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Abstract

The aim of this paper is the extend of the LQG design for linear system to the case of switched linear systems in continuous
time. The main result provides a control Lyapunov function and a dynamic output feedback law leading to sub-optimal
solutions. Practically, the dynamic output feedback is easy to apply and the design procedure is effective if there exists at
least one controllable and observable convex combination of the subsystems. Practical applications concern the large class of
power converters.
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1 Introduction

Over the past decade, the design of optimal control
laws for switched systems (in continuous and discrete
time) has been the focus of considerable research atten-
tion. Several approaches have been used to tackle this
problem, one can cite for example [18,22,24,25] for dy-
namic programming approaches, [1,3,23] for variational
approaches, or [5,9,11] for Lyapunov based approaches.
This problem is not easy, even numerically [20,23] and
the design of a stabilizing feedback law based on the
optimization of a criterion is a challenging task.

LQ regulators are widely used for the control of linear
systems because of their simple design and their robust-
ness and performance properties. When full state mea-
surement is not available, the LQG design that uses, in
addition, an asymptotic Kalman filter to estimate the
state, is a valid alternative due to the separation princi-
ple that guarantees the global asymptotic stability. For
switched systems, there is no separation principle and
the stability is highly related of the chosen switching law.

Most of the results in the literature are devoted to the
stability analysis of switching systems in discrete time
where the stability is established, whatever the switch-
ing laws, thanks to the use of LMI conditions [6]. An-

other approach consists in investigating the stable and
unstable subspace related to each matrix Ai, in [26], the
authors give a sufficient condition condition for the ex-
istence of an exponential stabilizing law; this condition
bears on the relative positions these stable and unstable
subspaces. For cases where this design is not relevant (at
least a switching law is unstable) or in order to improve
performance, a more involved problem is the design of
a stabilizing control law. Less results deal with this lat-
ter problem [11,17] and, in particular, very little atten-
tion has been devoted to the design of output feedback
control law. In [12,8], the stabilizing design procedures
are based on the determination of a piecewise quadratic
Lyapunov function. More precisely, a set of Lyapunov-
Metzler inequalities provides conditions for state and
output feedback. As the method is related to the solv-
ability of LMI / BMI conditions depending on param-
eter design, it possess intrinsically a conservative part
and practically the tractability is not obvious.

In recent papers [21], a switched LQ design has been de-
veloped to meet some performance requirements based
on the minimization of a switched quadratic cost func-
tion. It has been shown that the provided stabilizing
feedback law derived from a control Lyapunov function
(not necessarily convex), approaches the optimal one in
a sense precise in section 2. The only requirement for
applying the method is the existence of one controllable
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convex combination of the subsystems. The appealing
side of the method lies also in its practical aspect since
only a set of algebraic Riccati equations have to be solved
to establish the Lyapunov function.

In this paper, our aim is to extend the result to the
case where the state is partially measured. As no sepa-
ration principle can be invoked in the switched context,
this extend is not trivial. Indeed, the convergence of the
state estimation error to zero is dependent on the ap-
plied switching law. So, its design must guarantee both
observation and control goals, whatever the values of the
unknown estimation error. Thus, a direct application of
the results in [21] is impossible since it implies that the
estimation error must be known.

In Section 2, the problem statement is given and we
recall themain result of paper [21]. This allows to explain
to the reader why the provided feedback law not only
stabilizes the switched system but also approaches the
optimal solution.

In Section 3, assuming that there exists at least a con-
trollable and observable convex combination of the sub-
systems and as the positive definite solution of an alge-
braic Riccati equation is a continuous function with re-
spect to the constant matrices related to the equation,
we are able to build a parametrized family of positive
definite function whose parameters belong to a compact
set. A control Lyapunov function is then defined as the
point-wise infimum of this family.

We prove that the Lyapunov function is locally lips-
chitzian and homogenous of degree two. Then, we show
that its directional Dini derivative is well defined along
trajectories and we deduce an output feedback making
the system semi global exponentially stable.

In section 4, asymptotic disturbance rejection is analy-
sis and an adaptive observer is introduced that makes
robust the design procedure with respect to noise as it
is shown though an illustrative example in section 5. Fi-
nally, in section 6, we show that the design procedure
can be applied to the dc-dc power converters.

2 Problem statement and preliminary results

We consider the class of continuous time linear switched
systems: {

ẋ(t) = Aσ(t)x(t) +Bσ(t)uσ(t)(t)
y = Cσ(t)x

(1a)
(1b)

where σ : [0,+∞)→ S = {1, · · · , s} denotes the switch-
ing law that selects the active mode at time t by choosing
among a finite collection of linear systems defined by the
pairs (Ai, Bi) ∈ Rn×n×Rn×mi , i ∈ S. Each subsystem

is also governed by a control ui(t) ∈ Rmi , 0 ≤ mi ≤ n
and has an output x 7→ Cix.

In [21] and in order to meet some performance require-
ments, we designed a state feedback switching law (i.e.
x 7→ (σ(x), uσ(x)(x))) for system (1a) that approaches
the optimal solution of the following optimization prob-
lem:

Problem 1: Minimize the switched quadratic crite-
rion:

min
σ,uσ

1
2

∫ ∞
0

xT(t)Qσ(t)x(t)+uT
σ(t)(t)Rσ(t)uσ(t)(t)dt (2)

where the matrices Qi and Ri are symmetric positive
definite for every i ∈ S and x(t) is subject to ẋ(t) =
Aσ(t)x(t) +Bσ(t)uσ(t)(t), x(0) = x0.

More precisely, the provided feedback law is deduced
from a relaxed version of Problem 1 given by:

Problem 2: Minimize the quadratic criterion:

min
λ,u

1
2

∫ ∞
0

xT (t)Q(λ(t))x(t) + uT (t)R(λ)u(t)dt

where x(t) is subject to ẋ = A(λ)x+B(λ)u, x(0) = x0.
Here we denoted by (u, λ) the control defined as

u =(u1, u2, · · · , us), λ ∈ Λ

where Λ is the simplex defined as Λ = {λ ∈ Rs |
∑s
i=1 λi =

1 and λi ≥ 0 }; the matrices A(λ), B(λ), Q(λ) and R(λ)
being defined as

A(λ) =
∑
i∈S

λiAi, B(λ) = [λ1B1, . . . , λsBs]

Q(λ) =
∑
i∈S

λiQi, R(λ) = diag(λ1R1, . . . , λsRs) .

It can be noticed that Problem 1 is embedded into Prob-
lem 2 which is simply obtained by taking the convex hull
of the vector fields and of the costs. Actually, solutions
of problem 2 which are admissible for Problem 1, are
those for which the value λ(t) is located at the vertices
of the simplex Λ for all t. If not, control λ(·) is singu-
lar and Problem 1 does not admit an optimal solution
[19,3]. Nevertheless, suboptimal solutions can always be
achieved in these cases by chattering. This last point
is due to the fact that the set of trajectories related to
the switched system is dense into the set of trajectories
of its relaxed version [14]. Thus, in any case, it is more
convenient to solve Problem 2 and then after to deduce
optimal or suboptimal solution for Problem 1.
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Up to now the exact solution of Problem 2 (or 1) is not
available. Therefore, the provided design is to define a
control Lyapunov function as a tight upper bound on
the value function (the optimal cost). We mean tight in
the sense that the two functions may coincide at some
points.

In order to explain this last point, let us outline the de-
sign proposed in [21]. First, let us consider the following
Riccati equation:

A(λ)T
Pλ+PλA(λ)−Pλ

( s∑
i=1

λiBiR
−1
i Bi

T)Pλ+Q(λ) = 0 .

It can be noticed that the above parametrized Riccati
equation corresponds to the LQ subproblem obtained
for a fixed value of λ ∈ Λ. Moreover, as Q(λ) > 0, a
sufficient condition for the existence of a positive defi-
nite solution Pλ is that the pair (A(λ), B(λ)) is stabi-
lizable. So, the set Λ+ is defined as the set of λ ∈ Λ
such that the pair (A(λ), B(λ)) is stabilizable and the
greatest eigenvalue of Pλ is less than νmax, an arbitrary
large number. The set Λ+ is non empty and has a non
empty interior if there exists a s-tuple λ0 such that the
pair (A(λ0), B(λ0)) is controllable. The next ingredient
is the following Lyapunov function

Vm(x) , inf
λ∈Λ+

xTPλx

where Λ+ is the compact subset of Λ defined above.

The important point for our purpose is that the following
theorem occurs:

Theorem 1 ([21]) Assume that the matrices Qi are
positive definite and there exists at least a λ0 ∈ Λ such
that the pair (A(λ0), B(λ0)) is controllable. For every
x ∈ Rn, we choose λ(x) ∈ `(x) where `(x) denotes the
set of λ ∈ Λ+ such that Vm(x) = xTPλx and

i(x) ∈ arg min
i∈S

(2xTAT
Ki,λ

Pλx+ xTMi,λx) ,

where AKi,λ = Ai − BiKi,λ, Ki,λ = R−1
i BTi Pλ and

Mi,λ = Qi +KT
i,λRiKi,λ.

Then the feedback σ(x) = i(x) and u(x) = −Ki,λx sta-
bilizes system (1a) with a cost no greater than 1

2Vm(x0).

PROOF. The proof of this theorem uses the Lyapunov
function Vm defined above. Before entering into the proof
of the theorem, we recall that, to ensure the asymp-
totic stability of a dynamical system, the function t 7→
Vm(x(t)) does not need to be derivable, it suffices that
one of the Dini derivatives be negative (see e.g. [2]).

Given a function ϕ defined on [0,+∞), recall that the
Dini derivatives of ϕ at t are the four limits related to
the difference quotient

R(t, h) , ϕ(t+ h)− ϕ(t)
h

namely

D+
ϕ(t) = lim

h↑0
R(t, h) D+ϕ(t) = lim

h↑0
R(t, h)

D−ϕ(t) = lim
h↓0

R(t, h) D−ϕ(t) = lim
h↓0

R(t, h) .

Consider now a function f defined on Rn and let d be a
vector of Rn, as in [10] we shall denote by f ′(x; d) the
following limit (if it exists)

f ′(x; d) , lim
h→0
h>0

f(x+ h d)− f(x)
h

.

In order to prove the existence and to compute V ′m(x; d),
we use Theorem 6.1 in [10] whose conditions of applica-
tion are clearly met here; thus V ′m exists and we have

V ′m(x; d, ) = inf
λ∈`(x)

v′λ(x; d) (3)

where vλ(x) = xTPλx. As the function x 7→ vλ(x) is
smooth, from (3) and from the expression of the deriva-
tive of vλ, we infer that

V ′m(x; d) = 2 inf
λ∈`(x)

(dTPλx) . (4)

Now a solution x(t) of system (1a) in closed loop with
the feedback defined in the statement of Th. 1 is abso-
lutely continuous and so has a derivative, demoted by
ẋ(t), almost everywhere. This fact and the existence of
V ′m imply that the function t 7→ V (x(t)) is right differ-
entiable almost everywhere and that its right derivative,
denote by V̇ (x), is given by the formula

V̇ (x) = V ′m(x; ẋ) .

We shall compute an upper bound of the derivative of
Vm along the trajectories of system (1a) in closed-loop
with the feedback introduced in the theorem. First notice
that if i(x) and λ(x) are chosen as in the theorem, we
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have 2xTAKi,λPλx ≤ −xTMi,λx. Now, we have

V̇m(x) = V ′m(x;AKi(x),λ(x)x)
= 2 min

λ∈`(x)
xTAT

Ki(x),λ(x)
Pλx from (4)

≤ 2xTAT
Ki(x),λ(x)

Pλ(x)x

≤ −xTMi(x),λ(x)x

from the definition of (i(x), λ(x))

≤ − η0

α1
Vm(x).

Here β0 and α1 are defined as

η0 = min
i∈S

inf
x∈Sn−1

inf
λ∈`(x)

xTMi,λx, α1 = max
x∈Sn−1

Vm(x)

This inequality implies that

Vm(x(t)) ≤ e−βtVm(x0)

with β = η0
α1

. As Vm is homogeneous of degree 2, this
last inequality, implies the global exponential stability.
The upper bound on the cost (1/2Vm(x0)) comes from
the fact that

xTQi(x)x+ xTKT
i(x),λ(x)Ri(x)Ki(x),λ(x)x =

xTMi(x),λ(x)x ≤ −V̇m(x). 2

Now we are able to discuss why the proposed switched
law could be optimal and why Vm can coincide with
the value function at some points. One can observe first
that for a given initial state x0, the value 1

2Vm(x0) is the
best cost related to every constant convex combination λ
that stabilizes the relaxed system (i.e. such that the pair
(A(λ), B(λ)) is stabilizable). In particular, if at least one
subsystem (Ai, Bi) (for a given i ∈ S) is stabilizable,
then 1

2Vm(x) ≤ 1
2x

TPix where Pi is the solution of the
Riccati equation related to mode i. This point shows
that the proposed switching rule is always consistent as
defined in [13].

Actually, Vm(x) is equal to the optimal cost along the
part of trajectories where the optimal control λ∗ is con-
stant to reach the origin. This situation occurs when:

• the number of switches is finite;
• the trajectory is steered to the origin by a constant
singular control (wemean by singular control a control
λ which is not located at the vertices of the simplex
Λ) for which Pλ > 0. Excepted in degenerated case,
it can be shown by a simple algebraic manipulation
that in the two-dimensional case, singular controls are
constant.

Formally, we can also justify the design of the switching
law as follow. For this problem stated in infinite time, the

necessary conditions provided by Pontryagin Maximum
Principle (PMP) can be summarized by the following
statement:

Theorem 2 ([21]) Suppose that (λ∗, u∗) is optimal with
the corresponding state x∗. Then, there exists an abso-
lutely continuous function p∗, named co-state, such that:

(1) p∗ 6≡ 0,
(2) ṗ∗ = −A(λ)T p∗ −Q(λ)x∗ for almost all t ∈ R+,
(3) u∗i (t) = −R−1

i BTi p
∗(t),

(4) λ∗(t) = arg minλ∈Λ
∑
i∈S λiHi(x∗,−R

−1
i BTi p

∗, p∗)
with Hi(x, ui, p) = pT (Aix + Biui) + 1

2 (xTQix +
uTi Riui)

Assuming known the value function denoted by V ∗(x),
one can write from an initial condition x0, for any T > 0,

V ∗(x0) = min
σ

1
2

∫ T

0
xTQσ(t)x+ uTσ(t)Rσ(t)uσ(t)dt

+ V ∗(x(T )) .

The transversality condition of PMP implies that , at
time T , p∗(T ) = ∂V ∗(x(T ))

∂x (if exists). Now, assuming
that V ∗(x(T )) is approximated by Vm(x(T )), an approx-
imation of p∗(T ) is given by p∗(x(T )) ≈ Pλx(T ) with
λ ∈ `(x). Thus, it is easy to check, using Pλx(T ) in-
stead of p∗(x(T )), that the minimization of the Hamil-
tonian at time T (see item (3) and (4) in Theorem 2)
leads to the provided feedback law defined in Theorem 1.
As the problem is homogenous and if the approxima-
tion is “good”, one can infer that p∗(x) ≈ Pλ(x)x with
λ(x) ∈ `(x) for every x. Roughly speaking, the state
feedback switching law matches the optimal one when
Pλ(x)x is a good approximation of p∗. This is shown
throughout an illustrative example at the end of the pa-
per.

The main result in [21], is the design of a sub-optimal
feedback law which exponentially stabilizes system (1a);
the mode and the gain matrix are chosen in order to min-
imize the derivative of a Lyapunov function along the
trajectories of the system. In [21], the state x is assumed
to be perfectly known and the feedback depends on x. In
this paper, our aim is to prove that the same goal can be
reached through an output feedback law; that is to say,
we assume that the state is only partially measured (cf.
Eq. (1b)) and we want to design a feedback law in the
same spirit as in [21] but which depends only on the ob-
servation y. To this end, as explained hereafter, we have
to design an auxiliary dynamical system in order to get
an estimate of the state of the switched system. In the
sequel, we denote by u the s-tuple u = (u1, u2, · · · , us)
and we add the following notations to the ones intro-
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duced after the statement of Problem 2:

C(λ) =
[
λ1C

T
1 | λ2C

T
2 , | · · · | λsCT

s

]T
S(λ) =

∑
i∈S

λiSi, T = diag(T1, T2, · · · , Ts) .

3 Lyapunov based output switching law

We consider the following system constituted by two
coupled Riccati equations:

A(λ)T
Pλ + PλA(λ)

− Pλ
( s∑
i=1

λiBiR
−1
i Bi

T)Pλ +Q(λ) = 0

A(λ)Πλ + ΠλA(λ)T

−Πλ

( s∑
i=1

λi C
T
i T
−1
i Ci

)
Πλ + S(λ) = 0 .

(5a)

(5b)

Notice that the matrices
∑s
i=1 λiBiR

−1
i Bi

T and∑s
i=1 λi C

T
i T
−1
i Ci can be put under the form BλR

−1BT
λ

and CT
λ T
−1Cλ respectively by letting

Bλ = [
√
λ1B1,

√
λ2B2, · · · ,

√
λsBs] ,

Cλ =
[√

λ1C
T
1 |
√
λ2C

T
2 | · · · |

√
λsC

T
s

]T
R = diag(R1, . . . , Rs), T = diag(T1, . . . , Ts)

Now, using the Hautus test, it is quite obvious that the
pair (A(λ),Bλ) is stabilizable (resp. controllable) if and
only if the pair (A(λ), B(λ)) is stabilizable (resp. con-
trollable); an analogous result concerning the detectabil-
ity (resp. the observability) of the pair (A,Cλ) is true. If
there exists λ0 ∈ Λ such that the pair (A(λ0), B(λ0)) is
controllable and the pair (A(λ0), C(λ0)) is observable,
the same is true if λ belongs to a sufficiently small neigh-
borhood of λ0 and so, in this case, the Riccati equa-
tions (5) admit a unique (positive definite) pair of solu-
tions (Pλ,Πλ) for every λ in some neighborhood of λ0.
Moreover, it is well known that the positive definite so-
lution of a Riccati equation depends continuously on the
parameters of the equation [16] and so Pλ and Πλ are
continuous functions of λ. Notice also that the condition
for the existence of a symmetric nonnegative solution
of the Riccati equations (5) can be weakened: in [15],
V. Kučera proved that if the pair (A(λ),Bλ) is stabiliz-
able and if the matrix

M =

 A(λ) −BλR−1BT
λ

−Q(λ) −A(λ)T



has no purely imaginary eigenvalues, then there exists a
symmetric nonnegative solution to equation (5a). This
result allow us to prove the following lemma about sys-
tem (5).

Lemma 1 If the pair (A(λ), B(λ)) is stabilizable, the
pair (A(λ), C(λ)) is detectable, and Q(λ) and S(λ) are
positive definite, then there exists a unique pair of positive
definite solutions to system (5).

PROOF. We prove only the existence of a positive def-
inite solution to equation (5a), the existence of a posi-
tive definite solution to (5b) being similar. We denote by
M1,2 the matrix BλR

−1BT
λ and we take x = (xT

1 , x
T
2 )T

a vector of C2n such thatMx = iαx (with α ∈ R); we
shall see that x = 0. We have

A(λ)x1 −M1,2 x2 = iα x1 (6)
−Q(λ)x1 −A(λ)T

x2 = iα x2 . (7)

Multiplying on the left the members of equation (6)
(resp. equation (7)) by x∗2 (resp. by x∗1), (the star denot-
ing the conjugate transpose), we get

x∗2A(λ)x1 − x∗2M1,2 x2 = iα x∗2x1 (8)
−x∗1Q(λ)x1 − x∗1A(λ)T

x2 = iα x∗1x2 . (9)

Now we add the complex conjugate of the members of
equation (8) to the corresponding members of equa-
tion (9), taking into account that all the matrices in-
volved in these equations are with real coefficients, we
get

−x∗1Q(λ)x1 − x∗2M1,2 x2 = 0.
If x1 6= 0, as Q(λ) is positive definite, this last equality
implies x∗2M1,2 x2 < 0, but this inequality cannot occur
becauseM1,2 is nonnegative, so we must have x1 = 0;
reporting this equality in (6) and (7), we getM1,2 x2 = 0
and A(λ)T

x2 = −iα x2, which in turn implies

A(λ)T
x2 = −iα x2 and BT

λx2 = 0 (10)

because R is positive definite. As the pair (A(λ), B(λ))
is stabilizable, so is the pair (A(λ),Bλ), therefore the
pair (A(λ)T

,BT
λ ) is detectable. From this property and

equalities (10), it follows that x2 = 0 by application of
the Hautus lemma.

By application of the above-mentioned result from
Kučera, we deduce that there exists a symmetric non-
negative solution Pλ to equation (5a). Now this solution
is necessarily definite; assume indeed that v is a vector
of Rn such that Pλv = 0, left-multiply both sides of (5a)
by vT and right-multiply by v, we get vTQ(λ)v = 0
which implies v = 0 since Q(λ) is positive definite. 2
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We modify slightly the definition of the set Λ+; from
now on Λ+ will denote the set of λ ∈ Λ such the pair
(A(λ), B(λ)) is stabilizable, the pair (A(λ), C(λ)) is de-
tectable and the eigenvalues of Pλ and Πλ are less than
νmax, an arbitrary large number. This set Λ+ satisfies
the following property.

Lemma 2 The matrices Qi and Si being positive
definite, if there exists λ0 ∈ Λ such that the pair
(A(λ0), B(λ0)) is controllable and the pair (A(λ0), C(λ0))
is observable, then, for every νmax large enough, set Λ+

is compact and its interior is not empty in Λ. Moreover,
there exist positive real numbers αm and αM defined as

αm = min
λ∈Λ+

min
(
spec(Pλ) ∪ spec(Πλ)

)
,

αM = max
λ∈Λ+

max
(
spec(Pλ) ∪ spec(Πλ)

)
.

Here spec denotes the spectrum of a matrix.

PROOF. As noticed above, we can find a compact
neighborhood U of λ0 such that the Riccati equation (5)
admits positive definite pair of solutions (Pλ,Πλ) for ev-
ery λ ∈ U . The mapping λ 7→ (Pλ,Πλ) being continuous
and U being compact, we have supλ∈U max

(
spec(Pλ) ∪

spec(Πλ)
)
<∞; this implies that, if νmax is chosen large

enough, the interior of Λ+ is non empty.

Notice that the hypothesis of the lemma imply obvi-
ously that Q(λ) and S(λ) are positive definite for ev-
ery λ ∈ Λ. Now, set Λ+ is included in Λ, therefore it is
bounded; we shall show that it is also closed. Assume
that there exists a sequence (λk)k≥1 ∈ Λ+ such that
limk→∞ λk = λ̃; as Λ is a closed set, λ̃ ∈ Λ. Moreover,
the sequence

(
(Pλk ,Πλk)

)
k≥1 is bounded, so we can as-

sume that it converges to a pair of symmetric matrices
(P̃ , Π̃). As a limit of a sequence of pairs of positive defi-
nite matrices, P̃ and Π̃ are positive (semi) definite; more-
over, for continuity reasons, they are solutions of (5)
with λ = λ̃. We claim first that P̃ is definite, assume in-
deed that v is a vector such that P̃ v = 0, left-multiply
both sides of (5a) by vT and right-multiply by v, we get
vTQ(λ̃)v = 0 which implies v = 0 since Q(λ̃) is positive
definite. Moreover the pair

(
A(λ̃), B(λ̃)

)
is stabilizable,

to see this let µ ∈ C be an eigenvalue of A(λ̃)T such that
<(µ) ≥ 0 (<(·) stands for the real part) and let v ∈ Cn

be a vector such that A(λ̃)T
v = µ v and BT(λ̃)v = 0

(which implies that λiBT
i v = 0 for i = 1, . . . , s), we shall

see that v = 0, which implies that the rank of the ma-
trix (A(λ̃)− µ Id, B(λ̃))T is equal to n for every µ in
the closed right half plane and so the result will follow
from the Hautus lemma. Matrix P̃ being definite, there
exists x ∈ Cn such that P̃ x = v. Left-multiply both
sides of (5a) by x∗ and right-multiply by x, taking into

account the above equalities, we get

µx∗v + µ̄ v∗x+ x∗Q(λ̃)x = 0.

If x 6= 0, as the matrix Q(λ̃) is definite positive, this
equality implies that <(µx∗v) < 0 but x∗v = x∗P̃ x and
so x∗v > 0 because P̃ is positive definite. Thus we must
have <(µ) < 0, which is a contradiction. So, we have
x = 0, which implies that v = 0. Similar arguments show
that Π̃ is positive definite and that the pair

(
A(λ̃), C(λ̃)

)
is detectable.

Finally, the existence of αm and αM follows from the
compactness of Λ+ and the continuity of the mapping
λ 7→ (Pλ,Πλ). 2

We shall now re-write equations (5); to this end we intro-
duce the following notations: we denote by AK(λ) and
AL(λ) the matrices defined as:

AK(λ) ,
∑
i∈S

λiAKi,λ , AL(λ) ,
∑
i∈S

λiALi,λ

where

AKi,λ , Ai −BiKi,λ ALi,λ , Ai − Li,λCi (11)
Ki,λ , R−1

i BTi Pλ Li,λ , ΠλC
T
i T
−1
i (12)

and by M(λ) and N(λ) the matrices

M(λ) ,
∑
i∈S

λiMi,λ N(λ) ,
∑
i∈S

λiNi,λ

Mi,λ , Qi +KT
i,λRiKi,λ Ni,λ , Si + Li,λTiL

T
i,λ

The Riccati equations (5) can then be rewritten as :{
AK(λ)T

Pλ + PλAK(λ) +M(λ) = 0
AL(λ)Πλ + ΠλAL(λ)T +N(λ) = 0 .

(13a)
(13b)

Lemma 3 Let q be a positive number, for every
(z, E, λ) ∈ Rn ×Rn×n × Λ+, we have

min
i∈S

(
2zTAT

Ki,λ
Pλz + zTMi,λz

+ qTr(2ETAT
Li,λ

Π−1
λ E + ETΠ−1

λ Ni,λΠ−1
λ E)

)
≤ 0.

here Tr denotes the trace of a matrix.

PROOF. Take (z, E) ∈ Rn ×Rn×n and λ ∈ Λ+, then
equation (13) admits a pair of positive definite matrices
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as (unique) solution; notice that equation (13b) can be
rewritten as

Π−1
λ AL(λ) +AL(λ)TΠ−1

λ + Π−1
λ N(λ)Π−1

λ = 0. (14)

Multiply both sides of equation (13a) by zT on the left
and by z on the right.Multiply also both sides of equa-
tion (14) by ET on the left and by E on the right, and
take the trace of the obtained expression. By adding the
two obtained equalities and letting

Ri = λi

(
2zTAT

Ki,λ
Pλz + zTMi,λz

+qTr(2ETAT
Li,xl

Π−1
λ E + ETΠ−1

λ Ni,λΠ−1
λ E)

)
we clearly get:

s∑
i=1

λiRi = 0 (15)

so we cannot have λiRi > 0 for every i ∈ S because in
this case the left-hand member of equality (15) would be
positive. Thus, for every triple (z, E, λ), there exists an
index i such that Ri ≤ 0 , which implies the inequality
of the lemma. 2

3.1 A Lyapunov function

Hereafter, we denote by ‖ · ‖ the usual euclidean norm
on Rn and we use the same notation to denote the in-
duced matricial norm on Rn×n. On Rn×n we consider
also the norm Nλ defined, for λ ∈ Λ+, as Nλ(M) =
(Tr(MTΠ−1

λ M))1/2 where Πλ is the solution of (13b).
Using that the matrix Π−1

λ is diagonalizable, a direct
calculation shows that

ρm(Π−1
λ )1/2‖M‖ ≤ Nλ(M) ≤ n1/2ρM (Π−1

λ )1/2‖M‖
(16)

for every matrixM ∈ Rn×n, here ρm (resp. ρM ) denotes
the least eigenvalue (resp. the greatest eigenvalue) of a
matrix. Choose q > 0, and let us now introduce the
following function defined on Rn ×Rn×n:

Wm(z, E) , inf
λ∈Λ+

(
zTPλz + qTr(ETΠ−1

λ E)
)

(17)

where (Pλ,Πλ) denotes the solution of equation (13).
Clearly, as Pλ and Πλ are positive definite when λ be-
longs to Λ+ and as the set {(Pλ,Πλ) | λ ∈ Λ+} is com-
pact,Wm is a positive definite function; notice also that
Wm is homogeneous of degree 2 and, as we shall see, lo-
cally lipschitzian.

Proposition 4 FunctionWm defined by relation (17) is
locally lipschitzian.

PROOF. We have zTPλz ≤ αM‖z‖2 for every (z, λ) ∈
Rn × Λ+. So, if we take z1 and z2 in the ball B(0, R),
we obtain easily that, for every λ ∈ Λ+,

|zT
1 Pλz1 − zT

2 Pλz2| = |(z1 − z2)T
Pλ(z1 + z2)|
≤ K1 ‖z1 − z2‖

where K1 = 2αMR. On the other hand, if the matrices
E1 and E2 are in the ball B(0, R), we have∣∣Tr(ET

1 Π−1
λ E1)−Tr(ET

2 Π−1
λ E2)

∣∣
=
∣∣∣Tr((E1 − E2)TΠ−1

λ (E1 + E2))
∣∣∣

≤ K2‖E1 − E2‖

where K2 = 2nα−1
m R. Thus, the family of functions

(wλ)λ∈Λ+ defined by

wλ(z, E) = zTPλz + qTr(ETΠ−1
λ E)

is uniformly (with respect to λ) locally liptchitzian with
a Lipschitz constant equals to K , max(K1,K2) on the
ball B(0, R).

Now, as the function wλ is continuous and set Λ+ is
compact, there exists a pair (λ1, λ2) ∈ (Λ+)2 such that:

Wm(z1, E1) = wλ1(z1, E1) Wm(z2, E2) = wλ2(z2, E2).

From the definition of Wm, we deduce easily that

wλ1(z1, E1) = Wm(z1, E1) ≤ wλ2(z1, E1)
wλ1(z2, E2) ≥Wm(z2, E2) = wλ2(z2, E2)

therefore, by continuity, there exists (z, E) on the
line segment [(z1, E1) (z2, E2)] such that wλ1(z, E) =
wλ2(z, E) and it follows:

|Wm(z1, E1)−Wm(z2, E2)|
≤ |wλ1(z1, E1)− wλ1(z, E)|

+ |wλ2(z, E)− wλ2(z2, E2)|
≤ K(‖z1 − z‖+ ‖E1 − E‖)

+K(‖z − z2‖+ ‖E − E2‖)
= K(‖z1 − z2‖+ ‖E1 − E2‖).

Finally we have zTPλz ≥ ρm(Pλ)‖z‖2 andTr(ETΠ−1
λ E) ≥

ρm(Π−1
λ )‖E‖2 (cf. (16)) and so

Wm(z, E) ≥ K ′(‖z‖2 + ‖E‖2)

where K ′ = min(αm, 1/αM ). As, moreover, Wm is con-
tinuous, it is proper. 2
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The derivative of Wm As for function Vm, the con-
ditions of application of Th. 6.1 in [10] are clearly met,
so the differential ofWm (in the sense of [10]) exists and
we have

W ′m(z, E; d, F ) = inf
λ∈`(z,E)

w′λ(z, E; d, F ). (18)

Here `(z, E) denotes the set of λ ∈ Λ+ such that
Wm(z, E) = wλ(z, E) (this set is clearly nonempty
and compact because Λ+ is compact and the func-
tion λ 7→ wλ(z, E) is continuous). As the function
(z, E) 7→ wλ(z, E) is smooth, from (18) and from the
expression of the derivative of wλ, we infer that

W ′m(z, E; d, F ) = 2 inf
λ∈`(z,E)

(dTPλz + qTr(FTΠ−1
λ E)) .

(19)

3.1.1 Output stabilization

In the sequel, we shall consider mappings from Rn ×
Rn×n to S×Λ+ of the form (x̂, E) 7→ (i(x̂, E), λ(x̂, E))
such that λ(x̂, E) ∈ `(x̂, E). To such a mapping, we
relate the following feedback law for system (1a): the
mode σ(t) is equal to i(x̂(t), E(t)) for every t ≥ 0 and
uσ(t) is equal to −Ki(x̂,E),λ(x̂,E) x̂.

We consider now the following system:
˙̂x = Aσ(t)x̂−BKσ(t),λ(t)x̂

− Lσ(t),λ(t)(Cσ(t) x̂− y)
ẋ = Aσ(t)x−BKσ(t),λ(t)x̂ ,

(20)

the matricesKσ,λ and Lσ,λ being defined as in (12). The
question is: is it possible to find a law (σ, λ) in such a way
that system (20) is globally asymptotically stable about
the origin? We shall see that, indeed such a law exists,
moreover this law will be a feedback which depends on
x̂ and some matrix to be defined later. Introducing the
estimation error e , x̂−x, system (20) can be re-written
as {

˙̂x = AKσ(t),λ(t) x̂− Lσ(t),λ(t)Cσ(t)e

ė = ALσ(t),λ(t)e

(21a)
(21b)

Now, we are faced to the following problem. In order
to choose the mode i and the parameter λ which deter-
mines the gain matrices Ki,λ and Li,λ at every time t,
we cannot proceed as in the case where the whole state
is measurable, that is to say we cannot choose the pair
(i, λ) as in Theorem 1 because we do not have access to
all the components of e. To overcome this difficulty, the
trick consists in considering a slightly different system

than (21):

{ ˙̂x = AKσ(t),λ(t) x̂− Lσ(t)(λ)Cσ(t)e

Ė = ALσ(t),λ(t)E, E(0) = Id .

(22a)
(22b)

where E evolves in Rn×n; notice that e(t) = E(t)e(0);
here Id stands for the n-dimensional identity matrix.

Theorem 3 Recall that the matrices Qi as well as the
matrices Si are assumed to be positive definite. We as-
sume that there exists at least one s-tuple λ0 ∈ Λ such
that the pair (A(λ0), B(λ0)) is controllable and the pair
(A(λ0), C(λ0)) is observable and we consider the sub-
set Λ+ of Λ as defined in Lemma 2. For every (x̂, E) ∈
Rn ×Rn×n, we choose

(i(x̂, E), λ(x̂, E)) ∈ arg min
(i,λ)∈S×`(x̂,E)

(
2x̂TAT

Ki,λ
Pλx̂

+x̂TMi,λx̂+qTr(2ETAT
Li,λ

Π−1
λ E+ETΠ−1

λ Ni,λΠ−1
λ E)

)
.

Then the feedback related to (i(x̂, E), λ(x̂, E)) stabilizes
system (22) locally exponentially provided that the norm
of e(0) is less than some constant η(q); this constant tends
to infinity as q tends to infinity.

Remark 5 From a practical point of view, Th. 3 remains
valid if the feedback switching law is simplified as follows:
for a given pair (x̂, E), choose λ(x̂, E) in `(x̂, E) and
choose i(x̂, E) as follows

i(x̂, E) ∈ arg min
i∈S

(
2x̂TAT

Ki,λ̂
Pλ̂x̂+ x̂TMi,λ̂x̂

+ qTr(2ETAT
Li,λ̂

Π−1
λ̂
E + ETΠ−1

λ̂
Ni,λ̂Π−1

λ̂
E)
)

where λ̂ , λ(x̂, E).

The consequence of this theorem is that, with this feed-
back law, the state (x̂, e) of system (21) is also (locally)
exponentially stable about the origin, which means that
the system (1a) in closed loop with this feedback law
is exponentially stable about the origin, provided that
x̂(0) is chosen in a ball of radius η(q) centered at x(0).

PROOF. [Proof of Th. 3] We shall compute the deriva-
tive ofWm along the trajectories of system (21) in closed-
loop with the feedback introduced in the theorem. Here-
after, for the sake of readability, we denote by ı̂ and λ̂
the index i(x̂, E) and the parameter λ(x̂, E) respectively.
As in the proof of Th. 1, we can prove that the function
t 7→ Wm(z(t), E(t)) is right differentiable almost every-
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where and we have We have

Ẇm(z(t), E(t)) = (Wm)′(x̂, E;AKı̂,λ̂ x̂, ALı̂,λ̂E)
= 2 min

λ∈`(x̂,E)

(
x̂TAT

Kı̂,λ̂
Pλx̂− eTCT

ı̂ L
T
ı̂,λ̂
Pλx̂

+ qTr(ETAT
Lı̂,λ̂

Π−1
λ E)

)
from (19)

≤ 2
(
x̂TAT

Kı̂,λ̂
Pλ̂x̂− e

TCT
ı̂ L

T
ı̂,λ̂
Pλ̂x̂

+ qTr(ETAT
Lı̂,λ̂

Π−1
λ̂
E)
)

(23)

Now, from the definition of the pair (i(x̂, E), λ(x̂, E))
and by applying Lemma 3, we see that the right-hand
member in (23) is no greater than

−x̂TMT
ı̂,λ̂
x̂− qTr(ETΠ−1

λ̂
Nı̂,λ̂ Π−1

λ̂
E)− 2eTCT

ı̂ L
T
ı̂,λ̂
Pλ̂x̂ ,

clearly we have Mı̂λ̂ ≤ Qı̂ and Nı̂λ̂ ≤ Sı̂, so from (23),
we get

Ẇm(z(t), E(t)) ≤ −x̂TQT
ı̂ x̂− qTr(ETΠ−1

λ̂
Sı̂ Π−1

λ̂
E)

− 2eTCT
ı̂ L

T
ı̂,λ̂
Pλ̂x̂ (24)

In this inequality the first two terms between the paren-
thesis are clearly positive; from the assumptions of the
theorem, Qı̂ is positive definite and this is also the case
for the matrix ETΠ−1

λ̂
Sı̂ Π−1

λ̂
E (because E is an invert-

ible matrix) and so its trace is positive. We shall find an
upper bound for the third term.

Hereafter, we introduce a family of norms on Rn×n in-
dexed by (i, λ) ∈ S× Λ+, they are defined as follows:

Ni,λ(M) =
(

Tr(MTΠ−1
λ Si Π−1

λ M)
)1/2

, M ∈ Rn×n

Ni,λ is clearly a norm defined on Rn×n because the ma-
trix Π−1

λ Si Π−1
λ is positive definite. Now (i, λ) belongs

to the set S × Λ+, which is compact, and the mapping
λ 7→ Π−1

λ is continuous, therefore the minimum

ηm = min{Ni,λ(E) | (i, λ) ∈ S× Λ+ and ‖E‖ = 1 }

is positive. We have

|eTCT
ı̂ L

T
ı̂,λ̂
Pλ̂x̂| ≤ β1 ‖e‖‖x̂‖ ≤ β1‖e(0)‖ ‖E‖‖x̂‖ (25)

where β1 is an upper bound for the norms of the matri-
ces CT

i L
T
i,λPλ when (i, λ) ∈ S × Λ+. From the norms

equivalence, we know that there exists ki,λ such that

‖E‖ ≤ kı̂,λ̂Nı̂,λ̂(E)

the constant kı̂,λ̂ can be taken equal to

1
kı̂,λ̂

= min
‖F‖=1

Nı̂,λ̂(F ) ; (26)

obviously we have ηm ≤ 1/kı̂,λ̂, and so

‖E‖ ≤ 1
ηm
Nı̂,λ̂(E) . (27)

On the other hand, there exists η′ such that

‖x̂‖ ≤ η′
(
x̂TQix̂

)1/2 (28)

for every i ∈ S. So, substituting the inequalities (27)
and (28) in (25), we get

|eTCT
ı̂ L

T
ı̂,λ̂
Pλ̂ x̂| ≤ β2‖e(0)‖

(
x̂TQı̂x̂

)1/2Nı̂,λ̂(E) (29)

where β2 = β1η
′/ηm.

Finally, reporting inequality (29) in (28), we obtain

Ẇm(x(t)) ≤

−x̂TQı̂x̂+2β2‖e(0)‖
(
x̂TQı̂x̂

)1/2Nı̂,λ̂(E)−qNı̂,λ̂(E)2
.

Clearly, the expression in the right-hand member of this

inequality is negative as soon as ‖e(0)‖ < η(q) ,
√
q

β2
.

To be more precise, if this inequality is satisfied, this
right-hand member can be made less than a negative
definite quadratic function of (x̂, E), which implies the
exponential stability of system (22). 2

3.2 Perturbation analysis

What happens in case of perturbation? Assume that this
perturbation has the effect of re-initializing the state x
at some time tk. So at this time tk, we have x(tk) =
x(t−k ) + δk, what is the consequence for the derivative of
Wm? In inequality (24), we have to take into account this
term δk, so, denoting by ρ(t), the right-hand member of
this inequality, we have:

ρ(t+k ) = ρ(tk)− 2 δT
k C

T
ı̂ L

T
ı̂,λ̂
Pλ̂ x̂(tk) ,

here ρ(t+k ) = limh↑0(ρ(tk+h). The term δT
k C

T
ı̂ L

T
ı̂,λ̂
Pλ̂ x̂(tk)

is of degree one with respect to the pair (x̂, E), and so
when (x̂, E) is small, it can be predominant so as ρ(t)
could become positive for some t > tk.

We shall see how to modify the design of our observer in
order to take into account the possible perturbations on
the state x and the observation y. We begin by noticing
that the term eTCT

ı̂ L
T
ı̂,λ̂
Pλ̂x̂ in inequality (24) can be

upper bounded as follows:

eTCT
ı̂ L

T
ı̂,λ̂
Pλ̂x̂ ≤ β3‖Cı̂ e‖ ‖x̂‖
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where β3 is an upper bound for the norms of the set of
matrices {PλLi,λ | (i, λ) ∈ S× Λ+ }. So the expression
in the right-hand member of (24) is negative as soon as

‖Cı̂e‖ <
√
q

β3 η′
Ni,λ(E) (30)

(recall that η′ is a constant defined by inequality (28)).

The equations of the observer (22) are then modified as
follows: equation (22a) is retained but equation (22b) is
replaced by

Ė(t) = Ġ

G
E +ALσ(t),λE , E(0) = Id (31)

(recall that Id denotes the identity matrix), where the
gain G is subject to the following differential equation

Ġ = −(1−µ(t))s1(G−1)+µ(t)s2G, G(0) = 1 . (32)

Here s1 and s2 are constant positive parameters and µ
is a continuous function defined as

µ(t) =


0 if ‖Cı̂ e(t)‖ ≤ κ1Nı̂,λ̂(E)
∈ (0, 1) if κ1Nı̂,λ̂(E) < ‖Cı̂ e(t)‖ < κ2Nı̂,λ̂(E)
1 if ‖Cı̂ e(t)‖ > κ2Nı̂,λ̂(E) .

The constants κ1 and κ2 are to be chosen in relation
with inequality (30), for instance, we can take

κ1 =
√
q

2β3 η′
, κ2 =

√
q

β3 η′
.

Notice first that we have E(t) = G(t)E(t) (E(t) being
the solution of (22b)) and so e(t) = G(t)−1E(t)e(0).
Notice also that G is the solution to a linear differential
equation, so G is defined for every time t ≥ 0; next,
some elementary calculation shows the following explicit
formula for G(t):

G(t) = 1 + ea(t)
∫ t

0
b(s)e−a(s)ds

where

a(t) =
∫ t

0
(s2µ(s)− s1(1− µ(s)))ds , b(t) = s2µ(t) .

From this formula and as µ(t) ∈ [0, 1] for every t ≥ 0,
we can see that G(t) ≥ 1 for every t ≥ 0. Moreover,
some elementary manipulation shows that if µ(t) ≡ 0
for t ∈ [t0, T ), we have G(t) = e−s1(t−t0)(G(t0)− 1) + 1;
on the other hand, if µ ≡ 1 on [t0, T ), then G(t) =
es2(t−t0)G(t0). So if T = +∞ and µ ≡ 0 (resp. µ ≡ 1)

on [t0,+∞), the gain G tends to 1 (resp. tends to +∞)
as t tends to infinity.

We shall use the same Lyapunov function as in the pre-
vious section but it depends now on x̂ and E :

Wm(x̂, E) = inf
λ∈Λ+

(
x̂TPλx̂+ qTr(ETΠ−1

λ E)
)
.

When differentiating Wm along the trajectories of the
system constituted by the equations (22a) and (31), we
have to take into account the term which contains Ġ/G
in (31), so inequality (24) is changed into

Ẇm(x̂(t), E(t)) ≤

−
(
x̂TQT

ı̂ x̂+ q
(
Tr(ETΠ−1

λ̂
Sı̂ Π−1

λ̂
E) + 2 Ġ

G
Tr(ETΠ−1

λ̂
E)
)

− 2eTCT
ı̂ L

T
ı̂,λ̂
Pλ̂x̂

)
. (33)

In this inequality, denote by N ′λ the matricial norm de-
fined as N ′λ(M) = (Tr(MTΠ−1

λ M))1/2. Let li,λ > 0 be
such that Ni,λ(M) ≥ li,λN ′λ(M) for every matrix M ,
then in the expression between parenthesis in the right-
hand member of inequality (33), we have

Nı̂,λ̂(E) + 2 Ġ
G
N ′
λ̂
(E) ≥ 1

2Nı̂,λ̂(E)

provided that
Ġ

G
≥ −1

4 lı̂,λ̂ . (34)

Now, as µ(t), G(t) ≥ 0, from (32), we have

Ġ

G
≥ −s1

G− 1
G

≥ −s1

and so inequality (34) is true provided that s1 is chosen
as

s1 ≤
li,λ
4 for every (i, λ) ∈ S× Λ+;

as the set ∈ S×Λ+ is compact, the infimum of the li,λ’s
is positive and one can find s1 > 0 such that the above
inequality is satisfied. Parameter s1 being so chosen, the
treatment of inequality (33) is then almost the same
that the one of inequality (23). The only change comes
from the fact that e(t) is now equal to G(t)−1E(t)e(0),
but as G(t) ≥ 1 for every t ≥ 0, we have ‖e(t)‖ ≤
‖E(t)‖ ‖e(0)‖; using the same arguments as in the proof
of Theorem 3, we can prove that the derivative ofWm is
negative definite provided that e(0) is chosen less than√
q

β2
. So, we proved the following theorem:

Theorem 4 We make the same assumptions as in The-
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orem 3. For every (x̂, E) ∈ Rn ×Rn×n, we choose

(i(x̂, E), λ(x̂, E)) ∈ arg min
(i,λ)∈S×`(x̂,E)

(
2x̂TAT

Ki,λ
Pλx̂

+x̂TMi,λx̂+qTr(2ETAT
Li,λ

Π−1
λ E+ETΠ−1

λ Ni,λΠ−1
λ E)

)
.

Then the feedback related to (i(x̂, E), λ(x̂, E)) stabilizes
the system made up of (22a) and (31) locally exponen-
tially provided that the norm of e(0) is less than some
constant η(q/2); this constant tends to infinity as q tends
to infinity.

Remark 6 For the tuning of the gainG(t), we could use
as in [4] the innovation which is defined as follows

Id(t) =
∫ t

t−d
‖y(τ)− ŷ(τ)‖2dτ ,

where ŷ denotes the output of the observer: ŷ(τ) =
Cσ(τ)x̂(τ). Then, the definition of µ becomes

µ(t) =


0 if Id(t) ≤ κ1Nı̂,λ̂(E)
∈ (0, 1) if κ1Nı̂,λ̂(E) < Id(t) < κ2Nı̂,λ̂(E)
1 if Id(t) > κ2Nı̂,λ̂(E) .

3.2.1 Analysis of the robustness

We shall show now that the new system is robust with re-
spect to some perturbation. Assume that at time t0, sys-
tem (1a) is perturbed for a brief moment, this amounts
to a re-initialization of x(t) (and so of e(t) at t = t0),
thus we have e(t+0 ) = e(t0) +p where p demotes the per-
turbation. Take a time t > 0, we have

e(t+ t0) = E(t+ t0)E(t0)−1(e(t0) + p)
= E(t+ t0)e(0) + E(t+ t0)E(t0)−1p

= 1
G(t+ t0)E(t+ t0)(e(0) +G(t0)E(t0)−1p) .

(35)

In equation (32), observe that if µ(t + t0) = 1 for ev-
ery t > 0, then, as noticed above, G(t+ t0) tends to in-
finity. Assume now that we have ‖Cσ(t+t0)e(t + t0)‖ >

κ2Ni,λ(E(t+ t0)) for every t > 0, then we deduce that

κ2Ni,λ(E(t+ t0)) < ‖Cσ(t)e(t+ t0)‖

= 1
G(t+ t0)

∥∥E(t+ t0)
(
e(0)

+G(t0)E(t0)−1p
)∥∥

≤ 1
G(t+ t0) ‖E(t+ t0)‖

·
∥∥e(0) +G(t0)E(t0)−1p

∥∥
≤ ki,λ
G(t+ t0) Ni,λ(E(t+ t0))

·
∥∥e(0) +G(t0)E(t0)−1p

∥∥
this last inequality implies that

κ2 ≤
ki,λ

G(t+ t0)
∥∥e(0) +G(t0)E(t0)−1p

∥∥
which is incompatible with the fact that G(t+ t0) tends
to infinity as t tends to infinity. So there must exist a time
t1 such that ‖Cσ(t1+t0)e(t1 + t0)‖ < κ2Ni,λ(E(t1 + t0)),
and after this time, the derivative ofWm becomes again
negative and the conclusion of Theorem 4 is valid.

In conclusion, our feedback is robust with respect to
perturbations which do not occur too often.

4 Illustrative example

Before presenting an example, it is important to men-
tion that it is not necessary to ensure a stabilizing law
to determine all the possible values of the set Λ+. Only
one value is sufficient to guarantee the stability. So, a
reasonable finite number of values ensures performances.
Practically, a finite number have been used using a dis-
cretization of the set Λ. Note also that for a set of respec-
tively 10, 102, 103, 104 values taken in λ+, the elapsed
time to compute the output feedback in Matlab using a
Mac Book Pro are telapsed = 1.710−4, 2.10−4, 2.510−4,
7.10−4 s.

Consider now a two mode switched system defined by:

(A1, B1, C1) =
(

1 0
1 −1

)
,

(
0
1

)
,
(

0 1
)

(A2, B2, C2) =
(
−2 1
0 1

)
,

(
1
0

)
,
(

1 0
)

Clearly each subsystem is not stabilizable and not de-
tectable. However, in a switched framework, choosing as
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design parameters Q1 = Q2 = Id, R1 = 2, R2 = 1,

S1 =
(

10 0
0 1

)
, S2 =

(
1 0
0 10

)
, T1 = T2 = 0.01, the set

Λ+ is non empty and the dynamic output feedback law
can be applied.

In order to make some comparisons, Figure 1 shows the
state space trajectories from different initial states taken
on a ball of radius 5 and applying three types of controls:

• The open loop optimal solutions of the LQ problem
(red) computed numerically [20];
• The dynamic state feedback law of the LQ problem
(see Theorem 1) when full state measurement is avail-
able (green);
• The dynamic output feedback law (see Theorem 4) of
the LQG problem when the state is partially measure
through y = Cσx .

The chosen parameters for the adaptive observer are:

q = 3, s1 = 1, s2 = 100

µ(t) =


0 if Id(t) ≤ 0.1×N ′λ(E)
∈ (0, 1) if 0.1×N ′λ(E) < Id(t) < N ′λ(E)
1 if Id(t) > N ′λ(E) .

−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6
state space

x1

x 2

Figure 1. State space trajectories: (red) optimal solution;
(green) dynamic state feedback ; (blue) dynamic output feed-
back (‖e0‖ = 0)

We can see that the first two type of trajectories match
well together (red and green lines). For the last one, we
have deliberately set the initial estimated error to zero
and E(0) = Id, then we can observe that the obtained
trajectories are not so far from the optimal. Clearly a

0 0.5 1 1.5 2 2.5 3
5

10

15

20

25

30

35
Costs

e

Figure 2. Cost comparison: (red circle) optimal, (blue dia-
mond ) dynamic output feedback, (green star) dynamic out-
put feedback, (green square) Lyapunov function 1/2Vm

tradeoff is made between estimation and control as it is
implied by the design of Lyapunov function Wm.

Figure 2 shows the optimal cost, the costs associated
respectively to the dynamic state and output feedback
law, and the Lyapunov function Vm of section 2, the x-
axis represents the polar angle θ of initial states. It can be
observed that the costs associated to the state (output)
feedback laws are very close to the cost of the optimal
numerical solution. Of course, the essential difference is
that the numerical solution is an open loop control. It
is obvious in this case that the Lyapunov function Vm
is really a good approximation of the value function as
invoked in section 2.

0 500 1000 1500 2000 2500
−6

−4

−2

0

2

4

6

0 500 1000 1500 2000 2500
−5

−4

−3

−2

−1

0

1

Figure 3. Estimation errors on the state e = x̂−x in presence
of measurement noise.

Figure 4 shows now the dynamic output feedback law
when the state is partially measure through y = Cσx+v
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Figure 4. State space trajectories: (red) dynamic state feed-
back ; (blue) dynamic output feedback with measurement
noises (‖e0‖ = 5)

where noise v is defined by an uniform law on [−0.1, 0.1].
For this simulation, the chosen initial condition for x̂ is
the origin then the error norm ‖e(0)‖ = 5. The conver-
gence of the estimation error is depicted on Figure 3. As
for a single linear system, the weight matrices can be
used to modify the rate of convergence. On Figure 4, we
can observe in comparison with the trajectories of the
state feedback that the dynamic output feedback is ro-
bust with respect to the measurement noises. In view of
this simulation, it seems that future works might con-
cern a proof for stochastic stability.

5 Application to power converters

A privileged application of switched systems is certainly
the DC-DC converters [7]. Their common aim is to con-
vert a given input voltage to an another output voltage.

These class of systems can be described by switched
affine systems of the form:

ẋ = Aix+Biv

where v is a constant input and i ∈ S.

One way to address the control of these systems is to
take the convex combination of its velocities (see for
instance the remark concerning the density theorem in
section 2). This model is often mentioned as the average
model. Their equilibria are then directly related to the
set: Xref = {x :

∑
i λi(Aix+Biv) = 0, λ ∈ Λ}.

We now show that the proposed design can be adapted
to this class of systems. To illustrate the idea, we take for

example a buck boost converter defined by two modes

(A1, B1, C1) =
(
−R/L 0

0 −1/R0C0

)
,

(
1/L

0

)
,
(

1 0
)

(A2, B2, C2) =
(
−R/L −1/L
1/C0 −1/R0C0

)
,

(
0
0

)
,
(

1 0
)

The state (x1, x2) are respectively the current in the in-
ductor and the output voltage. It is assumed that the
current x1 is measured and constitutes the output y. For
a given equilibrium xref ∈ Xref , consider the follow-
ing augmented systems obtained by introducing an ad-
ditional variable x3 =

∫
(x1−x1ref )dt and an additional

control input:

ẋ = Aix+Biv +Biui (36)
ẋ3 = x1 − x1ref (37)

The rule of the integrator is to ensure a zero steady
state error on the controlled variable x1. This is directly
inspired from the LQI design problem which extends the
LQ design in the case where the control goal is not the
origin. The observer is then

˙̂x = Aix̂+Biv +Biui − Li(Cix̂− y) (38)
˙̂x3 = x̂1 − x1ref (39)

After the change of variable, xe = (x − xref , x3), the
augmented system is rewritten in the new coordinates
as well as the observer. The control Lyapunov function
is now given by:

Wm(x̂e, E) , inf
λ∈Λ+

(
x̂e

TPλx̂e + qTr(ETΠ−1
λ E)

)
(40)

where x̂e is the estimated value of xe and where E follows
(31). Thus, the feedback law is now depending on (x̂e, E).

Remark 7 Note that the dynamics of xe is determined
by ẋe =

∑
i λi(Aixe + Biui + di) where the terms di =

(Aixref + Biv). Obviously, the di’s can be regarded as
measured perturbations but a perturbation rejection anal-
ysis for the state dynamics in this context has not yet been
performed and is out of the scope of the present paper.
However, one can still guarantee the semi global stability
property of the output feedback if the set Λ+ is restricted
to the singleton {λref} where λref is the convex combina-
tion associated to xref (i.e

∑
i λ

ref
i (Aixref +Biv) = 0).

This is obvious since in this case d =
∑
i λ

ref
i di is zero

and a decreasing descent direction for the control Lya-
punov function xTe Pλrefxe always exists as proved in The-
orem 1. Of course, this restriction is detrimental for the
performances but it makes the algorithm more simple to
apply. In the sequel, we do not make this restriction.
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Figure 5. Startup of the Buck-Boost converter (blue: nu-
merical optimal solution ; green: without active control
(Ri = 108); red: with active control (Ri = 103)): time evo-
lution of the voltage, the current, switching control λ ∈ [0 1]
and of the active control ui in presence of measurement noise

Figure 5 shows the startup from zero initial conditions
of the converter to reach the reference xref = (30, 24).
The control weight matrices are stated respectively to
Ri = 103 for the red line and to Ri = 108 for the
green line. In this latter case, the additional control in-
put is almost identically zero and we retrieve the initial
switched problem without additional input ui. So, in or-
der to make comparisons, we add, in blue, the numeri-
cal optimal solution corresponding to the minimization
of
∫ +∞

0 (x − xref )Qi(x − xref )dt subject to (36) with
ui = 0, ∀t, i = 1, 2. It can be observed when no active
control is used (i.e. Ri = 108) that the result obtained is
really close to the optimal solution (the curves overlap).

When an active control is considered (Ri = 103), a com-
parison with the other cases shows that it may be in-
teresting to add this active control to improve perfor-
mances. Finally, when sliding mode occurs (chattering),
we have computed the equivalent switching control λ1
as shown on Figure(5) (recall that λ2 = 1− λ1).

Figure 6 shows the convergence of the state error esti-
mation from different initial positions taken in the ball
B(xref , ‖xref‖) with x̂(0) = xref , in presence of mea-
surement noise defined by a uniform law on [−1, 1].

Simulation parameters: v = 20, R0 = 2, R = R0/25,
L = 0.5e−3, C = 0.5e−3. Design parameters: Q1 =
Q2 = diag[200 1 0.01], R1 = R2 = 1000, S1 = S2 =
diag[1 100], T1 = T2 = 1, q = 1, s1 = 1, s2 = 100.
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Figure 6. State error vs time in presence of measurement
noise (uniform law on [−1, 1])

Measurement noise : y = Cix + nu where nu follows a
uniform law on [−1, 1].

6 Conclusion

A dynamic output feedback has been proposed for
switched linear systems that uses the LQG design pro-
cedure. The dynamic output feedback can be applied
even if the subsystems are not stabilizable and not de-
tectable. The only condition that is required, is the exis-
tence of at least one controllable and observable convex
combination of the subsystems. It has been shown that
the output regulator makes the stability of the system
semi global with respect to the estimate error and allows
perturbation rejection. Moreover, once the estimation
error has converged, performances are guaranteed by
the sub optimality of the dynamic state feedback pre-
sented in [21]. A proof concerning stochastic stability
remains to produce in presence of noises. Finally, it has
been shown that the design procedure can be applied to
the large class of power converters.
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