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The Fibonacci cube of dimension n, denoted as Γ n , is the subgraph of n-cube Q n induced by vertices with no consecutive 1's. We study the maximum number of disjoint subgraphs in Γ n isomorphic to Q k , and denote this number by q k (n). We prove several recursive results for q k (n), in particular we prove that q k (n) = q k-1 (n -2) + q k (n -3). We also prove a closed formula in which q k (n) is given in terms of Fibonacci numbers, and finally we give the generating function for the sequence {q k (n)} ∞ n=0 .

Introduction

Fibonacci cubes have been studied in several contexts, and the aim of their study goes beyond purely theoretical considerations. In mathematical chemistry the concept is related to perfect matchings in hexagonal graphs, and on the other hand, the structure of perfect matchings in these graphs is used, in theoretical chemistry, to determine the stability of benzenoid molecules. In this context it was proved that the resonance graphs of fibonacenes are isomorphic to Fibonacci cubes [START_REF] Klavžar | Fibonacci cubes are the resonance graphs of Fibonaccenes[END_REF][START_REF] Zhang | Resonance graphs and a binary coding for the 1-factors of benzenoid systems[END_REF][START_REF] Zhang | Fibonacci-like cubes as Z-transformation graphs[END_REF]. In computer science Fibonacci cubes are interesting from algorithmic point of view, since many algorithms that are known to be polynomial (or even linear) on the class of hypercubes work as well on Fibonacci cubes [START_REF] Hsu | Fibonacci cubes-a new interconnection technology[END_REF][START_REF] Cong | On simulations of linear arrays, rings and 2d meshes on Fibonacci cube networks[END_REF].

Besides many appealing applications of Fibonacci cubes, these graphs have also been studied from a purely theoretical point of view. One of the reasons is due to their nice recursive structure and properties derived from it (see [START_REF] Klavžar | Structure of Fibonacci cubes: a survey[END_REF]). In particular we mention that several graph theoretical invariants are easily determined using their structural properties. It was proved in [START_REF] Cong | On simulations of linear arrays, rings and 2d meshes on Fibonacci cube networks[END_REF] that every Fibonacci cube has a hamiltonian path, and in [START_REF] Munarini | Structural and enumerative properties of the Fibonacci cubes[END_REF] the independence number of Fibonacci cubes is determined. Various enumerative sequences of these graphs have been determined as well: number of vertices of a given degree [START_REF] Klavžar | The degree sequence of Fibonacci and Lucas cubes[END_REF], number of vertices of a given eccentricity [START_REF] Castro | The eccentricity sequences of Fibonacci and Lucas cubes[END_REF] and number of isometric subgraphs isomorphic to Q k [START_REF] Klavžar | Cube polynomial of Fibonacci and Lucas cube[END_REF]. The counting polynomial of this last sequence is known as cubic polynomial and has very nice properties. In [START_REF] Mollard | Maximal hypercubes in Fibonacci and Lucas cubes[END_REF] the author gave the number of maximal hypercubes of dimension k in Γ n (that is, induced subgraphs H of Γ n isomorphic to Q k , such that their exists no induced subgraph H ′ isomorphic to Q k+1 , with H ⊆ H ′ ) and determined the exact number of maximal hypercubes for every k and n.

In this paper we study the maximum number of disjoint subgraphs isomorphic to Q k in Γ n . This problem is relevant in the context of parallel or distribute systems. Indeed we can imagine different tasks occurring in parallel on each Q k without conflict. It turns out that the problem has a natural solution which is given by several recursive relations and a generating function (in the following section). In the rest of the introduction we give the definitions and notations.

Let n be a positive integer and denote [n] = {1, . . . , n}, and [n] 0 = {0, . . . , n -1}. The n-cube, denoted by Q n , is the graph with vertex set

V (Q n ) = {x 1 x 2 . . . x n | x i ∈ [2] 0 for i ∈ [n]} ,
where two vertices are adjacent in Q n if the corresponding strings differ in exactly one position. The Fibonacci n-cube, denoted by Γ n , is the subgraph of Q n induced by vertices with no consecutive 1's. Moreover we define Q 0 = Γ 0 as a one-vertex graph (see Fig. 1).

The vertices of Γ n beginning with 0 induce a subgraph isomorphic to Γ n-1 , and similarly, the vertices beginning with 10 induce a subgraph isomorphic to Γ n-2 . Denote these subgraphs with 0Γ n-1 and 10Γ n-2 , respectively. We generalize this notation as follows: a subgraph of Γ n , induced by vertices with a common prefix b0, b ∈

[2] i-1 0 , Γ 0 Γ 1 Γ 2 Γ 3 Γ 4 Γ 5 Figure 1: Fibonacci cubes Γ 0 , Γ 1 , Γ 2 , Γ 3 , Γ 4 ,

and Γ 5

In the next section we study and determine the maximum number of disjoint subgraphs isomorphic to Q k of the Fibonacci cube Γ n . Denote this number by q k (n).

Recursive relations

In the next table, we summarize the first values of q k (n) obtained by direct inspection of Γ n .

n 0 1 2 3 4 5 |Γ n | 1 2 3 5 8 13 q 1 (n) 0 1 1 2 4 6 q 2 (n) 0 0 0 1 1 2 q 3 (n) 0 0 0 0 0 1 Table 1: First values of q k (n) for n ∈ [6] 0 and k ∈ [4] 0
In the sequel we will differentiate two cases for n, depending on the residue when dividing by 3. Therefore let r(n) ∈ [3] 0 be such that n ≡ r(n) (mod 3). By the recursive structure of Fibonacci cubes described in the introduction, the cube Γ n can be partitioned into subgraphs 00Γ n-2 ≡ 10Γ n-2 and 010Γ n-3 . Note that there are also some edges between these two subgraphs, namely the matching between 000Γ n-3 and 010Γ n-3 , but in the construction below we shall not need them. Denote this partition by ∪. In particular

Γ n = (00Γ n-2 ≡ 10Γ n-2 ) ∪ 010Γ n-3 . (1) 
Repeating this gives us a complete partitioning of the Fibonacci cube:

Γ n = ˙ ⌊ n 3 ⌋ i=1 (010) i-1 00Γ n+1-3i ≡ (010) i-1 10Γ n+1-3i ∪(010) n-r(n) 3 Γ r(n) . (2) 
First let us derive the exact size of a maximum matching in a Fibonacci cube.

Lemma 2.1 For every n ∈ N we have

q 1 (n) = |Γ n | -γ(n) 2 = F n+2 2 .
Where γ(n) = 0 if r(n) = 1, and γ(n) = 1 otherwise.

Proof. By (2) each (010) i-1 00Γ n+1-3i ≡ (010) i-1 10Γ n+1-3i has a perfect matching, and therefore we only need to consider r(n). If r(n) is 0 or 2 then Γ r(n) has a maximum matching that misses one vertex. Otherwise Γ r(n) = Γ 1 has a perfect matching. From this we get the lower bound. The upper bound follows from the parity of the number of vertices of Fibonacci cubes:

|Γ n | = F n+2 it is even if r(n) = 1 and odd otherwise.
Note that in the case r(n) = 1 the Fibonacci cube Γ n has a perfect matching. In all the other cases there is only one vertex not covered by a maximum matching. By similar construction we are able to prove even more general case, i. e. when k ≥ 2.

Theorem 2.2 For every n ≥ 3 and k ≥ 2

q k (n) = q k-1 (n -2) + q k (n -3) . (3) 
Proof. Note that (3) is equivalent to

q k (n) = ⌊ n 3 ⌋ i=1 q k-1 (n + 1 -3i) .
This is indeed true, since for n ∈ [3] 0 , q k (n) = 0 for any k ≥ 2 (see Table 1).

The lower bound follows directly from [START_REF] Castro | The eccentricity sequences of Fibonacci and Lucas cubes[END_REF]. We construct a family of disjoint khypercubes by taking the maximum number of disjoint (k -1)-cubes in 00Γ n-2 and connecting each of them with the corresponding (k -1)-cube in 10Γ n-2 . By doing so, we get q k-1 (n -2) k-cubes in 00Γ n-2 ≡ 10Γ n-2 . Then we add the maximum number of k-cubes in 010Γ n-3 ∼ = Γ n-3 , this is additional q k (n -3) k-cubes.

To prove the upper bound consider the partition of Γ n described in [START_REF] Cong | On simulations of linear arrays, rings and 2d meshes on Fibonacci cube networks[END_REF]. Let U be a family of disjoint k-cubes in Γ n . We claim that

| ∪ U ∩ V (010) i-1 00Γ n+1-3i ≡ (010) i-1 10Γ n+1-3i | ≤ 2 k • q k-1 (n + 1 -3i) . (4) 
To prove this note that for every k-cube Q k ∈ U , we have

Q k ∩ (010) i-1 00Γ n+1-3i ≡ (010) i-1 10Γ n+1-3i ∈ {∅, Q k-1 , Q k } ,
for every i ≤ ⌊ n 3 ⌋. Therefore, every k-cube in U intersects (010) i-1 00Γ n+1-3i in some number of disjoint (k -1)-cubes (every k-cube contained in (010) i-1 00Γ n+1-3i is regarded as a disjoint union of two (k -1)-cubes). This number is at most q k-1 (n+1-3i) and hence (4) follows. Thus

| ∪ U ∩ V (Γ n )| ≤ 2 k • ⌊ n 3 ⌋ i=1 q k-1 (n + 1 -3i) ,
which completes the proof.

For every n ≥ 2 and k ≥ 1 let us define δ k (n) as follows:

δ k (n) = n+k-2 3 k -1 , if r(n + k) = 2
, and δ k (n) = 0 otherwise. We shall use this notation throughout the rest of the paper.

Corollary 2.3 For every n ≥ 2 and k ≥ 1 we have

q k (n) = q k (n -1) + q k (n -2) + δ k (n). ( 5 
)
Proof. The proof is by induction, where the basis are the cases k = 1 or n ≤ 4:

(i) The case k = 1 follows directly from Lemma 2.1.

(ii) If n ≤ 4 and k ≥ 3 we are done since q k (n) = q k (n -1) = q k (n -2) = 0 and

n+k-2 3 < k -1. (iii) If (k, n) = (2,
2) then q 2 (2) = q 2 (1) = q 2 (0) = 0 and we are done.

(iv) If (k, n) = (2, 3) then equation ( 5) is true since q 2 (3) = 1, q 2 (2) = q 2 (1) = 0 and

1 1 = 1. (v) If (k, n) = (2, 4) then equation (5) is true since q 2 (4) = q 2 (3) = 1, q 2 (2) = 0.
Let k ≥ 2 and n ≥ 5. Assume that equation ( 5) is true for all pairs (k ′ , n ′ ) = (k, n), such that 1 ≤ k ′ ≤ k and 2 ≤ n ′ ≤ n and let us prove the case (k, n). We first prove [START_REF] Klavžar | Cube polynomial of Fibonacci and Lucas cube[END_REF] when n + k ≡ 0 or 1 (mod 3). Since

k -1 + n -2 ≡ k + n ≡ 0 or 1 (mod 3) , k + n -3 ≡ k + n ≡ 0 or 1 (mod 3) , for k -1 ≥ 1, n -3 ≥ 2 it follows from the hypothesis, that q k-1 (n -2) = q k-1 (n -3) + q k-1 (n -4) , q k (n -3) = q k (n -4) + q k (n -5) .
Then we have

q k (n) = q k-1 (n -2) + q k (n -3) = q k-1 (n -3) + q k-1 (n -4) + q k (n -4) + q k (n -5) = q k (n -1) + q k (n -2) ,
where the first and the last equality follow from (3). Next we prove [START_REF] Klavžar | Cube polynomial of Fibonacci and Lucas cube[END_REF] when n + k ≡ 2 (mod 3). We have

q k (n) = q k-1 (n -2) + q k (n -3) = q k-1 (n -3) + q k-1 (n -4) + n+k-5 3 k -2 + q k (n -4) + q k (n -5) + n+k-5 3 k -1 = q k (n -1) + q k (n -2) + n+k-2 3 k -1 .
So the assertion is proved.

We are now able to prove a closed formula for the number q k (n).

Corollary 2.4 For every n ≥ 0 and k ≥ 1

q k (n) = ⌊ n+k-2 3 ⌋ i=k-1 i k -1 F n+k-3i-1 . (6) 
Proof. For every k ≥ 1 let

f k (x) = ∞ n=0 q k (n)x n
be the generating function of the sequence {q k (n)} ∞ n=0 . By Corollary 2.3 we have

q k (n) = q k (n -1) + q k (n -2) + δ k (n) , (7) 
for every k ≥ 1 and n ≥ 2. Fixing a k ≥ 1 and using (7) we obtain

∞ n=2 q k (n)x n = ∞ n=2 q k (n -1)x n + ∞ n=2 q k (n -2)x n + ∞ n=2 δ k (n)x n . Assume first k ≥ 2. Since q k (0) = q k (1) = 0 and δ k (0) = δ k (1) = 0 we have ∞ n=0 q k (n)x n = ∞ n=2 q k (n)x n = x ∞ n=0 q k (n)x n + x 2 ∞ n=0 q k (n)x n + ∞ n=0 δ k (n)x n .
Therefore

f k (x)(1 -x -x 2 ) = ∞ n=0 δ k (n)x n ,
and so

f k (x) = 1 1 -x -x 2 ∞ n=0 δ k (n)x n . (8) 
For k = 1 we have q 1 (1) = 1, q 1 (0) = 0, δ 1 (1) = 1 and δ 1 (0) = 0. Therefore

f 1 (x) = ∞ n=0 q 1 (n)x n = q 1 (0) + q 1 (1)x + ∞ n=2 q 1 (n)x n = x + ∞ n=2 q 1 (n -1)x n + ∞ n=2 q 1 (n -2)x n + ∞ n=2 δ 1 (n)x n = x + x ∞ n=0 q 1 (n)x n + x 2 ∞ n=0 q 1 (n)x n + ∞ n=0 δ 1 (n)x n -δ 1 (1)x .
It follows that ( 8) is true also for k = 1. The generating function of the Fibonacci sequence is (see for example [START_REF] Klavžar | Structure of Fibonacci cubes: a survey[END_REF])

∞ n=0 F n x n = x 1 -x -x 2 ,
and since F 0 = 0, we have

1 1 -x -x 2 = ∞ n=0 F n+1 x n .
So by [START_REF] Mollard | Maximal hypercubes in Fibonacci and Lucas cubes[END_REF] we have

f k (x) = ∞ n=0 F n+1 x n • ∞ n=0 δ k (n)x n ,
and therefore

q k (n) = n m=0 δ k (m)F n-m+1 . (9) 
Note that for m ∈ [n + 1] 0 we have δ k (m) = 0 if and only if m + k -2 ≡ 0 (mod 3) and

m+k-2 3 ≥ k -1. By setting m + k -2 = 3i we get 3i -k + 2 ∈ [n + 1] 0 and i ≥ k -1. So for m = 3i -k + 2 and i = k -1, . . . , ⌊ n+k-2 3 ⌋ it holds δ k (m) = 0 . Replacing 3i -k + 2
for m in equation ( 9) we obtain the equation [START_REF] Klavžar | The degree sequence of Fibonacci and Lucas cubes[END_REF].

By computing the generating function f k (x) we are able to get additional information on the sequence {q k (n)} ∞ n=0 .

Corollary 2.5 For every k ≥ 1 the generating function of the sequence {q

k (n)} ∞ n=0 is f k (x) = x 2k-1 (1 -x 3 ) k (1 -x -x 2 ) . (10) 
Proof. First let us prove that

1 (1 -x 3 ) k = ∞ i=0 i k -1 x 3(i-k+1) .
We proceed by induction on k. Base of the induction is clear, since we have 

1 1 -x 3 = ∞ i=0 x 3i . Let now k ≥ 2. Then 1 (1 -x 3 ) k = ∞ i=0 i k -2 x 3(i-k+2)   ∞ j=0 x 3j   = ∞ i=0 i + 1 k -1 x 3(i-k+2) = ∞ i=0 i k -1 x 3(i-k+1) , since summing i l=0 l k -2 = i + 1 k -1 . Recall that δ k (n) = n+k-2 3 k -1 , if r(n + k) = 2,
(n)} ∞ n=0 equals ∞ i=k-1 i k -1 x 3i-k+2 = x 2k-1 ∞ i=0 i k -1 x 3(i-k+1) = x 2k-1 (1 -x 3 ) k .
Since by [START_REF] Mollard | Maximal hypercubes in Fibonacci and Lucas cubes[END_REF] the sequence {q k (n)} ∞ n=0 is the convolution of the sequences {F n+1 } ∞ n=0 and {δ k (n)} ∞ n=0 the result follows.

Concluding remark and open problem

Proposition 3.1 For every k ≥ 1 and n ≥ 2k -2

q k (n) ≥ F n-2k+2 . (11) 
Proof. Let k ≥ 1. By corollary 3.3 in [START_REF] Klavžar | Cube polynomial of Fibonacci and Lucas cube[END_REF], or by our corollary 2.4, we have q k (2k -2) = 0 = F 0 and q k (2k -1) = 1 = F 1 . Now let n ≥ 2k and assume q k (n -1) ≥ F n-2k+1 and q k (n -2) ≥ F n-2k . Using corollary 2.3 we obtain q k (n) ≥ q k (n -1) + q k (n -2) ≥ F n-2k+1 + F n-2k = F n-2k+2 .

The result follows by induction.

Question 3.2 Determine

lim n→∞ q k (n) |V (Γ n )| .
For any k ≥ 1,

q k (n) |V (Γ n )| ≥ F n-2k+2 F n+2 ,
by Proposition 3.1. Therefore

lim n→∞ q k (n) |V (Γ n )| ≥ 1 φ 2k ,
where φ = (1 + √ 5)/2. This bound is weak since

lim n→∞ q 1 (n) |V (Γ n )| = 1 2 .
For k > 1 it will be interesting to study, asymptotically, the ratio of vertices of Γ n covered by a maximum set of disjoint subgraphs isomorphic to Q k , thus compare lim n→∞ q k (n)

|V (Γn)| and 1 2 k .

  and δ k (n) = 0 otherwise. Therefore the generating function of the sequence {δ k

i ∈ [n], is denoted by b0Γ n-i . Note that there is a matching from 0Γ n-1 to 10Γ n-2 , where each vertex 00x of 0Γ n-1 is paired with 10x of 10Γ n-2 . We will denote the subgraph of Γ n induced by endvertices of this matching with 00Γ n-2 ≡ 10Γ n-2 . So we may think that Γ n is constructed from 0Γ n-1 and 10Γ n-2 , where the only edges between these two subcubes induce a matching that saturates 10Γ n-2 . Finally we mention that the recursive structure of Fibonacci cubes gives the following equations|Γ 0 | = 1 , |Γ 1 | = 2 and |Γ n | = |Γ n-1 | + |Γ n-2 |,which in turn gives us the Fibonacci numbers {F n } n≥0 , i. e. |Γ n | = F n+2 .
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