
HAL Id: hal-01139179
https://hal.science/hal-01139179

Preprint submitted on 3 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Existence and non existence results for minimizers of
the Ginzburg-Landau energy with prescribed degrees

Mickaël dos Santos, Remy Rodiac

To cite this version:
Mickaël dos Santos, Remy Rodiac. Existence and non existence results for minimizers of the Ginzburg-
Landau energy with prescribed degrees. 2015. �hal-01139179�

https://hal.science/hal-01139179
https://hal.archives-ouvertes.fr


EXISTENCE AND NON EXISTENCE RESULTS FOR

MINIMIZERS OF THE GINZBURG-LANDAU ENERGY

WITH PRESCRIBED DEGREES

MICKAËL DOS SANTOS AND RÉMY RODIAC

Abstract. Let D = Ω\ω ⊂ R
2 be a smooth annular type domain. We

consider the simplified Ginzburg-Landau energy Eε(u) =
1

2

∫

D
|∇u|2 +

1

4ε2

∫

D
(1− |u|2)2, where u : D → C, and look for minimizers of Eε with

prescribed degrees deg(u, ∂Ω) = p, deg(u, ∂ω) = q on the boundaries of
the domain. For large ε and for balanced degrees (i.e., p = q), we obtain
existence of minimizers for thin domain. We also prove non-existence
of minimizers of Eε, for large ε, in the case p 6= q, pq > 0 and D is a
circular annulus with large capacity (corresponding to "thin" annulus).
Our approach relies on similar results obtained for the Dirichlet energy
E∞(u) = 1

2

∫

D
|∇u|2, the existence result obtained by Berlyand and

Golovaty and on a technique developed by Misiats.

1. Introduction and main results

We fix D = Ω \ ω ⊂ R
2 a smooth annular type domain: Ω and ω are

smooth and bounded simply connected open sets s.t. ω ⊂ Ω ⊂ R
2. In this

article, some results are specific to the case where D is a circular annulus.
In order to underline this specificity, when needed, we use the notation A =
B(0, 1) \B(0, R) (with R ∈]0, 1[) instead of D.
We are interested in the existence or the non-existence of global minimizers
of the Ginzburg-Landau type energy

Eε(u) =
1

2

∫

D

|∇u|2 + 1

2ε2
(1− |u|2)2

in the topological sectors of J := {u ∈ H1(D,C) | tr∂D(u) ∈ H1/2(∂D,S1)}
for large values of ε > 1. Here, tr∂D stands for the trace operator on ∂D and
S
1 = {x ∈ C | |x| = 1}. We consider also the Dirichlet energy

E∞(u) =
1

2

∫

D

|∇u|2, u ∈ J .

For Γ ∈ {∂Ω, ∂ω} and for u ∈ J we let

degΓ(u) =
1

2π

∫

Γ
u ∧ ∂τudτ .
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Here:

• Each Jordan curve Γ is directly (counterclockwise) oriented.
• We let ν be the outward normal to Ω if Γ = ∂Ω or ω if Γ = ∂ω, and
τ = ν⊥ is the tangential vector of Γ.

• The differential operator ∂τ = τ · ∇ is the tangential derivative and ” ·
” stands for the usual scalar product in R

2. We use also the standard
notation ”∂ν” for the normal derivative ∂ν = ν · ∇.

• The vectorial operator ” ∧ ” stands for the vectorial product in C, it is
defined by (z1 + ız2) ∧ (w1 + ıw2) := z1w2 − z2w1, z1, z2, w1, w2 ∈ R.

• It is well known that degΓ(u) is an integer see [BM06] (the introduction)
or [Bre06].

• The integral over Γ should be understood using the duality between H1/2(Γ)

and H−1/2(Γ) (see, e.g., [BM06] Definition 1).
• For u ∈ J , we write deg(u) = (deg∂Ω(u),deg∂ω(u)).

For P = (p, q) ∈ Z
2, we are interested in the minimization of Eε for large

ε > 1 in
JP = Jp,q := {u ∈ J |deg(u) = (p, q)} .

For ε ∈]0,∞] and P = (p, q) ∈ Z
2, we denote

mε(P ) = mε(p, q) = inf
JP

Eε.

It is well known that the JP ’s are the connected component of J . They are
open and closed for the strong topology induced by the H1-norm. Hence if
a minimizer of Eε in Jp,q exists for some (p, q) ∈ Z

2 it satisfies the following
Euler-Lagrange equations:

(1)















−∆u =
1

ε2
u(1− |u|2) in A

|u| = 1 on ∂A
u ∧ ∂νu = 0 on ∂A

.

These equations are obtained by making variations of the form ut = u+tϕ
for t ∈ R, ϕ ∈ C∞

0 (D,R2) and ut = ueitψ for t ∈ R, ψ ∈ C∞(D,R) (see
Appendix C in [BM04]).

However the sets JP are not closed with respect to the weak convergence
in H1 (see Introduction in [BM04]). This fact implies that, in general, the
minimization problem mε(P ) is not easy to handle since the direct mini-
mization method fails. Namely in some cases mε(P ) is not attained. In
contrast, for some other configurations, all minimizing sequence converges in
H1-norm. Such questions are central in this article.

Remark 1. It is obvious that for p = q = 0 and ε ∈]0,∞], mε(0, 0) is attained
and the minimizers are the constants of modulus 1. Thus we can focus on
the case (p, q) 6= (0, 0).

In this article we obtained existence and non existence results for thin
domains.
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Definition 2. We fix a conformal mapping

Φ : A = {x ∈ R
2 |RD < |x| < 1} → D.

• The number RD ∈]0, 1[ corresponds to the conformal ratio of D.
• When RD is "close to" 1, the domain D is thin. When RD is "close

to" 0, the domain D is thick.

• In this context the well known H1-capacity of D is cap(D) = − 2π

lnRD

.

This article essentially contains two theorems. The first one is an existence
result and, roughly speaking, states that for all p ∈ N

∗, under an hypothesis
(H) (which expresses that the annulus is thin) and if ε is sufficiently large
then mε(p, p) is attained.

Theorem 1. Let D ⊂ R
2 be an annular type domain and let p ∈ N

∗. If

(H) m∞(p, p) < m∞(p− 1, p − 1) + 2π

then there exists εp > 0 s.t. if εp < ε ≤ +∞ then minimizing sequences for
mε(p, p) are compact (for the H1-norm). In particular mε(p, p) is attained.

For (uε)ε>εp ⊂ Jp,p a sequence of minimizer there is u∞ ∈ Jp,p a mini-
mizer for m∞(p, p) s.t., up to a subsequence, we have:

uε →
ε→∞

u∞ in C l(D) ∀l ∈ N.

Remark 3. (1) Since J−p,−p = {u |u ∈ Jp,p} where u is the conjugate of
u and since Eε(u) = Eε(u), it is easy to reformulate Theorem 1 for
p < 0.

(2) The condition (H) is theoretical. We are able to prove that this
condition holds true under the following condition of capacity of the
domain. There exists 0 < Rp < 1 s.t. if the conformal ratio RD

satisfies Rp < RD < 1 then (H) holds. Note that Rp is the same
than in Theorem 2 below.

(3) Note that for 1 > RD > Rp we have that the minimizers of m∞(p, p)
are vortexless. Consequently, for sufficiently large ε, the minimizers
of mε(p, p) are also vortexless.

The previous theorem is an "extension" to general annular type domains
of a previous result of Berlyand and Golovaty:

Theorem 2 ([GB02]). Let p ∈ N
∗ there exists a critical outer radius 0 <

Rp < 1 s.t. for Rp < R < 1, mε(p, p) is attained by a unique (up to a phase)
radially symmetric minimizer for all 0 < ε < +∞.

Definition 4. In the previous theorem, the expression "up to a phase" means
that if u is a minimizer, then ũ is a minimizer if and only if there exists
α ∈ S

1 s.t. ũ = αu. Another way to explain this expression is to say that
two minimizers have pointwise same moduli and the difference of their phases
is a constant.
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Remark 5. Theorem 2 may be easily extended to the case ε = ∞. [see Step
2 in the proof of Proposition 20]

Although Theorem 1 may be seen as an extension of Theorem 2, the
methods used in their proofs are different. Condition (H) allows to make
arguments in the spirit of concentration-compactness phenomenon and bub-
bling analysis (see e.g. [Bre88]). See Section 3.3 for a detailed comparison
between both theorems.
Note that in [FM13] (Theorem 1.5), Farina and Mironescu have also ex-
tended Theorem 2, to general annular type domains. They proved that there
is some explicit universal constant δ ≃ 0.045 such that if mε(p, p) < δ then
the infimum is attained and the minimizer is unique (up to a phase). Then
using S

1-valued test functions, and the conformal invariance of the Dirich-
let energy, they obtained that if the annular domain is very thin then the
condition mε(p, p) < δ holds. Their condition on the thinness of the annular
domain is more restrictive than ours, however they obtained a more pre-
cise result: uniqueness of minimizer (up to a phase). We want to emphasize
that the proof of uniqueness is a real challenge (existence is direct for δ < π).

Our second theorem is a non-existence result specific to the symmetric
case D = A = B(0, 1) \B(0, R) with R close to 1.

Theorem 3. Let p, q ∈ N
∗ s.t. p 6= q. Then there are 0 < Rmin(p,q) < 1

and εmin(p,q) > 1 s.t. for Rmin(p,q) < R < 1, A = B(0, 1) \ B(0, R) and
ε > εmin(p,q) we have mε(p, q) is not attained.

A technique to prove non existence of minimizers [or local minimizers]
with prescribed degrees for the Ginzburg-Landau energy was devised by
Berlyand, Golovaty and Rybalko in [BGR06]. They proved the non existence
of minimizers of Eε in J1,1 for thick annular domain. Then, perfecting this
technique, Misiats proved the non existence of minimizers in some subset
of Jp,q in [Mis14]. The first non existence result for global minimizers of
the Ginzburg-Landau energy with prescribed degrees p 6= q and pq > 0 was
obtained by Mironescu in [Mir13] following the ideas of Berlyand, Golovaty,
Rybalko and Misiats. It can be rephrased as follows:

Theorem 4. (Thm 4.16-[Mir13]) Let p, q ∈ N
∗, pq > 0 then there exists a

critical value of the capacity Cmin(p,q) > 0 s.t. if cap(D) < Cmin(p,q) then
mε(p, q) is not attained for ε small.

Remark 6. Note that in the previous theorem the annulus is "thick", i.e.,
cap(D) is small and ε is small. Hence we are in the opposite situation of
Theorem 3. However the proofs of these two theorems follow the same ideas.
Note also that we can have p = q in Theorem 4.

Our approach is similar to the one mentioned before. In particular we
follow the strategy of Misiats in [Mis14]. The new ingredient which allows
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us to obtain Theorem 3 is a non existence result for minimizers of E∞ in Jp,q
with pq > 0 obtained in [HR] using the so-called Hopf quadratic differential.

Before doing the proofs of both theorems (see Sections 3&4) we recall
some classical results:

• In Section 2.1 we recall some basic results used to prove Theorems
1&3.

• In Sections 2.2&2.3 we list some results about the existence or the
non existence of solution for mε(p, q) for ε ∈]0,∞[ (Section 2.2) or
ε = ∞ (Section 2.3).

2. Some "basic" results and some pieces of the literature

2.1. Bound for mε(p, q) and cost to move degrees. In the following for
(p, q), (p′, q′) ∈ Z

2, we denote

|(p, q)| = |p|+ |q| and |(p, q)− (p′, q′)| = |p− p′|+ |q − q′|.
Proposition 7. Let P,P ′ ∈ Z

2. For 0 < ε′ < ε ≤ ∞ we have:

(1) mε(P ) ≤ π|P |,
(2) mε(P ) ≤ mε(P

′) + |P − P ′|,
(3) |mε(P )−mε′(P )| → 0 if ε′ ↑ ε.

Remark 8. Note that in the third assertion we may replace ε′ ↑ ε by ε′ → ε
but in the following we only need ε′ ↑ ε.
Proof. The two first assertions of Proposition 7 are direct consequences of
Proposition 9 below.

We prove the third assertion. For P ∈ Z
2 and ε′ ↑ ε ∈]0,∞] we consider

(uε′)ε′ a minimizing sequence of mε(P ) s.t. −∆uε′ =
uε′

ε2
(1 − |uε′ |2). It is

clear that such minimizing sequence always exists. Thanks to the maximum
principle (see e.g. Proposition 2 [BBH93]), we have |uε′ | ≤ 1. Since ε′ < ε
we have

Eε′(uε′) ≥ mε′(P ) ≥ mε(P ) = Eε(uε′)− oε′(1)

where oε′(1) → 0 when ε′ → ε.
We denote

K(ε′) =

{

1
4ε′2

− 1
4ε2

if ε 6= ∞
1

4ε′2 if ε = ∞ .

It is clear that we have K(ε′) → 0 when ε′ → ε. Therefore we have

K(ε′)|D| ≥ K(ε′)

∫

D

(1− |uε′ |2)2

= Eε′(uε′)− Eε(uε′) ≥ mε′(P )−mε(P ) + oε′(1).

Here |D| is the measure of D. Since mε′(P ) − mε(P ) ≥ 0 we thus obtain
that mε′(P )−mε(P ) → 0 when ε′ ↑ ε. �
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Proposition 9. [Standard bubbling] Let ε ∈]0,∞], η > 0, e ∈ {(1, 0), (0, 1)}
and u ∈ J . There are v+, v− ∈ J s.t. v+ ∈ Jdeg(u)+e

, v− ∈ Jdeg(u)−e
and

Eε(v+) ≤ Eε(u) + π + η,(2)

Eε(v−) ≤ Eε(u) + π + η.(3)

The proof of Proposition 9 may be found in [DS09] Lemma 7.
In order to drop η in (2) and (3) and to replace the large inequality by

a strict inequality, we need an extra-hypothesis about the behavior of u on
the connected component of ∂D where the degree is modified.

Proposition 10. Let ε ∈]0,∞] and let u ∈ Jp,q be any function which
satisfies |u| ≤ 1 in D and ∂ν |u| > 0, u ∧ ∂νu = 0 on ∂Ω.

(1) Assume that there is x0 ∈ ∂Ω s.t. u ∧ ∂τu(x0) > −u · ∂νu(x0) then
there exists v ∈ Jp−1,q s.t. Eε(v) < Eε(u) + π.

(2) Assume that there is x0 ∈ ∂Ω s.t. u ∧ ∂τu(x0) < u · ∂νu(x0) then
there exists v ∈ Jp+1,q s.t. Eε(v) < Eε(u) + π.

An analogous lemma can be stated considering the other boundary ∂ω.

Proposition 10 is proved in [RS14] (Lemma 1.2).
One of the main tool in the study of the minimization of Eε in Jp,q is the

beautiful Price Lemma. As explain before, the degree deg : J → Z
2 is not

continuous for the weak H1 convergence, this lemma expresses the energetic
cost to modify degrees for a weak H1-limit.

Lemma 11 (Price Lemma see Lemma 1 in [BM06]). Let P ∈ Z
2 and (un)n ⊂

JP s.t. un ⇀ u in H1(D). Then

lim inf
n→+∞

E∞(un) ≥ E∞(u) + π|P − deg(u)|.

Using Sobolev embeddings it also holds that, for all ε > 0:

lim inf
n→+∞

Eε(un) ≥ Eε(u) + π|P − deg(u)|.

2.2. Some known Existence/Non Existence results: the case ε ∈
]0,∞[. The first non existence result is certainly the following.

Proposition 12. Let ε > 0, if (p, q) ∈ Z
2 are s.t. (p, q) 6= (0, 0) and pq ≤ 0,

then mε(p, q) is not attained.

Proof. The starting point of the proof are the two following estimates :

• the pointwise inequality |∇u|2 ≥ 2|Jac u| [here Jacu = ux ∧uy is the
Jacobian of u];

• the degree formula valid for u ∈ J (see e.g. (1.6) in [Bre97]) :

(4)

∣

∣

∣

∣

∫

D

Jac u

∣

∣

∣

∣

= π|deg∂Ω(u)− deg∂ω(u)|.

By combining both previous estimates, if pq ≤ 0, then for all u ∈ Jp,q, we
easily obtain that

1

2

∫

D

|∇u|2 ≥ π(|p|+ |q|).
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On the other hand, by Proposition 7.1 it holds that

inf
Jp,q

Eε ≤ π(|p|+ |q|).

By combining both bounds, we obtain

inf
Jp,q

Eε = π(|p|+ |q|).

Now we argue by contradiction and we assume that there exists ε > 0 s.t.
mε(p, q) is attained by uε. Then we have

π(|p|+ |q|) = 1

2

∫

D

|∇uε|2 = Eε(uε).

Therefore
∫

D
(1− |uε|2)2 = 0, i.e., uε ∈ H1(D,S1). Since uε is S

1-valued we
have Jac uε = 0 and the degree formula (4) implies that p = q. This fact is
in contradiction with (p, q) 6= (0, 0) and pq ≤ 0. �

Our main results deal with the remaining cases: pq > 0. It is obvious that
this condition means p, q > 0 or p, q < 0. Without lack of generality we may
assume that p, q > 0 (since deg(u,Γ) = −deg(u,Γ) for Γ ∈ {∂Ω, ∂ω)}).

In an annular A = B(0, 1)\B(0, R), a natural candidate to be a minimizer
for mε(p, p) is the radial Ginzburg-Landau solution of degree p. The radial
Ginzburg-Landau solution of degree p is a special solution of the semi-stiff
problem







−∆u =
u

ε2
(1− |u|2)2 in A

|u| = 1, u ∧ ∂νu = 0 on ∂A
.

This solution is of the form

(5) uε,p(x) = ρε,p(|x|)
Ç

x

|x|

åp

where ρε,p ∈ C∞([R, 1], [0, 1]) is the unique solution of

(6)







−ρ′′ − ρ′

r
+
p2ρ

r2
=

ρ

ε2
(1− ρ2) in ]R, 1[

ρ(R) = ρ(1) = 1
.

As seen in the introduction, Berlyand and Golovaty proved a very precise
existence result (see Theorem 2.13 in [GB02]) for the minimization of Eε in

Jp,p with p ≥ 1 in annulars A = B(0, 1) \B(0, R) for R sufficiently close to
1.

For the special cases p = q = 1 and for an annular type domain D, by
using a compilation of works of Berlyand, Golovaty, Mironescu and Rybalko
(see e.g. [BM04], [BM06], [BGR06]) we may state the following proposition:

Proposition 13. Let D ⊂ R
2 be an annular type domain and let RD be the

conformal ratio of D.

• If RD ≤ e2 then mε(1, 1) is attained for all ε.
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• If RD > e2 then then there is ε0 > 0 s.t., for ε > ε0, mε(1, 1) is
attained and, for ε < ε0, mε(1, 1) is not attained.

2.3. Some Existence/Non Existence results: the case ε = ∞. In the
case of the Dirichlet energy, thanks to the conformal invariance of E∞, we
may restrict the study to a ring A = B(0, 1) \B(0, R) with R ∈]0, 1[.

As for the study of the minimization of the Ginzburg-Landau energy in
a ring, a natural candidate to minimize the Dirichlet energy in Jp,p is the
radial harmonic map of degree p which solves the semi-stiff problem

{

∆u = 0 in A

|u| = 1, u ∧ ∂νu = 0 on ∂A
.

This solution is of the form

(7) u∞,p(x) = ρ∞,p(|x|)
Ç

x

|x|

åp

where ρ∞,p ∈ C∞([R, 1], [0, 1]) is the unique solution of

(8)







−ρ′′ − ρ′

r
+
p2ρ

r2
= 0 in ]R, 1[

ρ(R) = ρ(1) = 1
.

In an unpublished paper, Berlyand and Mironescu [Lemma D.3 in [BM04]]
proved the following proposition that treats the case p = q = 1.

Proposition 14. For all R ∈]0, 1[, the radial harmonic map of degree 1 is
the unique [up to a phase] minimizer of m∞(1, 1).

Next, Hauswirth and Rodiac in [HR] considered the problem m∞(p, q) for
p, q ∈ Z. They proved the following proposition:

Proposition 15. Let p, q ∈ Z then we have

• If p 6= q and pq > 0 then m∞(p, q) is not attained. Without loss
of generality we can assume that p > q > 0 and then it holds that
m(p, q) = m(q, q) + 2π(p − q).

• If p = q 6= 0 then there is 0 < Rp < 1 s.t. for Rp < R < 1 m∞(p, p)
is attained and the radial harmonic map of degree p is the unique [up
to a phase] minimizer of m∞(p, p).

Remark 16. Note that the radius Rp obtained by Hauswirth and Rodiac is
the same as the radius obtained by Berlyand and Golovaty (see Theorem 2)
and that if p > p′ then Rp ≥ Rp′ (see Step 1 in the proof of Proposition 20).

3. Existence Result

This section is dedicated to the proof of Theorem 1. We first study the
behavior as εn goes to some ε∗ ∈]0,+∞] of sequences (un) s.t. un is almost
minimizing for Eεn . Then we derive a theoretical condition [Hyp. (H)] under
which the compactness of minimizing sequences for Eε holds for large ε. At
last we compare Hyp. (H) with the condition of Theorem 2.
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3.1. The key argument. For (p, q) ∈ Z
2 we define

A(p,q) =
¶

(p′, q′) ∈ Z
2 | pp′ ≥ 0, |p′| ≤ |p| and qq′ ≥ 0, |q′| ≤ |q|

©

.

Lemma 17. Let P = (p, q) ∈ Z
2, ε∗ ∈]0,∞] and (εn)n be an increasing

sequence s.t. εn ↑ ε∗ or εn = ε∗ for all n. Consider a sequence (un)n ⊂ JP
s.t.

Eεn(un) ≤ mεn(P ) + on(1).

By Proposition 7.1, there is u ∈ JP ′ s.t., up to a subsequence, un ⇀ u. Then
P ′ ∈ AP and u minimizes mε∗(P

′). Moreover, if P ′ 6= P then mε∗(P ) =
mε∗(P

′) + π|P − P ′|.

Proof. Fix P = (p, q) ∈ Z
2, ε∗ ∈]0,∞], (εn)n, be an increasing sequence s.t.

εn ↑ ε∗ or εn = ε∗ for all n and a sequence (un)n ⊂ JP s.t.

Eεn(un) ≤ mεn(P ) + on(1).

There exists u ∈ JP ′ s.t., up to a subsequence, un ⇀ u. By the Price Lemma
(Lemma 11) we have

lim inf
n

E∞(un) ≥ E∞(u) + π|P − P ′|.

On the other hand, up to pass to an extraction we have |un| → |u∞| in L4

we thus have:

1

4ε2n

∫

D

(1− |un|2)2 −→
n→∞

∣

∣

∣

∣

∣

∣

1

4ε2∗

∫

D

(1− |u∞|2)2 if ε∗ <∞
0 if ε∗ = ∞

.

By combining the two previous estimates we obtain:

lim inf
n

Eεn(un) ≥ Eε∗(u) + π|P − P ′|.

From Proposition 7.2&3 we deduce:

mε∗(P
′) + π|P − P ′| = lim

n
mεn(P

′) + π|P − P ′|
≥ lim

n
mεn(P )

= lim inf
n

Eεn(un)

≥ Eε∗(u) + π|P − P ′|.(9)

Therefore we have u ∈ JP ′ and mε∗(P
′) ≥ Eε∗(u). Consequently u mini-

mizes mε∗(P
′).

Assume now that p ≥ 0 and that p′ > p.
Note that u satisfies the hypotheses of Proposition 10 and that there exists
x0 ∈ ∂Ω s.t. u∧∂τu(x0) > 0 because deg∂Ω(u) > 0 and −u(x0) ·∂νu∞(x0) =

−1

2
∂ν |u∞|2(x0) ≤ 0 because x0 is a maximum point of |u∞|2 (recall that

|u| = 1 on ∂D and |u| ≤ 1 in D thanks to the maximum principle).
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By Propositions 9&10 we have the existence of ũ ∈ JP s.t.

mε∗(P ) ≤ Eε∗(ũ)

< Eε∗(u) + π|P − P ′|
= mε∗(P

′) + π|P − P ′|.(10)

By mimicking the argument which gives (9) we obtain

mε∗(P ) = lim
n
mεn(P )

≥ lim inf
n

Eεn(un)

≥ mε∗(P
′) + π|P − P ′|.(11)

Clearly (11) is in contradiction with (10). Thus if p ≥ 0 then p′ ≤ p. Using
the same argument we prove that if p ≥ 0 then p′ ≥ 0 and therefore p′ ∈ [0, p].
If p ≤ 0, we obtain, through the same method, that p′ ∈ [p, 0]. The same
results hold for q instead of p. Hence we obtain that P ′ ∈ AP .
We now prove the last part of the proposition. Noticing that the inequalities
which give (9) are in fact equalities, with the help of Proposition 7.3 we
deduce that mε∗(P ) = mε∗(P

′) + π|P − P ′|.
�

3.2. Consequences of the key argument : existence of minimiz-
ers. The key argument describes what can happen to almost minimizing
sequences (un)n for mεn(p, q) when εn tends to ε∗. Roughly speaking, if
p, q > 0, un converges weakly to some u in H1. We have that u ∈ Jr,s with
0 ≤ r ≤ p, 0 ≤ s ≤ q, u minimizes Eε∗ in Jr,s and the loss of energy is
quantified that is mε∗(r, s) = mε∗(p, q) − π(p − r + q − s). We can then
show that a sharp inequality [Hyp. (H)] prevents minimizing sequences from
falling in a class Jr,s with r 6= p and s 6= p.

Proposition 18. Let D ⊂ R
2 be an annular type domain and let p ∈ N

∗ s.t.

(H) m∞(p, p) < m∞(p− 1, p − 1) + 2π.

Then, for sufficiently large ε, the minimizing sequences for mε(p, p) are com-
pact in H1(D) and thus mε(p, p) is attained.

Proof. We argue by contradiction. We assume that

• p ∈ N
∗ and D are s.t. (H) holds,

• there exists ε = εk ↑ ∞ s.t. for all ε there is a minimizing sequence
(uεn)n for mε(p, p) satisfying:

(uεn)n is not compact for the strong topology of H1.

For all ε = εk, up to consider an extraction in (uεn)n, there is uε ∈ J s.t.
uεn ⇀

n→∞
uε in H1(D). By Lemma 17, we have that deg(uε) ∈ A(p,p) and that

uε minimizes mε(deg(uε)).
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Note that the minimizing property of (uεn)n combined with its non compact-
ness property, imply that

(12) deg(uε) 6= (p, p).

Indeed, if deg(uε) = (p, p), then uε ∈ Jp,p. Moreover, by compact Sobolev

embedding we have lim
n

1

4ε2

∫

D

(1−|uεn|2)2 =
1

4ε2

∫

D

(1−|uε|2)2. On the other

hand limnEε(u
ε
n) = mε(p, p) = Eε(uε).

Consequently lim inf
n

1

2

∫

D

|∇uεn|2 =

∫

D

|∇uε|2 which implies that uεn → uε

in H1(D). This convergence contradicts the non compactness property of
(uεn)n.

It is clear that the set {deg(uε)} ⊂ A(p,p) is finite. Thus we may consider
an extraction, still denoted by (εk)k, s.t. deg(uε) = P1 ∈ A(p,p) \ {(p, p)}.
Up to an extraction in (εk)k, there exists u∞ ∈ J s.t. uε ⇀ u∞. By Lemma
17 we have that P2 := deg(u∞) ∈ AP1

⊂ A(p,p) and u∞ minimizes m∞(P2).
Therefore by Proposition 15 there is p2 ∈ [0, p] s.t. P2 = (p2, p2). Moreover,
since P2 = (p2, p2) ∈ AP1

⊂ A(p,p) \ {(p, p)} we have p2 ∈ [0, p− 1]. Hence it
holds that (by Prop. 7.2)

m∞(P2) + π|(p− 1, p − 1)− P2|+ 2π ≥ m∞(p− 1, p − 1) + 2π

[Hyp. (H)] > m∞(p, p)

[Prop. 7.3] = lim
ε→∞

mε(p, p)

= lim
ε→∞

lim inf
n

Eε(u
n
ε )

[Lemma 11] ≥ lim
ε→∞

Eε(uε) + π|(p, p)− P1|
≥ m∞(P2) + π|P2 − P1|+

+ π|P1 − (p, p)|.
Then we deduce that:

|(p− 1, p − 1)− P2|+ 2 > |P2 − P1|+ |P1 − (p, p)|.
By the triangle inequality we have:

|(p− 1, p − 1)− P2|+ 2 > |P2 − (p, p)|.
Since P2 = (p2, p2) with p2 ∈ [0, p − 1], the last inequality means

p− p2 > p− p2.

This is clearly a contradiction and the proposition is proved. �

By using the same strategy as in the proof of Proposition 18 we have:

Proposition 19. Let p > 0 and D an annular type domain s.t.

(H) m∞(p, p) < m∞(p− 1, p − 1) + 2π
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holds. Then minimizing sequences for m∞(p, p) are compact in H1 and thus
m∞(p, p) is attained.

Proof. Let p > 0. Assume that m∞(p, p) < m∞(p− 1, p− 1) + 2π. Consider
(un)n a minimizing sequence for m∞(p, p). Up to pass to a subsequence
we have the existence of u∞ ∈ J s.t. un ⇀ u∞. Let P ′ := deg(u∞). If
P ′ = (p, p) then we are done.

Otherwise we have: P ′ 6= (p, p). By Lemma 17 we have that u∞ minimizes
m∞(P ′) and P ′ ∈ A(p,p). Thus, by Proposition 15 we have the existence of
p′ ∈ [0, p − 1] s.t. P ′ = (p′, p′) [here we used P ′ 6= (p, p)].
Using Lemma 17 again we have

m∞(p− 1, p − 1) + 2π
(H)
> m∞(p, p)

= m∞(P ′) + 2π(p − p′).

Therefore we obtained m∞(p− 1, p − 1) > m∞(p′, p′) + 2π|p− p′ − 1|. This
estimate is in contradiction with Proposition 7.2.
Consequently we have P ′ = (p, p) and then m∞(p, p) is attained. �

3.3. Comparaison with the work of Berlyand&Golovaty [GB02]. This
section is essentially dedicated to the proof of the following proposition

Proposition 20. Let p ∈ N
∗ and let 0 < Rp < 1 of Theorem 2. For a

annular type domain D s.t. its conformal ratio [see Definition 2] satisfies
Rp < RD < 1 we have m∞(p, p) < m∞(p− 1, p − 1) + 2π.

Proposition 20 as two direct consequences :

(1) If the hypothesis of Theorem 2 holds for an annular A then Proposi-
tion 18 holds.

(2) A way to reformulate (in a weaker form) the hypothesis of Theorem
1 or Proposition 18 is to replace "m∞(p, p) < m∞(p−1, p−1)+2π"
by :

• the conformal ratio of D satisfies Rp < RD < 1 (0 < Rp < 1 of
Theorem 2);
or equivalently

• cap(D) > Cp for Cp =
−2π

lnRp
.

Proof. We prove Proposition 20 in 3 steps.

Step 1. The sequence of critical radii (Rp)p≥1 of Theorem 2 is non decreasing

The critical radius Rp is defined by Rp = max(α, βp) with α ∈]0, 1[ which
is a universal constant and βp ∈]0, 1[ depends on p ≥ 1. In order to prove
that (Rp)p≥1 is non decreasing, it suffices to prove the same for (βp)p≥1.
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For p ≥ 1, the definition of βp consists in fixing βp ∈]0, 1[ s.t. for βp <
R < 1 and for all ε > 0 we have

(13)
1

Å

1

R
− 1

ã ∫ 1

R
tρε,p(t)

−2dt

≥ γ

where ρε,p is defined in (5) and γ > 0 is a constant (the computations are
made in [GB02] with γ = 4).

Note that it is easy to prove that

(14) ρε,p → ρ∞,p in L∞([R, 1]) (when ε→ ∞)

with ρ∞,p defined in (7). This uniform convergence is obtained first with
the H1 convergence of uε,p → u∞,p (defined in (5)&(7)). Then using the
radially symmetric structure of the function the uniform convergence (14)
follows directly.

Clearly, with the help of (14) and using the fact that ρε,p ≥ ρ∞,p (see
Lemma 28), the lower bound (13) holds for all ε > 0 if and only if

(15)
1

Å

1

R
− 1

ã ∫ 1

R
tρ∞,p(t)

−2dt

≥ γ.

We are now in position to get that (βp)p≥1 is non decreasing by proving that
for all r ∈ [R, 1] and p ≥ 1 we have ρ∞,p+1(r) ≤ ρ∞,p(r).

We fix r ∈ [R, 1] and we let

fr : [1,∞[ → [0, 1]

p 7→ ρ∞,p(r) =
1

1 +Rp

Å

rp +
Rp

rp

ã

.

It is clear that fr is smooth and that

f ′r(p) =
ln(r)

ï

rp −
Å

R

r

ãpò

(1 +Rp) + ln(R)

ïÅ

R

r

ãp

− (Rr)p
ò

(1 +Rp)2
.

We have obviously that f ′r(p) ≤ 0 if
√
R ≤ r ≤ 1 and if R ≤ r ≤

√
R then

letting r = sR with s ∈ [1,
1√
R
] we have

f ′r(p) =
ln(R)(1 −Rp)spRp + ln(s)(spRp − s−p)

(1 +Rp)2
.

And once agin we have f ′r(p) ≤ 0.
Consequently the function fr is non increasing, i.e., ρ∞,p+1(r) ≤ ρ∞,p(r).

The last inequality imply thus with the help of definition of βp (see (13))
that βp+1 ≥ βp. Therefore Rp+1 ≥ Rp.

Step 2. For p ≥ 1, Rp < R < 1 and D = B(0, 1) \B(0, R), u∞,p minimizes
m∞(p, p)
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This step is a direct consequence of Theorem 2, Lemma 17 and (14). In-
deed from Theorem 2, for ε > 0, uε,p defined by (5)&(6) minimizes mε(p, p).

On the one hand, by (14), uε,p → u∞,p in L∞(B(0, 1) \B(0, R)).
On the other hand, with the help of Lemma 17, up to pass to a subse-

quence, when ε → ∞, uε,p converges weakly in H1(B(0, 1) \ B(0, R)) to a
minimizer of m∞(P ) for some P ∈ Ap,p.

By combining both previous claims we get that u∞,p minimizes m∞(p, p).

Step 3. Conclusion

Note that for p = 1 m∞(1, 1) < 2π and thus the result of Proposition 20
is obvious.

We prove that if p ≥ 2, Rp < R < 1 and D = B(0, 1) \ B(0, R) then
m∞(p, p) < m∞(p − 1, p− 1) + 2π.

Once this is done, by conformal invariance, we get that if D is an annular
type domain whose conformal ratio satisfies Rp < RD < 1 then we have
m∞(p, p) < m∞(p − 1, p− 1) + 2π.

Let p ≥ 2, Rp < R < 1 and D = B(0, 1) \ B(0, R). From Steps 1&2, we
have for q ∈ {p − 1, p} that m∞(q, q) is reached by u∞,q.

Consequently (using Theorem 1.3 in [HR])

m∞(p, p)−m∞(p− 1, p − 1) = E∞(u∞,p)− E∞(u∞,p−1)

= 2π

ñ

p
1−Rp

1 +Rp
− (p− 1)

1 −Rp−1

1 +Rp−1

ô

.

Consequently, for R ∈]0, 1[
E∞(u∞,p)− E∞(u∞,p−1) < 2π

⇔ p(1−Rp)(1 +Rp−1)− (p− 1)(1 −Rp−1)(1 +Rp) < (1 +Rp−1)(1 +Rp)

⇔ Qp(R) := p− 1− pR−Rp < 0

and

E∞(u∞,p)− E∞(u∞,p−1) = 2π ⇐⇒ Qp(R) = 0.

It is easy to check that, for p ≥ 2 and R ∈]0, 1[, Qp is decreasing and that

Qp(1) = −2, Qp(0) = p− 1. Therefore Qp admits a unique zero R̃p in ]0, 1[

and for R ∈]0, 1[ we have Qp(R) < 0 ⇐⇒ R̃p < R < 1.

We now prove that R̃p ≤ Rp. Let Rp < R < 1. From Steps 1&2, for

q ∈ {p − 1, p} we have that m∞(q, q,B(0, 1) \ B(0, R)) is reached by u∞,q.
Consequently, using Proposition 7.2 we have

E∞(u∞,p)− E∞(u∞,p−1) ≤ 2π.

This inequality implies that (from the definitions of Qp and R̃p) Qp(R) ≤ 0

and thus R ≥ R̃p. Because Rp < R < 1 is arbitrary this consequence proves

that R̃p ≤ Rp.
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The inequality R̃p ≤ Rp expresses that if R ∈]Rp, 1[ then m∞(p, p) −
m∞(p− 1, p − 1) < 2π and this ends the proof of Proposition 20.

�

Remark 21. • Numerical computation. Berlyand and Mironescu
obtained the existence of Ginzburg-Landau minimizers in J1,1 for
large ε without restriction on the capacity of the domain (cf. Corol-
lary 5.5. in [BM04]). In particular they proved that u∞,1 minimizes
m∞(1, 1) for all R ∈]0, 1[ (cf. Proposition 5.2. in [BM04]).

For us the first interesting configuration of degrees is P = (2, 2).
Since m∞(2, 2) ≤ E∞(u2) we obtain that (H) holds if we have:

(16) E∞(u2) = 4π
1 −R2

1 +R2
< 2π

1−R

1 +R
+ 2π = m∞(1, 1) + 2π.

Namely (16) implies (H).
The study of (16) is easy to do (cf. [HR] proof of Theorem 5.4.) and
gives:

(16) holds if and only if R >
√
2− 1.

Thus if R >
√
2 − 1 then (H) holds and a minimizer of Eε in J2,2

exists if ε is large enough.

On the other hand, the radius R1 obtained in [GB02] is e
−1

16π2 ≃
0.99 while

√
2− 1 ≃ 0.41.

• Comparision of Hypotheses. As explain in Remark 2.14 of [GB02],
the Hypothesis of Theorem 2 is artificial : the optimal thickness con-
dition should depend on ε.

The formulation of Theorem 1 is not optimal in the sense given by
Berlyand and Golovaty in Remark 2.14 of [GB02]. But it allows to
have existence of minimizers for mε(p, p) for a wider class of annular
type domains:

• Theorem 1 holds for annular type domain while the work of
Golovaty and Berlyand is specific to annulars.

• Proposition 20 means that if the hypothesis on the size of the
annular in Theorem 2 holds then Hypothesis of Theorem 1 holds.

3.4. Asymptotic behavior of minimizers as ε→ +∞.

Proposition 22. Let p ≥ 1 be an integer and let D be an annular type do-
main s.t. m∞(p, p) < m∞(p−1, p−1). Thanks to that condition minimizers
uε of Eε in Jp,p do exist for ε large [Prop. 18] and ε = +∞ [Prop. 19].

Then it holds that, up to a subsequence,

(17) uε → u∞ in C l for all l ∈ N,

where u∞ is a minimizer of E∞ in Jp,p.

The starting point of the proof of the previous proposition is the following:
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Lemma 23. Under the same hypothesis as in Proposition 22, we have that,
up to a subsequence,

(18) uε → u∞ strongly in H1(D) and in C lloc ∀l ∈ N

where u∞ is a minimizer of E∞ in Jp,p.
Proof. For ε large, if the domain D is s.t. m∞(p, p) < m∞(p − 1, p − 1),
denoting by uε a minimizer of Eε in Jp,p and by ũ∞ a minimizer of E∞ in
Jp,p we have:

E∞(ũ∞) ≤ E∞(uε)

≤ Eε(uε)

≤ Eε(ũ∞)

= E∞(ũ∞) +
1

4ε2

∫

D

(1− |ũ∞|2)2.

Hence we see that (uε)ε is a minimizing sequence for m∞(p, p). By Proposi-
tion 19, along a subsequence we then have uε → u∞ in H1(D) for some u∞
which solves m∞(p, p).

The C lloc convergence for all l ∈ N is obtained by classic elliptic estimates
(see [GT01]). �

We now prove that the convergence holds in C l(D) for all l ∈ N. To this
end we adapt the strategy of Berlyand and Mironescu (Section 8 in [BM04]).

We divide the proof into four steps:

Step 1. We have that |uε| is uniformly close to 1 near ∂D for large ε

Lemma 24. Let ρε := |uε|. For all η > 0, there exist δ > 0 and ε0 > 0 s.t.
for all ε ≥ ε0 and for all z s.t. dist(z, ∂D) < δ it holds that

‖ρε − 1‖L∞ < η.

For the proof of this lemma we need the following reformulation of Berlyand&Mironescu
(see Lemma 8.3 in [BM04]) of a result of Brezis&Nirenberg :

Lemma 25 (Theorem A3.2. in [BN96]). Let (gn) ⊂ VMO(∂D;S1) be s.t.
gn → g strongly in VMO(∂D). Then for each 0 < a < 1, there is some
δ′ > 0, independent of n s.t.

a ≤ |ũ(gn)(z)| ≤ 1, if dist(z, ∂D) < δ′.

Here ũ(gn) is the harmonic extension of gn to D.

Proof of Lemma 24. Let uε be a minimizer of Eε in Jp,p for ε large enough.
We write uε = vε + wε with wε which satisfies

(19)







−∆wε =
1

ε2
uε(1− |uε|2) in D

wε = 0 on ∂D
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and vε the harmonic extension of tr∂Duε, i.e.,

(20)

®

∆vε = 0 in D
vε = uε on D .

To estimate ‖∇wε‖L∞(D) we use the standard elliptic estimate

Lemma 26 (Lemma A.2. in [BBH93]). Let w ∈ C2(D) satisfy

(21)

®

∆w = f in D
w = 0 on ∂D .

Then, for some constant CD depending only on D, we have:

(22) ‖∇w‖L∞(D) ≤ CD‖w‖1/2L∞(D)‖f‖
1/2
L∞(D).

Thanks to Lemma 26 we obtain [note that ‖wε‖L∞(D) ≤ ‖uε‖L∞(D) +
‖vε‖L∞(D) ≤ 2]

(23) ‖∇wε‖L∞(D) ≤
√
2CD × 1

ε
where CD is a constant depending only on D.

Thus, since wε = 0 on ∂D we obtain that there exists a constant C ′
D s.t.

(24) |wε(z)| ≤ C ′
D

1

ε
dist(z, ∂D).

We note that, up to a subsequence, tr∂Duε → tr∂Du∞ strongly in H1/2(∂D)
because uε → u∞ strongly in H1(D). Since H1/2 →֒VMO in 1D we can apply
Lemma 25 to obtain that for all η > 0 there exists δ′ and ε0 s.t. for all ε ≥ ε0

1− η

2
≤ |vε| ≤ 1, if dist(z, ∂D) < δ′.

Hence we find that

1 ≥ |uε(z)| ≥ |vε(z)| − |wε(z)|

≥ 1− η

2
−C ′

D

1

ε
dist(z, ∂D), if ε ≥ ε0 and dist(z, ∂D) < δ′

≥ 1− η

if dist(z, ∂D) < δ := min{δ′, ηε0
C ′
D

}. �

Step 2. Lifting close to ∂D

Now thanks to Lemma 24 we know that, for some δ > 0 and for sufficiently
large ε, uε does not vanish in

D+
δ := {z ∈ D |dist(z, ∂Ω) < δ}

nor in
D−
δ := {z ∈ D |dist(z, ∂ω) < δ}.

We set ρε = |uε| and ρ∞ = |u∞|. Note that up to consider a smaller value
for δ we may assume that |u∞| ≥ 1− η in D+

δ ∪ D−
δ (because u∞ is smooth

in D, see Lemma 4.4 [BM04]).
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Therefore we can write u∞ = ρ∞e
ıϕ, where ϕ is a locally defined harmonic

function and ∇ϕ is globally defined.
In D+

δ we have that

deg

Å

uε
u∞

, ∂Ω

ã

= 0 and deg

Ç |u∞|uε
|uε|u∞

, ∂D+
δ \ ∂Ω

å

= 0.

We can thus find ψε ∈ H1(D+
δ ,R) s.t. uε = ρεe

ı(ϕ+ψε) = ρeı(ϕ+ψ) in D+
δ . The

same is true in D−
δ . In D±

δ the Ginzburg-Landau equation is then equivalent
to the following equations on ρ and ψ:

(25)

®

−∆ρ = 1
ε2
ρ(1− ρ2)− ρ|∇(ϕ+ ψ)|2 in D±

δ
ρ = 1 on ∂D ,

(26)

®

− div(ρ2∇ψ) = div(ρ2∇ϕ) = 2ρ∇ρ · ∇ϕ in D
∂νψ = 0 on ∂D .

Note that the last equation can be rewritten as

(27) ∆ψ = div[(1 − ρ2)∇(ϕ+ ψ)] in D±
δ .

Step 3. ∇ψε is bounded in L4(D±
δ )

Fix z0 ∈ ∂D. In order to simplify the proof we assume that z0 = 0, D ⊂
{z; Im(z) > 0} and ∂D ⊂ R in a neighborhood U of z0. (These assumptions
are not essential for carrying out the arguments below but make the redaction
easier). Let r > 0 to be determined later s.t. Br := B(0, r) ⊂ U . Using the
Schwarz reflection we extend ρ, ψ and F = (1− ρ2)∇ψ = (F1, F2) to Br \ D
by setting for z ∈ Br \ D

ρ̃(z) = ρ(z), ψ̃(z) = ψ(z), F̃ (z) = (F1(z),−F2(z)).

We can then show that ψ̃ is a solution of

(28) ∆ψ̃ = div F̃ (z) in Br.

By standard elliptic estimates (see Theorem 7.1 in [GM13]), we have

(29) ‖∇ψ̃‖L4(Dr) ≤ C4

Å

‖ tr∂Br
ψ̃‖

W 1−
1

4
,4(∂Br)

+ ‖F̃‖L4(Br)

ã

.

By scaling, the constant C4 does not depend on r. We also have that

‖F̃‖L4(Br) ≤ ‖1− ρ̃‖L∞(Br)‖∇ψ̃‖L4(Br).(30)

Thanks to Lemma 24 we can choose r small enough s.t. for ε large enough
we have ‖1− ρ̃‖L∞(Br) <

1
2C4

. Hence we obtain that

(31) ‖∇ψ̃‖L4(Br) ≤ 2C4‖ tr∂Br
ψ̃‖

W 1−
1

4
,4(∂Br)

.

We can prove that, for r small enough and along a subsequence we have

tr∂Br
ψ̃ is bounded in W 1− 1

4
,4(∂Br). Indeed, along a subsequence, tr∂Br∩D ψ̃

is bounded in H1(∂Br ∩D) for some r > 0 s.t. Br ⊂ U thanks to the coarea
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formula and to the fact that ψ is bounded in H1(D) (since |∇ψ| ≤ |∇uε| in

D). Using the [continuous] Sobolev injection H1(∂Br) →֒ W 1− 1

4
,4(∂Br) we

obtain the result. Thus (up to a subsequence) ‖∇ψε‖L4(Br∩D) is bounded
for r small enough.

Repeating the previous argument we find that: for all z0 ∈ ∂D there exist
rz0 > 0 and Mz0 > 0 s.t. (up to a subsequence) ‖∇ψε‖L4(Brz0

∩D) ≤Mz0 .

Thanks to the fact that ∂D is compact we deduce that there exist δ1 > 0, a
subsequence and M s.t., letting Dδ1 = {z ∈ D | dist(z, ∂D) < δ1}, we have

‖∇ψε‖L4(Dδ1
) ≤M, for ε large enough.

(M is independent of ε)
Now since uε → u∞ in C lloc for all l ∈ N we obtain that ∇ψε is bounded in
L4(D+

δ ) and in L4(D−
δ ).

Step 4. Elliptic estimates and a bootstrap argument

We work in D+
δ but the argument is the same for D−

δ . We can use the equa-
tion satisfied by ρε (25), the fact that ∇ϕ is bounded in L∞ (see Lemma 4.4
in [BM04]) and the previous step to obtain that ∆ρε is bounded in L2(D+

δ ).

Hence the elliptic regularity implies that ρε is bounded in W 2,2(D+
δ/2). In-

deed one can multiply ρ by a cut-off function χ ∈ C∞(D+
δ ) s.t. χ ≡ 1 in

D+
δ/2 and χ = 0 on ∂D+

δ \ ∂Ω. We can then see that ∆(χρ) is bounded in

L2(D+
δ ) and since the boundary conditions are adapted to global regularity

we deduce that χρ is bounded in W 2,2(D+
δ ). Using the fact that χ ≡ 1 in

D+
δ/2 we obtain the result. Now since W 1,2 →֒

cont
Lp for all 1 < p < +∞ we

have that ∇ρ is bounded in Lp(D+
δ/2) for all 1 < p < +∞.

We now use the equation satisfied by ψε, written as

(32) ∆ψε =
2

ρε
∇ρε · ∇(ψε + ϕ).

We note that 1/ρε and ∇ϕ are bounded in L∞(D+
δ ) and we deduce that ∆ψε

is bounded in Lq(D+
δ ) for all 1 < q < +∞. Hence using a similar argument as

before with a cut-off function we can show that ψε is bounded in W 2,q(D+
δ/2)

for all 1 < q < +∞. In particular ∇ψε is bounded in W 1,q(D+
δ/2) for all 1 <

q < +∞. Using the fact that W 1,q ∩ L∞ is an algebra (see e.g. Proposition
9.4 p.269 in [Bre11]) we find that ∆ρε is bounded in W 1,q(D+

δ/2) for all

1 < q < +∞ and thus ρε is bounded in W 3,q(D+
δ/2). By a straightforward

induction we obtain that

ρ, ψ, are bounded in Wm,q(D+
δ/2) for all m ≥ 2, 1 < q < +∞.
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Thanks to Sobolev injections for any l ∈ N and any 0 < γ < 1 we can choose
m ≥ 1 and 1 < q < +∞ s.t. k = m − 1 and 1 − 2

q > β we then have

Wm,q →֒ C l,γ(D+
δ/2) and this embedding is compact. We thus have that, up

to a subsequence, uε = ρεe
ı(ϕ+ψε) → u in C l,γ for some u as ε→ ∞ in D+

δ/2.

But by Lemma 23 we have u = u∞. Using the C lloc convergence, we can
finally conclude that uε → u in C l(D) for all l ∈ N.

4. Non Existence Result

This section is dedicated to the proof of Theorem 3. We fix p, q ∈ N
∗,

p 6= q. For the simplicity of the presentation we assume that p > q. The
case p < q is similar.

We adapt here the strategy of Misiats [used to prove Theorem 2 in [Mis14]].

We denote d := p − q ∈ N
∗ and A := B(0, 1) \ B(0, R) where R ∈]0, 1[.

We are going to prove that for R sufficiently close to 1 and large ε there is
no minimizer for mε(p, q).

4.1. Strategy of the proof. By Theorem 2, there is R
(1)
q [R

(1)
q is indepen-

dent of ε] s.t. mε(q, q,A) is attained by the radial Ginzburg-Landau solution
uε = ρεe

ıqθ [here ρε = ρε,q depends also on q see (5)&(6)].
Because ρε > 0 in A, it is easy to see that

Jp,q = {ρεw |w ∈ Jp,q}.
Thus we have

(33) mε(p, q) = inf
w∈Jp,q

Eε(ρεw).

By Lemma 21 in [BR10], we have for w ∈ J
(34) Eε(ρεw) = Eε(uε) + Lε(w)

with

(35) Lε(w) =
1

2

∫

A

ρ2ε|∇w|2 − q2ρ2ε|∇θ|2|w|2 +
1

2ε2
ρ2ε(1− |w|2)2.

By combining (33), (34) and (35) we get

(36) mε(p, q) = Eε(uε) + inf
w∈Jp,q

Lε(w).

We argue by contradiction and we assume that

there is ε = εn ↑ ∞ s.t. mε(p, q) is attained by ρεwε.

Our strategy consists in proving that for R sufficiently close to 1, we have

(37) Lε(wε) > dπ.

Estimate (37) with (36)&Proposition 7.2 implies that mε(p, q) > mε(q, q) +
dπ which is in contradiction with Proposition 7.2.
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The key argument is a minoration of Lε(wε) by a sum of infinitely many
infima of functional (see (41)). These functionals have the form |ak|2Fk(·)
where the ak’s are the Fourier coefficients of trS1(we

−ıqθ). The Fk’s are
defined in H1(]R, 1[,C) and we imposed Dirichlet boundary condition for
r = 1 whereas we let the other boundary r = R free (see (40)). Note
that since the boundary r = R is free we obtained homogeneous Neumann
boundary condition for r = R.

By using some properties of (ak)k ∈ C
Z we apply Lemma 3 in [Mis14] (see

Proposition 27.3 below) in order to obtain that for large ε we have (37).

4.2. Asymptotic analysis of vε = wεe
−ıqθ. The goal of this subsection is

to prove that trS1(wεe
−ıqθ) → 1 in L2(S1).

By Lemma 17, up to pass to a further subsequence, there is P ∈ A(p,q)

and u∞ ∈ JP s.t. ρεwε ⇀ u∞ in H1. Moreover u∞ minimizes m∞(P ),

(38) m∞(p, q) = m∞(P ) + π|P − (p, q)|,
and we have P = (q′, q′) for some 0 ≤ q′ ≤ q from Proposition 15. How-

ever for R > R
(1)
q we have that q′ = q. Indeed, recall that for R > R

(1)
q ,

m∞(q, q) is uniquely attained by the radial harmonic map and, according to
the discussion in Section 3.3 it holds that for all 0 ≤ r < q we have

m∞(q, q) < m∞(r, r) + 2π(q − r).

But if q′ < q then we find that (using Lemma 17)

m∞(p, q) = m∞(q′, q′) + π(p − q) + 2π(q − q′) < m∞(q, q) + π(p− q)

which is in contradiction with Proposition 15.
Consequently, up to multiply by a constant of S1, we have that u∞ = u∞,q

(defined in (7)) where

u∞,q(re
ıθ) =

1

1 +Rq

Å

rq +
Rq

rq

ã

eıqθ.

We now write wε ∈ Jp,q as wε = vεe
ıqθ with vε ∈ Jd,0.

From the previous arguments we know that ρεwε = ρεvεe
ıqθ ⇀ u∞,q = ρqe

ıqθ

in H1(D) [here we write ρq instead of ρ∞,q].

Moreover, from Lemma 23, we have ρεe
ıqθ → ρqe

ıqθ in H1(D). Consequently
vε ⇀ 1 in H1(D). Therefore trS1vε → 1 in L2(S1).

4.3. Reformulation of Lε(wε) and a minoration of Lε(wε). In order to
get a nice lower bound for Lε(wε) we first reformulate Lε(wε).

The argument is based on the Fourier expansion of trS1vε:

trS1vε(e
ıθ) =

∑

k∈Z

ake
ıkθ.

We have the following proposition:
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Proposition 27. (1)
∑

k∈Z

k|ak|2 = d.

(2)
∑

k∈Z∗

|ak|2 → 0 when ε→ ∞.

(3) Let k0 ∈ N
∗, there is C1 (depending only on k0) and a sequence cε > 0

(depending only on k0 and ε) s.t. cε → 1 when ε→ ∞ satisfying for
k = 1, ..., k0.

|ak| ≤ cε|a−k|+ C1

∑

l∈Z∗

|al|2.

Proof. The first assertion is the degree formula. The second assertion comes
from the convergence trS1vε → 1 in L2. The third assertion is Corollary 2 in
[Mis14] by noting that Lemma 3 in [Mis14] holds. �

We now go back to the Lε functional. Writing wε = vεe
ıqθ we have

Lε(ve
ıqθ) =

1

2

∫

A

ρ2ε
î

q2|∇θ|2|v|2 + |∇v|2 + 2q∇θ · (v ∧∇v)
ó

−

− q2ρ2ε|∇θ|2|v|2 +
1

2ε2
ρ2ε(1− |v|2)2

=
1

2

∫

A

ρ2ε|∇v|2 + 2qρ2ε∇θ · (v ∧ ∇v) + 1

2ε2
ρ2ε(1− |v|2)2

=: L̃ε(v) +
1

4ε2

∫

A

ρ2ε(1− |v|2)2.

We now focus on the L̃ε functional and we prove that for sufficiently large ε
and for R sufficiently close to 1, we have

(39) Lε(wε) ≥ L̃ε(vε) > dπ.

To prove (39) we switch to polar coordinates (with a little abuse of notation)
and we write

vε(r, θ) =
∑

k∈Z

akfk(r)e
ıkθ, r ∈]R, 1[, θ ∈]0, 2π[

where fk ∈ H1(]R, 1[,C) is s.t. fk(1) = 1.
Note that the map ρε depends only on r ∈]R, 1[. Therefore we have the

following expansion:

L̃ε

Ñ

∑

k∈Z

akfk(r)e
ıkθ

é

= π
∑

k∈Z

|ak|2
∫ 1

R
ρ2ε

ñ

r|f ′k|2 +
k2 + 2qk

r
|fk|2

ô

.

For k ∈ Z, and f ∈ H1(]R, 1[,C), we let

Fk(f) =

∫ 1

R
ρ2ε

ñ

r|f ′|2 + k2 + 2qk

r
|f |2
ô

and

(40) mk = inf
¶

Fk(f) | f ∈ H1(]R, 1[,C) s.t. f(1) = 1
©
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4.4. Minoration of L̃ε(vε). It is clear that we have

(41) Lε(wε) ≥ L̃ε

Ñ

∑

k∈Z

akfk(r)e
ıkθ

é

≥ π
∑

k∈Z

akmk.

In order to get a lower bound for mk we use the following lemma:

Lemma 28. For ε > 0 we have ρε ≥ ρq where ρq(r) =
1

1 +Rq

Å

rq +
Rq

rq

ã

.

Proof. Let ε > 0 and let U = {x ∈ A | ρε(x) < ρq(x)}. We argue by
contradiction and we assume that U 6= ∅. Note that U is a smooth open set
and that tr∂U (ρεe

ıqθ) = tr∂U (ρqe
ıqθ).

By the minimality of ρqe
ıqθ we have

E∞(ρqe
ıqθ, U) ≤ E∞(ρεe

ıqθ, U).

On the other hand, by the definition of U and because 0 ≤ ρε, ρq ≤ 1 we
have

∫

U
(1− ρ2q)

2 <

∫

U
(1− ρ2ε)

2.

Consequently

Eε(ρqe
ıqθ, U) < Eε(ρεe

ıqθ, U)

and this is in contradiction with the minimality of ρεe
ıqθ. �

From Lemma 28, for f ∈ H1(]R, 1[,C)

Fk(f) ≥



















∫ 1

R
ρ2q

ñ

r|f ′|2 + k2 + 2qk

r
|f |2
ô

if k2 + 2qk > 0
∫ 1

R
ρ2qr|f ′|2 +

k2 + 2qk

r
|f |2 if k2 + 2qk ≤ 0

.

We let

ρmin = min
[R,1]

ρq =
2Rq/2

1 +Rq
.

In order to get (39), it suffices to replace the minimization problem mk [define
in (40)] by m̃k where:

• for k ≤ 0& k2 + 2qk > 0

m̃k = ρ2min inf

®

∫ 1

R
r|f ′|2 + k2 + 2qk

r
|f |2

∣

∣

∣

∣

∣

f ∈ H1(]R, 1[,C) s.t.f(1) = 1

´

• for k ≤ 0& k2 + 2qk ≤ 0

m̃k = ρ2min inf

®

∫ 1

R
r|f ′|2 + k2 + 2qk

rρ2min

|f |2
∣

∣

∣

∣

∣

f ∈ H1(]R, 1[,C) s.t.f(1) = 1

´
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• for k > 0, m̃k =
1

(1 +Rq)2

[

m̃
(1)
k + 2Rqm̃

(2)
k +R2qm̃

(3)
k

]

where

m̃
(1)
k = inf

®

∫ 1

R
r2q+1|f ′|2 + r2q−1(k2 + 2qk)|f |2

∣

∣

∣

∣

∣

f ∈ H1(]R, 1[,C)
s.t.f(1) = 1

´

,

m̃
(2)
k = inf

®

∫ 1

R
r|f ′|2 + k2 + 2qk

r
|f |2

∣

∣

∣

∣

∣

f ∈ H1(]R, 1[,C)
s.t.f(1) = 1

´

,

m̃
(3)
k = inf

®

∫ 1

R
r−2q+1|f ′|2 + r−2q−1(k2 + 2qk)|f |2

∣

∣

∣

∣

∣

f ∈ H1(]R, 1[,C)
s.t.f(1) = 1

´

.

We first study the cases k ≤ 0. According to the definition of m̃k we divide
the presentation in two parts: k2 + 2qk > 0 and k2 + 2qk ≤ 0.

It is clear that k2 + 2qk ≤ 0 ⇔ k = −2q, ..., 0. We treat the case
k2 + 2qk > 0&k ≤ 0, i.e., k < −2q.

Case I. k < −2q

If k < −2q, it is obvious that

(42) m̃k > 0,

and this estimate is sufficient for our argument.

Case II. k = −2q, ..., 0

We now consider the case: k = −2q, ..., 0. We claim that k2 +2qk ≥ −q2.
Therefore, by a Poincaré type inequality, there is 1 > R

(2)
q ≥ R

(1)
q s.t. for

R
(2)
q < R < 1

inf
f∈H1(]R,1[,C)

s.t.f(1)=1

∫ 1

R

ñ

r|f ′|2 + k2 + 2qk

rρ2min

|f |2
ô

> −∞.

Therefore, by direct minimization, the infimum is reached. One can prove

that the minimizer of m̃k is unique and, letting α :=
k2 + 2qk

ρ2min

, it satisfies:







−(rf ′)′ +
α

r
f = 0 for r ∈]R, 1[

f(1) = 1&f ′(R) = 0
.

By solving the ordinary differential equation we get that

f0(r) = A cos(
√
−α ln r) +B sin(

√
−α ln r).

With the boundary conditions we obtain

f0(r) = cos(
√
−α ln r) + tan(

√
−α lnR)× sin(

√
−α ln r).
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By using an integration by part we easily get that

inf
f∈H1(]R,1[,C)

s.t.f(1)=1

∫ 1

R

ñ

r|f ′|2 + k2 + 2qk

rρ2min

|f |2
ô

= f ′0(1)f0(1)− f ′0(R)f0(R)

= f ′0(1) =
√
−α tan(

√
−α lnR).

Thus, if k = −2q, ..., 1 then we have

m̃k = ρmin

»

−k2 − 2qk × tan

ñ
√

−k2 − 2qk

ρmin
× lnR

ô

.

Consequently, we have for k = −2q, ...,−1
{

m̃k ≥ (k2 + 2qk)(1−R) +O[(1−R)2]

m̃0 = 0
.

Thus there is 1 > R
(3)
q ≥ R

(2)
q (depending on q) s.t. for 1 > R > R

(3)
q we

have for k = −2q, ...,−1

(43)

{

m̃k ≥ (k2 + 2qk − 10−6)(1−R)

m̃0 = 0
.

Case III. k > 0

We now treat the last case: k > 0. We study the minimization problems

m̃
(l)
k for l = 1, 2, 3.
For l = 1, 2, 3, we have [letting α = k2 + 2qk]

m̃
(l)
k = inf

f∈H1(]R,1[,C)
s.t.f(1)=1

∫ 1

R

î

rβl+1|f ′|2 + rβl−1α|f |2
ó

with

βl =















2q if l = 1

0 if l = 2

−2q if l = 3

.

By direct minimization, it is easy to see thatm
(l)
k admits a solution. Moreover

a solution fl satisfies
{

−(rβl+1f ′)′ + αrβl−1f = 0 for r ∈]R, 1[
f(1) = 1&f ′(R) = 0

.

From the ordinary differential equation we get that

fl(r) = Alr
sl +Blr

tl , Al, Bl ∈ C

with

sl =
−βl +

»

β2l + 4α

2
and tl =

−βl −
»

β2l + 4α

2
.
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Note that

(44) sltl = −α and sl − tl =
»

β2l + 4α.

For the simplicity of the presentation we drop the subscript l.
From the boundary conditions we have

{

A+B = 1

AsRs +BtRt = 0
⇔











A =
tRt−s

tRt−s − s
B =

s

s− tRt−s

.

As for the previous cases we have

m̃
(l)
k = f ′l (1)

= Alsl +Bltl

=
sltlR

tl−sl

tlRtl−sl − sl
+

sltl
sl − tlRtl−sl

=
sltl(1−Rtl−sl)

sl − tlRtl−sl

[by (44)] =
−α(1−R−

√
β2

l
+4α)

sl − tlR
−
√
β2

l
+4α

.

In order to handle the expression of m̃
(l)
k , we note that for γ ∈ R we have

Rγ = 1− γ(1−R) +O[(1−R)2].

Therefore, for fixed k ≥ 0 we have [recall that sl − tl =
»

β2l + 4α]

m̃
(l)
k =

−α
[

1−
(

1 +
»

β2l + 4α(1−R) +O[(1 −R)2]
)]

sl − tl + tl
»

β2l + 4α(1−R) +O[(1−R)2]

=
α
»

β2l + 4α(1−R) +O[(1−R)2]
»

β2l + 4α+ tl
»

β2l + 4α(1−R) +O[(1−R)2]

= α(1 −R) +O[(1−R)2].

Consequently, for k ∈ {1, ..., 2q}, we get

m̃k = (k2 + 2qk)(1 −R) +O[(1−R)2].

Thus there is 1 > R
(4)
q ≥ R

(3)
q (depending on q) s.t. for 1 > R > R

(4)
q and

k ∈ {1, ..., 2q} we have

(45) m̃k ≥ (k2 + 2qk − 10−6)(1−R)

and

(46) 1− 2q(1−R) > 0.
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On the other hand, by noting that q2 + α = (q + k)2 and that q, k ≥ 0, we
have for fixed R [when k → ∞]

(47) m̃
(1)
k =

(k2 + 2qk)(1 −R2(q+k))

kR2(q+k) + 2q + k
= (k + 2q)(1 + ok(1)),

(48) m̃
(2)
k =

√

k2 + 2qk(1−R2
√
k2+2qk)

1 +R2
√
k2+2qk

= (k + q)(1 + ok(1)),

(49) m̃
(3)
k =

(k2 + 2qk)(1 −R2(q+k))

k + (2q + k)R2(q+k)
= (k + 2q)(1 + ok(1)).

From (47), (48) and (49), it is not difficult to prove that for 1 > R > R
(4)
q

there is KR ≥ 2q + 2 (depending on R and q) s.t. for k ≥ KR we have that
for l = 1, 2, 3:

(50) m̃
(l)
k ≥ k +

1

4
.

Consequently from (50) we have for k ≥ KR

m̃k =
1

(1 +Rq)2

[

m̃
(1)
k + 2Rqm̃

(2)
k +R2qm̃

(3)
k

]

≥ k +
1

4
.(51)

And if k ∈ {2q + 1, ...,KR − 1} we just need

(52) m̃k > 0.

4.5. Last computations and conclusion. We are now in position to prove
(39).

On the one hand we have (with (41), (43) (45), (51) and Proposition 27.1)

L̃ε(vε)

π
− d

≥
∑

k∈Z

|ak|2(m̃k − k)

≥
∑

k≤−2q−1

|ak|2(m̃k + |k|) +
−1
∑

k=−2q

|ak|2
î

(k2 + 2qk − 10−6)(1 −R) + |k|
ó

+

+
2q
∑

k=1

|ak|2
î

(k2 + 2qk − 10−6)(1−R)− k
ó

+
KR−1
∑

k=2q+1

|ak|2(m̃k − k) +

+
∑

k≥KR

|ak|2
4

= S1,2q + S2q+1,KR−1 + SKR,∞.
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Where

S1,2q =
2q
∑

k=1

|ak|2
î

(k2 + 2qk − 10−6)(1 −R)− k
ó

+

+ |a−k|2
î

(k2 − 2qk − 10−6)(1−R) + k
ó

,

S2q+1,KR−1 =
KR−1
∑

k=2q+1

k(|a−k|2 − |ak|2) + |ak|2m̃k + |a−k|2m̃−k,

SKR,∞ =
∑

k≥KR

|ak|2
4

+ |a−k|2(m̃−k + k).

From (42) we have for k ≥ KR > 2q that m̃−k > 0, then

(53) SKR,∞ ≥ 1

4

∑

k≥KR

{|ak|2 + |a−k|2}.

By Proposition 27.3, there are C1 > 0 and cε > 0 s.t. cε →
ε→∞

1 and for

k ∈ {1, ...,KR} we have

|ak|2 ≤ c2ε|a−k|2 + 2cε|a−k|C1

∑

l∈Z∗

|al|2 +C2
1

Ñ

∑

l∈Z∗

|al|2
é2

[Proposition 27.2] ≤ c2ε|a−k|2 + o

Ñ

∑

l∈Z∗

|al|2
é

.

Consequently, for k ∈ {1, ...,KR} we have

|a−k|2 − |ak|2 ≥ |a−k|2(1− c2ε) + o

Ñ

∑

l∈Z∗

|al|2
é

[cε → 1&Proposition 27.2] = o

Ñ

∑

l∈Z∗

|al|2
é

when ε→ ∞.(54)
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We thus get

S1,2q =
2q
∑

k=1

¶

|ak|2
î

(k2 + 2qk − 10−6)(1−R)− k
ó

+|a−k|2
î

(k2 − 2qk − 10−6)(1−R) + k
ó©

= (1−R)
2q
∑

k=1

(|ak|2 + |a−k|2)(k2 − 10−6) +

+ [1− 2q(1−R)]
2q
∑

k=1

{|a−k|2 − |ak|2}

[(45),(46)&(54)]
≥ (1−R)

2q
∑

k=1

(|ak|2 + |a−k|2)(k2 − 10−6) + o

Ñ

∑

l∈Z∗

|al|2
é

.(55)

Clearly, from (43)&(52), there is 1
4 > η > 0 (independent of ε) s.t. we have

{

m̃k, m̃−k > η for k ∈ {2q + 1, ...,KR − 1}
(1− 10−6)(1 −R) > η

and consequently (with (54))

(56) S2q+1,KR−1 ≥ η
KR−1
∑

k=2q+1

{|ak|2 + |a−k|2}+ o

Ñ

∑

l∈Z∗

|al|2
é

when ε→ ∞.

Therefore, by combining (53), (55) and (56) we have

L̃ε(vε)

π
− d ≥ S1,2q + S2q+1,KR−1 + SKR,∞

≥ η
∑

l∈Z∗

|al|2 + o

Ñ

∑

l∈Z∗

|al|2
é

> 0 for sufficiently large ε.

This last result ends the proof of Theorem 3.

5. Comments and perspectives

In order to prove our results we have made several restrictions on the
parameter ε, on the capacity of the domain and on the form of the domain
(for Theorem 3). We want to discuss here why these restrictions appear and
their necessity.

In Theorem 1 we assumed that the annular domain is "thin" (with large
capacity) and that ε is large. In view of Theorem 4 of Mironescu (see [Mir13])
we know that if the annular domain is "thick" and if ε is small then minimiz-
ers of mε(p, p) do not exist (for p ∈ N

∗). However it is an open question to
know if minimizers do exist for ε large when the annular domain has small
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capacity for p > 1. This is indeed the case for p = 1, but for p > 1 even for
the Dirichlet energy E∞ this is not known.

In Theorem 3 we also assumed that the annulus is "thin". The main reason
for that is the following: in order to prove non existence of minimizers of Eε
we want to show that for every v ∈ Jp,q

Eε(v) > mε(q, q) + π(p− q)

if p > q. However it is easier to compute the difference Eε(v) − mε(q, q)
if the infimum mε(q, q) is attained, since we can then use a decomposition
Lemma (see (37)). For example when mε(1, 1) is not attained we know that
mε(1, 1) = 2π thanks to the Price Lemma 11. Thus in order to prove non
existence of minimizers in Jp,1 for p > 1 one could try to show that

Eε(v) > 2π + π(p − 1)

for all v ∈ Jp,1.
Other technical reasons appear in the process of the proof of Theorem 3.

In [Mis14] the author was able to get rid of the technical restrictions on the
size of the domain. Its argument does not apply in our case, this is mainly
due to the fact that |uε| does not converge to 1 (or to a constant) when
ε → +∞. The restriction on the shape of the domain in 3 also comes from
the fact that |uε| does not converge to a constant as ε→ +∞. More precisely
we used in a crucial way that ρqε > ρq = |uq∞| in the proof of the Theorem.
We also used that ρqε only depends on r in order to use a decomposition in
Fourier series. We did not obtain analogous results in the case of a general
annular domain. However we believe that Theorem 3 holds for all annular
type domain regardless of the shape or of the size.
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