof: Define the function ψ(·) as the unique solution for the matrix-valued ordinary

differential equation (ODE)

dψ(t) = ψ(t)A(t)′dt, ψ(T ) = In,

where In denotes the n×n identity matrix. It is clear that ψ(·) is invertible, and both ψ(·)

and ψ(·)−1 are bounded.

Let p̂(s; t) = ψ(s)p(s; t) + hEt [X
∗
T ] + µ1X

∗
t + µ2 and k̂j(s; t) = ψ(s)kj(s; t) for j =

1, · · · , d. Then on the interval [t, T ], (p̂(·; t), k̂(·; t)) satisfies

(3.5)


















dp̂(s; t) = −
[

∑d
j=1 ψ(s)(C

j
s)

′ψ(s)−1k̂j(s; t) + ψ(s)QsX
∗
s

]

ds+
∑d

j=1 k̂
j(s; t)dW j

s ,

p̂(T ; t) = GX∗
T .

Notice that neither the terminal condition nor the coefficients of this equation depend on

t; so it can be taken as a BSDE on the entire time interval [0, T ]. Denote its solution

as (p̂(s), k̂(s)), s ∈ [0, T ]. It then follows from the uniqueness of the solution to BSDE

that (p̂(s; t), k̂(s; t)) = (p̂(s), k̂(s)) at s ∈ [t, T ] for any t ∈ [0, T ]. As a result, k(s; t) =

ψ(s)−1k̂(s) := k(s), proving the first claim of the proposition.

Next,

p(s; t) = ψ(s)−1p̂(s)− ψ(s)−1(hEt [X
∗
T ] + µ1X

∗
t + µ2) = p(s) + ψ(s)−1ξt,

where ξt := −hEt [X
∗
T ]−µ1X

∗
t −µ2 defines the process ξ ∈ L2

F (Ω;C(0, T ;R
n)) and p(s) :=

ψ(s)−1p̂(s) defines the process p ∈ L2
F (Ω;C(0, T ;R

n)). Consequently,

Λ(s; t) = Bsp(s; t) +
d
∑

j=1

(Dj
s)

′kj(s; t) +Rsu
∗
s

= Bsp(s) +
d
∑

j=1

(Dj
s)

′kj(s) +Rsu
∗
s + Bsψ(s)

−1ξt

= λ1(s) + λ2(s)ξt,

where λ1(s) := Bsp(s) +
∑d

j=1(D
j
s)

′kj(s) +Rsu
∗
s and λ2(s) := Bsψ(s)

−1. Q.E.D.

We now set out to derive our general necessary and sufficient condition for equilibrium

controls. Although (3.4) already provides a characterizing condition, it is nevertheless not
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very useful because it involves a limit. It is tempting to expect that the limit therein is

Λ(t; t), in the spirit of the Lebesgue differentiation theorem.3 However, one needs to be

very careful since in (3.4) the conditional expectation with respect to Ft is involved. The

following general result can be regarded as a stochastic Lebesgue differentiation theorem.

While it serves our purpose in this paper, it is of interest in its own right and may be

potentially useful for (among others) various stochastic control problems.

Lemma 3.4 Let Y ∈ L2
F (0, T ;R

l) be a given process. If limε↓0
1
ε

∫ t+ε

t
Et [Ys] ds = 0, a.e.t ∈

[0, T ), a.s., then Yt = 0, a.e.t ∈ [0, T ), a.s..

Proof: Since L2
FT

(Ω;Rl) is a separable space, it follows from the (deterministic) Lebesgue

differentiation theorem that there is a countable dense subset D ⊂ L2
FT

(Ω;Rl)∩L∞
FT

(Ω;Rl),

such that for almost all t, we have

(3.6) lim
ε↓0

1

ε

∫ t+ε

t

E [〈Ys, η〉]ds = E [〈Yt, η〉] , ∀η ∈ D,

and limε↓0
1
ε

∫ t+ε

t
E [Y 2

s ] ds = E [Y 2
t ] .

For any η ∈ D, define ηs = Es[η]. Then E [〈Ys, η〉] = E [〈Ys, ηs〉]. We have the following

estimates:

∣

∣

∣

∣

lim
ε↓0

1

ε

∫ t+ε

t

E [〈Ys, ηs − ηt〉] ds

∣

∣

∣

∣

≤ lim
ε↓0

1

ε

√

∫ t+ε

t

E [Y 2
s ] ds

∫ t+ε

t

E [(ηs − ηt)2] ds

= lim
ε↓0

√

1

ε

∫ t+ε

t

E [Y 2
s ] ds

√

1

ε

∫ t+ε

t

E [(ηs − ηt)2] ds

≤ lim
ε↓0

√

1

ε

∫ t+ε

t

E [Y 2
s ] ds

√

sup
s∈[t,t+ε]

E [(ηs − ηt)2]

≤ 2 lim
ε↓0

√

1

ε

∫ t+ε

t

E [Y 2
s ] ds

√

E [(ηt+ε − ηt)2] = 0,

where the last inequality is due to Doob’s martingale inequality as ηs is a square-integrable

3A simple version of this theorem states that if ϕ is an integrable real function on [0, T ], then

limε↓0
1

ε

∫

t+ε

t
ϕ(s)ds = ϕ(t) a.e. t ∈ [0, T ].
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martingale. Hence for any η ∈ D,

E [〈Yt, ηt〉] = E [〈Yt, η〉]

= lim
ε↓0

1

ε

∫ t+ε

t

E [〈Ys, η〉] ds

= lim
ε↓0

1

ε

∫ t+ε

t

E [〈Ys, ηs〉] ds

= lim
ε↓0

1

ε

∫ t+ε

t

E [〈Ys, ηt〉] ds

= lim
ε↓0

1

ε

∫ t+ε

t

E [〈Et [Ys] , ηt〉] ds

= lim
ε↓0

E

[

〈
1

ε

∫ t+ε

t

Et [Ys] ds, ηt〉

]

.

Since

E

[

(

1

ε

∫ t+ε

t

Et [Ys] ds

)2
]

≤ E

[
∫ t+ε

t

1

ε2
ds

∫ t+ε

t

Et [Ys]
2 ds

]

=
1

ε
E

[
∫ t+ε

t

Et [Ys]
2 ds

]

≤
1

ε

∫ t+ε

t

E
[

Y 2
s

]

ds,

and limε↓0
1
ε

∫ t+ε

t
E [Y 2

s ] ds = E [Y 2
t ], there exists a constant δt > 0, such that

E

[

(

1

ε

∫ t+ε

t

Et [Ys] ds

)2
]

< 2E
[

Y 2
t

]

, ∀ ε ∈ (0, δt).

This implies that 1
ε

∫ t+ε

t
Et [Ys] ds is uniformly integrable in ε ∈ (0, δt). Hence

lim
ε↓0

E

[
∣

∣

∣

∣

1

ε

∫ t+ε

t

Et [Ys] ds

∣

∣

∣

∣

]

= E

[

lim
ε↓0

∣

∣

∣

∣

1

ε

∫ t+ε

t

Et [Ys] ds

∣

∣

∣

∣

]

= 0.

Since η is essentially bounded, so is ηt; hence there exists a constant c > 0 such that
∣

∣

∣

∣

E

[

〈
1

ε

∫ t+ε

t

Et [Ys] ds, ηt〉

]
∣

∣

∣

∣

≤ cE

[
∣

∣

∣

∣

1

ε

∫ t+ε

t

Et [Ys] ds

∣

∣

∣

∣

]

→ 0,

implying

lim
ε↓0

E

[

〈
1

ε

∫ t+ε

t

Et [Ys] ds, ηt〉

]

= 0.

Thus E [〈Yt, η〉] = 0, a.e.t ∈ [0, T ] for any η ∈ D, which implies

Yt = 0, a.e.t ∈ [0, T ], a.s..
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Q.E.D.

We are now in the position to present the main result of this section.

Theorem 3.5 Given a control u∗ ∈ L2
F (0, T ;R

l), let X∗ be the corresponding state process

and (p(·; t), k(·; t)) ∈ L2
F(t, T ;R

n) × (L2
F(t, T ;R

n))d be the unique solution to the BSDE

(3.1). Then u∗ is an equilibrium control if and only if

(3.7) Λ(t; t) = 0, a.s., a.e. t ∈ [0, T ].

Proof: Recall that we have the representation Λ(s; t) = λ1(s) + λ2(s)ξt. Since λ2 is

essentially bounded and ξ is continuous, we have

lim
ε↓0

Et

[

1

ε

∫ t+ε

t

|λ2(s)(ξs − ξt)|ds

]

≤ c lim
ε↓0

1

ε

∫ t+ε

t

Et [|ξs − ξt|] ds

= 0,

where the last equality is because Et [|ξs − ξt|] is a continuous function of s and vanishes

at s = t.

It then follows

lim
ε↓0

1

ε

∫ t+ε

t

Et [Λ(s; t)] ds = lim
ε↓0

1

ε

∫ t+ε

t

Et [Λ(s; s)] ds.

Now, if (3.7) holds, then

lim
ε↓0

1

ε

∫ t+ε

t

Et [Λ(s; t)] ds = lim
ε↓0

1

ε

∫ t+ε

t

Et [Λ(s; s)] ds = 0.

Conversely, if (3.4) holds, then limε↓0
1
ε

∫ t+ε

t
Et [Λ(s; s)] ds = 0, leading to (3.7) by virtue

of Lemma 3.4. Q.E.D.

4 UniquenessWhen State is One-dimensional and Co-

efficients Are Deterministic

In our previous paper [6], when the state variable is scalar-valued, i.e., n = 1, and all the

coefficients are deterministic, an explicit equilibrium is constructed essentially based on

the equivalent condition (3.7) (although we were not yet able to prove it there). In this
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section, we will prove that in the same setting the equilibrium is actually unique, thanks

again to (3.7).

Throughout this section we assume that n = 1 and all the parameters A,B, b, Cj, Dj, σj, Q

and R are deterministic function of t. In this case the controlled system reduces to

(4.1) dXs = [AsXs +B′
sus + bs]ds+ [CsXs +Dsus + σs]

′dWs; X0 = x0,

where

C := (C1, · · · , Cd)′, D := ((D1)′, · · · , (Dd)′)′, σ := (σ1, · · · , σd)′.

Accordingly, the BSDE (3.1) is simplified to (also noting that k(s; t) ≡ k(s))

(4.2)



















dp(s; t) = −[Asp(s; t) + C ′
sk(s) +QsX

∗
s ]ds+ k(s)′dWs, s ∈ [t, T ],

p(T ; t) = GX∗
T − hEt[X

∗
T ]− µ1X

∗
t − µ2,

whereas the corresponding Λ(s; t) is now in the form

Λ(s; t) = Bsp(s; t) +D′
sk(s) +Rsu

∗
s.

In [6], an equilibrium control was constructed through the solution of the following

12



system of ODEs (where we suppress subscripts s for notational simplicity):







































0 = Ṁ + (2A+ |C|2)M +Q

−M(B′ + C ′D)(R+MD′D)−1[(M −N − Γ(1))B +MD′C], s ∈ [0, T ],

MT = G;

(4.3)







































0 = Ṅ + 2AN

−NB′(R +MD′D)−1[(M −N − Γ(1))B +MD′C], s ∈ [0, T ],

NT = h;

(4.4)



















Γ̇(1) = −AΓ(1), s ∈ [0, T ],

Γ
(1)
T = µ1;

(4.5)







































0 = Φ̇ + {A− [(M −N)B′ +MC ′D](R +MD′D)−1B}Φ+ (M −N)b

+C ′Mσ − [(M −N)B′ +MC ′D](R +MD′D)−1MD′σ, s ∈ [0, T ],

ΦT = −µ2.

(4.6)

If this system of equations admits a solution (M,N,Γ(1),Φ), then the feedback control

law

(4.7) u∗s = αsX
∗
s + βs

defines an equilibrium, where

(4.8)
αs

△
= −(Rs +MsD

′
sDs)

−1[(Ms −Ns − Γ
(1)
s )Bs +MsD

′
sCs],

βs
△
= −(Rs +MsD

′
sDs)

−1(ΦsBs +MsD
′
sσs);

see [6, Theorem 4.4]. Moreover, the existence of solution to (4.3)–(4.6) is studied in [6].

The next theorem provides that the control constructed above is the only equilibrium.

13



Theorem 4.1 If (4.3)–(4.6) admits a solution (M,N,Γ(1),Φ), then there is a unique equi-

librium control.

Proof: Suppose there is another equilibrium state–control pair (X, u). Then, with a

slight abuse of notation, equation (3.1), with X∗ replaced by X , admits a unique solu-

tion (p(·; t), k(·)) satisfying Λ(s; s) ≡ Bsp(s; s) +D′
sk(s) +Rsus = 0 for a.e. s ∈ [0, T ].

Define

p̄(s; t) := p(s; t)− (MsXs −NsEt [Xs]− Γ
(1)
s Xt + Φs),

k̄(s) := k(s)−Ms(CsXs +Dsus + σs).

The equilibrium condition for (X, u) yields

Bs

[

p̄(s; s) + (Ms −Ns − Γ(1)
s )Xs + Φs

]

+D′
s

[

k̄(s) +Ms(CsXs +Dsus + σs)
]

+Rsus = 0.

Since Rs + D′
sMsDs is invertible, we solve for us in the above equation to obtain the

following expression

(4.9)
us = −(Rs +D′

sMsDs)
−1
[

Bsp̄(s; s) +D′
sk̄(s)

+(Bs(Ms −Ns − Γ
(1)
s ) +D′

sMsCs)Xs +BsΦs +D′
sMsσs

]

.

On the other hand, we can show that (p̄(·; t), k̄(·)) satisfies the following BSDE (details are

relegated to Appendix A):

(4.10)






































dp̄(s; t) = −
(

Ap̄(s; t) + C ′k̄(s)− [C ′MD +MB′][R +D′MD]−1[Bp̄(s; s) +D′k̄(s)]

+NB′[R +D′MD]−1Et

[

Bp̄(s; s) +D′k̄(s)
])

ds+ k̄(s)′dWs, s ∈ [t, T ],

p̄(T ; t) = 0,

where we suppress the subscript s for A,B,C,D,M,N,R, and we have used the equa-

tions for M,N,Γ(1),Φ. Moreover, it is easy to prove that E

[

∫ T

0
|k̄(s)|2ds

]

< +∞ and

supt∈[0,T ] E
[

sups≥t |p̄(s; t)|
2
]

< +∞.

We will prove in the next theorem that equation (4.10) admits at most one solution in

the space L1 × L2, where
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L1 :=

{

X(·; ·) : X(·; t) ∈ L2
F(t, T ;R), sup

t∈[0,T ]

E

[

sup
s≥t

|X(s; t)|2
]

< +∞

}

,

and

L2 :=

{

Y (·; ·) : Y (·; t) ∈ L2
F (t, T ;R

d), sup
t∈[0,T ]

E

[
∫ T

t

|Y (s; t)|2ds

]

< +∞

}

.

Hence p̄(s; t) ≡ 0 and k̄(s) ≡ 0.

Finally, plugging p̄ ≡ k̄ ≡ 0 into (4.9), we find that u has exactly the same form of

feedback control as that of u∗; see (4.7). This proves that u and u∗ lead to an identical

control. Q.E.D.

It remains to prove the uniqueness of solution for (4.10). Indeed we will do it for a

more general equation

(4.11)







































dp̄(s; t) = −f
(

s, p̄(s; t), p̄(s; s),Et [l1(s)p̄(s; s)] , k̄(s; t),Et

[

l2(s)k̄(s; t)
])

ds

+k̄(s; t)′dWs, s ∈ [t, T ],

p̄(T ; t) = 0,

where l1 and l2 are two essentially bounded, adapted vector processes with suitable dimen-

sions, and f(s, · · · · ·) is a deterministic function satisfying uniform Lipschitz condition in

all variables except s.

Theorem 4.2 Equation (4.11) admits at most one solution (p̄, k̄) in the space L1 × L2.

Proof: Suppose there are two solutions (p̄(1), k̄(1)) and (p̄(2), k̄(2)) in the space L1 × L2.

Define p̄(s; t)
△
= p̄(1)(s; t)− p̄(2)(s; t), k̄(s; t)

△
= k̄(1)(s; t)− k̄(2)(s; t) and

∆f(s; t)
△
= f(s, p̄(1)(s; t), p̄(1)(s; s),Et

[

l1(s)p̄
(1)(s; s)

]

, k̄(1)(s; t),Et

[

l2(s)k̄
(1)(s; t)

]

)

−f(s, p̄(2)(s; t), p̄(2)(s; s),Et

[

l1(s)p̄
(2)(s; s)

]

, k̄(2)(s; t),Et

[

l2(s)k̄
(2)(s; t)

]

).

Then |∆f(s; t)| ≤ c1
(

|p̄(s; t)|+ |k̄(s; t)|+ |p̄(s; s)|+ Et [|p̄(s; s)|] + Et

[

|k̄(s; t)|
])

for some

constant c1, and

dp̄(s; t) = −∆f(s; t)dt+ k̄(s; t)′dWs, p̄(T ; t) = 0.
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For any t ∈ [0, T ], s ∈ [t, T ], by Itô’s formula, we have

|p̄(s; t)|2 +

∫ T

s

|k̄(u; t)|2du = 2

∫ T

s

p̄(u; t)∆f(u; t)du− 2

∫ T

s

p̄(u; t)k̄(u; t)′dWu.

Thus

E
[

|p̄(s; t)|2
]

+ E

[
∫ T

s

|k̄(u; t)|2du

]

≤ c1E

[
∫ T

s

|p̄(u; t)|
(

|p̄(u; t)|+ |k̄(u; t)|+ |p̄(u; u)|+ Et [|p̄(u; u)|] + Et

[

|k̄(u; t)|
])

du

]

≤ c2E

[
∫ T

s

(

|p̄(u; t)|2 + |p̄(u; u)|2
)

du

]

+
1

2
E

[
∫ T

s

|k̄(u; t)|2du

]

,

where we have used the inequality cxy ≤ c2x2 + 1
4
y2 for any nonnegative c, x, y. Conse-

quently, there exists c3 > 0 such that

(4.12) E
[

|p̄(s; t)|2
]

+ E

[
∫ T

s

|k̄(u; t)|2du

]

≤ c3E

[
∫ T

s

(

|p̄(u; t)|2 + |p̄(u; u)|2
)

du

]

.

Furthermore, for any s ∈ [t, T ], we have

E

[

|p̄(s; t)|2 +

∫ T

s

|k̄(u; t)|2du

]

≤ c3(T − t)

[

sup
u∈[t,T ]

E
[

|p̄(u; t)|2
]

+ sup
u∈[t,T ]

E
[

|p̄(u; u)|2
]

]

≤ 2c3(T − t) sup
t≤u≤s≤T

E
[

|p̄(s; u)|2
]

.

Hence

(4.13) sup
t≤u≤s≤T

E
[

|p̄(s; u)|2
]

≤ 2c3(T − t) sup
t≤u≤s≤T

E
[

|p̄(s; u)|2
]

.

Now take δ ∈ (0, 1/(4c3)). Then for any t ∈ [T − δ, T ], we have

sup
t≤u≤s≤T

E
[

|p̄(s; u)|2
]

≤
1

2
sup

t≤u≤s≤T
E
[

|p̄(s; u)|2
]

,

which implies supt≤u≤s≤T E [|p̄(s; u)|2] = 0. It follows that p̄(s; u) = 0, a.s. almost every-

where in {(s, u) : t ≤ u ≤ s ≤ T}.

For t ∈ [T − 2δ, T − δ] and s ∈ [T − δ, T ], since p̄(u, u) = 0 for any u ∈ [s, T ], we have

by (4.12) that

(4.14) E
[

|p̄(s; t)|2
]

+ E

[
∫ T

s

|k̄(u; t)|2du

]

≤ c3E

[
∫ T

s

|p̄(u; t)|2du

]

.

Grownwall’s inequality then leads to p̄(s; t) = k̄(s; t) = 0.

For t ∈ [T−2δ, T−δ] and s ∈ [t, T−δ], noting p̄(T−δ; t) = 0, we can apply the previous

argument for the region t ∈ [T − δ, T ] and s ∈ [t, T ] to deduce that p̄(s; t) = k̄(s; t) = 0.

We can then repeat the same analysis in a backward manner to t ∈ [T − 3δ, T − 2δ]

and so on until we reach time t = 0. Q.E.D.

16



5 Uniqueness of Mean-Variance Equilibrium Strate-

gies in A Complete Market with Random Parame-

ters

Following [6], as an application of the time-inconsistent LQ theory, we study the continuous-

time Markowitz mean–variance portfolio selection model in a complete market with random

model coefficients. We aim to establish the uniqueness of the equilibrium strategy. The

model is mathematically a special case of the general LQ problem formulated earlier in this

paper, with n = 1 naturally. However, since some coefficients are allowed to be random,

the uniqueness result of the previous section is not applicable here.

We use the same setup of [6]. The wealth equation is governed by the SDE

(5.1)



















dXs = rsXsds+ θ′susds+ u′sdWs, s ∈ [t, T ],

Xt = xt,

where r is the (bounded) deterministic interest rate function, and θ is the essentially

bounded stochastic risk premium process.

The objective at time t with state Xt = xt is to minimize

J(t, xt; u)
△
=

1

2
Vart(XT )− (µ1xt + µ2)Et[XT ](5.2)

=
1

2

(

Et[X
2
T ]− (Et[XT ])

2
)

− (µ1xt + µ2)Et[XT ]

with µ1 ≥ 0. As noted in [6], there are two sources of time-inconsistency in this model,

one from the variance term and the other from the state-dependent tradeoff between the

mean and the variance.

In [6, Section 5], we constructed an equilibrium through the solutions (M,U), (Γ(1), γ(1)),
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(Γ(2), γ(2)), and (Γ(3), γ(3)) to BSDEs:

(5.3)



























































dMs = −[2rsMs + (θsMs + Us)
′αs]ds+ U ′

sdWs, MT = 1,

dΓ
(1)
s = −rsΓ

(1)
s ds+ (γ

(1)
s )′dWs, Γ

(1)
T = µ1,

dΓ
(2)
s = −[rsΓ

(2)
s + (θsMs + Us)

′βs]ds+ (γ
(2)
s )′dWs, Γ

(2)
T = −µ2,

dΓ
(3)
s = −[rsΓ

(3)
s + (θsMs + Us)

′βs]ds+ (γ
(3)
s )′dWs, Γ

(3)
T = 0,

where

(5.4)
αs

△
= −M−1

s

(

−θsΓ
(1)
s + Us − γ

(1)
s

)

,

βs
△
= −M−1

s

[

θs(Γ
(2)
s − Γ

(3)
s ) + γ

(2)
s

]

.

In this case, the BSDE (3.1) for p(·; t) corresponding to a given strategy (control) u∗

with the wealth (state) process X∗ specializes to

(5.5)



















dp(s; t) = −rsp(s; t)ds+ k(s)′dWs,

p(T ; t) = X∗
T − Et[X

∗
T ]− µ1X

∗
t − µ2,

and the corresponding Λ(s; t) is

Λ(s; t) = p(s; t)θs + k(s).

It is proved in [6, Proposition 5.1] that the system of BSDEs (5.3) admits a unique

solution with bothM andM−1 being bounded, and U ·W a BMO martingale. Furthermore,

the feedback strategy

(5.6) u∗s = αsX
∗
s + βs

defines a control in the space L2
F(0, T ;R

d), which is an equilibrium strategy for the mean–

variance investment problem.

We now claim that the equilibrium above is unique.

For any q > 1, define

L3(q) := {X(·; ·) : X(·; t) ∈ Lq
F (Ω;C(t, T ;R)) ∀ t ∈ [0, T ]} ,
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and

L4(q) :=

{

Y (·) : Y is adapted and E

[

(
∫ T

t

|Y (s)|2ds

)q/2
]

< +∞

}

.

Theorem 5.1 There is a unique equilibrium strategy for the mean–variance problem (5.1)–

(5.2), which is identical to the one generated from the feedback law (5.6).

Proof: Suppose there is another equilibrium wealth–strategy pair (X, u). Then equation

(5.5), with X∗ replaced by X , admits a unique solution (p(·; t), k(·)) satisfying Λ(s; s) ≡

p(s; s)θs + k(s) = 0 for a.e. s ∈ [0, T ].

It is proved in [6] that M,M−1, Γ(1), Γ(2) and Γ(3) are all bounded, and γ(2) ·W and

U · W are both BMO martingales. In particular, since U · W is a BMO martingale, it

follows from the John–Nirenberg inequality (see Kazamaki [5, Theorem 2.2, p.29]) that

there exists ε > 0 such that E
[

eε
∫
T

0
|Us|2ds

]

< +∞. Thus E
[(

∫ T

0
|Us|

2ds
)q]

< +∞ for any

q > 0.

Define

p̄(s; t) := p(s; t)−
[

MsXs + Γ
(2)
s − E

(

MsXs + Γ
(3)
s

)

− Γ
(1)
s Xt

]

,

k̄(s) = k(s)−
(

Msus + UsXs + γ
(2)
s

)

.

It is easy to check that p̄ ∈ L3(2). On the other hand, k ∈ L2
F(0, T ;R

d),Mu + γ(2) ∈

L2
F (0, T ;R

d), and for any q ∈ (1, 2),

E

[

(
∫ T

0

|UsXs|
2ds

)q/2
]

≤ E

[

sup
s∈[0,T ]

|Xs|
q

(
∫ T

0

|Us|
2ds

)q/2
]

≤

(

E

[

sup
s∈[0,T ]

|Xs|
2

])q/2(

E

[

(
∫ T

0

|Us|
2ds

)q/(2−q)
])1−q/2

< +∞.

These, together with the fact that L2
F (0, T ;R

d) ⊂ L4(q) ∀q ∈ (1, 2), imply k̄ ∈ L4(q) for

q ∈ (1, 2).

Furthermore, the equivalent condition gives

p̄(s; s)θs + k̄(s) + θs[Γ
(2)
s − Γ(3)

s − Γ(1)
s Xs] + [Msus + UsXs + γ(2)s ] = 0.
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Solving for us we obtain

(5.7)
us = −M−1

s

[

(Us − θsΓ
(1)
s )Xs + θsp̄(s; s) + k̄(s) + θs(Γ

(2)
s − Γ

(3)
s ) + γ

(2)
s

]

= αsXs + βs −M−1
s [θsp̄(s; s) + k̄(s)].

Next, we can derive the following BSDE that (p̄(·; t), k̄(·)) satisfies (details are placed

in Appendix B)

(5.8)







































dp̄(s; t) = −
{

rsp̄(s; t)− (θs + UsM
−1
s )′[θsp̄(s; s) + k̄(s)]

+Et

[

(θs + UsM
−1
s )′[θsp̄(s; s) + k̄(s)]

]}

ds+ k̄(s)′dWs, s ∈ [t, T ],

p̄(T ; t) = 0.

We will prove in the next theorem that this equation admits at most one solution (p̄, k̄)

in the space L3(q)× L4(q) for some q ∈ (1, 2), leading to p̄ ≡ 0 and k̄ ≡ 0. Consequently,

we have us = αsXs + βs. In other words, us has exactly the same feedback form as u∗s.

This establishes the uniqueness. Q.E.D.

Theorem 5.2 For any q ∈ (1, 2), equation (5.8) admits at most one solution (p̄, k̄) ∈

L3(q)× L4(q).

Proof: Fix t. Taking Et [·] on both sides of the integral form of (5.8) and noticing that
∫ s

t
k̄ ·W is a martingale, we get

Et [p̄(s; t)] =

∫ T

s

rνEt [p̄(ν; t)] dν,

which implies Et [p̄(s; t)] = 0 for any s ≥ t. In particular, taking s = t, we have p̄(t; t) = 0.

Hence equation (5.8) reduces to

(5.9)


















dp̄(s; t) = −
{

rsp̄(s; t)− (θs + UsM
−1
s )′k̄(s) + Et

[

(θs + UsM
−1
s )′k̄(s)

]}

ds+ k̄(s)′dWs,

p̄(T ; t) = 0.

As r is deterministic and bounded, we can discount p̄(s; t) by e−
∫
T

s
rvdv to remove the

term −rsp̄(s; t) on the right hand side of the above equation; thus henceforth we assume
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r ≡ 0 without loss of generality. Define p̃(s; t) := p̄(s; t) −
∫ T

s
Et

[

(θv + UvM
−1
v )′k̄(v)

]

dv.

Then p̃(T ; t) = 0 and

dp̃(s; t) = (θs + UsM
−1
s )′k̄(s)ds+ k̄(s)′dWs.

For any q̄ ∈ (1, q), denote q̂ = q/q̄, and 1/p̂+ 1/q̂ = 1. Then

E

[

sup
s∈[t,T ]

∣

∣

∣

∣

∫ T

s

Et

[

(

θν + UνM
−1
ν

)′
k̄ (ν)

]

dν

∣

∣

∣

∣

q̄
]

≤ E

[

(
∫ T

t

∣

∣

∣

(

θν + UνM
−1
ν

)′
k̄(ν)

∣

∣

∣
dν

)q̄
]

≤ c0E

[

(
∫ T

t

|θ′ν k̄ (ν) |dν

)q̄
]

+ c0E

[

(
∫ T

t

M−1
ν |U ′

ν k̄ (ν) |dν

)q̄
]

≤ c1E

[

(
∫ T

t

|k̄ (ν) |2dν

)q̄/2
]

+ c2E

[

(
∫ T

t

|Uν |
2dν

)q̄/2(∫ T

t

|k̄(ν)|2dν

)q̄/2
]

≤ c3 + c2

(

E

[

(
∫ T

t

|Uν |
2dν

)q̄p̂/2
])1/p̂(

E

[

(
∫ T

t

|k̄(ν)|2dν

)q/2
])1/q̂

< +∞,

where c0, c1, c2 and c3 are proper constants. On the other hand, it is assumed that p̄ ∈ L3(q).

So it follows that E
[

sups∈[t,T ] |p̃(s; t)|
q̄
]

< +∞.

Define ξ = E(−(θs+UsM
−1
s )·W )T ≡ e−

1
2

∫
T

0
|θs+UsM

−1
s |2ds−

∫
T

0
(θs+UsM

−1
s )′dWs. Since UM−1 ·

W is a BMO martingale, E [ξ] = 1; so it can be used to define a new probability measure

Q by dQ
dP

= ξ, under which Ŵs =Ws +
∫ s

0
(θv + UvM

−1
v )dv is a standard Brownian motion.

Furthermore,

dp̃(s; t) = k̄(s)′dŴs, p̃(T ; t) = 0.

Applying Itô’s formula, we obtain

dM−1
s = −M−2

s dMs +M−3
s U2

s ds

= M−1
s

{[

θ(
Γ
(1)
s

Ms

− 1)
Us

Ms

+
Γ
(1)
s |θs|

2

M

]

ds−
U ′
s

Ms

dWs

}

.

Hence

M−1
T =M−1

0 exp

(

−

∫ T

0

[

U ′
sθs
Ms

− Γ(1)
s

|θs|
2

Ms

+
1

2

|Us|
2

M2
s

− Γ(1)
s

U ′
sθs
M2

s

]

ds−

∫ T

0

U ′
s

Ms

dWs

)

.
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Comparing ξ and M−1
T , we deduce

ξMT =M0 exp

(

−

∫ T

0

Γ(1)
s |θs|

2 1

Ms
ds

)

exp

(

−

∫ T

0

Γ(1)
s

θ′s
Ms

Us

Ms
ds

)

exp

(

−
1

2

∫ T

0

|θs|
2ds−

∫ T

0

θsdWs

)

.

It is clear thatM0e
−

∫
T

0 Γ
(1)
s |θs|2

1
Ms

ds is bounded, and e−
1
2

∫
T

0
|θs|2ds−

∫
T

0
θ′sdWs ∈ Lq̄ for any q̄ > 1.

Moreover, for any q̄ > 1 and any ε > 0, there exists a constant C > 0 such that

E

[

(

e−
∫
T

0 Γ
(1)
s

θs

Ms

Us

Ms
ds
)q̄
]

≤ CE
[

eε
∫
T

0 |Us|2ds
]

.

We have shown previously that there exists ε > 0 such that E
[

eε
∫
T

0 |Us|2ds
]

< +∞. There-

fore e−
∫
T

0 Γ
(1)
s

θs

Ms

Us

Ms
ds ∈ Lq̄. This in turn proves ξMT ∈ Lq̄. However, M−1 is bounded, so

ξ ∈ Lq̄ for any q̄ > 1.

Now for any q̄ ∈ (1, q) and q̂ ∈ (1, q̄), we have

EQ[ sup
s∈[t,T ]

|p̃(s; t)|q̂] = E

[

sup
s∈[t,T ]

|p̃(s; t)|q̂ξ

]

≤

(

E

[

sup
s∈[t,T ]

|p̃(s; t)|q̄

])q̂/q̄
(

E
[

ξ q̄/(q̄−q̂)
])(q̄−q̂)/q̄

< +∞,

which implies that p̃(·; t) is a Q-martingale, and hence p̃ ≡ 0 and k̄ ≡ 0. Since p̄(s; t) =

p̃(s; t) +
∫ T

s
Et

[

(θv + UvM
−1
v )′k̄(v)

]

dv, we conclude p̄ ≡ 0.

Q.E.D.

6 Concluding Remarks

Equilibrium control is an alternative and weak notion of solution to a dynamic control

problem when the traditional time-consistency is absent. The uniqueness results we estab-

lish in this paper (if only for some special cases) justify, from an important aspect, not

only the game formulation for the time-inconsistent dynamic decision making, but also our

definition of equilibria over the set of open-loop (instead of feedback) controls. They also

shed a light on the search of conditions for uniqueness of more general problems.

Since equilibria are defined via local perturbation for the game formulation, unlike the

optimal solution for a time-consistent problem, they do not inherently lead to the same
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value process. The uniqueness of the solution does indeed imply the uniqueness of the

value process, which in turn addresses concerns such as “why an equilibrium is defined this

way”, or “which one to choose if there are multiple solutions”.

We realize that in this paper the uniqueness has been established only for some special

classes of the LQ control problem. For general time-inconsistent LQ or even non-LQ

problems, existence and uniqueness of equilibria remain outstanding research problems.
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A Derivation of (4.10)

We write (4.9) as us = αsXs+ βs+ Vs where Vs := −(Rs +MsD
′
sDs)

−1[Bsp̄(s; s)+D′
sk̄(s)]

and αs and βs are given by (4.8). The equations for M,N,Γ(1),Φ can be rewritten as

0 = Ṁ + (2A+ |C|2)M +Q +M(B′ + C ′D)α, s ∈ [0, T ], MT = G;(A.1)

0 = Ṅ + 2AN +NB′α, s ∈ [0, T ], NT = h;(A.2)

Γ̇(1) = −AΓ(1), s ∈ [0, T ], Γ
(1)
T = µ1;(A.3)



















0 = Φ̇ + AΦ + [(M −N)B′ +MC ′D]β + (M −N)b+ C ′Mσ, s ∈ [0, T ],

ΦT = −µ2.

(A.4)

Hence (the subscript s is suppressed)

d(MX) = [M(AX +B′u+ b)−XQ−XM(2A+ C2 + (B′ + C ′D)α)]ds

+M(CX +Du+ σ)′dWs

=
[

M(B′β +B′V + b)−XQ−XM(A− B′α + C2 + (B′ + C ′D)α)
]

ds

+M(CX +Du+ σ)′dWs

=
[

M(B′β +B′V + b)−XQ−XM(A + C2 + C ′Dα)
]

ds

+M(CX +Du+ σ)′dWs.

Similarly,

d(NEt [Xs]) = [NEt [AX +B′u+ b]−N(2A+B′α)Et [Xs]]ds

= [N(B′β +B′Et [Vs] + b)−N(A−B′α+B′α)Et [Xs]]ds

= [N(B′β +B′Et [V ] + b)−NAEt [Xs]]ds;

d(Γ(1)
s Xt) = −AΓ(1)

s Xtds.

So

d(MX −NEt [Xs]− Γ(1)Xt + Φ) = ζ (1)ds+ (ζ (2))′dWs

25



where ζ (2) =M(CX +Du+ σ) and

ζ (1) = M(B′β +B′V + b)−XQ−XM(A + C2 + C ′Dα)

−N(B′β +B′Et [V ] + b) +NAEt [Xs]

+AΓ(1)
s Xt

−AΦ − [(M −N)B′ +MC ′D]β − (M −N)b− C ′Mσ

= [−Q−M(A + C2 + C ′Dα)]X +NAEt [Xs] + AΓ(1)
s Xt

+(MB′V −NB′Et [Vs])− AΦ−MC ′(Dβ + σ).

However, p̄(s; t) = p(s; t)− [MsXs −NsEt [Xs]− Γ
(1)
s Xt + Φs], we deduce

dp̄ = dp− ζ (1)ds− (ζ (2))′dWs

= −[Asp(s; t) + C ′
sks +QsXs + ζ (1)s ]ds+ [ks − ζ (2)]′dWs

= ζ (3)s ds+ k̄′sdWs,

where

ζ (3) = −As[p(s; t)−MX +NEt [Xs] + Γ(1)
s Xt − Φ]

−C ′
s(ks − CMX −MDαX −MDβ −Mσ)

−(MB′V −NB′Et [Vs])

= −Asp̄(s; t)− C ′k̄s − C ′MDV − (MB′V −NB′Et [Vs])

= −Asp̄(s; t)− C ′k̄s − (C ′MD +MB′)V +NB′Et [Vs]).

This proves (4.10).

B Derivation of (5.8)

We write (5.7) as us = αsXs + βs + Vs, where Vs := −M−1
s [θsp̄(s; s) + k̄(s)] and αs and βs

are given by (5.4).

Making use of (5.3), we can compute

d[MX ] = [M(rX + θ′u)−X(2rM + (Mθ + U)′α) + u′U ]ds + [Mu+XU ]′dWs

= [−rMX + (θM + U)′(β + V )]ds+ [Mu +XU ]′dWs;

dEt [MX ] = Et [−rMX + (θM + U)′(β + V )] ds;

dΓ(1)
s Xt = −rΓ(1)

s Xtds,
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where we have used the fact that γ(1) ≡ 0, which can be seen from the BSDE for Γ(1).

Since

p̄(s; t) = p(s; t)−MsXs−Γ(2)
s +Et

[

MsXs + Γ(3)
s

]

+Γ(1)
s Xt, k̄(s) = k(s)−Msus−XsUs−γ

(2)
s ,

we derive dp̄(s; t) = ζ
(4)
s ds+ (ζ (5))′sdWs, where ζ

(5) = k(s)− [Msus +XsUs + γ(2)], and

ζ (4) = −rp(s; t) − [−rMX + (θM + U)′(β + V )] + [rΓ(2) + (θM + U)′β]

+Et [−rMX + (θM + U)′(β + V )] − Et

[

rΓ(3) + (θM + U)′β
]

− rΓ(1)
s Xt

= −r[p(s; t)−MX − Γ(2) + Et

[

MX + Γ(3)
]

+ Γ(1)Xt]

−(θM + U)′V + Et [(θM + U)′V ]

= −rp̄(s; t)− (θM + U)′V + Et [(θM + U)′V ] .

This proves (5.8).
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