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ROBUSTNESS OF SCALE-FREE SPATIAL NETWORKS

EMMANUEL JACOB AND PETER MÖRTERS

Abstract: A growing family of random graphs is called robust if it retains a
giant component after percolation with arbitrary positive retention probabil-
ity. We study robustness for graphs, in which new vertices are given a spatial
position on the d-dimensional torus and are connected to existing vertices
with a probability favouring short spatial distances and high degrees. In this
model of a scale-free network with clustering we can independently tune the
power law exponent τ of the degree distribution and the rate −δd at which
the connection probability decreases with the distance of two vertices. We
show that the network is robust if τ < 2 + 1

δ , but fails to be robust if τ > 3.
In the case of one-dimensional space we also show that the network is not
robust if τ > 2 + 1

δ−1 . This implies that robustness of a scale-free network
depends not only on its power-law exponent but also on its clustering fea-
tures. Other than the classical models of scale-free networks our model is not
locally tree-like, and hence we need to develop novel methods for its study,
including, for example, a surprising application of the BK-inequality.

MSc Classification: Primary 05C80 Secondary 60C05, 90B15.

Keywords: Spatial network, scale-free network, clustering, Barabási-Albert model, preferential attachment,

geometric random graph, power law, giant component, robustness, phase transition, continuum percolation,

disjoint occurrence, BK inequality.

Contents

1. Motivation 1
2. The spatial preferential attachment model 3
3. Statement of the main results 5
4. The limit model and proof strategies 6
5. Proof of robustness 10
6. Proof of non–robustness 20
7. Appendix: Auxiliary lemmas 31
References 33

1. Motivation

Scientific, technological or social systems can often be described as complex networks of inter-
acting components. Many of these networks have been empirically found to have strikingly
similar topologies, shared features being that they are scale-free, i.e. the degree distribu-
tion follows a power law, small worlds, i.e. the typical distance of nodes is logarithmic or
doubly logarithmic in the network size, or robust, i.e. the network topology is qualitatively
unchanged if an arbitrarily large proportion of nodes is removed from the network. Barabási
and Albert [2] therefore concluded fifteen years ago ‘that the development of large networks is
governed by robust self-organizing phenomena that go beyond the particulars of the individ-
ual systems.’ They suggested a model of a growing family of graphs, in which new vertices
are added successively and connected to vertices in the existing graph with a probability
proportional to their degree, and a few years later these features were rigorously verified in
the work of Bollobás and Riordan, see [10, 7, 8].
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In the years since the publication of [2] there have been many refinements of the idea of pref-
erential attachment, introducing for example tunable power law exponents [30, 15, 19], node
fitness [5, 11, 14, 22], or spatial positioning of nodes [25, 1, 29]. Some of these refinements
attempt to introduce or explain clustering, the formation of clusters of nodes with an edge
density significantly higher than in the overall network. The phenomenon of clustering is
present in real world networks but notably absent from most mathematical models of scale-
free networks. The present paper investigates a spatial network model, introduced in [27],
defined as a growing family of graphs in which a new vertex gets a randomly allocated spatial
position representing its individual features. This vertex then connects to every vertex in
the existing graph independently, with a probability which is a decreasing function of the
spatial distance of the vertices, the time, and the inverse of the degree of the vertex. The
relevance of this spatial preferential attachment model lies in the fact that, while it is still
a scale-free network governed by a simple rule of self-organisation, it has been shown to
exhibit clustering. The present paper investigates the problem of robustness and is probably
the first rigorous attempt to understand the global topological structure of a self-organised
scale-free network model with clustering.

In mathematical terms, we call a growing family of graphs robust if the critical parameter
for vertex percolation is zero, which means that whenever vertices are deleted independently
at random from the graph with a positive retention probability, a connected component
comprising an asymptotically positive proportion of vertices remains. For several scale-
free models, including non-spatial preferential attachment networks, it has been shown that
robustness holds if the power law exponent satisfies τ < 3, see for example [7, 21]. At a first
glance one would maybe expect this behaviour to persist in the spatial model. It is known
that robustness in scale-free networks relies on the presence of a hierarchically organised core
of vertices with extremely high degrees, such that every vertex is connected to the next higher
layer by a small number of edges, see for example [31]. Our analysis of the spatial model
shows that, although a hierarchical core still exists if τ < 3, whether vertices in the core are
sufficiently close in the graph distance to the next higher layer depends critically on the speed
at which the connection probability decreases with spatial distance, and hence depending on
this speed robustness may hold or fail. The observation that robustness depends not only on
the power law exponent but also on the clustering of a network appears to be new, though
similar observations have been made for a long-range percolation model [16]. Unlocking this
phenomenon is the main achievement of this paper.

The main structural difference between the spatial and classical model of preferential attach-
ment is that the former exhibits clustering. Mathematically this is measured in terms of a
positive clustering coefficient, meaning that, starting from a randomly chosen vertex, and
following two different edges, the probability that the two end vertices of these edges are
connected remains positive as the graph size is growing. This implies in particular that local
neighbourhoods of typical vertices in the spatial network do not look like trees. However, the
main ingredient in almost every mathematical analysis of scale-free networks so far has been
the approximation of these neighbourhoods by suitable random trees, see [9, 20, 4, 24]. As
a result, the analysis of spatial preferential attachment models requires a range of entirely
new methods, which allow to study the robustness of networks without relying on the local
tree structure that turned out to be so useful in the past. Providing these new methods is
the main technical innovation in the present work.
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2. The spatial preferential attachment model

While spatial preferential attachment models may be defined in a variety of metric spaces,
we focus on homogeneous space represented by a d-dimensional torus of unit volume, given
as T1 = (−1/2, 1/2]d with the metric d1 given by

d1(x, y) = min
{

d(x, y + u) : u ∈ {−1, 0, 1}d
}
, for x, y ∈ T1,

where d is the Euclidean distance on Rd. Let X denote a homogeneous Poisson point process
of finite intensity λ > 0 on T1× (0,∞). A point x = (x, s) in X is a vertex x, born at time s
and placed at position x. Observe that, almost surely, two points of X neither have the same
birth time nor the same position. We say that (x, s) is older than (y, t) if s < t. For t > 0,
write Xt for X ∩ (T1 × (0, t]), the set of vertices already born at time t.

We construct a growing sequence of graphs (Gt)t>0, starting from the empty graph, and
adding successively the vertices in X when they are born, so that the vertex set of Gt
equals Xt. Given the graph Gt− at the time of birth of a vertex y = (y, t), we connect y,
independently of everything else, to each vertex x = (x, s) ∈ Gt−, with probability

ϕ

(
t

f(Z(x, t−))
d1(x, y)d

)
, (1)

where Z(x, t−) is the indegree of vertex x, defined as the total number of edges between x
and younger vertices, at time t−. The model parameters in (1) are the attachment rule
f : N ∪ {0} → (0,∞), which is a nondecreasing function regulating the strength of the
preferential attachment, and the profile function ϕ : [0,∞) → (0, 1), which is an integrable
nonincreasing function regulating the decay of the connection probability in terms of the
interpoint distance.

The connection probabilities in (1) may look arcane at a first glance, but are in fact com-
pletely natural. To ensure that the probability of a new vertex connecting to its nearest
neighbour does not degenerate, as t ↑ ∞, it is necessary to scale d1(x, y) by t−1/d, which is
the order of the distance of a point to its nearest neighbour at time t. The linear dependence
of the argument of ϕ on time ensures that the expected number of edges connecting a new
vertex to vertices of bounded degree remains bounded from zero and infinity, as t ↑ ∞, as
long as ϕ is integrable on [0,∞), or equivalently x 7→ ϕ(d(x, 0)d) is integrable on Rd.

The model parameters λ, f and ϕ are not independent. Indeed, if
∫
ϕ(d(x, 0)d) dx = µ > 0,

we can modify ϕ to ϕ ◦ (µ Id) and f to µf , so that the connection probabilities remain
unchanged and ∫

ϕ(d(x, 0)d) dx = 1. (2)

Similarly, if the intensity of the Poisson point process X is λ > 0, we can replace X by
{(x, λs) : (x, s) ∈ X} and f by λf , so that again the connection probabilities are unchanged
and we get a Poisson point process of unit intensity. From now on we will assume that both
of these normalisation conventions are in place.

Under these assumptions the regime for the attachment rule f which leads to power law
degree distributions is characterised by asymptotic linearity, i.e.

lim
k↑∞

f(k)

k
= γ,

for some γ > 0. We henceforth assume asymptotic linearity with the additional constraint
that γ < 1, which excludes degenerate cases with infinite mean degrees.
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We finally assume that the profile function ϕ is either regularly varying at infinity with index
−δ, for some δ > 1, or ϕ decays quicker than any regularly varying function. In the latter
case we set δ =∞. Intuitively, the bigger δ, the stronger the clustering in the network. Our
assumptions, in particular the assumption that ϕ does not take the values 0 or 1, help us
avoid some geometric constraints that are not of major interest. See Figure 1 for simulations
of the spatial preferential attachment network indicative of the parameter dependence.

Figure 1. Four simulations of the network in the case d = 2, based on the
same realisation of the Poisson process, with parameters (clockwise from top
left) (a) γ = 0.5 and δ = 2.5, (b) γ = 0.75 and δ = 2.5, (c) γ = 0.5 and δ = 5,
(d) γ = 0.75 and δ = 5. The pictures zoom into a typical part of the torus.

A similar spatial preferential attachment model was introduced in [1] and studied further
in [28, 13]. In this model it is assumed that the profile functions has bounded support,
more precisely ϕ = p1[0,r], for p ∈ (0, 1] and r satisfying (2). This choice of profile function,
roughly corresponding to the boundary case δ ↑ ∞, is too restrictive for the problems we
study in this paper, as it turns out that robustness does not hold for any value of τ . There
are also spatial long-range percolation models which have a qualitatively similar behaviour
to our networks, see for example [16, 17, 26], but these models are easier to analyse and the
methods of this analysis are quite different.

Local properties of the spatial preferential attachment model were studied in [27], where this
model was first introduced. It is shown there, among other things, that

• The empirical degree distribution of Gt converges in probability to a deterministic
limit µ. The probability measure µ on {0} ∪ N satisfies

µ(k) = k
−(1+ 1

γ
)+o(1)

as k ↑ ∞.

In other words, the network (Gt)t>0 is scale-free with power-law exponent τ = 1 + 1
γ ,

which can be tuned to take any value τ > 2. See [27, Theorem 1 and 2].
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• The average over all vertices v ∈ Gt of the empirical local clustering coefficient at v,
defined as the proportion of pairs of neighbours of v which are themselves connected
by an edge in Gt, converges in probability to a positive constant cav∞ > 0, called the
average clustering coefficient. In other words the network (Gt)t>0 exhibits clustering.
See [27, Theorem 3].

3. Statement of the main results

We now address the problem of robustness of the network (Gt)t>0 under percolation. Recall
that the number of vertices of the graphs Gt, t > 0, form a Poisson process of unit intensity,
and is therefore almost surely equivalent to t as t ↑ ∞. Let Ct ⊂ Gt be the largest connected
component in Gt and denote by |Ct| its size. We say that the network has a giant component
if Ct is of linear size or, more precisely, if

lim
ε↓0

lim sup
t→∞

P
( |Ct|

t
≤ ε
)

= 0.

We say it has no giant component if Ct has sublinear size or, more precisely, if

lim inf
t→∞

P
( |Ct|

t
≤ ε
)

= 1 for any ε > 0.

If G is a graph with vertex set X , and p ∈ (0, 1), we write Gp for the random subgraph of G
obtained by Bernoulli percolation with retention parameter p on the vertices of G. We also
use Xp for set of vertices surviving percolation. The network (Gt)t>0 is said to be robust if,
for any fixed p ∈ (0, 1], the network ( Gp t)t>0 has a giant component and non-robust if there
exists p ∈ (0, 1] so that ( Gp t)t>0 has no giant component.

Our main result concern phases of robustness or non-robustness for the spatial preferential
attachment network. In classical non-spatial preferential attachment models, there is a phase
transition for robustness when τ crosses the critical value 3, see [21]. It is easy to believe that
the spatial structure does not help robustness. Our main result shows that in the spatial
model robustness is still possible, but at least in the case d = 1 the phase transition does
not occur at τ = 3, but at a smaller value depending on δ.

Theorem 1. The spatial preferential attachment network (Gt)t>0 is

(a) robust if γ > δ
1+δ or, equivalently, if τ < 2 + 1

δ ;

(b) non-robust if γ < 1
2 or, equivalently, if τ > 3.

In the case of one space dimension, d = 1, the network is

(c) non-robust if γ < δ−1
δ or, equivalently, if τ > 2 + 1

δ−1 .

Remark 2. For a suitable range of parameters, this seems to be the first instance of a scale-
free network model which combines robustness with clustering features. We conjecture that
nonrobustness occurs in any dimension if γ < δ

1+δ , and thus the critical value for τ equals
2 + 1

δ , but our proof techniques do not allow to prove this, see Figure 2 for a phase diagram.
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Figure 2. The densely shaded area corresponds to the known robustness
phase γ > δ/(δ + 1). The lightly shaded area corresponds to the known non-
robustness phase. In between, no result of either robustness or non-robustness
is known, though non-robustness is conjectured.

Remark 3. Our approach also provides heuristics indicating that in the robust phase δ(τ −
2) < 1 the typical distances in the robust giant component are asymtotically

(4 + o(1))
log log t

− log(δ(τ − 2))
,

namely doubly logarithmic, just as in some nonspatial preferrential attachment models. The
constant coincides with that of the nonspatial models in the limiting case δ ↓ 1, see [23, 18],
and goes to infinity as δ(τ − 2) → 1. It is an interesting open problem to confirm these
heuristics rigorously.

4. The limit model and proof strategies

Before describing the strategies of our proofs, we briefly summarise the techniques developed
in [27] in order to describe the local neighbourhoods of typical vertices by a limit model. We
will heavily rely on these techniques in the present paper.

Canonical representation. We first describe a canonical representation of our network (Gt)t>0.
To this end, let X be a Poisson process of unit intensity on T1× (0,∞), and endow the point
process X ×X with independent marks which are uniformly distributed on [0, 1]. We denote
these marks by Vx,y or V(x,y), for x,y ∈ X .

If Y ⊂ T1× (0,∞) is a finite set and W : Y ×Y → [0, 1] a map, we define a graph G1(Y,W)
with vertex set Y by establishing edges in order of age of the younger endvertex. An edge
between x = (x, t) and y = (y, s), t < s, is present if and only if

W(x,y) ≤ ϕ
(
sd1(x, y)d

f(Z(x, s−))

)
, (3)

where Z(x, s−) is the indegree of x at time s−. A realization of X and V then gives rise to
the family of graphs (Gt)t>0 with vertex sets Xt = X ∩ (T1× (0, t]), given by Gt = G1(Xt,V),
which has the distribution of the spatial preferential attachment network.

Space-time rescaling. The construction above can be generalised in a straightforward manner
from T1 to the torus of volume t, namely Tt = (−1

2 t
1/d, 12 t

1/d]d, equipped with its canonical
torus metric dt. The resulting functional, mapping a finite subset Y ⊂ Tt × (0,∞) and a
map from Y × Y → [0, 1] onto a graph, is now denoted by Gt.
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We introduce the rescaling mapping

ht : T1 × (0, t] → Tt × (0, 1],

(x, s) 7→ (t1/dx, s/t)

which expands the space by a factor t1/d, the time by a factor 1/t. The mapping ht operates
on the set X , but also on V, by ht(V)ht(x),ht(y) := Vx,y. The operation of ht preserves the
rule (3), and it is therefore simple to verify that we have

Gt(ht(Xt), ht(V)) = ht(G
1(Xt,V)) = ht(Gt),

that is, it is the same to construct the graph and then rescale the picture, or to first rescale
the picture, then construct the graph on this rescaled picture. Observe also that ht(Xt)
is a Poisson point process of intensity 1 on Tt × (0, 1], while ht(V) are independent marks
attached to the points of ht(Xt)× ht(Xt) which are uniformly distributed on [0, 1].

Convergence to the limit model. We now denote by X a Poisson point process with unit
intensity on Rd×(0, 1], and endow the points of X ×X with independent marks V, which are

uniformly distributed on [0, 1]. For each t > 0, identify (−1
2 t

1/d, 12 t
1/d/2]d and Tt, and write

X t for the restriction of X to Tt × (0, 1], and Vt for the restriction of V to X t × X t. In the
following, we write Gt or Gt(X ,V) for Gt(X t,Vt). We have seen that for fixed t ∈ (0,∞),
the graphs Gt and ht(Gt) have the same law. Thus any results of robustness we prove for
the network (Gt)t>0 also hold for the network (Gt)t>0. It was shown in [27, Proposition 5]
that, almost surely, the graphs Gt converge to a locally finite graph G∞ = G∞(X ,V), in
the sense that the neighbours of any given vertex x ∈ X coincide in Gt and in G∞, if t is
large enough. It is important to note the fundamentally different behaviour of the processes
(Gt)t>0 and (Gt)t>0. While in the former the degree of any fixed vertex stabilizes, in the
latter the degree of any fixed vertex goes to ∞, as t ↑ ∞. We will exploit the convergence of
Gt to G∞ in order to decide the robustness of the finite graphs Gt, and ultimately Gt, from
properties of the limit model G∞.

Law of large numbers. We now state a limit theorem for the graphs Gp t centred in a randomly
chosen point. To this end we denote by Pp the law of X ,V together with independent
Bernoulli percolation with retention parameter p on the points of X . For any x ∈ Rd× (0, 1]
we denote by Pp x the Palm measure, i.e. the law Pp conditioned on the event {x ∈ Xp }.
Note that by elementary properties of the Poisson process this conditioning simply adds the
point x to Xp and independent marks Vx,y and Vy,x, for all y ∈ X , to V. We also write E

p
x

for the expectation under Pp x. Let ξ = ξ (x, G) be a bounded functional of a locally-finite
graph G with vertices in Rd×(0, 1] and a vertex x ∈ G, which is invariant under translations
of Rd. Also, let ξt = ξt (x, G) be a bounded family of functionals of a graph G with vertices
in Tt × (0, 1] and a vertex x ∈ G, invariant under translations of the torus. We assume
that, for U an independent uniform random variable on (0, 1], we have that ξt((0, U), Gp t)
converges to ξ((0, U), Gp ∞) in Pp (0,U)-probability. Then, in Pp -probability,

1

t

∑
x∈ Xp t

ξt
(
x, Gp t

)
−→
t→∞

p

∫ 1

0
Ep (0,u)[ξ((0, u), Gp ∞)] du. (4)

This law of large numbers is a minor modification of the one given in [27, Theorem 7], which
covers the case p = 1.
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4.1. Robustness: strategy of proof.

Existence of an infinite component in the limit model. We first show that, under the assump-
tions that γ > δ

1+δ and p ∈ (0, 1], the percolated limit model Gp ∞ has an infinite connected
component. This uses the established strategy of the hierarchical core. The young vertices,
born after time 1

2 , are called connectors. Fix α ∈ (1, γ
δ(1−γ)). Starting from a sufficiently old

vertex x0 ∈ Gp ∞, we establish an infinite chain (xk)k≥1 of vertices xk = (xk, sk) such that
sk < sαk−1, i.e. we move to increasingly older vertices, and xk−1 and xk are connected by a
path of length two, using a connector as a stepping stone.

Transfer to finite graphs using the law of large numbers. To infer robustness of the network
(Gt)t>0 from the behaviour of the limit model we use (4) on the functional ξt(x, G) defined
as the indicator of the event that there is a path in G connecting x to the oldest vertex
of G. We denote by ξ(x, G) the indicator of the event that the connected component of x is
infinite and let

θp :=

∫ 1

0
Pp (0,u)

{
the component of (0, u) in Gp ∞ is infinite

}
du. (5)

If lim ξt((0, U), Gp t) = ξ((0, U), Gp ∞) in probability, then the law of large numbers (4) implies

1

t

∑
x∈ Xp t

ξt(x, G
p t) −→ p θp .

The sum on the left is the number of vertices in Gp t connected to the oldest vertex, and we
infer that this number grows linearly in t so that a giant component exists in ( Gp t)t>0. This
implies that (Gt)t>0 and hence (Gt)t>0 is a robust network. However, while it is easy to see
that lim supt↑∞ ξt((0, U), Gp t) ≤ ξ((0, U), Gp ∞), checking that

lim inf
t↑∞

ξt((0, U), Gp t) ≥ ξ((0, U), Gp ∞), (6)

is the difficult part of the argument.

The geometric argument. The proof of (6) is the most technical part of the paper. We first
look at the finite graph Gp t and establish the existence of a core of old and well-connected
vertices, which includes the oldest vertex. Any pair of vertices in the core are connected by
a path with a bounded number of edges, in particular all vertices of the core are in the same
connected component. This part of the argument is similar to the construction in the limit
model. We then use a simple continuity argument to establish that if the vertex (0, U) is in
an infinite component in the limit model, then it is also in an infinite component for the limit
model based on a Poisson process X with a slightly reduced intensity. In the main step we
show that under this assumption the vertex (0, U) is connected in Gp t with reduced intensity
to a moderately old vertex. In this step we have to rule out explicitly the possibilities that
the infinite component of Gp ∞ either avoids the set of eligible moderately old vertices, or
connects to them only by a path which moves very far away from the origin. The latter
argument requires good control over the length of edges in the component of (0, U) in Gp ∞.
Once the main step is established, we can finally use the still unused vertices, which form a
Poisson process with small but positive intensity, to connect the moderately old vertex we
have found to the core by means of a classical sprinkling argument.
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In Section 5 we will carry out this programme and prove robustness. In fact, we shall prove
that under our hypothesis γ > δ

1+δ a stronger statement holds, see Proposition 14, which
also implies that the size of the second largest connected component in Gp t does not grow
linearly. In other words, we will see that in this regime the network has a unique giant
component.

4.2. Non-robustness: strategy of proof.

Using the limit model. If γ < 1
2 it is very plausible that the spatial preferential attachment

network is non-robust, as the classical models with the same power-law exponents are non-
robust [7, 21] and it is difficult to see how the spatial structure could help robustness. We
have not been able to use this argument for a proof, though, as our model cannot be easily
dominated by a non-spatial model with the same power-law exponent. Instead we use a
direct approach, which turns out to yield non-robustness also in some cases where γ > 1

2 .
The key is again the use of the limit model, and in particular the law of large numbers. We
apply this now to the functionals ξ(k)(x, G) defined as the indicator of the event that the
connected component of x has no more than k vertices. Clearly, limt↑∞ ξ

(k)((0, U), Gp t) =
ξ(k)((0, U), Gp ∞), and therefore

1

pt

∑
x∈ Xp t

ξ(k)(x, Gp t) −→
∫ 1

0
Ep (0,u)[ξ

(k)((0, u), Gp ∞)] du. (7)

The left hand side is asymptotically equal to the proportion of vertices in Gp t which are in
components no bigger than k. As k → ∞ the right hand side converges to 1 − θp . Hence
if θp = 0 for some p > 0, then (Gt)t>0 and hence (Gt)t>0 is non-robust. It is therefore
sufficient to show that, for some sufficiently small p > 0, there is no infinite component in
the percolated limit model Gp ∞.

Positive correlation between edges. We first explain why a näıve first moment calculation
fails. If (0, U) has positive probability of belonging to an infinite component of Gp ∞

then, with positive probability, we could find an infinite self-avoiding path in Gp ∞ start-
ing from x0 = (0, U). A direct first moment calculation would require to give a bound
on the probability of the event {x0↔x1↔· · ·↔xn} that a sequence (x0, . . . ,xn) of distinct
points xi = (xi, si) conditioned to be in X forms a path in G∞. If this estimate allows us to
bound the expected number of paths of length n in G∞ starting in x0 = (0, U) by Cn, for
some constant C, we can infer with Borel-Cantelli that, if p < 1/C, almost surely there is
no arbitrarily long self-avoiding paths in Gp ∞. For a variety of non-spatial models the event
{x0↔x1↔· · ·↔xn} can be decomposed into independent, or negatively correlated, events of
the form {xi↔xi+1}, or {xi−1↔xi↔xi+1} with si < si−1, si, the probability of which can be
easily estimated, see for example [18]. For spatial networks however such a decomposition is
not possible. Indeed, the events {xj↔xj+1} and {xk↔xk+1} are not independent if the in-

terval I = (sj , sj+1)∩(sk, sk+1) is nonempty, because the existence of a vertex in X ∩(Rd×I)
which is relatively close to both xj and xk is likely to connect to both of these vertices and
make their indegrees grow simultaneously. Observing that all the events {xk↔xk+1} are
increasing in the Poisson point process X , we can argue by Harris’ inequality that they are
positively correlated. Because the positive correlations play against us, it seems impossible
to give an effective upper bound on the probability of a long sequence to be a path, therefore
making this first moment calculation impossible.
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Quick paths, disjoint occurrence, and the BK inequality. As a solution to this problem we
develop the concept of quick paths. Starting from a sequence (x0, . . . ,xn) in Gp ∞, with
x0 = x and xn = y we construct a new sequence (z0, . . . , zm), with z0 = x and zm = y, such
that at least half of the points are in Gp ∞, and the remaining ones are in G∞. This sequence,
called a quick path, has the property that the event {z0↔· · ·↔zm} can be split into smaller
parts, in the sense that it implies the disjoint occurrence of events {zi↔· · ·↔zi+4} involving
five or fewer consecutive vertices of the sequence. The concept of disjoint occurrence is due
to van den Berg and Kesten, and the famous BK-inequality states that the probability of
events occurring disjointly is bounded by the probability of their product. It is tedious, but
not hard, to estimate the probability of these paths of length no more than five, and the
estimate produces the necessary bounds to complete the argument.

Instead of defining quick paths and disjoint occurrence here, we just give a flavour by showing
how to deal with a path x0↔x1↔x2, for x0,x1,x2 ∈ Gp ∞ and s0, s2 < s1. To move to the
quick path we let z0 = x0, z2 = x2 and replace the vertex x1 ∈ Gp ∞ by the oldest vertex
z1 = (z1, u1) ∈ G∞ such that s0, s2 < u1 and z0↔z1↔z2. Now any vertex z′1 = (z′1, u

′
1) ∈ G∞

with s0, s2 < u′1 < u1 can only influence the indegree of either z0 or z2 at time u1, but never
both. This means, loosely speaking, that z0↔z1↔z2 being a quick path implies the disjoint
occurrence of the events {z0↔z1} and {z1↔z2}.
In Section 6 we will carry out this programme and prove non-robustness if γ < 1

2 , or if d = 1
and γ < δ−1

δ . Some auxiliary lemmas used in various parts of our proofs have been postponed
to an appendix, see Section 7.

Summary of standard notation. We use the Landau symbols o(t), O(t), and Ω(t). If (A(t))t>0

is a family of events, we say A(t) holds with high probability, or whp(t), if the probability of
A(t) goes to 1, as t ↑ ∞. We say A(t) holds with extreme probability, or wep(t), if it holds
with probability at least 1−exp(−Ω(log2 t)), as t ↑ ∞. When the parameter is clear, we write
whp or wep for whp(t) or wep(t). Observe that, if (A(t)n)n≥0 is a sequence of events that
simultaneously hold wep(t), in the sense that supn Prob(A(t)cn) = exp(−Ω(log2 t)), as t ↑ ∞,
and n(t) satisfies n(t) = o(tκ) for some κ > 0, then

⋂
k≤n(t)A(t)k holds wep(t). Informally,

the intersection of a polynomial number of events, which each holds wep, holds wep.

5. Proof of robustness

In the following three subsections we study percolation on the infinite graph G∞. The giant
component for the sequence (Gt)t≥0 of finite graphs is studied in Subsection 5.4.

5.1. Infinite component of the infinite graph. In this section we prove that the infinite
graphs Gp ∞ cannot contain more than one infinite component.

Proposition 4. In the graphs Gp ∞, for p ∈ (0, 1], the number of infinite components is
always either almost surely equal to zero, or almost surely equal to one.

The analogue of this proposition for percolation on the integer lattice, or the Poisson random
connection model in Rd, is known for some time. Our proof follows the classical technique
of Burton and Keane, see [12]. We focus on the case p = 1, the other cases being similar.
The first step of this proof is to use the ergodicity of the model to deduce that the number
of infinite components is an almost sure constant in N ∪ {0,∞}. The second step is to
ensure that this constant cannot be a finite number k ≥ 2. Informally, if the graph contains
k ≥ 2 infinite components and if x and y are two vertices belonging to 2 different infinite
components, then, sampling again the random variable Vx,y gives us a positive probability
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of connecting these two components, hence decreasing the number of infinite components by
(at least) one, leading to a contradiction.

We focus on the last step, which is to ensure that the number of connected components
cannot be infinity. We suppose, for contradiction, that

(H1) almost surely, the graph G∞ contains infinitely many infinite components.

We say a vertex x ∈ G∞ is a trifurcation if it is linked to at least three other vertices
x1,x2,x3 ∈ G∞, so that if x (and all its adjacent edges) is removed, then x1, x2, x3 are in
three different infinite components of G∞. Note that prior to the removal of x the vertices
x1, x2, x3 are all in the same infinite component as they are all connected to x.

Lemma 5. If (H1) is satisfied, then

∫ 1

0
duP(0,u)

(
(0, u) is a trifurcation

)
> 0.

Proof. We write P∗(du dω) =
∫ 1
0 duP(0,u)(dω) for the underlying measure and note that

U = U(u, ω) = u is the uniformly distributed birth time of the vertex located at the origin.
Recall that G∞ = G∞(X ,V) and abbreviate G∞0 := G∞(X − {(0, u)},V), so that the law of
G∞0 under P∗ is the same as the law of G∞ under P. Observe that the conditional probability
given G∞0 and U , that the vertex located at the origin has degree 0 in G∞, is almost surely
in (0, 1). This observation uses in particular the fact that ϕ does not take the values zero
or one. Similarly, the conditional probability that the neighbouring vertices of (0, U) in G∞

are exactly some given x1, x2, x3 in G∞0 , is also almost surely in (0, 1).

Assuming (H1), the graph G∞0 contains almost surely infinitely many infinite components,
and we may then specify arbitrarily three vertices x1, x2, x3 belonging to three different ones.
Then, under P∗, there is positive probability that (0, U) is older than these three vertices,
and connected by an edge to exactly these three vertices. If this happens, then the presence
of the new vertex (0, u) and the three edges linking to x1, x2 and x3 does not change the
indegree of any of the other vertices. In other words, it does not interfere with the rest of
the graph. The graphs G∞0 and G∞ are exactly the same except that the latter contains one
vertex and three edges more. Therefore (0, u) is a trifurcation of G∞. �

By stationarity the expected number of trifurcations in the ball B(0, t), centered at the origin
and of radius t, is proportional to the volume of the ball, that is to td. Let Et be the set of
edges connecting a vertex x inside to a vertex y outside of B(0, t).

Lemma 6. The cardinality of Et exceeds the number of trifurcations in B(0, t) by at least 2.

Proof. To each trifurcation x = (x, s) with x ∈ B(0, t), we can associate a partition of Et
into three sets such that two edges in Et that are not in the same set are not in the same
component of the graph with x and its incident edges removed. We obtain a compatible
collection of partitions in the sense of Burton-Keane and the result follows accordingly. �

By the lemma, the expected number of elements in Et is at least proportional to td. But
the expected degree of a given vertex (with birth time uniform in (0, 1]) is finite, and so the
expected number of neighbours at distance at least L is decreasing to zero, as L → ∞. It
follows that the expectation of Et must be o(td), and we obtain a contradiction.

5.2. Continuity of the density of the infinite component. In this subsection, we are
interested in the continuity properties of θp , as defined in (5), with respect to the parameters
of the model. To this end we now suppose that Pp provides a consistent family of Poisson
point processes (λX )0≤λ≤1 of intensity λ so that, for λ < µ, we have λX ⊂ µX and hence
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Gt(λX ,V) is a subgraph of Gt(µX ,V). For any x ∈ Rd × (0, 1] we denote by Ppλ x the law Pp
conditioned on the event {x ∈ Xpλ }. Denoting λG

t := Gt(λX ,V) we again obtain convergence
to a limit graph λG

∞. We let Gp ∞
λ be the percolated limit graph. Recalling that ξ(x, G) is

the indicator of the event that the connected component of x in G is infinite, we define

θpλ :=

∫ 1

0
Epλ (0,u)

[
ξ
(
(0, u), Gp ∞

λ

)]
du.

Proposition 7. For fixed p ≤ 1, the function λ 7→ θpλ is non-decreasing, right-continuous,
and left-continuous everywhere except possibly at λc(p) := sup{λ : θpλ = 0}.

Remark 8. A similar result holds for the function p 7→ θp , and is a variant of well-known
results of percolation theory.

Proof of Proposition 7. We only prove left-continuity at λ > λc in the case p = 1, as the
other parts of the statement will not be used in the sequel. Fix λc < µ < λ, and let C
be the infinite component of µG

∞. On the event that (0, u) is in the infinite component of

λG
∞, it is connected in this graph to a vertex of C. Thus there exists k ∈ N such that the

k-neighbourhood of (0, u) in the graph λG
∞, i.e. the set of vertices of the graph within graph

distance k of (0, u), intersects C. Given k, with probability one, the k-neighbourhood of
(0, u) is the same in λG

∞ and in λ′G
∞ for λ′ close enough to λ. Hence ξ((0, u), G∞(λ′X ,V))

converges almost surely, and hence in probability, to ξ((0, u), G∞(λX ,V)) when λ′ ↑ λ. This
proves the left-continuity at λ > λc. �

5.3. Robust percolation in the limit model. In this subsection, we work in the super-
critical phase γ > δ

1+δ . We want to show that the infinite graph G∞, as well as its thinned
versions Gp ∞, for any p > 0, do contain an infinite component.

We sketch a simple strategy to get an infinite path in G∞. Start from a sufficiently old
vertex. Use a vertex born after time 1

2 as a stepping stone to connect the old vertex by
two edges to a much older vertex. Keep going forever, moving to older and older vertices.
To ensure that this procedure generates an infinite path with positive probability we need
to show that an old vertex is wep at graph distance two in G∞ from a much older vertex,
so that the failure probabilities sum to a value strictly less than one. To get the necessary
estimates we also need to avoid using old vertices that have an exceptionally small degree.
The expected degree of a vertex with birth time s is of order s−γ , and the lemma below
allows to define a notion of good vertices in such a way that (i) every good vertex satisfies a
lower bound on the degree at time 1

2 , and (ii) most old vertices are good. To this end fix a
function g as in Lemma 24 of the appendix, we will never need to know more about it than
the fact it grows slower than polynomially.

Definition 9. For a vertex x = (x, s) in G∞ we denote by Z(x, t) its indegree at time t ≥ s,
or in other words the number of vertices born during the time interval [s, t] that are connected
by an edge to x. The vertex x = (x, s) is a good vertex if s < 1/2 and

Z(x, 1/2) ≥ s−γ/g(s−1).

Lemma 24 ensures that under Px the vertex x with birth time s ≤ 1
2 is good whp(1/s).

Definition 10. A vertex x = (x, s) born at time s < 1/2 is locally good if its indegree in

the graph G∞(X ∩
(
[x− s−1/d, x+ s−1/d]d × (0, 1/2]

)
,V) is at least equal to s−γ/g(s−1).
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The advantage of this more restrictive definition is that we can ensure that a vertex is locally
good by only watching for the set of vertices nearby, up to distance s−1/d. Moreover, by
Lemma 24, a vertex (x, s) is still locally good whp(1/s). The next lemma quantifies how
young vertices allow to connect old vertices that have reached a high degree.

Lemma 11 (Two-connection lemma). Let x1 and x2 be two vertices of G∞ born before
time 1/2. Write ` := d(x1,x2)

d and zi := Z(xi, 1/2) assuming ` = Ω(zi), for i ∈ {1, 2}.
Suppose there exists ε > 0 such that

z1z
δ
2`
−δ = Ω

(
zε1
)
.

Conditional on the restriction of G∞ to vertices born before time 1/2, wep(z1), the vertices x1

and x2 are connected through a vertex born after time 1/2, in the graph G∞. The analogous
result holds also for the thinned graphs Gp ∞, for any given p > 0.

Proof. From the construction rule and the hypothesis Z(x1, 1/2) = z1, it is clear that every
vertex x = (x, s) of X satisfying the conditions s > 1/2, d(x,x1)

d ≤ f(z1) and Vx,x1 ≤ ϕ(1)
is connected to x1. The number of such vertices is a Poisson variable with parameter of
order z1, therefore it is wep(z1) of order z1. The probability that x connects to x2 is

ϕ

(
sd(x,x2)

d

f(Z(x2, s−))

)
≥ ϕ

((f(z1)
1/d + `1/d)d

f(z2)

)
.

On the right hand side, the numerator of the argument of ϕ is O(`), and the Potter
bounds for regularly varying functions, see [6, Theorem 1.5.6], ensure the right hand side

is Ω((`z−12 )−δ−ε
′
), for any ε′ > 0. Hence the event that one of the vertices x is connected

to x2 by an edge is stochastically bounded from below by a binomial random variable with
parameters of order Ω(z1) (number of trials) and Ω((`z−12 )−δ−ε

′
) (success probability). If ε′

is chosen small enough, the expectation of this random variable is Ω(zε/21 ), and therefore it
is wep(z1) of order Ω(zε/21 ). In particular, it is positive, and it stays wep(z1) positive after
percolation with any retention parameter p > 0. �

Corollary 12. Suppose γ > δ
1+δ . Choose

first α ∈
(
1, γ

δ(1−γ)
)
, then β ∈

(
α, γδ (1 + αδ)

)
.

If the vertices x = (x, s) and y = (y, t) are good vertices with t < sα and d(x, y)d < s−β,
then they are connected through a vertex born after time 1/2, wep(1/s).

With this corollary in hand, we can state and prove the following key proposition.

Proposition 13 (Chain of ancestors). If x0 = (x0, s0) is a locally good vertex, then

(1) wep(1/s0) there exists a locally good vertex x1 = (x1, s1) ∈ X with s1 < sα0 and

d(x0, x1)
d < s−β0 . We say x1 is an ancestor of x0.

(2) wep(1/s0) there exists an infinite chain of ancestors (xk)k≥1, namely locally good

vertices satisfying sk+1 < sαk and d(xk, xk+1)
d < s−βk for every k ≥ 0.

(3) wep(1/s0), two consecutive ancestors of the infinite chain of ancestors are always
connected through a vertex born after time 1/2, and therefore within graph distance
two in G∞.
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Proof. The only difficult part is to explain how to find the ancestors. We have ensured that
x0 is locally good, by looking only at the vertices in the set

X ∩
(

[x0 − s1/d0 , x0 + s
1/d
0 ]d × (0, 1/2]

)
.

We always search for ancestors by moving to the right on the first coordinate. Let ε = β−α.
Take bs−ε/d0 /6c − 1 disjoint intervals of length 6s−α/d0 inside [s−α/d0 , s−β/d0 ]. Write ak for the

centre of the k-th interval and Ak := (ak, 0, . . . , 0) + [−3s−α/d0 , 3s−α/d0 ]d. The blocks x + Ak
are disjoint and have not been observed so far. Therefore, independently of everything else,
the probability that X ∩ (x+Ak) contains a locally good vertex at distance less than s−α/d0

from the centre of the block with birth time in (sα0 /2, s
α
0 ) is bounded from zero, say by c > 0.

One of the bs−ε/d0 /6c − 1 independent trials with success probability ≥ c has to succeed,
wep(1/s0), which proves (1). Similarly, given the k first ancestors, we find the (k + 1)-th
ancestor wep(1/sk). Therefore we easily see that we can find an infinite chain of ancestors,
wep(1/s0), which proves (2) as well. �

It follows directly from Proposition 13 that the infinite graph percolates in the supercritical
phase. The same proof also holds for the thinned infinite graphs Gp ∞, so that they also
percolate. This immediately implies that θp > 0, for any p > 0. Of course, the only infinite
component of Gp ∞ is a subgraph of that of G∞. In this sense, the infinite component of the
infinite graph exists, is unique and robust.

5.4. Robustness of the giant component. We now show the following result.

Proposition 14. Let γ > δ
1+δ and p > 0. With high probability, the largest component of

Gp t contains ( θp + o(1))t vertices, while the second largest contains only o(t) vertices. Hence
there is a unique giant component, which has asymptotic density θp > 0.

It is tempting to believe that the result follows from the robustness of the infinite component
of the infinite graph by a pure approximation argument. However, the equivalence of the
existence of a unique infinite cluster in the infinite graph, and that of a unique giant compo-
nent in the finite graphs, does not always hold for long-range percolation models. In the rest
of this subsection we prove this equivalence with a significant effort, and our argument uses
specific features of the graphs in the phase γ > δ

1+δ . The proof is organized in three parts.
First, a direct study of the finite picture shows that the old vertices form a core of very-well
connected vertices. The method is similar to that of the ‘chain of ancestors’ argument for
the limit model. Then, we explain how the law of large numbers allows to pass from the
infinite to the finite picture. Finally, we have to show a convergence result for a carefully
chosen functional to complete the proof.

Core of well-connected vertices. With high probability, the oldest vertex of Gt has birth time
within ( 1

t log t ,
log t
t ). Then Lemma 24 ensures it is also good with high probability1. We now

work implicitly on this event. In particular, we say that a statement holds wep while the
precise formulation should be ‘wep, the statement holds or the oldest vertex is not a good
vertex with birth time within ( 1

t log t ,
log t
t )’. Such an abuse of notation is used in the following

proposition. For its formulation define, for k > 0, the 2k-core to be the set of good vertices x
with birth time s < t−1/α

k
.

1The reader may note that the function log used here and in Lemma 24 plays no special role other than

being a function growing to infinity slower than polynomially. And indeed, here and in Lemma 24, we could

have replaced it by any other function growing to infinity slower than polynomially.
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Proposition 15.

(1) In Gt, wep, every vertex of the 2k-core is connected, through a vertex born after
time 1/2, to an ancestor or to the oldest vertex (or is the oldest vertex).

(2) In Gt, wep, every vertex that has reached degree at least tγ/α
k

at time 1/2 is connected
through a vertex born after time 1/2 to the 2k-core.

Proof. For item (1), proceed as in Proposition 13 to ensure that, wep(1/s), a good vertex
(x, s) with birth time s < t−1/α

k
has an ancestor and is connected to it through a vertex

born after time 1/2. The slight difference is that we work here in the finite graphs and on

the torus. The proof has to be adapted when s−β/d > 1
2 t
−1/d, because then the blocks we

consider cover the whole torus and overlap. In that case, recall that the oldest vertex is a
good vertex, within distance 1

2 t
1/d of x, and born before time log t

t . Corollary 12 then ensures
it is wep connected, through a vertex born after time 1/2, to (x, s). Finally, item (2) follows
easily from a further application of Lemma 11. �

Proposition 15 has an important consequence, namely, wep, all the vertices of the 2k-core,

as well as all the vertices that have reached at least degree tγ/α
k

at time 1/2, belong to
the same connected component of Gt. Moreover, any two such vertices are within distance
4k+4. The connected component of the core is a natural candidate for the giant component
of the graph Gt.

Use of the laws of large numbers. Recall that Formula (7) gives, whp, the asymptotic density
of vertices of Gp t belonging to components of size < k, for any given k ∈ N. As k ↑ ∞ it goes
to 1− θp and hence, whp an asymptotic proportion (1− θp ) of vertices belongs to finite-size
components. The remaining θp t vertices belong to large clusters, whose sizes grow with t.
However, at this point, nothing guarantees that they form one giant component. They could
belong to various components of logarithmic size, for example.

To see why this is not the case, we search for an indicator function ξt taking the value one
on exactly one component of Gp t, which converges in probability to ξ, the indicator function
of the event that x belongs to the infinite component of Gp ∞. Inspired by the description
of the core, we define ξt to be the indicator of the event that x is connected through a path
to the oldest vertex of Gp t. If we can prove the convergence in probability of ξt((0, U), Gp t)
to ξ((0, U), Gp ∞), then the law of large numbers gives 1

pt

∑
x∈ Xp t ξt(x, G

p t)→ θp . In other
words, whp the component of the oldest vertex contains ( θp + o(1))t vertices, as claimed.
By the previous paragraph the second largest component cannot contain an asymptotically
positive proportion of all the vertices. This completes the proof of Proposition 14 subject to
the assumed convergence, which we now prove. In the proof we assume p = 1 to lighten the
notation; the general case follows by the same line of arguments.

Convergence of ξt to ξ. Recall the notation P∗(du dω) =
∫ 1
0 duP(0,u)(dω) and U(u, ω) = u.

We have to prove the following two statements:

P∗(At\A∞) −→
t→∞

0 and P∗(A∞\At) −→
t→∞

0,

where At denotes the event that (0, U) is connected to the oldest vertex ofGt, and A∞ denotes
the event that (0, U) belongs to the infinite component of G∞. The first statement follows
directly from the almost sure local convergence of Gt to G∞. Indeed, on the complement
of the event A∞, the component of (0, U) in G∞ is finite. For large enough t, it coincides
with its component in the finite picture. Increasing t further, if necessary, we get that this
component does not contain the oldest vertex.
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The second statement is significantly harder to prove. We first show that on A∞, the vertex
(0, U) is still in the infinite component of the graph λG

∞, introduced in Subsection 5.2, if λ
is slightly less than 1. The remaining vertices in X\λX will be used at the end of the proof
for a sprinkling argument.

Recall that λG
∞ has the same law as G∞ but with f replaced by λf , and thus γ by λγ.

Taking 1 > λ > δ
γ(1+δ) we thus get λθ > 0. In particular we infer that λc < 1 and hence, by

Proposition 7, the mapping µ 7→µθ is left-continuous at the point µ = 1. Denote by λA∞
the event that (0, U) is connected to infinity in the graph λG

∞. Then left-continuity implies
that P∗(A∞\ λA∞)→ 0 as λ ↑ 1. Hence it suffices to show, for fixed λ ∈ ( δ

γ(1+δ) , 1), that

P∗
(
λA∞\At

)
−→
t→∞

0.

The remainder of the proof being technical and geometric, we write it for the case d = 1, for
the sake of clarity. No argument is specific to dimension one, however, and it is not hard to
see that the proof works, mutatis mutandis, in higher dimensions.

We fix a small parameter a ∈ (0, 1) and a large parameter m ∈ (1,∞). Precise constraints
on these parameters will be given later. We show that on λA∞, the vertex (0, U) is likely to
be connected in the finite graph λG

tm to a moderately old vertex born before time t−a, and
then use the sprinkling argument to ensure that this vertex is likely to be connected to the
core, and thus to the oldest vertex of Gt

m
. Let λBt be the event that neither in λG

tm nor in

λG
∞ a vertex located in [−t, t] is incident to an edge of length larger than tm/2− t. On the

event {U > t−a}, which holds whp, define λC0, the component of (0, U) in the subgraph of

λG
∞ whose vertex set is restricted to λX t ∩ ([−t, t]× (t−a, 1]). Let λÂt ⊂ {U > t−a} be the

event that λC0 is connected in λG
∞ by a direct edge to a vertex in [−t, t]× (0, t−a).

The proof is carried out in three steps:

• First step: P∗
(
λB

c
t

)
−→
t→∞

0.

• Second step: P∗
(
(λA∞∩ λBt)\ λÂt

)
−→
t→∞

0.

• Third step: P∗
(
(λÂt∩ λBt)\Atm

)
−→
t→∞

0.

Proof of the first step. The set λX t∩([−t, t]× (0, 1]) consists of a Poisson number of vertices,
with mean 2λt, all with birth time uniform in (0, 1). The probability that a vertex with
birth time uniform in (0, 1) is incident to an edge of length larger than K has been estimated
in [27], see Theorem 4 and its proof, and is bounded by a constant times K−ηλ , where ηλ
is the smallest of the three constants 1, 1

λγ − 1 and δ − 1. In the robust phase, ηλ ∈ (0, 1).
Taking K = tm/2 − t, we easily see that whp no vertex in λX t ∩ ([−t, t]× (0, 1]) is incident
to an edge of length larger than tm/2 − t, as soon as the constant m is chosen larger than
1/ηλ. This reasoning works in λG

∞ and in λG
tm as well. This proves the first step, under

the constraint m > 1/ηλ. �

Proof of the second step. As P∗(U ≤ t−a) → 0, we suppose U > t−a. We fix b > 0, to be
specified later, and split our event in two parts, depending on the value of |λC0|.
Part (i): P∗

(
{|λC0| < tb}∩ λA∞∩ λBt\ λÂt

)
−→
t→∞

0.

On λA∞, a vertex of λC0 has to be connected by an edge to a vertex outside [−t, t]× (t−a, 1].

On λBt\λÂt, this vertex has to be located in [−tm/2, tm/2]\[−t, t]. Hence one of the vertices
of λC0 is incident to an edge longer than t1−b, called a long edge. This long edge either
links two vertices of λC0, or one vertex of λC0 to a vertex located in [−tm/2, tm/2]\[−t, t].
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It is easy to see that a given vertex is unlikely to be incident to a long edge. But we can
also prove that among all the vertices of [−t, t] × (t−a, 1], many are incident to long edges.
Therefore in this proof we must use the fact that λC0 has few vertices (no more than tb) and
check that these vertices are not incident to long edges. In order to do that, we explore and
reveal the component λC0 and control at each step the probability of finding a long edge.

We first explain the exploration process and how the information about the graph is pro-
gressively revealed. When exploring the neighbourhood of a vertex we use the term inedge
to denote an edge connecting the vertex to a younger neighbour. The position and birth
times of all vertices are all revealed at once, that is, we work conditionally on λX , and the
remaining randomness is only encoded in the variables (V(x,x′))x,x′∈λX . For x 6= x′ ∈ λX ,
the indegree evolution processes (Z(x, t))t≥s and (Z(x′, t))t≥s′ are conditionally independent.
Start the exploration with the single vertex (0, U). Reveal all its neighbours. If (0, U) is inci-
dent to a long edge, then stop the exploration and declare you found a long edge. If it is not
the case, (0, U) is declared ‘explored’, its neighbours are declared ‘to explore’. Now choose
a vertex left to explore. Reveal all its neighbours, except that you do not reveal whether
it is connected by an edge to an older vertex ‘to explore’. (That edge will be checked only
when we explore the inedges of the older vertex). If you have revealed a long edge, stop.
Otherwise, the new neighbours you have revealed are added to the set of vertices ‘to explore’,
and the vertex is declared explored. Continue until there are no vertices left to explore, or a
long edge is found. An important feature of this exploration process is that it will eventually
reveal all of λC0 in at most |λC0| < tb steps, unless it has been stopped for finding a long
edge. Moreover, at each step, the information gathered about the indegree evolution of the
vertices is controlled in the following way. For each vertex that is neither explored nor to
explore, we have revealed the absence of some inedges (those that could have linked it to an
explored vertex, precisely). For each vertex left to explore, we have revealed the presence
of at most one inedge, and the absence of several other inedges. Now we have to bound the
probability of finding a long edge, conditionally on this information.

We introduce the following notation,

Y1 = λX ∩
(
[−t, t]× (t−a, 1]

)
,

Y2 = λX ∩
(
([−tm/2, tm/2]\[−t, t])× (t−a, 1]

)
,

Y3 = λX ∩
(
([−tm/2, tm/2]\[−t, t])× (0, t−a)

)
.

Though the vertices of λC0 that we explore are all in Y1, the vertices of Y2 and Y3 have to be
considered as potential endvertices of long edges. With high (and even extreme) probability,
no vertex of Y1 ∪ Y2 has reached indegree more than taγ , and no vertex (y, sy) of Y3 has

reached indegree more than s−γy , so we work on this event. Without extra conditioning,
bounds on the connection probabilities are easy to establish. Indeed, if x,y ∈ Y1 ∪ Y2 and
ε > 0, we can roughly bound the probability that they are connected by

P (x↔ y) ≤ ϕ(t−ad(x,y)/f(taγ)) ≤ cεta(1+γ)(δ−ε)d(x,y)−(δ−ε), (8)

where cε is given by the Potter bounds [6, Theorem 1.5.6]. Similarly, if x ∈ Y1 and y =
(y, sy) ∈ Y3, then

P (x↔ y) ≤ ϕ(t−ad(x,y)/f(s−γy )) ≤
(
cεt

a(δ−ε)s−γ(δ−ε)y d(x,y)−(δ−ε)
)
∧ 1

≤ cεta(δ−ε)
(
s−γ(δ−ε)y d(x,y)−(δ−ε) ∧ 1

)
. (9)
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Now suppose x ∈ Y1 is the vertex we are currently exploring in the exploration process, and
y is a vertex at distance ≥ t1−b, whose connection to x we have to check. If y ∈ Y3, then y is
the older vertex, and its indegree evolution process is only conditioned on the nonexistence
of some edges. In that case it only decreases the probability that it is connected to x, and
we still can use the bound (9). Similarly, if y ∈ Y1∪Y2, and y is the older vertex, or x is the
older vertex but we have not revealed the presence of any inedge of x, then the conditional
probability of x↔ y is still bounded by (8).

We give details only for the hardest case, when x has already an inedge revealed, and x is
older than y. We write (x,y0) for the inedge revealed, and y1, . . . , yn for the other vertices
that have been revealed not to be linked to x. We further condition on the values of V(x,x′)
for any x′ different from y, y0, y1, . . . , yn, writing F′ for the sigma-algebra generated by
these random variables. Note that they do not determine whether x is linked to x′ or not.
However, if we know in addition that x is linked to y, y0 and not to y1, . . . , yn, then the
inedges of x are all determined, as well as its indegree evolution process, which we write
z+(x, s)s≤sx≤1. If we know on the contrary that x is not linked to y, nor to y1, . . . , yn, and
only to y0, then its deterministic indegree evolution process is written z−(x, s)s≤sx≤1. The
following computation is straightforward,

P (x↔ y,x↔ y0,x = y1, . . . ,x = yn
∣∣F′) = p+(y)p+(y0)

n∏
i=1

(1− p+(yi)),

P (x = y,x↔ y0,x = y1, . . . ,x = yn
∣∣F′) = (1− p−(y))p−(y0)

n∏
i=1

(1− p−(yi)),

(10)

where we have written p+(y) for ϕ(syd(x,y)/f(z+(sy−))), namely the probability that x is
linked to y knowing that its indegree evolution process has followed z+ until then. Similarly,
p−(y) = ϕ(syd(x,y)/f(z−(sy−))). There is an easy comparison between z+ and z−, namely

z+(x, s) = z−(x, s) if s < sy,
z+(x, sy) = z−(x, sy) + 1
z+(x, s) ≥ z−(x, s) + 1 if s > sy.

Hence, p+(y) = p−(y), and for i ∈ {1, . . . , n}, we have (1−p−(yi)) ≥ (1−p+(yi)). Moreover,

p−(y0)

p+(y0)
=
ϕ(sy0d(x,y0)/f(z−(sy0−)))

ϕ(sy0d(x,y0)/f(z+(sy0−)))
≥ ϕ(sy0d(x,y0)/f(0))

ϕ(sy0d(x,y0)/f(taγ))
≥ c′εt−aγ(δ+ε),

where the last inequality is ensured by the Potter bounds, with c′ε a strictly positive constant
depending on ε. Now,

P (x↔ y0,x = y1, . . . ,= yn
∣∣F′)

≥
(
p+(y) + (1− p+(y))c′εt

−aγ(δ+ε)
)
p+(y0)

n∏
i=1

(1− p+(yi))

≥ c′εt−aγ(δ+ε)p+(y0)

n∏
i=1

(1− p+(yi)).

Combining with (10), we get P (x ↔ y|x ↔ y0,x = y1, . . . ,= yn,F
′) ≤ c′−1ε taγ(δ+ε)p+(y).

But p+(y) is always bounded by (8). Integrating with respect to the law of Vx,x′ gives

P
(
x↔ y

∣∣x↔ y0,x = y1, . . . ,= yn
)
≤ cεc′−1ε ta(2γδ+δ−ε)d(x,y)−(δ−ε). (11)
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Informally, the price to pay to have a bound for the conditional probability is at most the
multiplicative factor c′−1ε taγ(δ+ε). Adding the inequalities on every y ∈ Y1∪Y2∪Y3 such that
d(x,y) ≥ t1−b, we can bound the probability that x is incident to a long edge, conditionally
on the beginning of the exploration process, by E1 + E2 + E3, where

E1 = cεc
′−1
ε ta(2γδ+δ−ε)t−(1−b)(δ−ε)|Y1|,

E2 = cεc
′−1
ε ta(2γδ+δ−ε)

∑
y∈Y2

(|y| − t+ t1−b)−(δ−ε),

E3 = cεt
a(δ−ε)

∑
y∈Y3

(
s−γ(δ−ε)y (|y| − t+ t1−b)−(δ−ε) ∧ 1

)
.

This bound is independent of x. Hence the probability that the exploration process reveals
a long edge in less than tb steps is bounded by tb(E1 + E2 + E3). In other words, we have
proved that

P∗
(
{| λC0| < tb} ∩ λA∞ ∩ λBt\ λÂt

∣∣
λX
)
≤ tb(E1 + E2 + E3).

In order to conclude (i), we have to prove that the bound is likely to be small, that is,
goes to zero in probability. As |Y1| is whp of order t, the first term tbE1 is whp of order

t1−δ+ε+a(2γδ+δ−ε)+b(1+δ−ε). If a, b and ε are chosen small enough, this bound goes to zero.
For the second and third one, we show their expectation goes to zero. We have

E
[ ∑
y∈Y2

(|y| − t+ t1−b)−(δ−ε)
]

= 2λ(1− t−a)
∫ tm/2

t
(y − t+ t1−b)−(δ−ε)dy,

which is of order t(1−b)(1−δ+ε). Hence E[tbE2] = O(t1−δ+ε+a(2γδ+δ−ε)+b(δ−ε)), which also goes
to zero if a, b and ε are small enough. Finally,

E
[ ∑
y∈Y3

(
s−γ(δ−ε)y (|y| − t+ t1−b)−(δ−ε) ∧ 1

)]
= 2λ

∫ tm/2

t
dy

∫ t−a

0
ds
(
s−γ(δ−ε)(y − t+ t1−b)−(δ−ε) ∧ 1

)
= 2λ

∫ tm/2−t+t1−b

t1−b
dy

∫ t−a

0
ds
(
s−γ(δ−ε)y−(δ−ε) ∧ 1

)
≤ 2λ

∫ ∞
t1−b

dy
(
y−1/γ +

∫ 1

y−1/γ

s−γ(δ−ε)y−(δ−ε)ds
)
.

Finishing the calculation, this bound is O(t−η(1−b)) with η = min(1/γ − 1, δ − ε − 1) > 0,

and thus E[tbE3] = O(t−η+a(δ−ε)+b(1+η)) goes to zero if a and b are chosen small enough.

Part (ii): P∗
(
(λA∞ ∩ {|λC0| ≥ tb})\ λÂt

)
−→
t→∞

0.

On the event λA∞ ∩ {|λC0| ≥ tb}, we work conditionally on λC0 and try to connect each
vertex of λC0 to some vertex in [−t, t] × (0, t−a]. Fix some ε > 0. For any given vertex in
X t, there exists wep a vertex of λX t with birth time in (0, t−a] and within distance ta+ε,
because the number of such vertices follows a Poisson law of parameter 2λtε. For each vertex
of λC0, we may then choose such a vertex, and try to connect it, with success probability
bounded below, independently of everything else, by ϕ(ta+ε/f(0)). By the Potter bound, for

each ε′ > 0, this is bounded below by cε′t
−(δ+ε′)(a+ε), where cε′ depends only on ε′. The

number of edges between λC0 and [−t, t] × (0, t−a] is therefore bounded from below by a

binomial variable of parameters btbc and cε′t
−(δ+ε′)(a+ε), hence it is positive whp as soon as
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b > (δ + ε′)(a + ε). Reducing a if necessary (as well as ε and ε′), we can ensure that this
inequality is satisfied, which concludes the second step. �

Proof of the third step. On λÂt, the vertex (0, U) is connected in λG
∞ and within [−t, t] to a

vertex with birth time in (0, t−a). We choose arbitrarily such a vertex x = (x, s). On λBt, all
these connections remain in the finite graph λG

tm , that is, (0, U) is connected in this finite
graph to x. It should be enough to say x is likely to be in the 2k-core for a well-chosen k, and
thus connected to the oldest vertex of Ttm by Proposition 15. However, due to the complex
way we used to find x, it is not that easy to ensure it is a good vertex, or to say anything
about its degree. This is where the sprinkling argument is used, and the reason why we have
worked with λ < 1 in the entire proof.

We condition on λG
tm and on the choice of x = (x, s) with s < t−a. The law of the graph

λG̃
tm := Gt

m((X tm\λX tm) ∪ {x},Vtm)
under this conditional law is also the (unconditioned) law of Gt

m
(1−λX t

m∪{x},Vtm), because
the set X tm\ λX t

m
is a Poisson point process of intensity 1 − λ independent of λX t

m
. As a

consequence, we know that the vertex x has whp reached degree at least ta(1−λ)γ/g(ta) at

time 1/2 in λG̃
tm . As λG

tm and λG̃
tm are both subgraphs of Gt

m
, taking k > log(m/(1−λ)a)

log(α) in
Proposition 15 allows to conclude that x is whp connected to the 2k-core and in particular
to the oldest vertex in Gt

m
. Hence the same holds for (0, U), and Atm is satisfied. �

6. Proof of non–robustness

6.1. Non–robustness for γ < 1/2. We have seen in Section 4.2 that it suffices to show
that Gp ∞ contains no infinite component if p is chosen small enough. We will introduce a
notion of quick path, such that if Gp ∞ contains an infinite component, then there exists an
infinite quick path. Quick paths will be constructed in such a way that we can estimate their
probability using a disjoint occurrence argument.

First moment method based on quick paths. All the graphs we consider are locally finite,
therefore an infinite component has to be of infinite diameter. Actually, a vertex x0 of
an infinite component is always the starting vertex of at least one infinite geodesic, that
is an infinite path (xn)n≥0, xn = (xn, sn), in the graph with the property that the graph
distance between two vertices xn and xn+k is always k, for all n, k ≥ 0. This can be
proved with a simple diagonal argument that we leave to the reader. Note that a geodesic
is in particular a vertex and edge self-avoiding path. Starting from any infinite geodesic
(xn)n≥0 in Gp ∞, we now construct deterministically, in two steps, an infinite self-avoiding
path (zn)n≥0, zn = (zn, un), in G∞ called the quick path associated with (xn)n≥0.

First, we construct a subsequence (yn)n≥0 as yn = xϕ(n). Start with ϕ(0) = 0, and thus
y0 = x0. Given ϕ(n), define

Nn :=
{
k > ϕ(n) : ∃y = (y, t) ∈ G∞ such that t > sϕ(n), sk and xϕ(n)↔y↔xk in G∞

}
.

The vertex y in the definition of Nn is called a common child of the vertices xϕ(n) and xk,
note that it is chosen in G∞ and not in Gp ∞. For k ∈ Nn, the graph distance between
the vertices xϕ(n) and xk is thus (at most) 2 in G∞, while it is |k − ϕ(n)| in Gp ∞. If
Nn is non-empty, it has to be finite and we set ϕ(n + 1) = maxNn. Otherwise, we set
ϕ(n+ 1) = ϕ(n) + 1.
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By its definition (yn)n≥0 satisfies the following properties:

• for all n ≥ 0 we have yn ∈ Xp .
• for all n ≥ 0 and j ≥ 2, the vertices yn and yn+j are not connected by an edge and

have no common child in G∞.
• for all n ≥ 0, the vertices yn and yn+1 are either connected by an edge, or have a

common child in G∞.

Finally, we create a third sequence by inserting, between every pair of vertices yn and yn+1

that are not connected by an edge, the oldest common child in G∞. We obtain an infinite
sequence (zn)n≥0, which is an infinite self-avoiding path of G∞, and which we call the quick
path associated with (xn)n≥0.

We call a vertex zn in the quick path a regular vertex if it is older than at least one of its
neighbours zn−1 and zn+1, and we call zn a local maximum if it does not satisfying this
property. Similarly define the local minima. Hence a vertex zn, with n > 0, belongs to the
sequence (yk)k≥0 if and only if it is regular. With this terminology the path (zn)n≥0 has the
following properties:

(i) Every regular vertex is in Xp . The starting vertex z0 is also in Xp .
(ii) A regular vertex zn cannot be connected by an edge to any younger vertex of the

path, except possibly zn−1 and zn+1.
(iii) Two regular vertices zn and zn+j , with n ≥ 0 and j ≥ 2, can have common children

only if j = 2 and zn+1 is a local maximum. In that case, zn+1 is their oldest
common child.

Properties (ii) and (iii) depend only on the graph G∞ and not on the percolation procedure,
and define the notion of quick paths. We also define the notion of quick paths for finite paths,
by restricting the quantifiers accordingly. Based on the observation that if (0, U) is in the
infinite component of Gp ∞ then it must be the starting point of arbitrarily long quick paths
satisfying property (i), the first moment calculation in the next subsection shows that the
expected number of such paths of length n goes to 0, as n ↑ ∞, if p is small enough. Note
that, given a quick path z0↔· · ·↔zn in G∞, it satisfies condition (i) with probability at

most pn/2, because at least n
2 − 1 of the vertices on a quick path of length n are regular.

Therefore, if we show that the expected number of quick paths of length n grows at most
exponentially, namely it is O(Cn) for some finite constant C, we can infer from Borel-Cantelli
that, for any p < 1/C2, almost surely the component of (0, U) in Gp ∞ is finite.

The expected number of quick paths has at most exponential growth. The expected number
of quick paths of length n is given by the multiple integral∫ 1

0
E(0,u)

[∣∣{quick paths of length n starting at (0, u)}
∣∣] du

=

∫
(0,1]×(Rd×(0,1])n

du0 dz1 . . . dzn Pz0,...,zn

(
(zk)0≤k≤n is a quick path in G∞

)
,

where z0 = (0, u0) and Pz0,...,zn is the measure P conditioned on the event {z0, . . . , zn ∈ X}.
Under this measure, X is simply a Poisson point process of intensity one with the points
z0, . . . , zn added. The aim is now to bound the probability of (zk)0≤k≤n being a quick
path, and see how we can integrate this bound. Writing zk = (zk, uk) for 0 ≤ k ≤ n, we
will actually first integrate over (z1, . . . , zn) (space integration), then over (u0, . . . , un) (time
integration). The main step will be to prove the following proposition.
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Proposition 16. There exists a finite constant C such that for every n ≥ 0 and distinct
numbers u0, . . . , un in (0, 1], the following inequality holds,∫

(Rd)n
dz1 . . . dzn P(0,u0),(z1,u1),...,(zn,un)

(
(zk, uk))0≤k≤n is a quick path in G∞

)
≤ Cn

n∏
k=1

1

(uk−1 ∧ uk)γ(uk−1 ∨ uk)1−γ
.

(12)

The bound given in (12) is good in many respects. First, the proof provides a constant C
that does not depend on the choice of the profile function ϕ, but only on the attachment
rule f . Second, the term 1/(uk−1 ∧ uk)γ(uk−1 ∨ uk)1−γ is comparable to the probability that
two vertices in a non-spatial equivalent of our model, with birth times uk−1 and uk, are
connected by an edge. But most importantly, the next lemma shows that after integrating
over time we obtain the desired bound.

Lemma 17. If γ < 1/2, then there exists a finite constant C ′ such that, for any n > 0,∫ 1

0
du0 · · ·

∫ 1

0
dun

n∏
k=1

1

(uk−1 ∧ uk)γ(uk−1 ∨ uk)1−γ
≤ C ′n.

Proof. Pick −γ > α > γ − 1. Then carrying out the integration over un gives∫ 1

0
du0 · · ·

∫ 1

0
dun

n∏
k=1

uαn
(uk−1 ∧ uk)γ(uk−1 ∨ uk)1−γ

≤ C ′
∫ 1

0
du0 · · ·

∫ 1

0
dun−1

n−1∏
k=1

uαn−1
(uk−1 ∧ uk)γ(uk−1 ∨ uk)1−γ

,

for C ′ = (1 + α− γ)−1 − (α+ γ)−1. The result follows from this by induction. �

The proposition and the lemma, combined, prove the non-robustness of (Gt)t>0 for any
γ < 1/2. More precisely, if C and C ′ are the constants given in Proposition 16 and Lemma 17,
then for any p < (CC ′)−2, the graph Gp ∞ contains no infinite component almost surely and,
with high probability, the network ( Gp t)t>0 contains no giant component.

6.2. Proof of Proposition 16. The proof of Proposition 16 is based on two ingredients.
First, the definition of a quick path allows the use of a BK inequality, that splits the paths into
small parts that interact with negative correlation. Each small part comprises no more than
four edges, and the probability of such a path can be bounded by more or less straightforward
integration.

Splitting procedure. We now explain how to split the sequence z0, . . . , zn into small parts.
The splitting procedure depends only on their birth times u0, . . . , un, which we assume to
be pairwise distinct, but not on the spatial positions z0, . . . , zn. The rule is simple, namely

For i = 0, . . . , n, introduce a splitting at index i if either ui is larger
than both ui−1 and ui−2, or ui is larger than both ui+1 and ui+2.

The boundary convention is that no condition is requested for indices outside {0, . . . , n},
so that, for example, there is always a splitting at indices 0 and n, and there is a splitting
at index 1 if u1 > u0. We write n0 = 0 < n1 < · · · < nk = n for the splitting indices in
increasing order. These split the path into k parts. The jth part consists of the sequence
(znj−1 , . . . , znj ), with znj−1 and znj constituting the two boundary vertices and the other
vertices the inside of part j. Note that the boundary vertices zn1 , . . . , znk−1

belong to two
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consecutive parts. A vertex zi is a local maximum of a part (znj−1 , . . . , znj ) if nj−1 ≤ i ≤ nj
and we have both ui > ui−1 (if i > nj−1) and ui > ui+1 (if i < nj). Observe that a boundary
vertex of a part can be a local maximum of a part without being a local maximum. We say
a vertex zi contributes to a part, if it belongs to, but is not a local maximum of, this part.

Using this terminology, we observe that

• Local maxima never contribute to any part (irrespective whether they are inside of
a part or boundary vertices of two parts).
• Local minima are always inside a part, and contribute to it.
• The other vertices always contribute to exactly one part, whether they are inside it

or at its boundary.

For 1 ≤ j ≤ k, let Aj = {znj−1↔· · ·↔znj} be the event that (znj−1 , . . . , znj ) is a path in G∞.
Recall that a vertex x = (x, s) is a child of zi if zi↔x and ui < s. We define Σj to be the
(random) set of all children of vertices zi contributing to part j, different from zi−1 and zi+1,
which have birth times in the interval (ui, ui−1 ∨ ui+1). Informally, the set Σj contains all
the information beyond the variables V(zi, zi+1), nj−1 ≤ i ≤ nj−1, which is needed to check
whether Aj occurs or not.

The following lemma justifies the splitting rule.

Lemma 18. If (z0, . . . , zn) is a quick path, then the sets {z0, . . . , zn} and Σ1, . . . ,Σk are
pairwise disjoint.

Proof. Property (ii) of the definition of quick paths implies that vertices of the path do
not belong to any Σj . We now use Property (iii) and the splitting procedure to see that
Σj and Σj′ do not intersect if j 6=j′. Indeed, if they intersect, this would mean that a
vertex zi contributing to part j and a vertex zi′ contributing to part j′ have a common
child in (ui, ui−1 ∨ ui+1) ∩ (ui′ , ui′−1 ∨ ui′+1). By Property (iii) we must have |i′ − i| ≤ 2. If
|i′− i| = 2, say i′ = i+ 2, then their oldest common child has to be zi+1. As they contribute
to different parts containing zi+1, there must be a splitting at index i + 1. Hence either
ui−1 ∨ ui+1 = ui+1, or ui+1 ∨ ui+3 = ui+1. In each case, their common child with birth time
in (ui, ui−1 ∨ ui+1) ∩ (ui+2, ui+1 ∨ ui+3) is older than zi+1, and we get a contradiction. If
|i′ − i| = 1, we can assume that i′ = i+ 1 and there is a splitting at index i. The vertex zi
cannot be a local maximum, as otherwise it contributes to no part. Combining these two
facts we get that (ui, ui−1 ∨ ui+1)∩ (ui+1, ui ∨ ui+2) is empty and hence a contradiction. �

BK–inequality. We now use a version of the famous van den Berg-Kesten (BK) inequality
to show that the probability of observing a quick path is bounded above by the product of
the probabilities of the events Aj , for j ∈ {1, . . . , k}. The version of the BK–inequality we
use is valid for marked Poisson processes with unit intensity on a bounded domain, see [3].
It states that the probability for increasing events E1, . . . , Ek to occur disjointly is bounded
above by the product of their individual probabilities, namely

P (E1 ◦ . . . ◦ Ek) ≤
k∏
j=1

P (Ej).

In the present context, an event E in the space of configurations of the marked Poisson
processes is called increasing if, given any configuration in E, the configuration with an
arbitrary marked point added is also in E. Disjoint occurrence of events E1, . . . , Ek is
written as E1 ◦ . . . ◦Ek and defined as follows. A configuration consisting of the point set S
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with marks (ms)s∈S is in E1 ◦ . . . ◦ Ek, if we can find S1, . . . , Sk, disjoint subsets of S, so
that, for each j, the set Sj with marks (ms)s∈Sj is in Ej . We say the marked set Sj ensures
that Ej is realized.

Let us see how this inequality fits in our context. Recall that we work under Pz0,...,zn and all
the events we consider depend only on the set of children of vertices z0, . . . , zn. Therefore,
the events are all deterministic functionals of the following ingredients:

(1) the random variables V(zi, zi′), for distinct indices i, i′ ∈ {0, . . . , n};
(2) the random set X ′ := X\{z0, . . . , zn}, which is a Poisson point process of unit in-

tensity on Rd × (0, 1], together with the random marks (V(x, z0), . . . ,V(x, zn)) in
[0, 1]n+1 attached to the vertices x ∈ X ′.

First, in order to study our problem in the framework of disjoint occurrence, we have to
remove the dependence on the random variables V(zi, zi′). We introduce P(0)

z0,...,zn for the
conditional probability given V(zi, zi′) = 0, for all |i′− i| ≥ 2. In other words, under P(0)

z0,...,zn

the indegree evolution process of a vertex zi cannot grow because of vertices zi′ with |i′−i| ≥
2, just as if the vertex zi was not seeing them. We observe that

Pz0,...,zn

(
(zn) is a quick path

)
≤ P(0)

z0,...,zn

(
(zn) is a quick path

)
,

because if (zn) is a quick path, then reducing the value of V(zi, zi′) with |i′ − i| ≥ 2 neither
affects properties (ii) and (iii), nor does it remove edges from the quick path. We also work
conditionally on the values V(zi, zi+1), for i ∈ {0, . . . , n− 1}.
Second, to apply the result of [3] we need to make the underlying domain bounded. To this
end we work with the natural finite picture approximation of the graph and of our events.
For t finite, but large enough so that Tt contains the vertices z0, . . . , zn, we construct the
graph Gt and we denote by Atj the event that the jth part is a path, in the graph Gt.

Now the events At1, . . . , A
t
k are increasing events of a marked Poisson point process with unit

intensity on Tt × (0, 1]. Applying the BK–inequality gives

P(0)
z0,...,zn

(
At1 ◦ . . . ◦Atk

∣∣Vz0,z1 , . . . ,Vzn−1,zn

)
≤

k∏
j=1

P(0)
z0,...,zn

(
Atj
∣∣Vz0,z1 , . . . ,Vzn−1,zn

)
.

As t ↑ ∞, we know that Gt converges locally to G∞, and thus the indicator of Atj to that
of Aj , almost surely. Moreover, similarly to Σj , we define Σt

j as the set of all children in Gt

of vertices zi contributing to part j, different from zi−1 and zi+1, and with birth times in
(ui, ui−1∨ui+1), then we also have that, almost surely, the sets Σt

j coincide with the sets Σj ,
for t large enough. If z0, . . . , zn is a quick path of G∞, it is clear that for t large enough, not
only all the Atj are satisfied, but also the sets Σt

j , which ensure the events Atj are satisfied,
are disjoint, using Lemma 18. Consequently, the events Atj have to occur disjointly for t
large enough. We get

P(0)
z0,...,zn

(
z0, . . . , zn is quick

∣∣Vz0,z1 , . . . ,Vzn−1,zn

)
≤

k∏
j=1

P(0)
z0,...,zn

(
Aj
∣∣Vz0,z1 , . . . ,Vzn−1,zn

)
.

The event Aj depends actually only on V(znj−1 , znj−1+1), . . . ,V(znj−1, znj ). Therefore, the
product on the right hand side is a product of independent random variables. Taking expec-
tation, and using the tower property of conditional expectation, gives

P(0)
z0,...,zn

(
z0, . . . , zn is a quick path

)
≤

k∏
j=1

P(0)
z0,...,zn(Aj).
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Combining with the observation that P(0)
z0,...,zn(Aj) is also equal to P(0)

znj−1 ,...,znj
(Aj), we obtain

Pz0,...,zn

(
z0, . . . , zn is a quick path

)
≤

k∏
j=1

P(0)
znj−1 ,...,znj

(Aj). (13)

(i) (ii) (iii)

(iv) (v) (vi)

Figure 3. Up to symmetry there are six types of small parts after the split-
ting. Illustrated, with the index of a point on the abscissa and time on the
ordinate, these are (i) one single edge, (ii) a V shape with two edges, (iii) a V
shape with three edges and the end vertex of the short leg between the two
vertices of the long leg, (iv) a V shape with three edges and both vertices of
the long leg below the end vertex of the short leg, (v) a W shape with the
higher end vertex on the side of the deeper valley, (vi) a W shape with the
lower end vertex on the side of the deeper valley.

Bound for the small parts. We have bounded the probability of observing a (long) quick
path by the product of the probabilities of observing a path, independently for each part.
In order to prove (12), it suffices to prove the corresponding inequality for each part j,∫

(Rd)nj−nj−1

dznj−1+1 . . . dznj P
(0)

(znj−1 ,unj−1 ),...,(znj ,unj )

(
((zk, uk))0≤k≤n is a path in G∞

)
≤ Cnj−nj−1

nj−nj−1∏
k=1

1

(uk−1 ∧ uk)γ(uk−1 ∨ uk)1−γ
.

Instead of treating all six possible types of parts, listed in Figure 3, we only treat the most
complex type, numbered (v). It should become clear to the reader that we are giving bounds
in a way that would work similarly for all the other types. To lighten notation we also
suppose the part is the first part, that is, we suppose u3 < u1 < u2 < u0 < u4, and show
that ∫

(Rd)4
dz1dz2dz3dz4 P(0)

z0,z1,z2,z3,z4(A1) ≤ C4 1

uγ0u
1−γ
1

1

uγ2u
1−γ
1

1

uγ2u
1−γ
3

1

uγ4u
1−γ
3

.

We introduce the canonical filtration Ft, for t ∈ (0, 1], associated to the construction of
the graph G∞ up to time t, i.e., Ft is the smallest σ−algebra for which the restriction of
G∞ to vertices with birth times in (0, t] is measurable. Similarly define Ft−. Observe that,
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writing (Zz(t))t∈(0,1] for the indegree evolution process of vertex z, the process (Zz1 , Zz3) is
adapted to the filtration. In the following we use c1, c2, . . . to denote some positive constants
depending only on the attachment rule f .

A change of variables from (z1, z2, z3, z4) to (y1, y
′
1, y3, y

′
3) = (z2− z1, z0− z1, z2− z3, z4− z3)

and the tower property of conditional expectation yield∫
(Rd)4

dz1dz2dz3dz4 P(A1)

=

∫
(Rd)4

dy1dy
′
1dy3dy

′
3 E
[
E[E[E[E[E[E[1A1 |Fu4−]|Fu0 ]|Fu0−]|Fu2 ]|Fu2−]|Fu1 ]

]
,

where we have here simply written E for expectation and conditional expectation under the
probability measure P(0)

z0,z1,z2,z3,z4 . Rewriting the indicator of A1 as product of indicators,
1{z0↔z1↔z2↔z3}1{z3↔z4}, the first factor is measurable with respect to Fu4−, while the
conditional expectation of 1{z3↔z4} is equal to ϕ(u4|y′3|d/f(Zz3(u4−))). Using a first spatial
integration with respect to y′3, we get∫

dy′3 E[1A1 |Fu4−] = 1{z0↔z1↔z2↔z3}
f(Zz3(u4−))

u4
.

The conditional expectation of the right hand side given Fu0 equals

1{z0↔z1↔z2↔z3}
(1 + Zz3(u0))

u4
E
[f(Zz3(u4−))

1 + Zz3(u0)

∣∣∣Fu0]
≤ c1 1{z0↔z1↔z2↔z3}

(1 + Zz3(u0))

u4

(u4
u0

)γ
,

where the inequality follows from Lemma 21 in the appendix. We now take conditional
expectation given Fu0−, note that Zz3(u0) = Zz3(u0−), and integrate in space with respect
to y′1, to obtain the bound

c1
f(Zz1(u0−))

u0
1{z1↔z2↔z3}

(1 + Zz3(u0−))

u4

(u4
u0

)γ
.

The conditional expectation of this bound given Fu2 can be bounded by

c2
(1 + Zz1(u2))

u0

(u0
u2

)γ
1{z1↔z2↔z3}

(1 + Zz3(u2))

u4

(u4
u2

)γ
,

by Corollary 22 in the appendix. Further, the conditional expectation of this expression
given Fu2−, and integrated over y1 and y3, is exactly equal to

c2
(2 + Zz1(u2−))

u0

(u0
u2

)γ f(Zz1(u2−))

u2

f(Zz3(u2−))

u2

(2 + Zz3(u2−))

u4

(u4
u2

)γ
,

and bounded by

c3
(1 + Zz1(u2−))

u0

(u0
u2

)γ (1 + Zz1(u2−))

u2

(1 + Zz3(u2−))

u2

(1 + Zz3(u2−))

u4

(u4
u2

)γ
.

Using Corollary 22 again, we bound the conditional expectation given Fu1 by

c4
1

u0

(u0
u1

)γ 1

u2

(u2
u1

)γ (1 + Zz3(u1))

u2

(u2
u1

)γ (1 + Zz3(u1))

u4

(u4
u1

)γ
.

Finally, the expectation of that expression is bounded, using Lemma 21 again, by

c5
1

u0

(u0
u1

)γ 1

u2

(u2
u1

)γ 1

u2

(u2
u3

)γ 1

u4

(u4
u3

)γ
.
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Altogether, we have proved that∫
(Rd)4

dz1dz2dz3dz4 P(A1) ≤ c5
1

uγ0u
1−γ
1

1

uγ2u
1−γ
1

1

uγ2u
1−γ
3

1

uγ4u
1−γ
3

,

which gives the desired result if C is chosen at least equal to c
1/4
5 .

In this calculation, space integration is used extensively to give a simple expression for the
density of the probability, for a vertex z with indegree k at time t−, to have a child somewhere
with birth time in dt,∫

Rd
dz′ Pz,(z′,t)

(
z↔(z′, t)

∣∣Z(z, t−) = k
)

= f(k)/t.

It is important to perform the space integration at time t, before studying the indegree
evolution process Z(z, s) for s < t. This method is independent of the choice of a profile
function, showing that the argument does not involve space. But an alternative approach
would be to use the profile function more explicitly. Because ϕ is regularly varying with
index δ, from the Potter bounds, for any δ′ < δ, there exists a finite constant c such that
ϕ(x) ≤ cx−δ

′
, for all x > 0. Fix a choice of such a δ′ ∈ (1,∞) and c > 0. Then, for given

z = (z, u) older than z′ = (z′, u′), we have

Pz,z′
(
z↔z′

∣∣Z(z, u′−) = k
)
≤ c f(k)δ

′
(
u′d(z, z′)1/d

)−δ′
,

and then

Pz,z′
(
z↔z′

)
≤ 1 ∧ cE[Z(z, u′−)δ

′
]
(
u′d(z, z′)1/d

)−δ′
.

With the same outline of proof, but using Lemma 21 and Corollary 22 with p = δ′ or p = 2δ′,
we could show that

P(0,u0),(z1,u1),...,(zn,un)

(
((zk, uk))0≤k≤n is a quick path in G∞

)
≤ c′n

n∏
k=1

1 ∧
(
(uk−1 ∧ uk)γ(uk−1 ∨ uk)1−γ |zk − zk−1|

)−δ′
,

(14)

for some constant c′, and deduce Proposition 16 by integration over all the space variables.
A similar bound will be used in the next subsection, without further justification.

6.3. Non–robustness for δ > 1
1−γ in dimension one. We only need to consider γ ∈

[1/2, 1). In this phase, we always have δ > 2. We look for ways to improve the bound from
the previous section. Any such argument has to use the spatial structure of the network
substantially, as the corresponding nonspatial networks are robust for γ ≥ 1/2.

Let us first sketch the idea informally. Suppose that d = 1. A vertex z = (z, u) has typically
of order u−γ children, which may be a lot. But most of these children are typically close to z,
namely within distance u−1, and hence their local neighbourhoods are strongly correlated.
No matter how many vertices within distance u−1 of z belong to the component of z, it will
not help much to connect z to vertices far away. Indeed, defining the region around z as

Cz :=
{

(z′, u′), u′ ≥ u, |z′ − z| ≤ 2u−1 − u′−1
}
,

see Figure 4, we can show that the typical number of vertices outside Cz that are connected
to z, or any other vertex in Cz, is only of order log(u−1). To estimate the probability of
a path it therefore makes sense to consider only those edges of a quick path straddling the
boundary of a region. This idea leads us to the notion of a trace of a quick path which we use
to improve our bounds. Informally, forgetting about the time component and just thinking
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about Cz as a ball around z ∈ R, it is plausible that in dimension d = 1 few edges straddle
the boundary of Cz because the size of the boundary of balls in R does not grow with the
radius. In dimension d > 1 however, if we wanted to use a similar approach, we would have
to consider the ball of radius u−1/d around a vertex. The area of its boundary is of order
u−(d−1)/d, and therefore the vertices within this ball would be connected to typically at least
O(u−(d−1)/d) vertices outside, which is already too much to carry out the proof.

Suppose now that (0, U) belongs to an infinite component of Gp ∞. Then it is the starting
point of an infinite quick path (xn)n≥0 in G∞, as defined in the previous section, in which
every regular vertex is in Xp . We define the subsequence (yn)n≥0 given by yn = xϕ(n) with
ϕ(0) = 0, and

ϕ(n+ 1) = min{k > ϕ(n),xk /∈ Cxϕ(n)}.
We call (yn)0≤n≤m a trace of the quick path (xn)n≥0. Observe that if yn = xϕ(n) is a
local maximum of the quick path, then yn+1 = xϕ(n+1) = xϕ(n)+1 is regular and is in Xp .
Therefore at least half of the vertices of the trace of a quick path are in Xp . Arguing in
the same way as in last subsection, we have to prove that the expected number of traces
of length n grows at most exponentially in n. This follows from the following two results,
which are analogous to Proposition 16 and Lemma 17.

Proposition 19. In dimension d = 1, if 1
2 ≤ γ < 1 and δ > 1

1−γ , then there exists a finite

constant C ′′ such that, for every n ≥ 0 and t0, . . . , tn ∈ (0, 1] pairwise distinct,∫
dy1 . . . dyn Py0,...,yn

(
(yk)0≤k≤n is a trace of a quick path in G∞

)
≤ C ′′n

n∏
k=1

(
1{tk < tk−1}

t1−γk−1t
γ
k

+
1{tk > tk−1}

tk

)
,

(15)

where we have written y0 = (0, t0) and yk = (yk, tk), and where the domain of integration is
{(y1, . . . , yn) ∈ Rn : yk /∈ Cyk−1

for all k}.
The improvement of this bound, compared to (12), is that if tk−1 < tk, the term 1/tγk−1t

1−γ
k

has been replaced by 1/tk. Note also that the proposition is valid only in dimension one and
for parameters satisfying γ ∈ [1/2, 1) and δ > 1/(1− γ).

Lemma 20. There exists a finite constant C ′′′ such that, for any n > 0, we have∫ 1

0
dt0 · · ·

∫ 1

0
dtn

n∏
k=1

(
1{tk < tk−1}

t1−γk−1t
γ
k

+
1{tk > tk−1}

tk

)
≤ C ′′′n.

We skip the simple proof of Lemma 20. To prove Proposition 19, we do not bound the
probability of a sequence being the the trace of a quick path (xk)k≥0 directly, but instead
construct a third sequence (zk)k≥0 called an almost quick path. To this end we first define
the enlarged region C ′yk−1

around vertex yk−1 = (yk−1, tk−1) by

C ′yk−1
:=
{

(y, t) ∈ R× (0, 1] : t ≥ tk−1, d(y, yk−1) ≤ 2t−1k−1 + t−1
}

∪
{

(y, t) ∈ R× (0, 1] : t < tk−1, d(y, yk−1) ≤ 2t−1k−1 + tγ−1k−1t
−γ}.

Define (zk)k≥0 by inserting in the infinite trace (yk)k≥0 a vertex y′k := xϕ(k)−1 between the
vertices yk−1 = xϕ(k−1) and yk = xϕ(k), but only if

• ϕ(k)− 1 > ϕ(k − 1) and
• yk /∈ C ′yk−1

.
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C ′
z

Cz

z

Figure 4. Graphical representation of the region Cz (dark shade) and en-
larged region C ′z (light shade) around the vertex z = (2, 0.3) ∈ R × (0, 1],
for γ = 1/2.

In other words, if yk is even outside the enlarged region C ′yk−1
and it is not already repre-

sented, we insert the vertex in Cyk−1
connecting to yk. The infinite sequence (zk) we obtain

is again a subsequence of the quick path (xk). Again a vertex zk is called regular for this
sequence if it is older than zk+1 or zk−1, and otherwise it is called a local maximum. Observe
that local maxima of the sequence (zk) are not necessarily local maxima of the sequence (xk),
but regular vertices of (zk) are always regular vertices of (xk).

It is not hard to show that the sequence (zk) satisfies Properties (ii) and (iii) of the definition
of quick paths. Actually, it can fail to be a quick path itself, only because it may not be
a path, as some of the pairs (zk, zk+1) are not requested to be edges of the graph. Note
though that from the sequence (zk), one can identify the vertices yk, the inserted vertices
y′k, and which pairs (zk, zk+1) are required to be edges of the graph, and which are not. A
self-avoiding sequence satisfying Properties (ii), and (iii), such that all requested edges are
present is called an almost quick path.

Proof of Proposition 19. Fix n ≥ 0 and t0, . . . , tn distinct times in (0, 1]. Let y1, . . . , yn be
real numbers such that, defining y0 = (0, t0) and yk = (yk, tk) for 1 ≤ k ≤ n, the sequence
(yk)0≤k≤n satisfies yk /∈ Cyk−1

for all 1 ≤ k ≤ n. Let

A =
{
k ∈ {1, . . . , n} : yk /∈ C ′yk−1

}
.

If the sequence (yk)k≤n is the trace of a quick path, there must be B ⊂ A, say of cardi-
nality m, and, for every k ∈ B, a vertex y′k ∈ Cyk−1

, such that the sequence (zk)0≤k≤n+m
obtained by inserting the vertices y′k, is an almost quick path. Consequently, we have

Py0,...,yn

(
(yk)0≤k≤n is the trace of a quick path in G∞

)
≤
∑
B⊂A

∫
dy′k1 . . . dy

′
kmPz0,...,zn+m

(
(zk)0≤k≤n+m is an almost quick path

)
,

where we have written k1, . . . , km for the ordered elements of B. The number of pairs (A,B)
with B ⊂ A ⊂ {1, . . . , n} is equal to 3n, thus in order to prove (15) it suffices to show that,
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for any possible choice of A and B = {k1, . . . , km} ⊂ A, we have∫
dy1 . . . dyn

∫
dy′k1 . . . dy

′
kmPz0,...,zn+m

(
(zk)0≤k≤n+m is an almost quick path

)
≤
(C ′′

3

)n n∏
k=1

(
1{tk < tk−1}

t1−γk−1t
γ
k

+
1{tk > tk−1}

tk

)
,

where the domain of integration, depending on A and B, is defined by the constraints
yk ∈ C ′yk−1

\Cyk−1
for k /∈ A, yk /∈ C ′yk−1

for k ∈ A, and y′k ∈ Cyk−1
for k ∈ B.

We first give a bound on the probability that (zk)0≤k≤n+m is an almost quick path in the
same way as for a quick path. We keep now the notation (zk, uk), resp. (yk, tk) and (y′k, t

′
k),

for zk, resp. yk and y′k, for appropriate indices k. For 1
1−γ < δ′ < δ we replace (14) by

Pz0,...,zn+m

(
(zk)0≤k≤n+m is an almost quick path

)
≤ cn

∏
k∈B

(
(t′k ∧ tk)γ(t′k ∨ tk)1−γ |yk − y′k|

)−δ′
×

∏
k∈A\B

(
(tk−1 ∧ tk)γ(tk−1 ∨ tk)1−γ |yk − yk−1|

)−δ′
,

(16)

for c = c(δ′) some finite constant. Observe that each factor corresponds to a requested edge.
The proof of (16) requires to split the paths into small parts and then give a bound for the
individual probability of each part. We do not provide the detail of this proof, as this is very
similar to the previous section. Instead, we now show how to perform the integration over
the variables yk and y′k to get an improved bound.

We first introduce the change of variables ỹk = yk − yk−1 for 1 ≤ k ≤ n and ỹ′k = y′k − yk−1
for k ∈ B, and write ỹk = (ỹk, tk) and ỹ′k = (ỹ′k, t

′
k). The domain of integration is now

defined by the constraints ỹk ∈ C ′(0,tk−1)
\C(0,tk−1) for k /∈ A, ỹk /∈ C ′(0,tk−1)

for k ∈ A, and
ỹ′k ∈ C(0,tk−1) for k ∈ B, which is a product domain with respect to the variables ỹk and
ỹ′k. Proposition 19 will follow if, for each k, we can integrate over ỹk (resp. over (ỹ′k, ỹk) if
k ∈ B), the single term in the product on the right hand side of (16) involving this variable,
and ensure the result is bounded by a constant multiple of

1{tk < tk−1}
t1−γk−1t

γ
k

+
1{tk > tk−1}

tk
.

This is what we now do, considering separately the different cases.

(A) The case k /∈ A. Integrating a constant over the domain {ỹk : ỹk ∈ C ′(0,tk−1)
\C(0,tk−1)}

we obtain a term of order 1/tk, if tk−1 < tk, and of order 1/t1−γk−1t
γ
k , if tk−1 > tk.

(B) The case k ∈ A\B. Then we have to integrate ((tk−1 ∧ tk)γ(tk−1 ∨ tk)1−γ |ỹk|)−δ
′

over
the domain {ỹk : ỹk /∈ C ′(0,tk−1)

}. The reader can easily check the bound in this case.

(C1) The case k ∈ B and tk−1 > tk. We have to integrate t−γδ
′

k (t′k)
−(1−γ)δ′ |ỹk − ỹ′k|−δ

′

over t′k > tk−1, |ỹ′k| ≤ 2t−1k−1 − (t′k)
−1, and |ỹk| ≥ 2t−1k−1 + tγ−1k−1t

−γ
k . Write u := |ỹk| − 2t−1k−1

and bound |ỹk − ỹ′k|−δ
′

by u−δ
′
, so that the integral over ỹ′k gives at most a factor 4t−1k−1, and

the integral is bounded by

8t−γδ
′

k (tk−1)
−1
∫ 1

tk−1

(t′k)
−(1−γ)δ′dt′k

∫ ∞
tγ−1
k−1t

−γ
k

u−δ
′
du ≤ ctγ−1k−1t

−γ
k ,

for some finite constant c. We have used that δ′ > 1 and (1 − γ)δ′ > 1 to obtain the right
order for the integrals in t′k and in u.
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(C2) The case k ∈ B and tk−1 < tk.
First, we bound the integral over ỹ′k younger than ỹk. We have to integrate again the quantity
t−γδ

′

k (t′k)
−(1−γ)δ′ |ỹk − ỹ′k|−δ

′
, but the integration is now over t′k > tk, |ỹ′k| ≤ 2t−1k−1 − (t′k)

−1,
and |ỹk| ≥ 2t−1k−1 + t−1k . Writing u := |ỹk| − 2t−1k−1 and v := |ỹk − ỹ′k|, we can similarly bound
the integral by

2t−γδ
′

k

∫ 1

tk

(t′k)
−(1−γ)δ′dt′k

∫ ∞
t−1
k

(∫ ∞
u

v−δ
′
dv

)
du ≤ ct1−δ′k

∫ ∞
t−1
k

u1−δ
′
du ≤ c′t−1k ,

for c, c′ some finite constants. We have used the fact (1− γ)δ′ > 1 to obtain the order of the
integral in t′k, and we have used δ′ > 2 to bound the integral in u.

Second, we bound the integral over ỹ′k older than ỹk. The quantity we have to integrate is now
(t′k)

−γδ′t
−(1−γ)δ′
k |ỹk − ỹ′k|−δ

′
, and the integration is over tk−1 < t′k < tk, |ỹ′k| ≤ 2t−1k−1 − (t′k)

−1,
and |ỹk| ≥ 2t−1k−1 + t−1k . With the same notation as before we have v > (t′k)

−1 and u < v, and
the integral in u, for v fixed, gives at most a factor v, so that the integral is bounded by

2t
−(1−γ)δ′
k

∫ tk

tk−1

(t′k)
−γδ′

(∫ ∞
(t′k)
−1

v1−δ
′
dv
)
dt′k ≤ ct

−(1−γ)δ′
k

∫ tk

tk−1

(t′k)
(1−γ)δ′−2dt′k ≤ c′t−1k ,

for some constants c, c′. We have used that 1 − δ′ < −1 to obtain the right order for the
integral in v, and that (1− γ)δ′ − 2 > −1 to obtain the right order for the integral in t′k.

7. Appendix: Auxiliary lemmas

For each t ∈ [1,∞] fixed, the graph Gt is constructed as a growing graph with vertices placed
in Tt and with birth times in (0, 1]. The indegree of a vertex x = (x, r) at time s ≥ r is
denoted by Zt(x, s). The process (Zt(x, s))s≥r is a time-inhomogeneous pure birth process
started in zero at time s = r. By translation in Tt, the law of this process does not depend
on x, and we write Zt(r, s) for Zt((0, r), s) under the measure P(0,r), i.e., conditionally on
the vertex we consider to be in the Poisson point process.

This appendix provides different estimates and bounds for this process. We treat simulta-
neously the cases t = 1 and t > 1, including t = ∞, and do not stop the process at time
s = 1. The process (Zt(r, s))s≥r was already studied in [27], see in particular Lemma 8,
where we proved that logZt(r, s) ∼ γ log s almost surely as s ↑ ∞. Moreover, it was shown2

in Lemma 9 that the probability of having a larger indegree than (s/r)γ decays exponentially,
namely

P(Zt(r, s) ≥ λ(s/r)γ) ≤ c exp(−λ/8), (17)

for some (explicit) constant c only depending on the attachment rule f . An easy modification
of the argument gives a similar result for the increase of the process on the interval (s, s′], i.e.

P
(

1 + Zt(r, s′)

1 + Zt(r, s)
≥ λ(s′/s)γ

∣∣∣Zt(r, s)) ≤ c exp(−λ/8). (18)

Here it is important that the bound does not depend on the value taken by Zt(r, s). A
consequence of this exponentially decaying tail is that the moments are well-controlled, see
the next lemma and its corollary.

2This statement is actually proved under a slightly stronger assumption on that attachment rule f , namely

that f(k) = γk + O(1). As explained in [27, Remark 6] the results carry over to our framework at the price

of an arbitrarily small increase of γ. This is still sufficient for our applications.
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Lemma 21. For each p ∈ [1,∞), there exists a constant cp depending only on p and on the
attachment rule, so that for every r ≤ s < s′, we have

E
[(1 + Zt(r, s′)

1 + Zt(r, s)

)p∣∣∣Zt(r, s)] ≤ cp(s′
s

)pγ
.

Proof. For a positive random variable X, we have

E[Xp] ≤
∞∑
k=0

P(k ≤ X < k + 1)(k + 1)p ≤
∞∑
k=0

P(X ≥ k)(k + 1)p,

which is bounded by an explicit finite constant if X has an explicit exponentially decaying
bound. Apply this to the random variable

1 + Zt(r, s′)

1 + Zt(r, s)

( s
s′

)γ
.

�

Corollary 22. Let x and y be vertices born before time s, and s′ > s. For each p ∈ [1,∞),

E
[(

1 + Zt(x, s′)

1 + Zt(x, s)

)p(
1 + Zt(y, s′)

1 + Zt(y, s)

)p ∣∣∣Zt(x, s), Zt(y, s)] ≤ c2p(s′
s

)2pγ

,

where c2p is as introduced in Lemma 21.

Proof. Use the Cauchy-Schwarz inequality, followed by Lemma 21 . �

The next lemma gives a bound on the probability of observing a small degree.

Lemma 23. There exists a function g̃ : (0,∞) → (0,∞) growing at infinity slower than
polynomially, such that

P
(
Z1(1, r) ≤ rγ/g̃(r)

)
−→
r→∞

0. (19)

Proof. It was proved in [27] that log(Z1(1, r))/(γ log r) converges almost surely and in prob-
ability to one. In particular, there exists a function ψ such that for any η > 0 and any
r ≥ ψ(η), we have P(Z1(1, r) ≤ rγ(1−η)) ≤ η. The function ψ can be chosen decreasing
with infinite limit at zero, so that its inverse ψ−1 is decreasing and converging to zero.

For any r > 1, we thus have P(Z1(1, r) ≤ rγr−γψ
−1(r)) ≤ ψ−1(r). Hence we can choose

g̃(r) = rγψ
−1(r), which is o(rl) for any l > 0. �

Lemma 24. There exists a function g : (0,∞) → (0,∞) growing at infinity slower than
polynomially, such that

sup
t∈(1,+∞]

1
t log t

≤s

P
(
Zt(s, 12) ≤ s−γ/g(s−1)

)
−→
s→0

0. (20)

Proof. The supremum over t is attained when t is smallest possible, i.e. t log t = 1
s . Using

that Zt(r′, 12) is stochastically dominated by Zt(r, 12) if r < r′, we have, for t > e,

P
(
Zt( 1

t log t ,
1
2) ≤ (t log t)γ/g(t log t)

)
≤ P

(
Zt(1t ,

1
2) ≤ (t log t)γ/g(t log t)

)
≤ P

(
Z1(1, t2) ≤ (t log t)γ/g(t log t)

)
,

where the second line follows from the scaling property. In order to prove the result, us-
ing (19), it is enough to ensure that we can choose g growing slower than polynomially such
that (t log t)γ/g(t log t) ≤ (t/2)γ/g̃(t/2), e.g. by letting g(u) = (2 log u)γ supt≤u/2 g̃(u). �
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We stress that the probability of having a smaller degree than expected does not decay
exponentially. Indeed, the probability that Z∞(s, 1) = 0, i.e. the indegree of the vertex born
at time s is still null at time 1, decays only polynomially in s−1. Hence, despite the fact
that a vertex born at time s typically has total indegree s−γ+o(1), there may well be some
untypical vertices with much fewer inedges.
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