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THE CRYSTALLIZATION CONJECTURE: A REVIEW

XAVIER BLANC AND MATHIEU LEWIN

Abstract. In this article we describe the crystallization conjecture. The latter intends to
investigate why interacting particles often place themselves into periodic configurations, breaking
thereby the natural translation-invariance of the system. This famous problem is still largely
open. Mathematically, it amounts to studying the minima of a real-valued function defined on
R3N where N is the number of particles, which tends to infinity. We review the existing literature
and mention several related open problems, of which many have not been thoroughly studied.
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1. Introduction

At the microscopic scale, most crystals are composed of atoms which are arranged on a periodic
lattice. This specific geometric structure has important consequences at the macroscopic scale.
For instance, in snowflakes the atoms are arranged on an hexagonal lattice, which explains the
beautiful six-pointed figures that can be found in nature. The aim of crystallography is to study
those periodic structures and their properties at larger scales.

2014 was declared the year of crystallography by UNESCO [172] and this gives us the opportu-
nity to draw attention to a difficult mathematical conjecture, also important from a physical point
of view, which has been studied a lot without being completely solved. If crystallographs study
the properties of some periodic arrangements and compare them, a more fundamental question
can be raised: why is it favourable (at low temperature) for the atoms to spontaneously arrange
themselves on a periodic array? This periodic order seems to only appear in the limit of a large
number of particles, which makes the question particularly difficult.

In this article we rigorously formulate the above question and we make a review of the existing
results as well as of the remaining open questions. We will mostly discuss the simplest model
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2 XAVIER BLANC AND MATHIEU LEWIN

(classical particles interacting with a two-body potential at zero temperature), before addressing
more advanced situations (for instance quantum systems).

2. The classical model

2.1. Energy. Let us consider a set of N classical identical particles in Rd (in practice d = 1, 2, 3),
interacting by pairs through a potential V depending only on the distance between them. We
denote by x1, . . . , xN ∈ Rd and p1, . . . , pN ∈ Rd the positions and momenta of these particles. The
model to be used is that of the Hamiltonian dynamics, based on the energy

HN (x1, . . . , xN , p1, . . . , pN) =

N∑

i=1

|pi|2
2m

+
∑

1≤i<j≤N

V (|xi − xj |) . (1)

Here m is the mass of the particles and | · | is the Euclidean norm of Rd.
At zero temperature, the equilibrium states are the minima of HN , which all satisfy p1 = · · · =

pN = 0. If one is only interested in those, it is therefore sufficient to consider the potential energy

EN (x1, . . . , xN ) =
∑

1≤i<j≤N

V (|xi − xj |) ,

and to understand how the xi’s solving the minimization problem

E(N) = inf
{
EN(x1, . . . , xN ), x1, . . . , xN ∈ R

d
}
, (2)

are arranged in Rd in the limit N → +∞. Let us note that EN is invariant under translations. Any
configuration may be translated by a fixed vector without changing the total energy. Minimizers
of (2) are thus not unique. At positive temperature one should consider the Gibbs measure
exp(−HN/T ), as will be discussed later in Section 4.1 below.

In practice the potential V depends on the type of atoms and is not explicitly known. As atoms
are not elementary particles, V cannot be deduced from first principles. It is therefore important
to obtain mathematical results which are sufficiently generic with regards to V .

Qualitatively, the function V is usually assumed to be non-negative (repulsive) at small distances
and negative (attractive) at large distances. Since the interaction between two atoms which are
far from each other is small, we assume that V (r) → 0 as r → +∞. A typical and very popular
example is the Lennard-Jones potential

VLJ(r) =
1

12

(r0
r

)12

− 1

6

(r0
r

)6

, (3)

drawn in Figure 1. The behavior at infinity in r−6 mimics the Van der Waals interaction, that
is, the one for radially symmetric neutral particles. The behavior at r = 0 is, on the other hand,
completely empirical. The number r0 > 0 is the equilibrium distance for two isolated particles.
It may be seen from Figure 1 that for this specific potential in the plane, the solutions xi to
the minimization problem (2) are approximately located on an hexagonal lattice and that they
moreover form a big cluster having the shape of an hexagon.

For the rest of the article, we consider a general radial potential V . Some assumptions are
however necessary to ensure that our question is well posed.

2.2. Stability. A first assumption, which is related to the behavior of V at the origin, deals with
the stability of the system for large N . If the system has a limit as N → +∞, it is mandatory
that its energy behave linearly with respect to N , that is, the following limit

e = lim
N→+∞

E(N)

N
, (4)

should exist. Indeed, if we gather two macroscopic identical systems (for a “real life” object,
N ≈ 1023), the formation energy is equal to |E(2N) − 2E(N)|, which may be arbitrarily large if
E(N) is not at most linear.

In the present case, since V vanishes at infinity, the energy is sub-additive, that is, it satisfies

∀N,P ∈ N, E(N + P ) ≤ E(N) + E(P ). (5)
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Figure 1. Left: the Lennard-Jones potential (3). Right: a minimizer for the variational
problem (2), computed numerically in [14], with N = 100 and d = 2. The particles seem
to arrange themselves on an hexagonal lattice, and to form a large cluster having the
shape of an hexagon.

This inequality is shown by sending two groups of N and P particles at a large distance from each
other. It is classical that, given (5), the existence of the limit (4) is equivalent to the lower bound

E(N) ≥ −CN (6)

or, equivalently,
∑

1≤i<j≤N

V (|xi − xj |) ≥ −CN (7)

for all N and all x1, ..., xN ∈ Rd. A potential V satisfying (6) is said to be stable. A characterization
of the set of stable potentials is an important question which has been widely studied since the 60s
[148, 149, 68, 69, 150, 110]. The simplest example of a stable potential is

V = V1 + V2, with V1 ≥ 0, V̂2 ≥ 0 and

∫

Rd

V̂2 < +∞,

where V̂2 denotes the Fourier transform of x 7→ V2(|x|), cf. [150, Prop. 3.2.7]. It can be proved
that the Lennard-Jones potential (3) is stable in the sense of (6). See for instance [173] for the
one-dimensional case. In higher dimension, it is proved in [182, 19] that the distance between two
particles of the optimal configuration is bounded from below. Stability then follows easily.

2.3. Formation of a macroscopic object. The assumptions (5)–(6) above imply the existence
of a thermodynamic limit (4), but they do not ensure that a macroscopic object is formed in this
limit. Their aim is actually to avoid a collapse of the system by preventing particles to be too close
to each other. It is still possible that, in the optimal configuration, particles do not stay close to
each other. This situation should not be allowed. Indeed, the limit N → ∞ could be trivial in such
a case. For instance, if V > 0, then E(N) = e = 0 for any N ∈ N, but the minimization problem (2)
has no solution. Indeed, the infimum of EN (x1, ..., xN ) is reached only when the distances between
particles xi tend to infinity. In principle, it is also possible that the particles want to form groups
of K individuals, each of them keeping infinitely far from the others. In such a case, e = E(K)/K,
and no minimizer exists for N > K. The existence of a minimizer is ensured for any N if the
inequality (5) is strict whenever N,P ≥ 1. However, this does not give any information on the
way that the particles are distributed in space.

In order to have the formation of a macroscopic object, we want that the minimizing configu-
ration of N particles fill a volume of size N , in the limit N → +∞. Moreover, the particles should
be evenly spaced in this volume, as it is clear in the example of the Lennard-Jones potential shown
in Figure 1.

The mathematical formulation of this property is not unique. One possibility is to apply a
dilation of factor N−1/d to the optimal configuration (this is a way to pass to the macroscopic
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scale), and to consider the empirical measure

MN =
1

N

N∑

i=1

δ xi

N1/d
. (8)

We ask if

MN −⇀ M in the sense of measures, with M ∈ L∞(Rd), supp(M) compact,

∫

Rd

M(x) dx = 1.

(9)
This means that the macroscopic object is included in the support of M, and that, at this scale the
system is continuous, with the function M as local density. If (9) is satisfied, a macroscopic object
has been created. Knowledge about the positions of particles is very crude, because of the dilation
of factor N−1/d, which does not account for the local behavior of the system. The problem may be
formulated differently, keeping track of different scales in the system. However, it becomes more
and more difficult as these scales are taken into account.

Finding conditions on the potential which imply the existence of the weak limit (9) is an im-
portant problem. However, it has never been, to our knowledge, studied mathematically. For the
Lennard-Jones potential VLJ in dimension 2, Figure 1 indicates that the limit M is proportional
to the characteristic function of a hexagon. In this example, the shape of the support of M, which
is visible at the macroscopic scale (as for instance snow flake structure), is a manifestation of the
crystalline structure at the microscopic scale. We will come back to this in Section 3.7 below.

3. The crystallization conjecture

3.1. Formulation. We now come to the question which has been intensively studied since the
70s, without being solved. This question is: does the system become periodic in the limit N → ∞?
This may be formulated as follows: Let us denote by

µN =

N∑

i=1

δxi (10)

the empirical measure associated with the solution x1, . . . , xN of problem (2). Note that, contrary
to (8), we do not use any dilation, and this means that we study the system at the microscopic
scale. We ask if, after possibly extracting a subsequence,

µN ⇀ µ (11)

locally, where µ is a locally finite measure. We say that crystallization occurs if µ is periodic, that
is, if there exists a discrete subgroup

G =





d∑

j=1

njvj , nj ∈ Z



 ⊂ R

d, (12)

generated by d independent vectors v1, ..., vd ∈ R
d, such that µ(·+ g) = µ for all g ∈ G. In order

to avoid trivial cases, we assume here that G is the maximal group satisfying this property. Put
differently, the period is supposed to be minimal. The invariance under the action of G does not
imply that the particles are located on the vertices of a periodic lattice. This would correspond to
the stronger hypothesis

µ =
∑

g∈G

δg+y , (13)

for some fixed vector y ∈ Rd, defining the position of the lattice in space. For instance, it is possible
to have 3 particles in the unit cell of the lattice G, which are repeated periodically, as in Figure 2.
In such a case, the configuration of particles is the superposition of 3 shifted crystalline lattices,
and the measure has the form

µ =
∑

g∈G

δg+y +
∑

g∈G

δg+y+τ +
∑

g∈G

δg+y+τ ′ .

In the special case where the particles are exactly on the nodes of the lattice G, as in (13),
we use the word Bravais lattice or mono-atomic lattice. For instance, in dimension 3, the simple

cubic lattice (SC), face-centered cubic lattice (FCC) and body-centered cubic lattice (BCC) are all
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Figure 2. Example of a periodic configuration in 2D.

Bravais lattices. On the other hand, the hexagonal close packed lattice (HCP) is not. It is the
superposition of two shifted Bravais lattices (Figure 3). This configuration is the one used to pile
up oranges in markets.

Crystallization may be seen as a symmetry breaking of the system: the invariance of the system
under affine isometries is lost in the process. If the positions of the particles form a periodic lattice,
then applying a translation, rotation or reflexion to the system does not change its energy. Hence,
the set of minimizing lattices has the structure or the compact group

(
Rd/G

)
⋉Od(R). Choosing a

special minimizer for the positions xi at finite N , it is possible to select one of the limiting lattices.

simple cubic (SC) face centered cubic (FCC) body centered cubic (BCC)

hexagonal close packed (HCP)

Figure 3. Most common configurations in 3D (source: wikipedia).

The microscopic scale convergence (11) does not give any information, in principle, about the
behavior at the macroscopic scale, such as the convergence of the dilated measure MN defined
by (9). Conversely, the convergence of MN does not give any clue about that of µN . However,
one actually expects that the two phenomenon are related. The understanding of the link between
these two scales is still incomplete, as we will discuss in Section 3.7 below.

Should crystallization be proved, the next question is to know which periodic configurations
are present in the limit (that is, what is the group G). Another question is to know if µ has the
particular form (13) corresponding to a Bravais lattice. If not, one would ask how many particles
are present in each periodic cell, and what are their positions. In physical systems, lattices with
larger symmetry groups seem to be more common [106]. These lattices are the hexagonal and
square lattices in 2D, and the lattices presented in Figure 3 in 3D.
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The ubiquity of crystals (at low temperature) indicates that crystallization is a universal phe-
nomenon, which should occur for a wide class of interaction potentials V . As we will see, several
mathematical works prove crystallization, but they are based on restrictive assumptions on V . To
date, no generic class of potentials has been identified, for which crystallization can be proved.

3.2. Crystallization and sphere packing.

In dimension d = 1. In dimension one, the problem of crystallization is rather well understood.
The first results are due to Ventevogel and Nijboer [173, 174, 175]: they prove that the limit e
is reached by equidistant configurations. This property is proved for a wide class of potentials
V (they are assumed to be non-increasing up to a distance r0 > 0, and non-decreasing for r >
r0, with additional hypotheses on V ′′), which includes the Lennard-Jones potential VLJ. The
convergence (11) is not proved in these works and is still an open problem. It has been proved in
the special case of VLJ by Gardner and Radin [80].

For some explicit examples of potentials V (non-increasing up to a distance r0 > 0, and non-
decreasing for r > r0), it has been proved that the optimal configuration does not converge to a
Bravais lattice. The limit can be clusters of particles which are globally periodic [173]. With an
oscillating potential V , it is even possible to obtain configurations which have no periodicity [94].
In the latter, it is also proved that such aperiodic configurations can be found as minimizers of
a potential V which is an arbitrarily small perturbation of a potential for which crystallization
occurs. This indicates that crystallization is an unstable property. Thus, the conditions on V
ensuring crystallization are probably complex and have not been completely understood yet, even
in one dimension. It is commonly assumed that the interaction potential is smooth, stable, non-
increasing up to a distance r0, and non-decreasing for r > r0. However, no crystallization result
has been proved under these assumptions only, even in one dimension.

In dimension d ≥ 2. In higher dimensions, the problem is far from being understood. Most results
are based on geometrical arguments, which allow to reduce the question to a sphere packing
problem. This question consists in finding the position of non-overlapping spheres of equal radius
giving the largest possible density. In two dimensions, the solution is precisely the hexagonal lattice
(see figure 4). Thue has given two proofs of this result (in 1892 and in 1910), which both happened
to contain flaws. A proof was then proposed in 1940 by Tóth [144, 49]. In dimension three, the
problem is significantly more difficult. Kepler formulated it in 1611, and it is therefore often called
Kepler’s conjecture. A computer-assisted proof was given by Hales in 1999, then published in 2005
in [93]. Only recently (August 2014) has it been fully validated, after eleven years of work by the
Flyspeck team [71], who managed to give a formal proof based on the softwares Isabell and HOL

Light. An important difference with the two-dimensional case is that, in 3D, the problem has two
solutions: the hexagonal close packed lattice and the face centered cubic lattice. The fact that
FCC is the unique minimizer among Bravais lattices was proved by Gauss [81].

Figure 4. Packing of identical disks, maximizing the density. The centers of the disks
lie on a hexagonal lattice.
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The link between the crystallization problem and the sphere packing problem has been high-
lighted by Heitmann and Radin in [98]. Indeed, if the interaction potential V is given by

V (r) =





+∞ if 0 ≤ r < 1,

−1 if r = 1,

0 if r > 1,

(14)

then the particles can be considered as hard spheres of radius 1/2. These spheres tend to touch due
to the condition V (1) = −1. The crystallization problem is thus equivalent to the sphere packing,
and one obtains that the solution is the hexagonal lattice in 2D and either FCC or HCP in 3D.

Subsequent works aimed at generalizing this result to potentials which are similar to (14), but
are closer to physically realistic interactions. For instance, in [138], Radin considers a potential
satisfying (14) for r ∈ [0, 1], which is non-decreasing for r ≥ 1, and tends to 0 fast enough as
r → +∞. In a famous article [168], Theil deals with smoother, more realistic potentials (which
look like VLJ), in dimension two. However, he uses restrictive hypotheses on V itself. This work has
been extended to dimension three recently in [70], in which an additional three-body term is added,
which favors particular angles between bonds. A similar strategy has been used in dimension d = 2
in [62, 122, 123], where the optimal lattice may be a square lattice. One can therefore consider that
the problem is not completely understood in dimension two, and completely open in dimension
three.

All these results in dimension two and three rely heavily on the similarity with the sphere
packing problem. However, it is not clear if this should be the correct physical explanation. This
would exclude, for instance, configurations which are periodic but not mono-atomic. In such a
case, particles form small groups which are repeated periodically. The crystallization conjecture
for a more general class of potentials is still an open problem.

The sphere packing problem becomes more complex as the dimension increases. Actually, it
has been conjectured that crystallization occurs only in small space dimensions [164, 171, 170].
Although the sphere packing problem in high dimension plays an important role in information
theory, it is natural to restrict ourselves to the (physically relevant) cases of dimension d = 1, 2, 3.
This is what we will do in most of the present article.

3.3. A variant: minimization at fixed density. It is possible to consider a potential V which
does not allow for the formation of a macroscopic object, as discussed in Section 2.3. Such an
example is given, for instance, by a potential V > 0 (with V (r) → 0 as r → +∞). In such a case,
it is necessary to change the formulation of the problem and the idea is to minimize the energy
while keeping the density of particles ρ fixed. This may be done by confining the particles in a
large domain Ω and imposing that their number be N ≃ ρ|Ω|, where |Ω| is the volume of Ω.

To be more precise, we consider the minimization problem for N particles in the domain Ω

EΩ(N) = inf
{
EN (x1, . . . , xN ), x1, . . . , xN ∈ Ω

}
, (15)

and we study the limit

e(ρ) = lim
N→∞

|ΩN |→∞
N/|ΩN |→ρ

EΩN (N)

N
(16)

where ρ > 0 is fixed and ΩN is a sequence of domains which covers the whole space in the limit
N → ∞. Some assumptions are needed on this sequence ΩN insuring that the limit (16) exists.
Further, this limit should not depend on the chosen sequence. For instance, it is often assumed
that the measure of the boundary of ΩN is a lower order term compared to its volume |ΩN | [150].
To fix the ideas, one can think of ΩN as a cube of side length (N/ρ)1/d, or a convex symmetric
domain of unit volume, dilated by a factor (N/ρ)1/d, as for instance a ball of radius (N/ρ)1/d.

One then studies the behavior of the particle positions x1, ..., xN solution to the minimization
problem (15). The questions are similar to the preceding case. A difference is that the model is
no more invariant under affine isometries. Different extraction of the sequence of minimizers may
in principle give limiting lattices with different positions. In practice, the position of the limiting
lattice is often determined by the choice of a particular sequence ΩN (see [108] for a discussion of
this aspect in dimension d = 1).
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The fact that one can consider a repulsive potential changes the physical meaning of the problem.
In particular, the relation with the sphere packing problem is unclear. In the case of the preceding
section, it is natural to consider that the particles are attracted by each others, and behave like
hard spheres at short range, therefore trying to maximize the density of the system. Doing so, they
tend to maximize the number of neighbours. Here, particles can repel each other fiercely, and tend
to maximize their mutual distance, while staying in the domain Ω. Experiments and numerical
simulations indicate, however, that here again, crystallization occurs.

In dimension one, Ventevogel and Nijboer have proved crystallization for any density ρ > 0 in
the case of non-negative non-increasing convex potential [173]. In [174, 175], they prove the same
result for the potential V (x) = exp(−αx2) and V (x) = (β + x2)−1, for α, β > 0, still in dimension
one. This allows to generalize the result to any convex combination of these potential, such as

V (x) =
∫ +∞

0
e−αx2

dµ(α), for any non-negative measure µ. Such potentials may be non-convex.
In addition, they give a necessary condition for crystallization, in any dimension: if crystallization

occurs for sufficiently small densities, and V is continuous, then V̂ ≥ 0. As before, the situation is
much less clear in dimension d ≥ 2.

3.4. Optimal lattices and special functions. If crystallization is assumed, it is possible to
determine the most favorable periodic configurations by comparing their energy per particle e
(defined by (4) and (16)). In some cases, this question may be related to a problem in analytic
number theory, involving special functions.

Indeed, if the particles lie on the vertices of a Bravais lattice G (a discrete subgroup of Rd such
as (12)), the limit energy per particle reads:

e =
1

2

∑

g∈G\{0}

V (g) (17)

Finding the optimal configuration amounts to minimize this expression with respect to G. There
is no additional constraint on G in the case of a stable potential. In contrast, one needs to fix the
volume of the unit cell Q of G to |Q| = 1/ρ when the density is fixed, as for instance in the case
of a repulsive potential.

Epstein zeta function. With a Lennard-Jones type potential

V (r) =
1

a

(r0
r

)a

− 1

b

(r0
r

)b

, (18)

where a > b > d, we get

1

2

∑

g∈G\{0}

VLJ(g) =
ζd(S, a)

a
− ζd(S, b)

b
(19)

where S is a symmetric positive definite matrix of size d, which is related to the Gram matrix of
the basis (vj)1≤j≤d, and such that r0S

1/2Zd = G. Here,

ζd(S, s) =
1

2

∑

z∈Zd\{0}

1

(zTSz)s/2
(20)

is the Epstein zeta function [65]. Still assuming that we have crystallization on a Bravais lattice,
the minimal energy for VLJ reads

eLJ(a, b) = min
S=ST>0

(
ζd(S, a)

a
− ζd(S, b)

b

)
. (21)

Except in dimension d = 1, the solution to this problem is still unknown, even for the physically
relevant cases a = 12 and b = 6.

If the density ρ > 0 is fixed as discussed in Section 3.3, it is possible to consider a repulsive
potential V (r) = r−s with s > d. Hence, we need to minimize the value of the zeta function (20),
with respect to G (that is, with respect to the matrix S)

eζ(ρ, s) = min
S=ST>0

det(S)=ρ−2

ζd(S, s). (22)
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Here, det(S) is the volume of the unit cell of the lattice to the power 2. Applying a dilation of the
lattice, one easily proves that

eζ(ρ, s) = ρs/d eζ(1, s)

and that it is sufficient to study the problem in which the unit cell has a volume equal to 1. Without
loss of generality, we can thus assume that det(S) = 1. There is a link with the sphere packing
since, in the limit s → ∞, the optimal lattice converges to a solution to the d-dimensional sphere
packing problem [151]. It should be noted that ζd(S, s) is not bounded. If the smallest eigenvalue
of S reaches 0, then ζd(S, s) tends to +∞.

The function s 7→ ζd(S, s) has an analytic continuation to the set C \ {d}. This extension has
a simple pole at s = d, with a residue equal to πd/2Γ(d/2)−1 (if det(S) = 1), and satisfies the
functional equation

ζd(S, s) = πs−d/2Γ
(
d−s
2

)

Γ( s2 )
ζd(S

−1, d− s) (23)

where S−1 is the matrix associated with the lattice G∗ =
{
k ∈ Rd : k · g ∈ Z, ∀g ∈ G

}
, called the

dual lattice of G [29, 28]. Thus, it is also possible to study the minimization problem (22) even if
0 < s < d. As we will see below, this problem is of great importance from a physical point of view,
particularly if d = 3 and s = 1. Formula (23) implies that if S is a solution to the minimization
problem eζ(1, s), then S−1 is a solution to eζ(1, d− s).

Going back to the case of the Lennard-Jones potential (21), we see that, after dilating the
problem with fixed density ρ > 0, it amounts to minimize the function

ρa/d
(
ζd(S, a)

a
− ρ

b−a
d

ζd(S, b)

b

)

with respect to S, with det(S) = 1. Since b > a is assumed, for large ρ the problem reduces to
the minimization of ζd(S, a). For small values of ρ, the situation is not that clear, since ζd is not
bounded from above. For the minimization problem (21) with no density constraint, one finally
needs to consider ρ which minimizes the energy. In this case, the optimal lattice is unknown.

One can derive representation of ζd as a series with exponentially decaying coefficients. The
most widely used method for this is that of Ewald [66, 24, 87] which uses the integral representation

1

rs
=

1

2Γ(s/2)

∫ ∞

0

e−τr2τs/2−1 dτ. (24)

For s > d, we have, if det(S) = 1,

ζd(S, s) =
πs/2

Γ(s/2)

{
1

s− d
− 1

s
+

1

2

∫ ∞

1

((
θd(S, τ) − 1

)
τs/2−1 +

(
θd(S

−1, τ)− 1
)
τ

d−s
2 −1

)
dτ

}

(25)
where

θd(S, α) =
∑

z∈Zd

e−παzTSz . (26)

is the Jacobi theta function. Here, we have used Poisson’s summation formula

θd(S, α) =
1

αd/2
θd

(
S−1,

1

α

)
. (27)

Formula (25) is also meaningful for 0 < s < d and can be used to prove that ζd has an analytic
extension to C \ {d} (Γ has a pole at the origin which compensates the divergent term 1/s), as we
already mentioned.

Formula (25) is widely used by physicists. It allows to compute numerically the values of ζd(S, s)
very accurately, allowing to formulate conjectures on what should be proved. The mathematical
literature on the subject is rather poor, so we are now going to describe what is expected.

Results for ζ and θ in dimension 2. In dimension d = 2, it has been proved by Rankin [142],
Cassels [40], Ennola [63] and Diananda [53], that the hexagonal lattice is the unique minimizer of
zeta function, for any s > 0, when the density is fixed. In other words, we have

ζ2(S, s)− ζ2(Shex, s) ≥ 0 (28)
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for all s > 0 and all S such that det(S) = 1, where

Shex =
2√
3

(
1 1/2
1/2 1

)

corresponds to the hexagonal lattice. In addition, the inequality (28) is strict if S 6= Shex, up to the
invariances of the problem (rotation and change of basis of the lattice). This result is illustrated
in Figure 5. Another proof is given in [131]. Inequality (28) is still valid for s = 2 where both
functions have a simple pole with equal residue. When s → 0, we have a divergence which needs
to be dealt with, but the result is still true [155].

A famous result due to Montgomery [128] deals with the case of a Gaussian repulsive interaction
in dimension d = 2. In this case, the problem reduces to the study of the Jacobi theta function (26).
As for the zeta function, Montgomery proves that θ2(S, α) ≥ θ2(Shex, α) for all α > 0 and all S such
that det(S) = 1 (cf. Figure 6). If the potential V is a positive linear combination of Gaussians,
Montgomery’s result implies that the optimal lattice is the hexagonal one, for a fixed unit cell
volume. For instance, using the integral formula (25), on recovers the previously mentioned result
on zeta functions.

Subtracting two Epstein zeta functions gives a function that can be expressed as an integral of
the function θ2(S, α) multiplied by a weight. This weight is non-negative when ρ is large enough.
Using this argument, Bétermin and Zhang [16] have proved that, at high density, the optimum is
reached by the hexagonal lattice in 2D, for the Lennard-Jones potential VLJ. Imposing that ρ is
large means that particles are close to each other. Therefore, their interaction is dominated by
the repulsive part r−12 of VLJ. The energy is close to ζ2(S, 12), which, as a function of S, reaches
its minimum for the hexagonal lattice only. On the contrary, they prove that, when ρ → 0, the
hexagonal lattice cannot be the global minimizer. For instance, if

ρ3 <
ζ2(I2, 6)− ζ2(Shex, 6)

ζ2(I2, 12)− ζ2(Shex, 12)
,

the square lattice (Scar = I2) has an energy which is smaller than that of the hexagonal lattice. If
no symmetry breaking occurs, then the square lattice becomes the minimizer. This work does not
give any information on the global minimizer of the Lennard-Jones potential in 2D: in such a case,
one needs to minimize over ρ, too. For a more recent work in the same spirit, see [15].

Results and conjectures for ζ and θ in dimension d ≥ 3. In dimension d ≥ 3, some authors have
studied the critical points and the (local or global) minima of the Jacobi theta function and the
Epstein zeta function. In a famous article [159], Sarnak and Strömbergsson were able to completely
solve the problem in dimensions 4, 8 and 24 (see also [50, 48, 51]). In dimension 3, Ennola has
proved that the face centered cubic (FCC) lattice is a non-degenerate local minimum of ζ3(S, s) for
all s > 0 [64]. Formula (23) implies that its dual, the BCC lattice, is also a non-degenerate local
minimum for 0 < s < 3. In addition, based on the sphere packing problem obtained in the limit
s → ∞, it has been shown in [151] that FCC is the unique global minimizer for s large enough. As
opposed to what Ennola conjectured in [64], FCC cannot be the unique minimizer for all s > 0.
Indeed, formula (23) would imply that its dual, BCC, is a minimizer for some values of s. Hence,
a more likely conjecture would be that FCC is the unique minimizer for s > 3/2, whereas BCC is
for 0 < s < 3/2 [159, section 5].1 If it is assumed that the minimizer has a high-symmetry group,
and if we only compare the energies of SC, FCC and BCC, this conjecture is corroborated by
numerical computations presented in Figure 7. It is a very important conjecture: its proof would
be an important advance both in analytic number theory and in solid-state physics. One of the
difficulty in the proof is that the values of the zeta function for BCC and FCC are very close to
each other. This implies that a quantitative argument needs to be very precise.

Similar questions may be asked about theta function (26), but it seems that the corresponding
literature is far less important. In 3D, the conjecture is that FCC is the unique minimizer for any
α > 1, whereas BCC is for α < 1 [159, section 5]. Here again, this conjecture is confirmed by
numerical simulations presented in Figure 8. Note that, contrary to dimension 2, the conjecture
for the theta function does not seem to imply it for the zeta function: formula (24) always involves
both the lattice and its dual for different values of α.

1Note that BCC cannot be a non-degenerate local minimum for all s > 0 [67, 91], hence it has to be a degenerate
critical point of ζd for some s ≥ 3.
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Figure 5. Left: ζ2(S, s) as a function of s for the square lattice (S = I2) and the hexag-
onal one (S = Shex). Right: the relative difference

(

ζ2(I2, s)− ζ2(Shex, s)
)

/ |ζ2(Shex, s)|.
It shows that the hexagonal lattice energy is lower than that of the square lattice for all
s > 0, as it is proved in [142, 40, 63, 53].
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Figure 6. Left: θ2(α) as a function of α for the square lattice (S = I2) and the hexag-
onal one (S = Shex). Right: the relative difference

(

θ2(I2, α)− θ2(Shex, α)
)

/θ2(Shex, α).
It shows that the hexagonal lattice energy is lower than that of the square lattice for all
s > 0, as it is proved in [128].

Most works consider only mono-atomic lattices. This excludes the HCP (Hexagonal Close
Packed) lattice in dimension 3, since it is not a Bravais lattice. We refer to [121] for an explicit
link between zeta functions and quantum field theory, to [166] for the link with optimal quadrature
point repartition, and to [134, 158, 159] for the link with the optimization of the determinant of

the Laplace operator: det(−∆) = e−ζ′

d(S,0).
As a conclusion, determining the optimal periodic lattice can, for some simple potentials, be

related to the study of special functions. the conjecture is that the minimizer can be either the
FCC lattice, or the BCC one. This is still an open problem (in most cases), even though research
is very active on this subject.

3.5. Coulomb potential and Wigner crystallization. In the case of a strongly repulsive po-
tential V , the problem of minimizing the energy at fixed density (as described in Section 3.3) is in
general not physically relevant. Indeed, it is not clear how the particles can be maintained in the
domain Ω, despite their strong repulsion. Another approach was proposed by Wigner [178] in 1934
in the particular case of Coulomb repulsion. Wigner’s objective was the description of electrons in
a metal. These particles do not move in vacuum, but in a charged background compensating the
charge of the electrons. If the electrons repel each other, they are attracted by this background
and an equilibrium is possible, even for a repulsive potential.

To simplify the setting, it is often assumed that the background is homogeneous, of density
ρ > 0. This is the so-called Jellium model, in which the background is a kind of “jelly” slowing
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Figure 7. Left: ζ3(S, s) as a function of s for different lattices ; FCC and BCC have
energies which are very close to each other. Right: the relative difference

(

ζ3(BCC, s)−

ζ3(FCC, s)
)

/ |ζ3(FCC, s)|. It indicates that BCC should be the minimizer for 0 < s <
3/2, while FCC should be for s > 3/2. Proving this is still an open problem. The relative
difference is of order 10−4.
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Figure 8. Left: θ3(α) as a function of α for several lattices ; FCC and BCC have
energies which are very close to each other. Right: the relative difference

(

θ3(BCC, α)−

θ3(FCC, α)
)

/θ3(FCC, α). It indicates that FCC is the minimizer for α > 1, while BCC
is for α < 1. Proving this is an open problem, which does not seem to imply the above
result on the function ζ3.

down the movements of the particles. The minimization problem then reads:

EΩ,ρ(N) = inf
x1,...,xN∈Ω





∑

1≤i<j≤N

V (|xi − xj |)− ρ
N∑

i=1

∫

Ω

V (xi − y) dy +
ρ2

2

∫

Ω

∫

Ω

V (|x− y|) dx dy





(29)
with the same limit as before

eJell(ρ) = lim
N→∞

|ΩN |→∞
N/|ΩN |→ρ

EΩN ,ρ(N)

N
. (30)

The second term of the energy in (29) accounts for the interaction of our N particles with the
homogeneous background. This is a new term compared to the preceding cases. The last term is
the energy of the background, which is constant with respect to the positions of the particles. We
keep it in order to have a finite limit (30) (in the case we deal with here,

∫
Ω

∫
Ω V (|x − y|) dx dy

grows faster than |Ω| since V is not integrable). In the limit (30) one imposes that N/|ΩN | → ρ,
which means that the particle density is equal to that of the background. This allows to reach
an electrostatic equilibrium between particle repulsion and the attraction of the background. One
could in principle minimize over the domain Ω while fixing |Ω| = Nρ, and then use this domain
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ΩN , but it is often assumed that ΩN has a shape which is fixed (a cube or a ball for instance), and
is then dilated. The limit (30) should not depend on the chosen sequence ΩN .

In principle, one could use any potential V , but originally Wigner was interested in the electro-
static interaction between electrons, that is, Coulomb potential in dimension d = 3:

VCoul,3D(x) =
1

|x| .

More generally, the Coulomb potential in dimension d is the Green function of the Laplace operator,
that is, the solution to

−∆VCoul = |Sd−1|δ0,
in the sense of distribution, where |Sd−1| is the volume of the sphere in dimension d, Sd−1 = {x ∈
Rd : |x| = 1}. In lower dimension, we thus have VCoul,1D(x) = −|x| and VCoul,2D(x) = − log |x|.

In [178], Wigner has conjectured crystallization for this model, at least if ρ is small enough.
He also suggested that in 3D, the electrons form a body centered cubic lattice (BCC). In 2D, the
particles are expected to form a hexagonal lattice. Numerical simulations and formal computations
corroborate Wigner’s conjecture. However, a rigorous proof is still missing in dimension d ≥ 2.

Dimension d = 1 is simpler and has been solved by Kunz in 1974 for small densities [108]. This
result has been generalized to any density by Aizenman and Martin [4]. At temperature T = 0,
the particles form a lattice of step 1/ρ, as in the preceding sections. If T > 0, it has also been
proved in [4] that the particle density is periodic of period 1/ρ. A different proof, which applies to
the quantum case, has been proposed by Brascamp and Lieb in [31]. It is an application of their
study of the optimality of Gaussians in some functional inequalities.

As in Section 3.4, if crystallization is assumed (on a Bravais lattice G), it is possible to compute
the corresponding energy per unit volume. In the present case, we have

eJell,G(ρ) =
1

2

∑

g∈G\{0}

WCoul(g)−
∫

Q

VCoul(x) dx +
ρ

2

∫

Q

∫

Q

VCoul(x − y) dx dy (31)

where WCoul is the twice-screened Coulomb potential

WCoul(x) = VCoul(x) − 2
1

|Q|

∫

Q

VCoul(x− y) dy +
1

|Q|2
∫

Q

∫

Q

VCoul(x+ y − z) dy dz

with Q the unit cell of the lattice G, satisfying |Q| = 1/ρ. The series (31) is oscillating and its
convergence depends on the symmetry properties of the unit cell Q, which determine the decay of
WCoul at infinity. In dimension d = 3, it is sufficient to choose for Q a set which is symmetric with
respect to the origin 0, which is always possible. Doing so, WCoul behaves like |x|−4 at infinity. If
Q has sufficient symmetry properties, it is possible to express the energy with the simple screened
Coulomb potential

W̃Coul(x) = VCoul(x)−
1

|Q|

∫

Q

VCoul(x− y) dy.

We refer to [113, App. B] for the details. It is always useful to use for Q the Wigner-Seitz cell,
which has the same symmetries as the lattice G [12].

When the series above converge, one can prove that the energy (31) is equal to the analytic

extension of the first term in (29), that is,

eJell,G(ρ) = ζd(S, d− 2), (32)

for d > 2. The proof is based on the same arguments as [113, App. B], and on results from [27, 26,
28]. In a way, the second and third terms of the energy in (29) are only useful to give a meaning
to the problem. They vanish in the limit N → +∞. The point s = d − 2 is always smaller than
the pole s = d, hence the importance of studying the zeta function at this point. For d = 3,
the numerical simulations presented in this article indicate that the body centered cubic lattice
(BCC) is the unique global minimizer, as conjectured by Wigner. Proving this fact is still an open
problem. In dimension d = 2, the energy has a logarithmic singularity which needs to be removed,
but the problem is similar. In [155], Sandier and Serfaty used Montgomery’s result to prove that
the optimal lattice in 2D is the hexagonal lattice, in the limit s → 0.
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Physicists usually rely on the integral representation (24) to compute the value of the zeta
function and compare different lattices. As an example, the energies are approximately equal to

−ρ1/3





1.41865... for the simple cubic lattice (SC),

1.44415... for the face centered cubic lattice (FCC),

1.44423... for the body centered cubic lattice (BCC),

in dimension d = 3 [29, 87]. Using an argument due to Onsager [133], Lieb and Narnhofer managed
to prove in [118] that the true energy defined by (30) satisfies eJell(ρ) ≥ −ρ1/31.4508... for any
ρ > 0. This value is very close to the expected one. However, the proof of Wigner crystallization
is still an open problem, in dimension d ≥ 2.

Let us point out that Wigner’s model has been recently studied and reformulated in [157, 147,
136]. In these articles, the energy eJell(ρ) is called renormalized energy and is defined directly on
sets of points (which need not be periodic), without using the thermodynamic limit N → ∞.

3.6. Crystallization problem in other situations. In this section, we present a few questions
that can be formulated as crystallization problems, as stated above, or as Wigner’s problem. This
shows that the problem is universal.

3.6.1. Confined systems in the mean-field limit. The crystallization problem appears in highly
dense systems. Here, a change of scale is needed so that we recover a problem set in the whole
space. The prototypical situation is to minimize the energy

EVext(N) = min
xi





1

N

∑

1≤i<j≤N

V (xi − xj) +

N∑

i=1

Vext(xi)



 , (33)

where Vext is a confining potential, which tends to +∞ at infinity. The coefficient 1/N multiplying
the interaction allows for both terms to be of the same order of magnitude in the limit N → +∞.
This is called the mean field regime. An example of interaction V is given by V (x) = |x|−s with
0 < s < d, or V (x) = − log |x|. Most commonly used confining potentials are the harmonic
potential Vext(x) = |x|2, and the potential

Vext(x) =

{
0 if x ∈ M,

+∞ otherwise,

which amounts to impose that all the particles stay in the set M ⊂ R
d. The set M can be a

bounded domain like a ball, or a zero-measure set such as a sub-manifold of Rd, of dimension
strictly smaller than d.

If d = 3 and M = S2 is the unit sphere, and if V (x) = |x|−1, the problem is referred to as Thom-

son problem [169]. Finding the optimal positions of the particles on the sphere, even for a fixed
value of N , is a famous problem which has been solved only for some values of N . Many numerical
studies of the problem have been proposed, giving some insight on what the optimal configuration
should look like. This problem is one of the eighteen open problems mentioned by Smale in 1998
in [165]. It naturally occurs in many different situations: it is related to the construction of a set
of points which discretizes the sphere as uniformly as possible (the so-called Fekete points [152]);
in biology, this problem can explain the form of some viruses, and the repartition of pores on
pollen grains; it is also studied in link with “colloidosomes” [54] (Figure 9). If V (x) = |x|−s, with
d > s, and if M is a sub-manifold without boundary, of dimension d − 1, the problem is usually
called Riesz problem. We refer to [96] for a general presentation of the problem and numerical
simulations.

For the model (33), a second-order expansion is needed to find the crystallization problem.
Indeed, the leading order is, under appropriate assumptions, given by the mean-field theory

lim
N→∞

EVext(N)

N
= inf

σ probability

measure on R
d

{
1

2

∫ ∫
V (x− y) dσ(x) dσ(y) +

∫
Vext(x) dσ(x)

}
. (34)
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Figure 9. A colloidosome is a spherical shape made of colloids (polystyren molecules
here), which is described by Thomson model. This model consists in minimizing the
interaction |x|−s for particles on the sphere S2 ⊂ R

3. Scanning microscope picture,
from [54]. c© Picture reproduced with the authorization of the AAAS.

The measure σ, solution to this variational problem, is in general absolutely continuous with respect
to the Lebesgue measure, and gives the average repartition of the points in space. More specifically,

1

N

N∑

i=1

δxi ⇀ σ (35)

in the sense of measures. Since in Rd the points xi will have a typical distance of order N−1/d, the
measure σ plays the same role as the macroscopic measure M discussed in (8)–(9). For instance, in
the case of Thomson problem for which Vext confines the particles to the unit sphere S2 and V (x) =
|x|−1, the solution is unique and equal to the uniform measure σ = (4π)−1 on S2. This means
that the particles tend to be uniformly distributed on the sphere. For a general set M or general
confining potential Vext, proofs of (34) and (35) are given in [47, 109, 127, 37, 38, 104, 105, 146].

A change of scale is needed to be able to study accurately how particles are organized at
the microscopic scale. In order to do so, it is better if the potential V behaves appropriately
under dilations. In general, one assumes that V (x) = |x|−s (or V (x) = − log |x|, which formally
corresponds to the case s = 0). When Vext is smooth, after a dilation of N−1/d around a given
point x̄ ∈ Rd, the problem may be reformulated as Wigner’s problem in dimension d, with the
local density ρ = σ(x̄). The total limit energy is the superposition of these local problems, and
one finds

EVext(N) = aN +N
s
d eJell(1)

∫

Rd

σ(x)1+
s
d dx+ o(N

s
d )

where a is the constant given by (34), and where eJell(1) is the Jellium energy (30) for ρ = 1 with
interaction V (x) = |x|−s (this expansion is modified in the case V (x) = − log |x|). This result has
been recently proved by [157, 156, 145] in the case V (x) = − log |x| in dimensions d = 1, 2, in [147]
for the Coulomb potential s = d− 2, and in [136] for d− 2 < s < d.

In the case of a sub-manifold M ⊂ Rd, the scaling is modified, and one applies a dilation of
N−1/d′

where d′ is the dimension of M. It is expected that the same kind of results hold [176, 177,
88, 141, 32, 33], although it has not been proved yet, except in the case of the sphere in dimension
d = 2 with V (x) = − log |x| [36].

The asymptotics O(N) in (34) is only valid if V is locally integrable, so that the right-hand
side is finite. Several authors have studied the case of a potential which is not locally integrable,
typically V (x) = |x|−s for s ≥ d. In the case of a submanifold M of dimension d′, the corresponding

energy behaves like Ns/d′

(or N logN for s = d′). If s > d′, it was proved in [107, 92, 97, 124, 25]
that the corresponding term reads

lim
N→∞

EVext(N)

Ns/d′
= |M|−s/d′

e(1), (36)



16 XAVIER BLANC AND MATHIEU LEWIN

where e(1) is the minimal energy (16) corresponding to the crystallization problem on the whole
space with V (x) = |x|−s:

e(1) = lim
N→∞

|ΩN |→∞
N/|ΩN |→1


 1

N
inf





∑

1≤i<j≤N

|xi − xj |−s, xi ∈ ΩN






 .

As we pointed out in Section 3.4, the conjecture is that the particles are located on a hexagonal
lattice in dimension d′ = 2 and FCC when d′ = 3. In such a case, the right-hand side is equal to
ζd′(S, s) with S corresponding to the optimal lattice.

Except in dimension 1 [156, 111] for which the crystallization problem is better understood,
it seems that none of these works provide any new information on the crystal problem itself.
Nevertheless, they give an insight on how the crystallization problem naturally appears in many
different situations.

3.6.2. Vortices and crystallization in dimension 2. In dimension d = 2, the crystallization problem
surprisingly appears when studying fast rotating Bose-Einstein condensates or superconductors in
large magnetic field. Vortices are created, and their number grows with the rotation speed (or the
magnetic field intensity). When this number becomes large, they seem to form a hexagonal lattice,
called Abrikosov lattice in this context [2].

In fast rotating Bose-Einstein condensates, vortices may be modeled as particles interacting via
a potential. The corresponding energy may be computed using Jacobi theta function (26) [3]. In
this context, Montgomery’s result explains why the vortices should form a hexagonal lattice (see
Figure 10).

Vortex patterns for the Ginzburg-Landau equation of superconductivity have been widely stud-
ied in the mathematics literature (see [17, 18], the first articles on the subject, using simplified
models). Under some constraints on the magnetic field, there is a finite number of vortices which
behave like classical particles interacting via the (two-dimensional) Coulomb potential and sub-
mitted to a harmonic confining potential [153, 100, 162, 161, 154]. For extremely intense magnetic
fields, the number of vortices tends to infinity, and the limit problem becomes that of Wigner’s
crystallization (see Section 3.5), as shown in [155]. This explains, although it has not been proved
rigorously yet, why the hexagonal lattice appears in superconductors. We refer to [163] for a more
detailed presentation of this problem.

Figure 10. Left: Experimental pictures of fast rotating Bose-Einstein condensates:
the number of vortices increases with the rotation velocity. The experiments have been
conducted by Ketterle’s team [1] at MIT in 2001. c© Picture reproduced with the authoriza-

tion of the AAAS. Right: Numerical simulation of the Gross-Pitaevskii equation with the
software GPELab [10, 11], reproducing the vortex lattice in the corresponding regime.
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3.6.3. Ohta-Kawasaki model. The Ohta-Kawasaki model describes phase separation in copolymer
systems [132]. In its simplest version, it consists in minimizing the energy functional

ε |∂E|+ 1

2

∫

Ω

∫

Ω

(u(x)− ū)V (x− y)(u(y)− ū) dx dy

where Ω is a bounded domain of Rd and where u is allowed to take only the two values ±1, each
one corresponding to a phase of the system. The potential V is often assumed to be the Coulomb
or Yukawa interaction, with periodic boundary conditions on Ω if it happens to be a cube. One
then investigates the optimal configurations, as the parameters ε and ū vary. If ū = −1, then the
energy simplifies into

ε |∂E|+ 2

∫

E

∫

E

V (x− y) dx dy. (37)

A regularized version of the model consists in minimizing the energy functional

∫

Ω

(
ε2 |∇u(x)|2 + F (u(x))

)
dx+

∫

Ω

∫

Ω

(u(x)− ū)V (x− y)(u(y)− ū) dx dy,

where F is a non-negative function having as unique minimum points u = ±1. In the limit ε → 0,
this problem becomes equivalent to (37).

In dimension one, it has been proved that the minimizer is periodic [129, 8, 143, 45, 183, 84] if
ū = 0, for all ε > 0. Very few results exist in higher dimension [7, 46]. In the limit where one phase
is strongly favored (ū ∼ 1) and ε → 0, it has been proved that, here again, the opposite phase −1
is a solution to Wigner crystallization problem [89, 90].

A proof of crystallization on the hexagonal lattice (in 2D) has been recently given in [30] for a
different copolymer model. In this theory, the second term in (37) is replaced by the Wasserstein
distance W to the Lebesgue measure. Hence, the energy is defined for point measures µ having
their support in Ω ⊂ R2. It reads

E(µ) = ε
∑

z∈supp(µ)

√
µ({z}) +W(1Ω, µ),

and crystallization is proved for any ε > 0 if Ω has appropriate symmetries, and if ε is suffi-
ciently small (or equivalently if ε > 0 is fixed and |Ω| → ∞). In the limit ε → 0 it had been
proved previously that the hexagonal lattice minimizes the Wasserstein distance to the Lebesgue
measure [130].

3.7. The macroscopic object and its microscopic structure. We mentioned above the ques-
tion of proving the existence of a macroscopic measure M, obtained as the weak limit (9). This is
related to the formation of a macroscopic object. Another question is to know what kind of object
is formed, that is, to compute the measure M.

This problem seems different from the local behavior of the particles. However, the hexagon in
Figure 1 indicates that a link exists with the microscopic scale. Indeed, if exact crystallization is
assumed, that is, if the particles are restricted to be on the vertices of a periodic lattice for all N ,
then it is possible to write a limit minimization problem for the surface energy, which coincides
with the second-order term in the development of E(N). This term is of order N (d−1)/d. It has
been proposed by Wulff [181], and proved rigorously for a hard sphere model2 in dimension two by
Au Yeung, Friesecke et Schmidt in [13, 160]. This work is based on results by Radin et al [138, 98].
We refer for instance to [22, 21, 44] for similar results on the Ising model, based on probabilistic
techniques.

These works assume that the particles form a subset of a given periodic lattice for all N , which
is true only for very specific interaction potentials V . It would be interesting to generalize these
results to more general cases. However, this problem is a priori a very difficult one, since a good
knowledge of the leading order term of E(N) is needed to understand the next one. And this
problem is exactly the crystallization problem.

2That is, V ≡ +∞ sur [0, 1− ε), V ≡ 0 on [1 + ε,∞) and min(V ) = V (1) < 0, with small ε.
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4. Extensions

4.1. Positive temperature. Until now we have only considered the problem of minimizing the
energy, that is, we have assumed the temperature to be 0. As a matter of fact, it seems relevant
to assume that crystallization only occurs for small temperature [140]. At positive temperature
T > 0, the problem may be formulated in the same way, up to the fact that the point particles are
replaced by a probability density on RdN (recall that N is the number of particles), and that an
entropy term is added to the energy. In such a case, one needs to confine the system, which may be
done by imposing that the particles are restricted to be in a bounded domain Ω, as in Section 3.3.
Another possibility is to work in the whole space Rd, and add a confining external potential Vext

to the energy EN , that is, a term of the form
∑N

j=1 Vext(xj), with Vext(x) → +∞ when |x| → +∞,

as was done in (33). As before, the confinement in a domain Ω is equivalent to using the external
confining potential

Vext(x) =

{
0 if x ∈ Ω,

+∞ otherwise.

An advantage of this setting is that the problem becomes translation invariant in the thermody-
namic limit.

Formulation. The situation is slightly simpler than in the case T = 0, since the minimizer of the
free energy is unique and explicitly known: it is the Gibbs measure3

PΩ,N,T (x1, ..., xN ) =
e−

EN (x1,...,xN )

T∫

ΩN

e−
EN (x1,...,xN )

T dx1 · · · dxN

. (38)

This distribution concentrates on the minima of EN when T → 0. This probability measure is a
minimizer of the free energy

FΩ,N,T := min
P symmetric probability

measure on ΩN

{∫

ΩN

EN (x1, ..., xN )P (x1, ..., xN ) dx1 · · · dxN

+ T

∫

ΩN

P (x1, ..., xN ) logP (x1, ..., xN ) dx1 · · · dxN

}
, (39)

in which the first term is the energy of the system, and the second one is the opposite of the entropy.
The symmetry of P accounts for the fact that the particles are identical and indistinguishable. The
solution of this problem is unique, given by (38), and satisfies FΩ,N,T = −T log

(∫
ΩN e−EN/T

)
.

In order to formalize the crystallization problem at positive temperature, it is convenient to
consider the limit of the empirical measures (also called k-point correlation functions), which
are similar to the measure µN introduced in (10). To be more precise, we define the family of
probability measures, obtained by integrating with respect to all variables except k of them:

µ
(k)
Ω,N,T (x1, ..., xk) =

N !

(N − k)!

∫

ΩN−k+1

PΩ,N,T (x1, ..., xk, yk+1, ..., yN) dyk+1 · · · dyN (40)

and we say that crystallization occurs if all the measures µ
(k)
ΩN ,N,T locally converge (possibly up

to extraction of a subsequence) to some locally finite measures µ
(k)
ρ,T in the thermodynamic limit

N → ∞ with N/|ΩN | → ρ, and if these measure are invariant under the action of a (maximal)
group G:

∀g ∈ G, µ
(k)
ρ,T (x1 + g, ..., xk + g) = µ

(k)
ρ,T (x1, ..., xk).

Here again the limit may depend on the subsequence, or on the sequence of domains (ΩN ). For
instance, it is possible for the object obtained in the limit to be a convex combination of translates

of the minimizing lattice, in which case, µ
(1)
ρ,T is a constant. In order to find the actual period of

the lattice, one then needs to study µ
(k)
ρ,T for k ≥ 2.

3It is also possible to consider the Hamiltonian (1), but the Gibbs measure e−HN/T can then be factorized and
the variables pi do not play any role. The situation is different in the quantum case (Section 4.3).
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In the zero-temperature case, we only considered the measure µ(1), which appears in (11). The
reason for this is that, in such a case, the total probability is

PΩ,N (y1, ..., yN) =
1

N !

∑

σ∈SN

δxσ(1)
(y1) · · · δxσ(N)

(yN )

where x1, . . . , xN is a solution to problem (2). Because of this specific form, local convergence for

k = 1 to µ implies that all the other empirical measures µ
(k)
ρ (x1, ..., xk) converge to µ(x1) · · ·µ(xk).

Such a property is unclear for T > 0.

Known results. Few results have been proved at positive temperature. Actually, one expects
crystallization only for T small enough. In this respect, Wigner’s problem described in Sec-
tion 3.5 is an exception for which crystallization occurs for any T and any density ρ. This
has been proved in dimension d = 1 [108, 31, 4]. Numerical simulations indicate that, in di-
mension d ≥ 2, there exists a critical temperature Tc such that, if T > Tc, then Jellium is not
crystallized [34, 95, 137, 78, 6, 52, 5, 167, 55, 23].

Link with random matrices. The N eigenvalues of an N ×N matrix with random coefficients are,
in some situation, distributed according to the Gibbs measure of a gas of particles. The effective
interaction potential will usually be V (x) = − log |x|, and the dimension d = 1 (if the eigenvalues
are real) or d = 2 (if they are complex). If the entries of the matrix are independent Gaussian
variables, the statistical distribution of the eigenvalues λ1, ..., λN is given by the Gibbs measure (38)
with

EN(λ1, ..., λN ) = − 1

N

∑

1≤k<ℓ≤N

log |λk − λℓ|+
N∑

j=1

|λj |2.

For hermitian matrices (GUE, that is, Gaussian Unitary Ensemble), the problem is set in Ω =
R, since the eigenvalues have no imaginary part. In such a case, the temperature is equal to
T = 1/(2N). If one imposes that the matrices have real coefficients (GOE, that is, Gaussian

Orthogonal Ensemble), the temperature is T = 1/N . When considering complex matrices without
any symmetry assumption (Ginibre ensemble), we have the same formula, but the λi are now in
Ω = C = R2 and the temperature is T = 1/(2N).

It is also possible to consider unitary or orthogonal matrices (CUE for Circular Unitary En-

semble, and COE for Circular Orthogonal Ensemble, respectively), using the uniform law on this
compact subset of matrices. Then, the eigenvalues are distributed according to the Gibbs mea-
sure (38) with

EN(λ1, ..., λN ) = − 1

N

∑

1≤k<ℓ≤N

log |λk − λℓ|,

this time restricted to the unit circle Ω = S1.
Studying the eigenvalues of random matrices and the link with Coulomb gas is a very active

subject, which started with the seminal works of E. Wigner [179, 180] and F. Dyson [56, 57, 58,
61, 126]. The interest of the set of matrices we just mentioned is that they allow for explicit
computation of empirical measures, hence a good knowledge of the statistics of theses eigenvalues.
Since T behaves like 1/N , the first order corresponds to the zero-temperature setting. The average
distribution of the eigenvalues is given by the measure σ solution to the minimization problem
in (34). The next order is more complex and its link with the crystal problem is less clear [58]. We
refer for instance to [125, 72, 9] for a detailed study of the subject.

4.2. Several types of particles. In order to deal with long-range interactions (for instance
Coulomb potential), as in Wigner problem presented in Section 3.5, it is possible to add a back-
ground homogeneous density making the system globally neutral. Another model, more important
from a practical viewpoint, is the case of two (or more) different types of atoms or ions, with
different charges. One can think for instance of sodium chloride crystal, which is made of two face
centered cubic lattices, one (Na+ ions) shifted with respect to the other (Cl− ions).

For the sake of simplicity, let us consider only two types of particles. The interaction between
two identical particles is different from the interaction between two different ones. We are thus led
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to the energy

EN1,N2 (x1, . . . , xN1 , y1, ..., yN2)

=
∑

1≤i<j≤N1

V11 (|xi − xj |) +
∑

1≤i<j≤N2

V22 (|yi − yj |) +
N1∑

i=1

N2∑

j=1

V12 (|xi − yj |)

where xi and yi are the positions of the particles of each type. We study the limit N1, N2 → ∞,
possibly imposing a link between N1 and N2, accounting for a charge difference between the two
types of particles. Thinking of a 3D crystal composed of charges of opposite sign q1 et −q2, we
assume that

V11(|x|) ∼
|x|→∞

q21
|x| , V22(|x|) ∼

|x|→∞

q22
|x| , V12(|x|) ∼

|x|→∞
−q1q2

|x| ,

and we impose the neutrality condition q1N1 − q2N2 → 0 in the limit. For such a classical model,
Coulomb interaction is not adapted, since the energy tends to −∞ as two particles of opposite
charge get closer to each other, and the model is unstable (note, however, that it is stable in the
quantum case, as it was proved by Dyson-Lenard [59, 112] and Lieb-Thirring [120]). Hence, one
needs to assume that the potentials V11 V22 and V12 are strongly repulsive at short distance |x| → 0.

Several conjectures have been made concerning the optimal lattices [29], but we do not know
any result on the crystal problem with several types of particles. Thinking of crystalline structures
currently observed in nature, it is a highly important question from a physical viewpoint. A
review of known results in 3D for high temperature (hence without crystallization) is given in [35].
In [139] Radin considers special short-range potentials for two types of particles, and proves that
crystallization fails, but the minimizers are quasi-periodic.

4.3. Quantum models. In the classical models studied so far, the kinetic energy of the particles

does not play any role, since we deal with minimizers or Gibbs states. The term
∑N

j=1 |pj |2/(2m)

in (1) disappears in the minimization problem, and factors out and gives a Gaussian at positive
temperature in (38). The situation is different in quantum mechanics, in which there is a link
between velocity and position, in order to respect Heisenberg’s uncertainty principle. This makes
the kinetic energy dependent on the positions of the particles. More precisely, quantum mechanics
principles imply that pj should be replaced by the differential operator −i~∇xj and that the
Hamiltonian HN (p1, ..., pN , x1, ..., xN ) in (1) should be replaced by the differential operator

HN = −
N∑

j=1

~
2

2m
∆xj +

∑

1≤k<ℓ≤N

V (xk − xℓ). (41)

This operator acts on L2(ΩN ), where Ω = Rd for an unconfined system, and where Ω is a bounded
domain if the system is confined (with suitable boundary conditions). Since the particles are
indistinguishable, we work with a subspace of L2(ΩN ) consisting of functions having a prescribed
symmetry property. In nature one can find two types of particles: bosons and fermions. For
bosons, we use the subspace L2

s(Ω
N ) of functions which are symmetric with respect to variable

permutations. For fermions, we use the subspace L2
a(Ω

N ) of functions which are antisymmetric.
Properties of the system in the limit N → ∞ depend on the chosen symmetry class. For the sake
of simplicity, we ignore the spin variable.

The classical problems studied so far read, in the quantum case,

Ea/s,Ω(N)

= inf
Ψ∈L2

a/s(Ω
N )

∫
|Ψ|2=1

∫

ΩN


 ~2

2m
|∇Ψ(x1, ..., xN )|2 +

∑

1≤k<ℓ≤N

V (xk − xℓ)|Ψ(x1, ..., xN )|2

 dx1 · · · dxN

(42)

and

Fa/s,Ω(N) = −T log
(
trL2

a/s
(ΩN )e

−HN/T
)

for the free energy (39). In the semi-classical limit ~ → 0, these energies converge (up to a constant
which diverges like log ~ for Fa/s,Ω(N)) to the corresponding classical energies.
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Quantum mechanics is by nature a probabilistic theory and the study of crystallization uses the
weak limit of the empirical measures, as in the case of positive temperature classical model. For
instance, one can study the limit of k-points densities

µ
(k)
Ω,N (x1, ..., xk) :=

N !

(N − k)!

∫

ΩN−k

|ΨΩ,N (x1, ..., xk, yk+1, ..., yN )|2 dyk+1 · · · dyN

where ΨΩ,N is a minimizer of problem (42) (this minimizer is always unique, up to a phase,
for bosons, but it is not necessarily unique for fermions). A similar formula is valid at positive
temperature, expressed in terms of the Gibbs operator Z−1

T e−HN/T , but we do not enter such

details. The measure µ
(k)
Ω,N is a classical object which does not carry all the information on the

system (for instance the probability associated with the kinetic energy involves |Ψ̂|2 instead of
|Ψ|2). It is more relevant to study the limit of k-body density operators, which are defined by their
integral kernel

γ
(k)
Ω,N (x1, ..., xk, x

′
1, ..., x

′
k)

:=
N !

(N − k)!

∫

ΩN−k

ΨΩ,N(x1, ..., xk, yk+1, ..., yN )ΨΩ,N (x′
1, ..., x

′
k, yk+1, ..., yN ) dyk+1 · · · dyN , (43)

which diagonal part coincides with µ
(k)
Ω,N . We say that the system crystallizes if theses operators

locally converge to operators γ(k) which commute with translations of a (maximal) lattice G, that
is,

∀g ∈ G, γ
(k)
Ω,N (x1 + g, ..., xk + g, x′

1 + g, ..., x′
k + g) = γ

(k)
Ω,N (x1, ..., xk, x

′
1, ..., x

′
k).

Few results have been proved for the crystal problem in the case of continuum quantum sys-
tems. In particular, one could think that, when a classical system exhibits crystallization, so
does the quantum corresponding system if ~ is sufficiently small. This has not been studied, to
our knowledge, except in the case of Coulomb gas (quantum Jellium) for which Kunz [108] and
Brascamp-Lieb [31] have proved crystallization for small density ρ in dimension d = 1. After a
change of scale, assuming that ρ is small is equivalent to assuming ~ is small, so the situation is
indeed a semi-classical limit. Crystallization for 1D quantum Jellium (at any density ρ and any
temperature T ) has been recently proved by Jansen and Jung [99].

Some results have been proved for quantum systems described by nonlinear models, such as
Thomas-Fermi or Hartree. Assuming that the nuclei are classical particles with positive charge
and are distributed on a lattice, it has been proved for convex models that the electrons are
periodically arranged [119, 41, 42, 43, 39]. If in addition one optimizes over the positions of the
nuclei, then crystallization is only known in 1D for Thomas-Fermi type models [20].

4.4. Discrete systems. In our review, we focused on continuous systems, defined in the whole
space or in a domain ΩN which grows as N → +∞. An important literature is devoted to the
study of discrete systems. Such systems are defined on a lattice G ⊂ R

d, without assuming a priori

that the corresponding states are G-periodic. We expect that proving that the system is periodic
is easier, since a natural periodic lattice is already present in the definition of the system. Many
rigorous results have been proved for this kind of problems, although important questions are still
unsolved. The models considered can be either quantum or classical.

Examples of such systems are the (classical or quantum) Heisenberg or Ising models. Two main
regimes are usually dealt with: the ferromagnetic one, in which spins tend to be aligned with each
other, and antiferromagnetic in which spins are preferably of alternate sign. In this latter case,
crystallization gives a periodic lattice which size is twice that of the original one.

In 1986, Kennedy and Lieb have considered two systems of this type. In [101, 102, 114], they
study electrons on a lattice, submitted to a pointwise interaction with fixed particles of opposite
spin. They prove that the electrons are located on a sub-lattice. In [103] they consider a 1D system
on the lattice Z. This model describes for instance deformations of a polyacetylene molecule. They
prove that the minimizer is periodic of period 2, a phenomenon called Peierls instability. This result
has been further developed in [116, 115, 117]. It has been generalized in [79], and extended to the
hexagonal lattice in 2D in [73].

Apart from systems with analytical solutions, an important method for studying classical or
quantum spin systems is the reflection positivity method. This strategy has been introduced in
field theory [135], then adapted and developed in the case of spin systems [77, 60, 76, 74, 75].
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This method aims at proving phase transitions and long-range order. However, it does not always
allow to conclude that the system is periodic. For recent examples of application of this theory to
crystallization problems, see for instance [82, 83, 85, 86].

Conclusion

We have described several aspects of an important problem arising in physics and which, in spite
of an intense activity, is still not completely understood mathematically. In addition to the famous
crystallization problem, several questions have been reported on, some of which are probably more
at hand than others. Some progress in any of these directions would be of high interest and would
improve the theoretical understanding of the structure of matter at the microscopic scale. We hope
that this article will stimulate further research in these directions.
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