
HAL Id: hal-01139163
https://hal.science/hal-01139163v1

Submitted on 3 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Method for dynamic power monitoring on FPGAs
Mohamad Najem, Pascal Benoit, Florent Bruguier, Gilles Sassatelli, Lionel

Torres

To cite this version:
Mohamad Najem, Pascal Benoit, Florent Bruguier, Gilles Sassatelli, Lionel Torres. Method for dy-
namic power monitoring on FPGAs. FPL: Field Programmable Logic and Applications, Sep 2014,
Munich, Germany. �10.1109/FPL.2014.6927457�. �hal-01139163�

https://hal.science/hal-01139163v1
https://hal.archives-ouvertes.fr

Method for Dynamic Power Monitoring on FPGAs

Mohamad Najem, Pascal Benoit, Florent Bruguier, Gilles Sassatelli, Lionel Torres

LIRMM – UMR CNRS 5506 – University of Montpellier 2
Montpellier, France

{mohamad.najem, pascal.benoit, florent.bruguier, sassatelli, lionel.torres}@lirmm.fr

Abstract— The ever-increasing integration densities make it

possible to configure multi-core systems composed of hundreds of

blocks on existing FPGAs that may influence overall

consumption differently. Observing total consumption is not

sufficient to accurately assess internal circuit activity to be able to

deploy effective adaptation strategies. In this case monitoring

techniques are required. This paper presents a CAD flow for

high-level dynamic power estimation on FPGAs. The method is

based on the monitoring of toggling activity for relevant signals

by introducing event counters. The appropriate signals are

selected using the Greedy Stepwise filter. Our approach is based

on a generic method that is able to produce a power model for

any block-based circuit. We evaluated our contribution on a SoC

RTL model implemented on Spartan3, Virtex5, and Spartan6

FPGAs. A power model and monitors are automatically

generated to achieve the best tradeoff between accuracy and

overhead.

Keywords; FPGA; System-on-Chip; Power Modeling; Power

Monitoring;

I. INTRODUCTION

Energy efficiency is one of the main challenges facing
hardware and software designers. Different techniques ranging
from silicon to application abstraction level must be applied to
efficiently reduce power consumption. The power consumed is
due to switching (dynamic power) and leakage (static power),
and therefore depends on many different parameters, including
power supply voltage, circuit frequency, load equivalent
capacitance, toggling activity, but also temperature and
transistor characteristics including threshold voltage. Many
run-time techniques can be used to reduce dynamic power, e.g.
Dynamic Voltage Frequency Scaling (DVFS), task migration,
power gating, etc. To efficiency optimize the power-to-
performance tradeoff, those adaptations require a monitoring
subsystem.

In this paper, the objective is to propose a complete generic
method for estimating at run-time the power consumed by any
system running on any FPGA. This generally requires external
equipment (not applicable for adaptive embedded systems) or
dedicated analog sensors (which is area hungry, with a limited
configurability and sometimes even not always available). Our
approach is completely different: dynamic power is appraised
based on toggling activity in the design. In this way, the
instantaneous power is periodically evaluated by the system
itself. In Fig. 1, the proposed method is exemplified on a
System On chip (SoC): Event Counters (EC) report the activity
on some chosen nets, the processor retrieves these values, and
on the basis of a model generated by the tool, it evaluates the
overall consumption of the circuit. Several power-aware

techniques can then be applied (task mapping, scheduling,
frequency/voltage scaling, power gating), but this part is not in
the scope of this paper.

To reach this goal, the main challenge is to find an efficient
method able to select a few strategic nets and to build an
accurate power model. Our main contribution is a tool for
systematic run-time dynamic power monitoring on FPGAs, and
includes the following points:

• A generic method to estimate dynamic power at high-
level;

• A generic flow to extract events from signals at RTL-
level;

• A statistical technique for power modeling and
selection of nets;

• An evaluation of accuracy and overhead of the
proposed method.

The remainder of this paper is organized as follows. In
Section II, the limitations of most relevant power estimation
techniques are discussed to highlight the need for this work.
Section III is devoted to power modeling method and tools.
Section IV describes the experiments and in the Section V we
present our conclusion with suggestions for future research.

II. RELATED WORK

Our goal is to monitor at run-time the consumption of a system
running on an FPGA. Power estimation is one of the challenges
to achieve this objective. For this purpose, several studies have

Fig. 1. Example of run-time power estimation using PMF.

Power Modeling Flow

Statistical Analysis

Power Events

General Purpose

Processor

$I
INTERRUPT

CTRL TIMER$D

Bus

UART
RAM

System On Chip

General Purpose

Processor

$I

INTERRUPT

CTRL
TIMER$D

Bus

UART RAM

C0

C1 C2

C3

P = f(Ev)

Run-time Power

Estimation

Co-processor

Co-processor

Power Monitors

(Number/Position)

Power Model

P= f(Ev)

been conducted at different abstraction levels for FPGA
circuits. In [1], pre-characterization-based macro-modeling is
used to capture average switching power per access to both
LUTs and registers, while in [2], switching activities are
extracted from the Xpower tool. Instantaneous estimation is
addressed in [3], with a cycle-accurate simulator and low-level
models for interconnects, logic blocks and LUTs. In [4] and
[5], the technique is based on execution profiles called “event
signatures” used to estimate the average of total power
consumed for a Multi-Processor System on Chip (MPSoC) on
FPGA. Modeling is focused on individual components such as
processors, bus fabrics, memories, and custom IP blocks. Many
similar works have been done outside the context of FPGAs,
for instance in [6] where power models are defined for each
component from the SoCLib library based on their functional
mode. Also an instantaneous linear-based power model was
proposed in [7] and [8] based on performance counters such as
Miss and CPI. A hybrid approach between circuit and design
level power model is proposed in [9], in which the dynamic
power is estimated independently for each component in terms
of activity. The authors use data read miss and write miss to
estimate the dynamic power for an interconnect component.
Another approach based on Hidden Markov Models has been
proposed in [10] to track at run-time the system power modes.

In the literature, the highest accuracy is achieved with fine
grain simulations and low-level models, but these methods are
too expensive for run-time monitoring. System-level models
can be used for dynamic estimation but they are generally
imprecise. In this article, we try with an original approach to
bridge the gap between the abstraction level and the estimation
accuracy. To the best of our knowledge, this solution is the first
one to propose a systematic method for power monitoring for
any system running on any FPGA.

III. CAD FLOW FOR POWER MODELING

To achieve accurate and low-cost on-chip dynamic power
monitoring, we need to model instantaneous power (referred to
as	P���). The proposed idea is based on an offline simulation

from which activities and instantaneous power are recorded.
The produced database is then used to identify strategic nets
and to produce the predictive power model.

The corresponding Power Modeling Flow (PMF) depicted
in the Fig. 2 is explained in detail in the following subsections.
It has the three main processes:

• Power Estimation Flow: It estimates the 	P���(t) of a

placed and routed netlist from a given RTL design and
a given FPGA.

• Event Extraction Flow: It collects events Ev(t) that
occur on internal signals of an RTL design.

• Power Modeling: It creates a predictive power model
in terms of events.

The offline observation is based on simulation. 	P��� is

modeled as a function of events counted on specific nets. The
challenge is to identify these nets and to produce a power
model with the best tradeoff between accuracy and overhead.
The PMF is a generic flow that can be applied to any RTL
design for any Xilinx FPGA. It can be easily adapted to any
vendor to support other technologies.

A. Power Estimation Flow (PEF)

The power estimation tools (e.g. Xpower) from FPGA
vendors estimate the average power consumed. Since
instantaneous power estimation is needed for monitoring, the
PEF was established to estimate the instantaneous dynamic
power 	P���(t) consumed by the circuit. The principle is to

generate N power values after splitting the total time simulated
by a time slicing.

The Xilinx tool chain (XST, translation, mapping, etc.) is
used to synthesize the placed and routed netlist from HDL
files. A simulation description file (WLF: Wave Long Format)
is generated with simulation tools. The WLF is then cut into N
sub-simulations as described in (1) thanks to wlfinfo command
from ModelSim. T� is the time set to initialize the circuit and T�
is the time interval for each produced WLF file. The last step of
the PEF flow is to convert the WLF to VCD files and then run
the power estimation tool such as Xpower, to produce N
estimations, which correspond to	P���(t).
																																								T = T� + N ∗ T�																																		(1)

B. Event Extraction Flow (EEF)

While PEF is devoted to estimating the	P���(t), the EEF

aims to collect events that occur on nets at the RTL
level	Ev�(t). At this stage, the RTL design is simulated using
the same testbench and simulation time T as in the PEF flow.
From this simulation, an image of signal values and the
corresponding time is saved (an example is given in Fig. 3-a).
It is then used to count events’ occurrences on each single bit
Ev�(t). Fig. 3-b plots the events detected for each change in
signal value.

Fig. 2. Proposed Power Modeling Flow.

Model

Testbench Netlist Simulation

WLF Conversion

RTL Simulation

Power Modeling Flow

(PMF)

NCD

WLF

VCDs

LST

Power Estimation

Flow (PEF)Implementation tool

PCF

Netlist SDF

HDL

UCF

HDL

Event Extraction

P(t)

E
v

e
n

t
E

x
tr

a
c
ti

o
n

F
lo

w
 (

E
E

F
)

Power Estimation

Ev(t)

Statistical Analysis

Power Monitors

Power Modeling

Synthesis

Place & Route

Translate

Map

Power Model

Database

https://www.researchgate.net/publication/266169151_Accurate_dynamic_power_model_for_FPGA_based_implementations?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==

C. Predictive Power Modeling

In PEF, 	P���(t) is estimated while in EEF, the set of Ev�(t)

is generated. The last step of PMF is (i) to identify the strategic
nets in which ECs will be placed and (ii) to model 	P���(t) in

terms of	Ev�(t) for the selected signals.

1) Creation of the database
A database with both 	P���(t) and	Ev�(t) is required for the

subsequent statistical analysis. This database lists all the signals
from the RTL description of the system. For each time interval
T�, the number of occurrences of events on all signals is
counted. The 	P���(�) estimated by PEF is then added as a

predictive variable. An example of the generated database is
given in the Fig. 4: each line (in blue) is a time interval or item,
and each column (sigi) is a signal or attribute. The
corresponding power or class for a given item is reported in the
green column.

2) Signal Selection and Linear Regression
Attributes and items are then analyzed in order to find the

correlation between the power and a minimum number of
attributes required to achieve good accuracy. For this purpose,
data mining algorithms are used. First, we aim to reduce the
number of attributes in the database. For this, we use a Greedy
method to classify attributes (signals) into two populations: (i)

attributes to use in the linear model and (ii) useless attributes.
The Greedy Stepwise filter [11] searches greedily through the
space of subsets of attributes. It may progress forward from the
empty set or backward from the full set. The algorithm selects
the attribute that has the highest R-Squared which is a
statistical measure representing the correlation with the power.
At each step, it selects the attribute that increases R-Squared
the most. Then after adding the candidate to the output set, all
candidate attributes are checked to see if their significance has
been reduced below the specified tolerance level threshold.
This algorithm stops adding variables when none of the
remaining variables are significant or when the threshold of
output set size is reached. The greedy strategy does not
guarantee an optimal solution, but it can approximate a global
optimal solution in a reasonable time.

Once strategic nets are selected, a predictive model of
dynamic power is required to calculate the power with the
resulting events extracted from selected signals. Regarding the
obtained correlation coefficient value (>0.9), the complexity
and the response time, a linear regression is an adequate
method for modeling dynamic power (considering that this
model needs to be embedded into the system itself, simplicity
is a strong criterion). The linear equation (2) correlating the
dynamic power with the events on the N selected signals. This
equation is composed of a constant value P� and the term
w� ∗ Ev�, in which w�	represents the weight of Ev� on power
variations.

																										P��� = P� + 	� w� ∗ Ev�																									(2)
���

���

IV. EXPERIMENTAL EVALUATION

Our method does not require any external equipment or
analog block, and can be applied to any RTL design on FPGA.
An open-source system on chip (SoC) [12] is considered in this
experiment as a case study. The chosen SoC is fully described
in synthesizable VHDL code. It includes a 32-bit processor, an
interrupt controller, UART, timer, instruction/data cache
memories, and a Wishbone bus as interconnect. As dynamic
power depends on the activity which in turn depends on the
application executed by the processor, several applications are
run in standalone mode (i.e. w/o any micro kernel). Two
symmetric crypto algorithms are used: AES (Advanced
Encryption Standard) and DES (Data Encryption Standard).
The idea is to check if even similar algorithms lead to
observable power behaviors. Our case study also considers a
video decoding application MJPEG (Motion JPEG). A NOP
application (with only “nop” instructions) is also used as
reference. Execution times of these applications are listed in
Table I. The hardware platform was synthesized using Xilinx
13.1 and simulated with ModelSim 10.1d for three different
FPGAs (characteristics listed in table II).

TABLE I. APPLICATION EXECUTION TIME.

Application Execution time (clock cycle)

AES 29910

DES 74313

Nop 51

MJPEG 31000

Fig. 3. Example of events extracted for two signals.

T

e

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Time [µs]

Time [µs]

a) Signals values

V
a
lu

e
 [

B
in

a
ry

]
V

a
lu

e
 [

B
in

a
ry

]

Clock

Signal1

Signal2

Ev1(t)

Ev2(t)

b) Events Extracted from signals

Fig. 4. Example of database generated.

[mW][ns]

A. Power Estimations

The SoC was simulated while the processor executed the
applications. In the testbench, we ran 80 iterations of the AES,
40 iterations of the DES, and 200 iterations of the NOP. Fig. 5
illustrates the total power	P�	�
�(t), the dynamic power 	P����t�
and the static power 	P��
���t� for the xc6slx16 Spartan6
FPGA. We notice that the DES application consumes more
compared to AES, which in turn consume more than the NOP
application. In addition, it is possible to identify the 40
iterations of DES due to its two levels of power unlike AES,
for which we observe an aliasing effect due to the value
of		T�	(the impact of 	T�	is discussed further).

TABLE II. TARGET FPGAS.

FPGA
Technology

(nm)
Frequency

(MHz)
LUT

type
Vdd

(v)
Speed

grade

Spartan3 90 25 LUT4 1.2 -4

Virtex5 65 50 LUT6 1 -1

Spartan6 45 50 LUT6 1.2 -3

TABLE III. AVERAGE ESTIMATED POWER.

Power [mW] Xc5vlx110t Xc6slx16 Xc3s1000

AES
Static 1048.50 21.94 99.44

Dynamic 108.17 43.19 59.99

DES
Static 1048.65 22.05 99.63

Dynamic 117.66 54.21 70.82

NOP
Static 1048.13 21.76 98.91

Dynamic 84 24.85 26.31

MJPEG
Static N/A 22.04 N/A

Dynamic N/A 53.14 N/A

The same testbench was applied for spartan3-1000 and
Virtex5 FPGAs. Table III compares the average		P�	�
�	,	P���,

and P��
��	computed for the different FPGAs. Accordingly,
applications rank is conserved according to their dynamic
power consumption. While operating temperature, technology
and process variations largely determine the static power for a
specific device [13] (as shown in Table III, it can be
approximated as constant for a given device), dynamic power
consumption is completely design-dependent, and is

Fig. 5. Power estimated for AES, DES and NOP applications for xc6slx16 FPGA board.

0 2 4 6 8 10 12

x 10
4

10

20

30

40

50

60

70

80

90

Time [µs]

P
o
w

e
r
 [

m
W

]

Total Power

Dynamic Power

Static Power

AES

Nop

DES

Fig. 6. High frequency power estimation.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

x 10
5

0

10

20

30

40

50

60

70

80

Time (ns)

P
o

w
er

 (
m

W
)

Ti = 1 clock cycle

Ti = 10 clock cycles

Ti = 100 clock cycles

Ti = 1000 clock cycles

Fig. 7. Low frequency power estimation.

0 1 2 3 4 5 6

x 10
6

10

20

30

40

50

60

Time [ns]

P
o

w
e
r
 [

m
W

]

Ti = 29250 clock cycles

Ti = 7312 clock cycles

Ti = 2500 clock cycles

Ti = 1250 clock cycles

determined by many factors including resource utilization, low-
level features such as logic partition, mapping, placement, and
routing, but also core frequencies (listed in Table II).

B. Sampling the Power estimation (��)
As observed in Fig. 5, the sampling period 	T�	 may

introduce aliasing effect in the estimation of		P����t�. We

applied the power estimation flow to the architecture while
varying the value of		T�	to observe the impact of it. In this
testbench, the processor was executing 8 iterations of the AES
before transmitting the result on the UART. The temperature
was maintained at 25 °C with a 50 MHz clock frequency. Two
sets of sampling periods are analyzed: (i) High frequency and
(ii) Low frequency evaluation. In Fig. 6, the estimated
P����t�	is shown for a part of the AES simulation with

	T�		equal to 1, 10, 100, and 1000 clock cycles, respectively.
The dynamic power varies each clock cycle with high
amplitude. By increasing		T�	, the power comes closer to the
average power variation. In the low frequency evaluations, the
chosen values of T�	 were respectively 29250 cycles, 7312
cycles, 2500 cycles and 1250 cycles. The logic behind the
choice of T�	is to start sampling power for T�	equal to the
execution time of the AES and then decrease it. Fig. 7 clearly
shows that 	P����t�	remains average while missing out critical

variations as the fall of power consumption due to the
communication with the UART (print_uart) for high values
of		T�	.

To efficiently monitor dynamic power variations, we need
to strike the balance between overhead and accuracy. The
Nyquist-Shannon sampling theorem is used to generalize the
choice of		T�	 [14]. As a result, the signal can only be
reconstituted without aliasing if the sampling frequency F� is
higher than twice the highest frequency (F�
� = 1/T���). In
the case of a programmable SoC, T��� should be set to the
smallest execution time of a pattern of an application. In this

example, we set T���	 to 7500 clock cycles which is the
execution time of print_uart. To better sample power variation
without missing significant sons, the value of 		T�	 should be
lower than 3750 clock cycles. This phenomenon is clearly
visible in Fig. 7.

C. Power Predictions

Once 	T�	 was fixed as specified in the previous section, a
database with 213 attributes and 131 items was generated for
the considered testbench (AES, DES, NOP). We used the
WEKA tool [11] for the statistical analysis of the database.
WEKA, which is open-source software, contains a large
number of configurable tools for data mining purposes
(including the Greedy Stepwise and linear regression). In this
work, it is used to select signals and produce the power model.
The WEKA tool offers several heuristics, parameters,
evaluators and classification methods that could be explored:
however this topic is not in the scope of the paper. As
explained before, Greedy Stepwise was chosen for the attribute
selection and Linear Regression to generate the power model,
with the set of parameters providing the best results.

TABLE IV. SIGNAL SELECTED BY GREEDY STEPWISE.

Signal name Description

Wb_master_i_s_2
MSB bit for data bus from ICache to Wishbone

Bus.

Wb_master_o_s_13
MSB 7th bit for address bus Wishbone Bus to

ICache.

Wb_master_o_s_4
2nd bit of byte selects from Wishbone bus

connected to ICache.

Wb_slave_o_s_0
MSB bit for data bus from the Wishbone bus to the

RAM.

Table IV shows the four selected signals. The most
representative signals are those related to the Instruction Cache
(ICache). These four signals have the highest correlation with
the dynamic power variation and are sufficient to accurately
track system activity, as confirmed by the coefficient of
correlation shown in Fig. 8-b. Fig. 8-a shows the dynamic

0 0.5 1 1.5 2 2.5

x 10
6

10

15

20

25

30

35

40

45

50

Time [ns]

P
o
w

e
r
 [

m
W

]

a) Linear Regression

P.Estimated

P.Predicted 8EC

P.Predicted 4EC

P.Predicted 2EC

P.Predicted 1EC

0 2 4 6 8 10 12 14 16

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Number of EC

b) Coefficient of Correlation

0 2 4 6 8 10 12 14 16

0

5

10

15

20

25

Number of EC

P
er

ce
n

ta
g
e
 [

%
]

c) RAE vs. HW/SW Overhead

Relative Absolute Error

HW Overhead

SW Overhead

Best Tradeoff

Fig. 8. Linear Models with several number of counters used.

power estimated by the PEF flow along with the ones predicted
by the linear models with 1 to 8 signals. Decreasing the number
of ECs to less than 4 produces a model incapable of detecting
all power modes among applications (e.g. the NOP power
level). To examine the overhead of this approach, we assumed
first a basic EC based on two 12-bit counters and one 12-bit
register. They occupy 36 Slice Registers and 33 Slice LUTs on
Spartan6, which correspond to the HW overhead. We also
evaluated the computation cost of the linear power model by
measuring the execution time. The processor needs 26 clock
cycles to execute 1 multiplication and 1 addition, which
correspond to the SW overhead introduced by one counter. The
accuracy of the model (relative absolute error) vs HW/SW
overhead is finally represented in Fig. 8-c. This confirms the
ability of the proposed method to build an accurate power
monitoring system with low overhead. For instance, the linear
model based on 4 EC has 4% of average error, 7% of hardware
overhead and 5.3% of additional load on the CPU.

D. Calibration of the predictive models

The power prediction models depend on the Xpower
estimations. As stated in the literature [15], there are always
some differences between the tools and the real values, which
are due to approximations in power models, variability or
device aging. We implemented on a XUP Virtex5 board the
SoC architecture executing our tesbench (AES, DES, and
NOP). We used the N6715B power analyzer from Agilent to
supply the Virtex5 board and the N6781A Source Measure
Unit (SMU) allowed us to capture the instantaneous current
flow with a precision of 250 µA. The Fig. 9 shows the power
measured by these instruments. This experiment reveals a 15%
of average difference between estimations and measurements.
The nets selection is not affected by this difference, so the
proposed model can be calibrated with this information to
estimate the real consumption. However, a fully adaptive
system would require embedded PVT sensors (e.g. Ring
Oscillator) to recalibrate the model itself, which will be part of
the future works.

V. CONCLUSION

The Power Modeling Flow (PMF) is a design tool that can
systematically produce predictive models for any block-based
architecture on FPGA, thus allowing the system to monitor at
run-time its power consumption. First, we introduced the
Power Estimation Flow (PEF) aimed at estimating the
instantaneous power consumption. We then showed how to
extract events from signals with the Event Extraction Flow
(EEF). A linear equation correlating dynamic power with the
appropriate event values after signal selection performed by the

Greedy Stepwise was then introduced. This approach was
demonstrated on a basic SoC architecture. Results obtained
showed 4% of error between power estimated by the model and
power estimated by Xpower with 7% area overhead by
introducing four 12-bit counters. ECs are only one element in
assessing system state. It was shown for instance that the
estimations needed to be calibrated (because of process
variation or aging for instance). In future works, we will
investigate additional parameters in order to have a model
capable of taking temperature, process variations, frequency,
etc, into account.

REFERENCES

[1] D. Chen, J. Cong, and Y. Fan, “Low-power high-level synthesis for

FPGA architectures,” in Low Power Electronics and Design, 2003.

ISLPED ’03. Proceedings of the 2003 International Symposium on,
2003, pp. 134–139.

[2] C. Najoua, B. Mohamed, and B. M. Hedi, “Accurate dynamic power
model for FPGA based implementations,” IJCSI International

Journal of Computer Science, vol. 9, no. 2, pp. 84–89, 2012.

[3] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for
power-efficient FPGAs,” Proceedings of the 2003 ACM/SIGDA

eleventh international symposium on Field programmable gate

arrays - FPGA ’03, p. 175, 2003.
[4] R. Piscitelli and A. D. Pimentel, “A High-Level Power Model for

MPSoC on FPGA,” in Proceedings of the 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops and
PhD Forum, 2011, no. ii, pp. 128–135.

[5] R. Piscitelli and A. D. Pimentel, “A Signature-Based Power Model

for MPSoC on FPGA,” VLSI Design, vol. 2012, pp. 1–13, 2012.
[6] R. Ben Atitallah, S. Niar, A. Greiner, S. Meftali, and J. L. Dekeyser,

“Estimating energy consumption for an MPSoC architectural

exploration,” in Proceedings of the 19th international conference on
Architecture of Computing Systems, 2006, pp. 298–310.

[7] M. Pricopi, T. S. Muthukaruppan, and V. Venkataramani, “Power-

Performance Modeling on Asymmetric Multi-Cores,” in ACM
International Conference on Compilers, Architecture, and Synthesis

for Embedded Systems (CASES), 2013.

[8] I. Lee, H. Kim, P. Yang, S. Yoo, E.-Y. Chung, K.-M. Choi, J.-T.
Kong, and S.-K. Eo, “PowerViP: Soc power estimation framework

at transaction level,” in Proceedings of the 2006 Asia and South

Pacific Design Automation Conference, 2006, pp. 551–558.
[9] R. Nath and D. Carmean, “Power Modeling and Thermal

Management Techniques for Manycores,” in Proceedings of

International Symposium Computers and Communications of Low
Power Design (ISCC), 2013.

[10] I. Mansouri, P. Benoit, L. Torres, and F. Clermidy, “Fine-grain

dynamic energy tracking for system-on-chip,” IEEE Transactions
on Circuits and Systems. Part II, Express Briefs, vol. 60, no. 6, p. 4,

2013.

[11] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed. Burlington, USA:

Elsevier Inc., 2011, p. 629.

[12] L. Barthe, L. V Cargnini, P. Benoit, and L. Torres, “The
SecretBlaze: A Configurable and Cost-Effective Open-Source Soft-

Core Processor,” in Parallel and Distributed Processing Workshops

and Phd Forum (IPDPSW), 2011 IEEE International Symposium
on, 2011, pp. 310–313.

[13] J. H. Choi, A. Bansal, M. Meterelliyoz, J. Murthy, and K. Roy,

“Leakage power dependent temperature estimation to predict
thermal runaway in FinFET circuits,” in Proceedings of the 2006

IEEE/ACM international conference on Computer-aided design,

2006, pp. 583–586.
[14] E. J. Candes and M. B. Wakin, “An Introduction To Compressive

Sampling,” Signal Processing Magazine, IEEE, vol. 25, no. 2, pp.

21–30, 2008.
[15] J. P. Oliver and E. Boemo, “Power estimations vs. power

measurements in Cyclone III devices,” in Programmable Logic

(SPL), 2011 VII Southern Conference on, 2011, pp. 87–90.

 Fig. 9. Total power measured for xupv5 FPGA board.

0 0.005 0.01 0.015 0.02 0.025 0.03
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

Time [s]

P
o
w

e
r
 [
W

]

Nop

DES

AES

https://www.researchgate.net/publication/4035014_Low-Power_High-Level_Synthesis_for_FPGA_Architectures?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/4035014_Low-Power_High-Level_Synthesis_for_FPGA_Architectures?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/4035014_Low-Power_High-Level_Synthesis_for_FPGA_Architectures?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/4035014_Low-Power_High-Level_Synthesis_for_FPGA_Architectures?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/2571844_Architecture_Evaluation_for_Power-Efficient_FPGAs?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/2571844_Architecture_Evaluation_for_Power-Efficient_FPGAs?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/2571844_Architecture_Evaluation_for_Power-Efficient_FPGAs?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/2571844_Architecture_Evaluation_for_Power-Efficient_FPGAs?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/2571844_Architecture_Evaluation_for_Power-Efficient_FPGAs?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/260584449_A_high-level_power_model_for_MPSoC_on_FPGA?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/260584449_A_high-level_power_model_for_MPSoC_on_FPGA?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/260584449_A_high-level_power_model_for_MPSoC_on_FPGA?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/260584449_A_high-level_power_model_for_MPSoC_on_FPGA?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/260584449_A_high-level_power_model_for_MPSoC_on_FPGA?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/266169151_Accurate_dynamic_power_model_for_FPGA_based_implementations?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/266169151_Accurate_dynamic_power_model_for_FPGA_based_implementations?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/266169151_Accurate_dynamic_power_model_for_FPGA_based_implementations?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==
https://www.researchgate.net/publication/266169151_Accurate_dynamic_power_model_for_FPGA_based_implementations?el=1_x_8&enrichId=rgreq-0d936f9aa385191bae1c5277d7280f90-XXX&enrichSource=Y292ZXJQYWdlOzI2NTI1OTAxMjtBUzoxMzcyOTQxNzAzMDA0MTdAMTQwOTc0NDg4OTk5Ng==

