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Abstract: Ternary nanocomposites based on ethylene/vinyl acetate copolymer (EVA), maleic anhydride-grafted EVA

(EVAgMA), and nanosilica were prepared in a Haake Rheomixer. The structure of the EVA/EVAgMA/silica nanocomposites

was characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The

blending sequence was found to have a significant effect on the microstructure of EVA/EVAgMA/silica nanocomposites

and the dispersion behavior of the nanosilica in the EVA matrix. The tensile properties (tensile strength and elonga-

tion at break), thermal behavior, crystalline structure and weatherability of the nanocomposites were also studied. The

results showed that the above properties of the nanocomposites were enhanced remarkably using 1 wt% EVAgMA.

Keywords: ethylene/vinyl acetate copolymer (EVA), nanosilica, nanocomposite, mechanical properties, thermal stabil-

ity, weatherability.

Introduction

Ethylene/vinyl acetate copolymer (EVA) is used widely in

electrical insulation, cable jacketing, encapsulation, packag-

ing and corrosion protection, etc. The low cost and relatively

good electrical and barrier properties of EVA have led to the

continuous expansion of its applications, replacing other

engineering plastics. On the other hand, the low tensile strength,

thermal and UV stability of EVA have limited its applica-

tions in some fields.1 To overcome these disadvantages,

nanoparticles were added to this copolymer to improve the

mechanical properties and thermal stability.2-5

The dispersion of silica nanoparticles (SNP) and the

interfacial interaction between the SNP and polymer matrix

play important roles to determine the properties of nano-

composites.6-9 SNP exhibit high surface activity and large

agglomeration due to the lack of coordinate atoms on the sur-

faces. Moreover, the poor compatibility between the SNP

and EVA matrix leads to the formation of nanocomposites

that cannot achieve the expected properties. Therefore, it is

important to use suitable compatibilizers to improve the dis-

persibility of SNP in EVA, and the interfacial adhesion of

SNP and EVA. Several studies related to SNP/polymer com-

posites have focused on using amine and maleic anhydride -

modified polypropylene (PP) as compatibilizers in PP/SNP

nanocomposites to enhance the mechanical properties of the

nanocomposites.9-12 Hitherto, there has been little research

on the use of a maleic anhydride modified EVA (EVAgMA)

as a compatibilizer in EVA/SNP nanocomposites.

The main aim of this work was to examine the effects of

EVAgMA on the rheological, mechanical properties, crystal-

line structure, thermal stability and weatherability of EVA/

SNP nanocomposites. The interactions in the EVA/EVAgMA/

SNP nanocomposites might include hydrogen bonding and

dipole-dipole interactions between the carbonyl and C-O-C

groups of MA in EVAgMA, as well as between the hydroxyl

groups on the SNP surface and the carbonyl and C-O-C

groups in EVA. These interactions might improve the dis-

persion of SNP in the EVA, which would enhance the prop-

erties of the EVA/silica nanocomposites.

Experimental

Ethylene/vinyl acetate copolymer (EVA) containing 10 wt%

vinyl acetate (VAc) in granular form with a density of 0.93

*Corresponding Authors. E-mails: hoangth@itt.vast.vn or

csha@pusan.ac.kr



g/cm3 and melt flow index of 1.3 g/10 min/190 oC/2.16 kg

was purchased from Hanhwa Co., Korea. Silica nanoparti-

cles (SNP) with a purity of 99.8%, mean particle size of 12 nm,

and specific surface area of approximately 175-225 m2/g

(BET) were obtained from Sigma-Aldrich Co. EVA grafted

with 0.5 wt% maleic anhydride (MA) was purchased from

Hanhwa Co., Korea.

Preparation of EVA/EVAgMA/SNP Nanocomposites

(EMS). The nanocomposites containing 2 to 5 wt% SNP

and 0 to 2 wt% EVAgMA were prepared by the melt mixing

of EVA and SNP in a Haake Rheomixer (Germany) at a

mixing temperature of 160 oC, mixing time of 5 min, and rotor

speed of 50 rpm. After melt mixing, the nanocomposites

were molded using a hot pressured machine (Toyoseiki Co.)

at 160 oC at a 15 MPa pressure for 3 min to form samples

with a thickness of approximately 1 mm. The samples examined

are abbreviated in Table I. The EVAgMA and SNP contents

were based on EVA by weight %.

Characterization. The relative melt viscosity, which is

expressed as the torque values in the mixing process of

EVA, SNP and EVAgMA, was recorded using Polylab 3.1

software connected to a Haake Rheomixer. The Fourier

transform infrared (FTIR) spectra were recorded on a FTIR-

Nexus infrared spectrometer using thin films of the samples

prepared by compression molding in the range, 4000-400

cm-1, at room temperature. The tensile properties, such as

the tensile strength and elongation at break of EVA and EMS

were measured on a Zwick Tensile 2.5 Machine according

to the ASTM D638 standard. The morphology of the nano-

composites was analyzed by field emission scanning electron

microscopy (FESEM, S-4800 Hitachi). X-Ray diffraction (XRD,

Siemens D5000) was performed using CuK
α
 radiation

(λ=0.154 nm) at 40 kV and 30 mA. The XRD data was col-

lected between 5o and 60o 2θ at room temperature with a

scanning speed of 0.7o/s and a step size of 0.03o. The thermal

properties were measured on a DTG-60H and DSC-60 ther-

mogravimetric analyzer (Shimadzu Co.) under an argon

atmosphere from room temperature to 600 oC and at a heating

rate of 10 oC/min. The relative crystallinity (χc) of the sam-

ples was calculated using the following equation:10,13

χc=∆Hf ×100/∆H*
f  

where ∆H*
f  is the fusion enthalpy of the perfectly polyethyl-

ene crystal (298 J/g) and ∆Hf is the enthalpy of fusion of the

samples.

The weatherability of the nanocomposites was analyzed

using an accelerated weathering test on a UV-CON 327 (USA)

according to the ASTM 793-91 (G32) method. Every cycle

of the accelerated weathering test includes: 8 h of UV irra-

diation at 70 oC and 4 h of humidity condensation at 50 oC.

The total testing time is 168 h (corresponding to 14 cycles).

The tensile properties of the nanocomposites were deter-

mined before and after 6 and 14 cycles of the accelerated

weathering test.

Results and Discussion

IR Spectra. Figure 1 presents the FTIR spectra of the

SNP, EVA, E0M3S, and E1M3S nanocomposites. The spec-

trum of SNP showed the characteristic peaks, such as Si-O

asymmetric and symmetric stretching vibrations (1110 and

794 cm-1), Si-O bending vibrations (461 cm-1) and Si-OH

stretching vibrations (955 cm-1), and the OH stretching and

bending vibration (3448 and 1633 cm-1, respectively).14,15

The spectra of E0M3S and E1M3S clearly showed the char-

Figure 1. FTIR spectra of the EVA and EVA/SNP/EVAgMA

nanocomposites.

Table I. Abbreviation of the EVA/EVAgMA/SNP Nanocomposite Samples

EVAgMA Content (wt%)

SNP Content (wt%)
0 0.5 1 1.5 2

2 E0M2S E0.5M2S E1M2S E1.5M2S E2M2S

3 E0M3S E0.5M3S E1M3S E1.5M3S E2M3S

4 E0M4S E0.5M4S E1M4S E1.5M4S E2M4S

5 E0M5S E0.5M5S E1M5S E1.5M5S E2M5S



acteristic peaks of EVA, such as the peaks at 1737 cm-1 for

carbonyl and 1242 and 1025 cm-1 for C-O groups in the MA

and acetate groups, as well as peaks at 2924, 1456, 1368, and

724 cm-1 due to the CH groups.2,5 Some peaks observed at

795 and 804 cm-1 (Si-O-Si symmetric stretching vibration),

and 463 and 482 cm-1 (Si-O-Si bending vibration) in the E0M3S

and E1M3S spectra, respectively, were assigned to Si-O

groups in nanosilica. A slight shift (6-23 cm-1) was observed

in the peaks of Si-O stretching and bending vibrations, and

the C-O and C=O stretching vibrations, which was caused

by the incorporation of EVAgMA in E1M3S (Table II). This

suggests that the C=O and C-O-C groups of MA in EVAgMA

interact with the hydroxyl groups on the SNP surface as

well as carbonyl and C-O-C groups in EVA by hydrogen

bonding and dipole-dipole interactions. Bikiaris et al. con-

firmed the aforementioned interactions between the car-

boxyl groups of PP-g-MA and the surface hydroxyl groups

of SNP.9

Relative Melt Viscosity. Figure 2 shows the relative melt

viscosity of the EVA/SNP nanocomposites, which is expressed

by the torque in the melt mixing of EVA, SNP, and EVAgMA.

The torque of the nanocomposites was higher than that of

EVA. The internal friction generated in the mixing process

between the SNP and EVA matrix causes an increase in

torque. Normally, the torque of the nanocomposites depends

on the SNP content and increase with increasing SNP con-

tent. In the presence of EVAgMA, the torque of the nano-

composites increased due to the fine SNP dispersion in EVA

and the adhesion between the SNP and EVA. The interac-

tions between EVAgMA and other components in the nano-

composites reduce the mobility of EVA chains. This leads to

an increase in the torque of the E1M2S and E1M4S nano-

composites compared to EVA.9 At the “equilibrium” state,

the stable torque moment of EVA, E0M2S, E0M4S, E1M2S

and E1M4S samples approached 1.8; 7.3; 9.2; 10.0 and 10.3

MPa, respectively. The stable torque moment of the nano-

composites using EVAgMA increased by between 12 and

37% compared to that of the nanocomposites without EVAgMA

at the same SNP content.

Morphology. The interactions between the SNP and EVA

matrix with and without EVAgMA in the EVA/SNP nano-

composites were evaluated by FESEM (Figure 3). FESEM

of the cryo-fractured surface of the nanocomposites without

EVAgMA (Figure 3(a)-(d)) indicated an irregular dispersion

of SNP in the EVA matrix. The SNP agglomerated to form

large clusters in the EVA matrix, from 100 nm-2 µm, which

causes a decrease in the mechanical properties of the nano-

composites presented in Tensile Properties section.

For nanocomposites containing EVAgMA, the particle

agglomerate sizes were less than 200 nm (Figure 3(e)-(h)).

This suggests that the SNP are well dispersed and adhered

to EVA due to the presence of EVAgMA. The decrease in

particle agglomerate size can explain the increase in the

mechanical properties and thermal stability of the nanocom-

posites containing EVAgMA.9,15

Tensile Properties. Figure 4 shows the tensile strength of

the EVA/SNP nanocomposites. The tensile strength of the

nanocomposites at different EVAgMA and SNP contents

was higher than that of the neat EVA (17.3 MPa). SNP can

enhance the tensile strength of the nanocomposites due to

interactions between the nanoparticles and EVA matrix at

the molecular level.7 The tensile strength of the EVA/SNP

nanocomposites with EVAgMA was higher than that of the
Figure 2. Torque of EVA and the nanocomposites during melt

mixing.

Table II. Characteristic Wavenumbers of the SNP, EVA, E0M3S, and E1M3S Samples

Samples
Wavenumbers (cm-1)

νOH νCH νC=O δCH νC-O νSi-O νSi-OH γCH δSi-O

SNP 3448
2921
2847

- - -
1110
794

955 - 461

EVA - 2924 1737
1456
1368

1242
1025

724 -

E0M3S 3500
2921
2852

1750
1463
1370

1241
1021

795 723 463

E1M3S
3612
3456

2925 1760
1457
1368

1244
1031

1127
804

- 724 482



EVA/SNP nanocomposites without EVAgMA. The maximum

tensile strength of the nanocomposites was observed at 1

wt% EVAgMA. Similar results were also obtained in the

poly(ethylene 2,6-naphthalate)/silica nanocomposites,6 PP/

SiO2 nanocomposites
9,12 and poly(ethyl methacrylate-co-

hydroxyethyl acrylate) (P(EMA-co-HEA))/silica nanocom-

posites.11 Presumably, EVAgMA localized at the interface

between the SNP and matrix polymer is responsible for the

enhanced mechanical properties of the nanocomposites.

The interactions and good dispersion between EVA and

SNP can improve the mechanical properties of the nano-

composites. On the other hand, the tensile strength showed

a decrease tendency when the EVAgMA content in the nano-

composites exceeded 1 wt%.

Similarly, at a constant EVAgMA content (1 wt%), the

tensile strength of the nanocomposites increased with increas-

ing SNP content. For example, at 2, 3, 4, and 5 wt% of SNP, the

maximum tensile strength of the nanocomposites using 1 wt%

EVAgMA was 23.2, 23.7, 24.1, and 25.4 MPa, respectively,

showing a corresponding increase of 27.5, 28.8, 25.5, and

30.1%, compared to the samples without EVAgMA. This

can be explained by the role of EVAgMA in inducing inter-

molecular interactions between EVA and SNP leading to

improved compatibility of the EVA and SNP phases. At an

EVAgMA content less than 1 wt%, the amount of EVAgMA

might not be sufficient to induce inter-molecular interactions

between EVA and SNP. Therefore, the change in the tensile

strength of the nanocomposites was not great. In contrast,

the agglomeration of EVAgMA can occur when EVAgMA

content exceeds 1 wt%, leading to an irregular dispersion of

SNP into the EVA matrix. Therefore, the tensile strength of

the nanocomposites can decrease.

Figure 5 shows the elongation at break of the nanocom-

posites with various EVAgMA and SNP contents. The elon-

gation at break of EVA/SNP nanocomposites decreased

with increasing SNP content in the EVA matrix because the

hard and rigid SNP act as stress concentrators, providing

less ductility to the nanocomposites. In particular, when

the SNP content was increased to 4-5 wt%, the size of the

Figure 4. E��ect of the EVAgMA and SNP content on the tensile

strength of the EVA/SNP nanocomposites: 2 wt% SNP: (-•-), 3

wt% SNP: (-�-), 4 wt% SNP: (-�-), 5 wt% SNP: (- -).

Figure 3. SEM images of the cryo-fractured surface the EVA/

SNP nanocomposites; (a) E0M2S; (b) E0M3S; (c) E0M4S; (d)

E0M5S; (e) E1M2S; (f) E1M3S; (g) E1M4S; (h) E1M5S.

Figure 5. E��ect of the EVAgMA and SNP content on the elonga-

tion at break of the EVA/SNP nanocomposites: 2 wt% SNP: (-•-),

3 wt% SNP: (-�-), 4 wt% SNP: (-�-), 5 wt% SNP: (- -).



agglomerated particles increased, indicating a higher stress

concentration, more extensive cavitation and faster break-

ing.9,11,12 The elongation at break of the EVA/SNP nanocom-

posites with EVAgMA was higher than that of the nanocom-

posites without EVAgMA and reached the maximum at 1

wt%. Using a constant EVAgMA content (1 wt%), the max-

imum elongation at break of the nanocomposites decreased

with increasing SNP content.

Thermal Properties and Thermal Stability. The melting

temperature of all EVA/silica nanocomposites with and

without EVAgMA was observed at approximately 96 oC with

marginal differences, as shown in Table III. On the other

hand, when adding SNP and EVAgMA into EVA and the

nanocomposites, the chain segments possessing vinyl acetate

(VAc) units in the amorphous and ethylene chain segments in

the secondary crystallization region could re-arrange.1,10,13,16

This might explain the slight decrease in overall crystallin-

ity (χc %).

Figure 6 and Table IV respectively show TGA curves and

the TG characteristic data of EVA and the EVA/SNP nano-

composites. The weight loss of all samples is related to two

steps of EVA degradation corresponding two temperatures

with the maximal degradation rate (Tp1, Tp2). The first stage

was complete at approximately 400 oC, involving mainly

autocatalytic deacetylation in the VAc moieties. The second

stage is chain scission of the residual main polyethylene chains

within an interval of 405-500 oC.1,10,17 When adding SNP to

EVA, the weight loss in the 1st stage (∆W1) of the nanocom-

posites was lower than that of EVA, and the onset tempera-

tures (TOn-d), which are the temperatures corresponding to

10%, 20% and 50% weight loss (T10, T20, and T50), were higher

than those of EVA. This can be explained by the high thermal

stability of SNP when the SNP are dispersed regularly in the

EVA matrix, which have a protective agent and barrier effect

for EVA at high temperature. Therefore, the thermal stability

Table III. DSC Data of EVA and the EVA/SNP Nanocompositesa

Samples Tm-m (oC) ∆Hf (J/g) χc (%)

EVA 96.1 67.7 22.7

E0M2S 96.1 61.5 20.6

E0M3S 97.0 64.1 21.5

E0M4S 96.1 62.6 21.0

E0M5S 96.2 63.3 21.2

E1M2S 95.7 55.6 18.7

E1M3S 97.4 66.5 22.3

E1M4S 95.9 59.5 20.0

E1M5S 96.0 55.3 18.6

a
Tm-m: melting temperature; ∆Hf: enthalpy of fusion; χc: relative crys-

tallinity.
Figure 6. TGA curves of EVA, E0M4S and E1M4S.

Table IV. TG and DTG Results of EVA and the EVA/SNP Nanocompositesa

Samples
TG  DTG

TOn-d (
oC) T10 (

oC) T20 (
oC) T50 (

oC) ∆W1 (%) Tp1 (
oC) Tp2 (

oC)

EVA 348 419 439 460 7.78 351 458

E0M2S 349 424 443 462 7.58 355 463

E0M3S 350 425 443 462 7.51 370 467

E0M4S 360 428 444 463 7.42 360 466

E0M5S 356 427 446 464 7.35 348 471

E1M2S 358 425 445 462 7.47 354 470

E1M3S 361 428 445 463 7.40 352 470

E1M4S 359 429 447 464 7.04 358 466

E1M5S 353 423 443 463 7.68 356 471

a
TOn-d: the onset temperature of weight loss (weight loss at about 3%); T10: temperature corresponding to 10% weight loss; T20: temperature cor-

responding to 20% weight loss; T50: temperature corresponding to 50% weight loss; ∆W1: weight loss in the first stage; Tp1: temperature of the

maximal degradation rate of stage 1; Tp2: temperature of the maximal degradation rate of stage 2.



of EVA increases in the presence of SNP.8,10

The TOn-d, T10, T20, and T50 were shifted to higher tempera-

tures, in range of 2-10 oC, due to the presence of EVAgMA

in the EVA/SNP nanocomposites (Table IV). This suggests

that EVAgMA can enhance the thermal stability of the EVA/

SNP nanocomposites. The EVA/SNP nanocomposites con-

taining 1 wt% EVAgMA have lower ∆W1 values and higher

Tp1 and Tp2 than those of the nanocomposites without EVAgMA.

The peak positions of Tp1 and Tp2 (DTG data not shown)

might change with different EVAgMA content.10

X-Ray Diffraction. Figure 7 shows XRD patterns of SNP,

EVA and different EVA/SNP nanocomposites, showing that

SNP is amorphous. The broad peak might be due to the

small size and incomplete inner structure of the particles.18

EVA possesses both crystalline and amorphous regions.

Therefore, two sharp XRD peaks at 21.26o 2θ (110 plane) and

23.60o 2θ (200 plane) were observed for EVA. Accordingly,

the XRD patterns of all EVA containing nanocomposites

showed an intense peak at approximately 21o 2θ, which cor-

responds to the crystalline regions, whereas the weak peak

approximately 23o 2θ was assigned to the amorphous regions

in EVA. The EVA crystalline or amorphous structural state

appears to depend on the fraction of components in the

nanocomposites. For the nanocomposites, however, the posi-

tions of the XRD peaks did not shift significantly compared

to those of neat EVA. This suggests that the crystalline struc-

ture of EVA remains unchanged upon the addition of differ-

ent SNP and EVAgMA contents during preparation of the

EVA/SNP nanocomposites. No additional peaks were observed,

which suggests no third phase in the nanocomposites.19

The relative intensity of these peaks decreased in all nano-

composites, corresponding to a decrease in their overall

crystallinity, as reported elsewhere.2,13,18 The change in the

relative intensity of the peaks in the nanocomposites might

be due to the crystal alignment during the preparation pro-

cess. Interestingly, the relative intensity of the diffraction

peaks of the E1M3S samples was higher than the other sam-

ples, indicating an enhancement of diffuse amorphous scat-

tering and an increase in overall crystallinity. This is in

accordance with the DSC results reported above. 

Table V lists the characteristic Bragg angles (2θ) and cor-

responding d-spacing (d) determined from the Bragg’s

equation (eq. (9) in ref. 13), as well as the lateral crystal size

calculated using the Scherrer’s equation (eq. (10) in ref. 13)

based on the XRD patterns. The addition of SNP and EVAgMA

to EVA can reduce slightly the d-spacing and crystal domain

sizes of EVA. The result might also be due to the role of

EVAgMA in enhancing the compatibility between the SNP

and EVA matrix. The decrease in the bulk crystallization

rate and crystal domain sizes might result in a lower degree

of crystallinity in EVA.18

Weatherability. Figure 8 shows the FTIR spectra of EVA

and the EVA/SNP nanocomposites before and after the

Figure 7. XRD patterns of the SNP, EVA and EVA/SNP nano-

composites with and without 1 wt% EVAgMA.

Table V. Diffraction Angle (2θ), d-Spacing (d), and Lateral

Crystal Size (L) of SNP, EVA and EVA/SNP Nanocomposites

with and without 1 wt% EVAgMA, Obtained from XRD

Sample 2θ110 (
o) d110 (nm) d200 (nm) L110 (nm)

EVA 21.26 4.176 3.774 0.511

E0M2S 21.27 4.175 3.778 0.506

E0M3S 21.33 4.162 3.767 0.505

E0M4S 21.37 4.156 3.762 0.483

E0M5S 21.32 4.165 3.774 0.505

E1M2S 21.32 4.165 3.765 0.480

E1M3S 21.38 4.153 3.752 0.491

E1M4S 21.20 4.187 3.777 0.510

E1M5S 21.32 4.165 3.777 0.508

Figure 8. FTIR spectra in the range 2000-1550 cm-1 of EVA
and the nanocomposites after the 168 h accelerated weath-
ering test.



accelerated weathering tests. The change in the characteristic

peaks of the main functional groups in EVA and the nano-

composites is related to the UV degradation of EVA initiated

by the release of acetic acid from EVA. For the tested sam-

ples, the growth in the absorption shoulder at approximately

1715 cm-1 was assigned to the carbonyl C=O stretching

vibration in the rapidly forming ketone structure. The absorp-

tion band at approximately 1630 cm-1 was assigned to the

C=C stretching mode. This might be obtained during the

acetaldehyde evolution process in the Norrish III photolysis

reaction (Scheme I in ref. 10), or it might be obtained during

the Norrish II reaction procedures forming vinyl, vinylidene

and trans-vinylene unsaturated groups (Schemes I and II,

IV in ref. 20 and ref. 10). The emergence of a new carbonyl

shoulder vibration at 1780 cm-1 was attributed mainly to lac-

tone formation, as reported by Allen.21

A comparison of the non-polar ethylene chain segments

showed that the VAc units are more vulnerable to heat, oxy-

gen and UV light radiation, which can form reactive radi-

cals or unstable hydro peroxide easily, and facilitate further

irreversible chemical reactions. Along with the accumula-

tion of unstable structures and oxygen penetration, degrada-

tion of the molecules extends from the surface to the entire

sample (see Figure 10 later).

Figure 9 shows the retention of the tensile strength of the

nanocomposites after the 72 and 168 h accelerated weathering

test. The addition of EVAgMA and SNP to EVA led to an

increase in the percentage retention of the tensile strength of

Figure 9. Retention of the tensile strength after the 72 h (a) and 168 h (b) accelerated weathering test; 2, 3, 4, 5: 2, 3, 4, 5 wt% SNP.

Figure 10. SEM images of the nanocomposites after the accelerated weathering test; (a) EVA; (b) E0M3S; (c) E1M3S (magnification

100 times); (d) EVA; (e) E0M3S; (f) E1M3S (magnification 10,000 times).



the nanocomposites compared to that of neat EVA (24.3%

after 72 h and 10.5% after 168 h compared to that of neat

EVA before testing (17.3 MPa)). 

At low EVAgMA contents (0-0.5 wt%), the retention in

the tensile strength of all nanocomposites was similar. The

retention of the tensile strength of the nanocomposites using

EVAgMA tended to decrease except for the nanocomposites

containing 3 wt% SNP. The increase in the accelerated

weathering test time resulted in a decrease in retention in the

tensile strength of all nanocomposites. This can be explained

by a rearrangement in the crystalline region leading to

cracks on the surface of the material (Figure 10). The chain

scission gives rise to a stress concentration and crack propa-

gation in the material, which leads to a further decrease in

the mechanical properties.10,22 The nanocomposites contain-

ing 3 wt% SNP at all EVAgMA contents showed the high-

est retention in tensile strength due to the highest crystalline

percentage, as shown in Table III.

Figure 10 presents FESEM images of the surface of the

nanocomposites after the 168 h accelerated weathering test.

The EVA film showed large, deep and linear cracks on both

the surface and deep inside of the sample (Figure 10(a) and

(d)). The E0M3S and E1M3S samples, however, showed

some niches on the surface (Figure 10(b) and (e), Figure 10(c)

and (f)). This suggests that the SNP can limit the decompo-

sition of the EVA in the presence of UV radiation. In

addition, the E1M3S sample showed no niches, whereas the

E0M3S sample showed only a few small niches. Therefore, the

E1M3S sample has better weatherability than that the E0M3S

and EVA samples (Figure 9).

Conclusions

This study examined the effects of the addition of EVAgMA

on the rheological, mechanical properties, thermal stability,

crystalline structure and weatherability of the EVA/SNP

nanocomposites. The use of EVAgMA produced remarkable

enhancement in the relative melt viscosity, tensile strength,

elongation at break, thermal stability and weatherability of

the EVA/SNP nanocomposites. The overall crystallinity of

EVA decreased when SNP and EVAgMA were added.

Furthermore, the SNP dispersed evenly into EVA in the

presence of EVAgMA might act a good UV stabilizer for EVA.

In particular, the weatherability of the EVA/SNP nanocom-

posites was clearly improved using only 1-1.5 wt% EVAgMA

and 3 wt% SNP.
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