
Local Trajectory Planning and Tracking of Autonomous Vehicles, Using
Clothoid Tentacles Method

Alia Chebly, Gilles Tagne, Reine Talj and Ali Charara

Abstract— In general, autonomous navigation requires three
key steps, the perception of the environment surrounding the
vehicle, the trajectory planning and the actuators control.
Numerous works on the localization, perception, generation
of occupancy grids and control of vehicles were developed
within the ASER team at Heudiasyc laboratory. The work
presented in this paper covers, essentially, trajectory planning
and is based on the results of these works. The challenge is
to avoid static and dynamic obstacles at high speed, using
real time algorithms. The planning method developed in this
work uses an empirical approach for local path planning. This
approach consists on drawing clothoid tentacles in the ego-
centered reference frame related to the vehicle. An occupancy
grid represents the environment surrounding the vehicle and is
considered to be ego-centered around it. Using the information
of the occupancy grid, each tentacle is classified as navigable or
not navigable. Among the navigable tentacles, only one tentacle
is chosen as the vehicle reference trajectory using several
criteria. The chosen tentacle is then applied to the vehicle
using a lateral controller based on Immersion and Invariance
principle (I&I).

I. INTRODUCTION

Autonomous driving technology is a field of research
that aims to achieve the optimum in automotive safety and
comfort. This field has received considerable interest in
the academic, industrial and military domains. In fact, the
development of autonomous vehicles requires the use of
perception, path planning and control technologies. The work
presented in this paper focuses on trajectory planning for
autonomous vehicles navigation. The purpose of planning
is to compute a local trajectory based on several criteria in
order to avoid obstacles while following a global trajectory
defined by a GPS or a global map. To achieve this goal, we
first collect the information acquired from the perception of
the vehicle environment, then, by applying our algorithm,
we generate a path that seems to be the best path to follow
and finally the vehicle is controlled in order to follow the
chosen path. The controller used in this work is based on
the notions of system immersion and manifold invariance
(I&I) and is presented later in the paper. Most approaches
caring about obstacle avoidance are local, they do not seek to
model the environment as a whole but rather they use sensor
measurements to deduce secure orders [7]. We present below
some local planning methods developed in the literature.
The Wall Following Algorithm presented in [16], aims to
move a robot in a desired direction throughout a wall or
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parallel to it. This method requires only a single distance
sensor and is often used in indoor applications.
Another algorithm, presented in [8], is the Potential Fields
Method. This method defines a function that affects large
potential to obstacles and low potential to objectives points
of the trajectory. Thus, the problem is reduced to an opti-
mization problem that aims to find the commands causing
the robot to a global minimum of the function. There are
many extensions to this method such as the virtual force
fields [3], the field vector histograms [4], VFH + extensions
[13] and VFH [14]. Unfortunately, the implementation of
these methods requires a lot of calculation which may be
constraining in real-time navigation applications. In addition,
the function may converge to a local minimum instead of the
global minimum.
The technique of SLAM (Simultaneous Localization And
Mapping) considers an autonomous vehicle, placed at an
unknown location in an unknown environment [11] and asks
if it is possible to simultaneously build an incrementally map
of environment while locating the vehicle in a fixed cartesian
coordinate system related to the earth. Theoretically, SLAM
can now be considered a solved problem. However, important
issues remain realizing more general SLAM solutions [6].
The Tentacles method imitates the behavior of an insect
that uses its antennae to detect and avoid obstacles. Indeed,
the basic approach is to use a set of virtual antennas that
we call tentacles and an egocentric occupancy grid around
the vehicle [15]. The occupancy grid expresses the state
of the environment surrounding the vehicle and determines
obstacles positions, in case of their existence. The tentacle
is a geometric shape that models the likely trajectory of the
vehicle and we can find in the literature multiple shapes of
tentacles.
In [15], the shape adopted for tentacles is circular. The weak-
ness of this approach appears in considering all the tentacles
generated for a certain speed as trajectory candidates even
if their curvature is not well-suited to the current vehicle
steering angle. Moreover, the width of each tentacle used
to decide whether the tentacle is free of obstacles or not is
much larger than necessary, almost twice the width of the
vehicle [8], to take into account the transient phase needed
to converge to the trajectory, given that the initial dynamical
state of the vehicle is not considered in the tentacles shape.
In [5], [7], the tentacles used allow the vehicle to go to
the left or the right side with different offset shifts, while
remaining substantially parallel to the base path. This form of
tentacle is well-suited for high speed but its major drawback
is its dependence on the base path.



In [8], the form of clothoids was adopted for off-road
autonomous navigation. This kind of tentacle considers the
current steering angle of the vehicle so the tentacle width
used to decide whether this tentacle is free or not could be
slightly higher than the vehicle width.
As the tentacles method is assumed to be a fast reactive
method and as the form of clothoid makes the approach
more realistic, the tentacles method with clothoid forms
was adopted in our work. The algorithms were done in
MATLAB and then validated using data acquired from a
vehicle navigation simulator (Scaner Studio). We present in
Section II our navigation strategy. Section III reports some
results, on both simulated and real data, while Section IV
concludes the paper.

II. PRESENTATION OF THE NAVIGATION
STRATEGY

Our path planner algorithm must generate a trajectory
able to avoid obstacles and push the vehicle toward the
reference trajectory. The first step is the tentacles generation.
Then, to guarantee a secure navigation, we generate around
each tentacle a classification zone defined later in the paper.
In parallel, using sensors data, we construct an occupancy
grid that clearly shows the environment state around the
vehicle. The superposition of the classification area with the
occupancy grid allows us to determine which tentacles can
be classified as a secure path. These tentacles are called
navigable tentacles. If we find several navigable tentacles, we
have to choose the best tentacle using certain criteria defined
afterwards. The best tentacle is then considered as a trajec-
tory to execute. In order to execute the selected trajectory, a
path tracking controller derives the steering angle commands
from the geometric parameters of the selected tentacle. If
we can’t find any navigable tentacle, we search the tentacle
having the greatest distance to the first obstacle and we
proceed to brake the vehicle with a constant deceleration
along this tentacle.

A. Occupancy Grid

The occupancy grid is a metric and discrete representation
used in robotics. It represents the environment around the
vehicle by a set of square cells where each cell could corre-
spond to a free or occupied space. To construct it, the vehicle
must be equipped with a set of sensors (camera, LIDAR,
radar). In our work, we used a LIDAR installed in the front
axis of the vehicle as shown in Fig. 1. The LIDAR uses laser
beams to detect the presence of obstacles and determine their
positions. The sensor provides a measurement every rotation
period (100 ms in our work).

At every moment the sensor provides a new measure, the
instant occupancy grid, considered to be ego-centered around
the vehicle, is built. This 2D occupancy grid is constituted of
800∗800 cells for the simulation section and 400∗400 cells
for the experimental part. The size of each cell is 25cm ∗
25cm. We do not accumulate data as the frequency used for
grid generation seems sufficient to ensure safe navigation.
Fig. 2 shows an occupancy grid example where in the right

Fig. 1: The LIDAR mounted on the experimental vehicle.

panel we can see the real road image and in the left one the
resulting grid. The green color in the occupancy grid shows
a navigable space, the red shows an obstacle while the blue
represents a noise or an uncertain cell. In the simulation,
an occupied cell will have the value 1 and a free cell will
have the value 0. Note that the blue cells are considered as
occupied cells.

(a) (b)

Fig. 2: Occupancy grid example: (a) Occupancy grid, (b)
Real road image

B. Tentacles Generation

In our system, the vehicle speed covers a range from 0 to
15 m/s. A set of 41 tentacles is generated at each speed. All
the tentacles are represented in the vehicle local coordinate
system. They start from the vehicle center of gravity and take
the form of clothoids. The clothoid has a linearly variable
curvature with respect to the curvilinear abscissa [2]. Its
expression is presented by

ρ =
2
k2 s

where ρ is the clothoid curvature, s is the curvilinear abscissa
and k is a constant. To draw a clothoid, we use a function,
as in [2], that takes as input the clothoid curvature at initial
point ρ0, the curvature variation with respect to clothoid
arclength ∆ρ

∆l
, the lenght of the clothoid curve from initial to

final point Ltentacle, the number of points along the clothoid
n, the orientation (yaw angle) of the vehicle at the initial
point of the clothoid φ0 and the coordinates of initial point
(x0 y0). This function samples the clothoid to Ltentacle

n points
and for each point i the following integrals ((1) and (2)) are
calculated as, [2]:

I1 =
∫

t cos(
∆ρ

∆l
i2

t2

2
+ρ0ti+φ0)dt (1)

I2 =
∫

t sin(
∆ρ

∆l
i2

t2

2
+ρ0ti+φ0)dt (2)

xi and yi calculated by (3) and (4) respectively, represent the
coordinates of the point i of the clothoid.



xi = x0 + i∗ I1, (3)
yi = y0 + i∗ I2, (4)

Consequently, we can draw the clothoid specifying just
the initial curvature ρ0, the curvature variation with respect
to the clothoid length ∆ρ

∆l
and the clothoid length Ltentacle (x0,

y0 and φ0 will be set to zero).
We assume that all the tentacles have the same length Ltentacle
at a given vehicle speed Vx. This length is calculated by

Ltentacule(m) =

{
t0 Vx −L0 Vx > 1(m/s)
2 (m) Vx ≤ 1(m/s)

(5)

where t0 = 7s and L0 = 5m are chosen so that the clothoid
form corresponds to a feasible trajectory by the vehicle. The
initial curvature of the tentacles is calculated from the current
vehicle steering angle and depends on the vehicle speed [12],
namely,

ρ0 =
tanδ0

L
where δ0 is the current vehicle steering angle and L is the
vehicle length.
The last step for the generation of our tentacles is to specify
∆ρ

∆l
for each tentacle. We define the maximum curvature

ρmax as the maximum trajectory curvature that a vehicle can
execute at a given vehicle spped Vx [12], namely,

ρmax =
amax

V 2
x

where amax is the maximum lateral acceleration that guaran-
tees stability of the vehicle.
We consider that the tentacles curvatures at a length Lc
vary between −ρmax and +ρmax where Lc is the distance
of the collision (defined later in the paper). The variation in
curvature ∆ρ

∆l
is calculated from the following formula [2],

ρ0 +
∆ρ

∆l
Lc = ρmax.

Consequently, each tentacle has a curvature varying from
ρ0 to ρend , where ρend is the final curvature on each tentacle
and is calculated by

ρend = ρ0 +
∆ρ

∆l
Ltentacle.

Hence, for the first tentacle, ∆ρ

∆l
is set to −ρmax−ρ0

Lc
and for

the last tentacle ∆ρ

∆l
is set to ρmax−ρ0

Lc
. For other tentacles,

the vector ∆ρ

∆l
is sampled from −ρmax−ρ0

Lc
to ρmax−ρ0

Lc
taking a

number of samples equal to the number of tentacles (here
41 samples). We can see in Fig. 3, the clothoids computed
for different speeds and different initial steering angles.

C. Navigable Tentacles Selection

The output of our path planner is a tentacle considered
as a trajectory to execute. However, as the vehicle can not
precisely follow the tentacle shape, and to take into account
the width of the vehicle, an area called classification zone
is defined around the tentacle in order to guarantee a secure
navigation. This area includes cells within a radius dc to any

(a) (b)

(c) (d)

Fig. 3: Different clothoids at different speeds and different
initial steering angles: (a) Vx=6m/s δ0=0.1rad, (b) Vx=6m/s
δ0=0.3rad, (c) Vx=10m/s δ0=0.1rad, (d) Vx=10m/s δ0=0.3rad

Fig. 4: Classifiction zone [15].

point on the tentacle. Using the clothoids form, the distance
dc is taken slightly greater than the width of the vehicle,
unlike the case of circular arcs where dc is taken almost
two times greater than the vehicle width. The geometrical
description of this area is shown in Fig. 4.

In our system, the dc value is empirically specified (in m)
for each speed by

dc =

{
1.4+0.2 Vx

3 m Vx < 3m/s
1.6+0.6 Vx−3

15 m 3m/s <Vx < 15m/s

where Vx defines the vehicle speed. The collision distance
Lc, defined in (6), is the distance required to stop the
vehicle traveling at a speed Vx with maximum longitudinal
deceleration acmax that maintains passenger comfort.

Lc =
V 2

x

acmax

(6)

where acmax is the maximum longitudinal deceleration of the
vehicle, taken in our implementation as acmax = 1.5 m/s2.

In our approach, the tentacle is classified as non-navigable
if an obstacle is detected within a distance less than the
collision distance Lc. If the obstacle is beyond Lc, the tentacle
is classified as navigable.



D. Best Tentacle Choice

Only one tentacle among navigable tentacles is chosen
as the best tentacle using three criteria Vclearance, Vcurvature
and Vtra jectory defined below. This tentacle is then used
as the vehicle’s driving path. The three criteria should be
calculated for each navigable tentacle. They are normalized
to the interval [0, 1] and then linearly combined into a single
function, namely,

Vcombined = a0Vclearance +a1Vcurvature +a2Vtra jectory

where a0, a1 and a2 are weighting parameters that can be
used to change the behavior of our approach. This amounts
to prefer a criteria more than another. Subsequently, each of
these three criteria will be described apart.

1) Clearance Criterion: This criterion expresses the dis-
tance that the vehicle can drive along a tentacle before
hitting an obstacle. To calculate this value using (7), we
directly calculate the distance between the vehicle and the
first obstacle found on the tentacle L0 using the occupancy
grid and the classification zone of the tentacle.

Vclearance(L0) =

{
0 free tentacle
2− 2

1+e−c∗L0
otherwise

(7)

where c is a constant calculated to obtain Vclearance (L0.5) =
0.5 at a distance L0.5 = 20m taken in our implementation as
c = ln(1/3)

L0.5
.

2) Change of Curvature Criterion: The value of this
criterion indicates the change of curvature on the clothoid. It
aims to provide a smooth path and prevent a wide -variation
in steering. It is calculated by

Vcurvature =

∣∣∣∆ρ

∆l

∣∣∣
2ρmax

Lc

3) Trajectory Criterion: The value of Vtra jectory pushes
the vehicle to follow a global reference trajectory, defined
for example by GPS waypoints and a global map. However,
the simplest method to estimate Vtra jectory is to consider a
single point on the tentacle taken at the collision distance
Lc and its corresponding point on the trajectory as shown in
Fig. 5. For each tentacle, a measurement Vdist is calculated as
shown in (8) by taking both the distance b between the point
on the tentacle and its corresponding point on the trajectory
as well as its relative tangent orientations α [15]. Vtra jectory is
then the normalized value of Vdist . The combination of these
two parameters (b and α) in the evaluation of the trajectory
criterion leads us to choose the most oriented tentacle toward
the reference trajectory even if the lateral error (represented
by b) is not small.

Vdist = b+ caα (8)

Vtra jectory =
Vdist −Vmin

Vmax −Vmin
(9)

where ca represents a scale between the linear distance and
the tangent orientations (ca = 0.3 m/rad) ,Vmax and Vmin are

Fig. 5: Vtra jectory criterion calculation [15].

the maximum and minimum values of Vdist calculated for all
the tentacles.

E. Trajectory Tracking

The best tentacle selected by the path planner is considered
as a trajectory to execute. The vehicle is then controlled by
a path controller that derives the steering commands from
the selected tentacle parameters. The controller used in this
work, is based on Immersion and Invariance principle (I&I).
The main idea of the I&I approach is to achieve the control
objective by immersing the plant dynamics into a (possibly
lower-order) target system that captures the desired behavior
[1]. In fact, the I&I theory is to define a target dynamics and
to design a control law that renders the manifold of the target
dynamics attractive and invariant. In other words, we have to
find a manifold in state-space that can be rendered invariant
and attractive; with internal dynamics reflecting the desired
closed-loop dynamics and to design a control law that brings
the state of the system towards the manifold.

The main objective of the steering controller is to can-
cel the lateral error displacement with respect to a given
trajectory, i.e., e = ė = 0 at the equilibrium. We define the
off-the-manifold variable

z = ė+λe, s.t. λ > 0 (10)

The control input should be selected in such a way that
the trajectories of the closed-loop system are bounded and
z = ė+ λe converges to zero. Notice that, when z → 0, e
converges exponentially to zero with the rate of convergence
λ , yielding to the desired result. To this end, we choose

ż =−Kz, with K > 0. (11)

where K represents the rate of exponential convergence of
z to zero. After some calculations, one can find that the
corresponding control input has the following expression:

δI&I =−m(K+λ )
C f

ė− mKλ

C f
e+ C f +Cr

C f
β

+
L f C f −LrCr

C f Vx
ψ̇ + mV 2

x
C f

ρ
(12)

where m , C f , Cr, L f , Lr are the vehicle parameters and
correspond to the vehicle mass, the cornering stiffness of
the front tire, the cornering stiffness of the rear tire, the
distance between the front axle and the vehicle center of
gravity and the distance between the rear axle and the
vehicle center of gravity respectively; ψ̇ , β , e, ė are the
dynamic variables of the vehicle and define the yaw rate, the
sideslip angle, the lateral error and its derivative respectively,



while ρ corresponds to the desired curvature. The design of
this controller guarantees robust stability and some a priori
known performances (the response time of the controller
is entirely determined by the parameters K and λ ). In
[10], the controller is validated according to several real
driving scenarios. Simulations were performed on SCANeR
Studio,a driving simulation engine, using experimental data
acquired by the DYNA vehicle (a Peugeot 308) belonging
to the Heudiasyc laboratory. The validation demonstrates the
robustness and good performances of the proposed controller.
For further information about the I&I controller, interested
readers are invited to see [9].

III. RESULTS

A. Simulation Results

To validate the algorithm, it was applied to a scenario
taken from the Scaner-Studio simulator. The data taken from
Scaner-Studio was processed and simulated in Matlab. The
vehicle speed is set to 6 m/s in the simulation. Using
this data, we generate a global map showing the reference
trajectory with its right and left borders. In this global map
shown in Fig. 6, the navigable space of the road is illustrated
by black cells (having the value 0) while the non-navigable
space is illustrated by white cells (having the value 1).

(a) (b)
Fig. 6: Global map: (a) Reference trajectory, (b) global grid

After positioning the vehicle in the global map, the ego-
centric local occupancy grid is generated. Then, we apply
our algorithm to choose the best tentacle at each sampling
step. The chosen tentacle is then applied to the vehicle using
the lateral controller I&I presented above. The algorithm
is validated upon the whole scenario shown in Fig. 6, yet
we just show in Fig. 7 an obstacle avoidance scenario.
The parameters a0, a1 and a2 are set to 0.1, 0.2 and 0.5
respectively. The same scenario was tested using circular
tentacles in order to compare the performance of our planner

Fig. 7: Obstacle avoidance scenario tested with circular and
clothoid tentacles.

Fig. 8: Vehicle dynamic variables.

with other local trajectory planning algorithms. In Fig. 7, the
red line corresponds to the reference trajectory, the blue and
green lines correspond to the vehicle trajectory computed
using circular tentacles and clothoid tentacles respectively
and the black circle is assumed to be an obstacle on the
road.

We observe that the vehicle succeeds in avoiding the
obstacle and returning back to the reference trajectory when
using clothoid tentacles as well as circular ones. However,
as the initial dynamical state of the vehicle is not considered
in the circular shape of the tentacles, the vehicle take a
larger lateral security distance when driving around the
obstacle, especially when trying to avoid the obstacle. Plus,
using circular tentacles method, the vehicle would declare a
narrow gate as impassable at high speeds while still being
able to drive having other tentacles shapes. The clothoid
tentacles method proposed in this work solves this ambiguity
by considering the initial dynamical state of the vehicle
and taking the classification zone slightly greater than the
vehicle width. Thus, the vehicle take a smaller lateral security
distance when driving around the obstacle or on a narrow
gate. We also observe the variation of the vehicle dynamic
variables such as the yaw rate, the sideslip angle, the steering
angle and the lateral error in Fig. 8. The clothoid forms
make the vehicle dynamic variables more smoother than the
circular forms.

B. Preliminary Experimental Results

To evaluate the developed algorithm, we made an ex-
perimental test using a Citroën vehicle in the laboratory
Heudiasyc. The vehicle is equipped with a LIDAR used to
generate the occupancy grid and other sensors used for the
acquisition of vehicle dynamics data such as its position,
steering wheel angle, speed, acceleration; moreover a camera
acquires the images of the road. As Fig. 9 shows, this test was
done near the High School Charles de Gaulle in Compiègne.



Fig. 9: The road where the test is performed.

As the vehicle is not robotized, it was driven by a driver with
a mean speed of 22 km/h, so the data acquired, during this
test, was used for the offline evaluation of our path planning
algorithm. In Fig. 9, the starting point is indicated by the red
car while the red path corresponding to the path followed by
the vehicle during the experiment will be considered as the
reference trajectory for our algorithm.

In Fig. 10.b we see the real image of the road and in
Fig. 10.a the occupancy grid corresponding to the real road
image. In the occupancy grid, the green cells show the free
space, the red cells show the cells occupied by an obstacle
and the blue cells could correspond to noisy data. The
white area included in the occupancy grid corresponds to
the support area around the tentacle chosen by our algorithm
while the dotted red curve represents the reference path
traveled by the vehicle. The latter curve can present some
errors because of the GPS uncertainty. Every 100ms, a
new clothoid tentacle is calculated by our algorithm, in
the local occupancy grid, based on the acquired real data.
The proposed tentacle is compared to the real trajectory of
the vehicle which represents the reference trajectory. The
behavior of our algorithm seems coherent with respect to
the desired objective. To proceed to more valid experimental
validation, the algorithm will be implemented in the near
future on a robotized vehicle in the laboratory Heudiasyc, in
closed loop with our developed controller.

(a) (b)
Fig. 10: Occupancy grid with the support area of the chosen
tentacle: (a) Occupancy grid, (b) Real road image

IV. CONCLUSION AND PERSPECTIVES

The simulation and experimental results show that our
algorithm is well-suited against the expected objectives. In
fact, the method is a fast reactive method since it does not
perform data storage and the use of clothoids shape makes
the method more realistic with respect to vehicle dynamics
and real road structure. This method is very promising

for vehicles autonomous navigation, it is suitable for real
time application, moreover, the curvature criterion that we
propose in this paper can be extended to choose some desired
curvature at certain distance. Among the perspectives, we
look to improve the algorithm by optimizing the number of
calculated tentacles and the computing time, and by propos-
ing other criteria. We also look to implement our algorithm
in Scaner-Studio simulator and execute an online test using a
robotized vehicle in order to highlight the validity of the de-
veloped trajectory planner. Further, an interesting extension
of our method would be to consider moving obstacles such
as moving cars or pedestrians. This improvement would be at
the perception stage, by considering the obstacle’s movement
in the occupation grid. The method consists in projecting
recognized obstacles and their expected movement in the
occupancy grid. Then, each mobile object generates a set of
obstacles representing the future movements of this obstacle.
Obstacle movement parameters such as speed and direction
have to be deduced from sensor data. Trajectory planning and
tracking are then done relative to these previsions taking into
account uncertainties for more security.
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