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Abstract We revisit the analysis of the classical QuickSelect algorithm.
Usually, the analysis deals with the mean number of key comparisons, but here
we view keys as words produced by a source, and words are compared via their
symbols in lexicographic order. Our probabilistic models belong to a broad cat-
egory of information sources that encompasses memoryless (i.e., independent-
symbols) and Markov sources, as well as many unbounded-correlation sources.
The “realistic” cost of the algorithm is here the total number of symbol com-
parisons performed by the algorithm, and, in this context, the average-case
analysis aims to provide estimates for the mean number of symbol compar-
isons. For the QuickSort algorithm, known average-case complexity results are
of Θpn log nq in the case of key comparisons, and Θpn log2 nq for symbol com-
parisons. For QuickSelect algorithms, and with respect to key comparisons,
the average-case complexity is Θpnq. In this present article, we prove that,
with respect to symbol comparisons, QuickSelect’s average-case complexity
remains Θpnq. In each case, we provide explicit expressions for the dominant
constants, closely related to the probabilistic behaviour of the source.

We began investigating this research topic with Philippe Flajolet, and the
short version of the present paper (the ICALP’2009 paper) was written with
him. As usual, Philippe played a central role, notably on the following points:
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introduction of the QuickVal algorithm, tameness of sources, and use of the
Rice’s method. He also made many experiments exhibiting the asymptotic slope
ρpαq and plotted nice graphs, which are reproduced in this paper. Even though
the extended abstract does not provide any proof of the analysis of the algorithm
QuickQuant, Philippe also devised with us a precise plan for this proof which
has now completely been written. For all these reasons, we could have added
(and certainly would have liked to add) Philippe as a co-author of this paper.
On the other hand, Philippe was extremely exacting of how his papers were
to be written and organised, and we cannot be sure that he would have liked
or validated our editing choices. In the end, this is why we have decided not
to include him as a co-author, but instead, to dedicate, with deference and
affection, this paper to his memory. Thank you, Philippe!

Keywords Probabilistic analysis of algorithms; Sorting and searching
algorithms; Selection problem; Pattern matching; Permutations; Information
theory; Rice’s method; Asymptotic estimates; Quickselect

Mathematics Subject Classification (2000) F2.2: Pattern matching,
sorting and searching – G2.1: Generating functions, permutations – G4:
Algorithm design and analysis – H1.1: Information theory – I1.2: Analysis of
algorithms

Introduction

Every student of a basic algorithms course is taught that, on average, the
complexity of QuickSort is Opn log nq, that of binary search is Oplog nq, and
that of radix-exchange sort is Opn log nq; see for instance [16], [22]. Such state-
ments are based on specific assumptions —that the comparison of data items
(for the first two) and the comparison of symbols (for the third one) have unit
cost— and they have the obvious merit of offering an easy-to-grasp picture of
the complexity landscape. However, as noted by Sedgewick, these simplifying
assumptions suffer from limitations: they do not make possible a precise as-
sessment of the relative merits of algorithms and data structures that resort
to different methods (e.g., comparison-based versus radix-based sorting) in a
way that would satisfy the requirements of either information theory or algo-
rithms engineering. Indeed, computation is not reduced to its simplest terms,
namely, the manipulation of totally elementary symbols, such as bits, bytes,
characters. Furthermore, such simplified analyses say little about a great many
application contexts, in databases or natural language processing, for instance,
where information is highly “non-atomic”, in the sense that it does not plainly
reduce to a single machine word.

First, we observe that, for commonly used data models, the mean costs
Spnq and Kpnq of any algorithm under the symbol comparison and the key
comparison model, respectively, are connected by the universal relation Spnq “
Kpnq ¨ Oplog nq. This results from the fact that at most Oplog nq symbols
suffice, with high probability, to distinguish n keys; cf. the analysis of the



Towards a realistic analysis of QuickSelect 3

height of digital trees, also known as “tries”, in [2]. The surprise is that there
are cases where this upper bound is tight, as in QuickSort; others where both
costs are of the same order, as in QuickSelect. In previous works [26,3], we
have already shown that the expected cost of QuickSort is Θpn log2 nq, not
Θpn log nq, when all elementary operations—symbol comparisons—are taken
into account. By contrast, we prove here that the cost of QuickSelect turns
out to be Θpnq, in both the old and the new world, albeit, of course, with
different implied constants.

Main results. Our main object of study is the QuickSelect algorithm, when
the keys are words that are drawn from a given source S, and we deal with
the mean number of symbol comparisons performed by the algorithm. This
analysis is more realistic than the classical analyses which study the mean
number of keys comparisons in two ways. First it studies a more realistic
cost, that is the number of symbol comparisons instead of the number of key
comparisons. Second it deals with more realistic inputs: words drawn from
a specified source instead of keys. However, we do not claim that this is an
actual realistic analysis: this is just a first step towards such an analysis.

When applied to n keys assumed to be independently drawn from the same
source S, the QuickSelectpm,nq algorithm selects the m-th smallest element.
We shall mostly focus our attention on situations where the rank m is pro-
portional to n, being of the form m “ t1 ` αpn ´ 1qu, for some α P r0, 1s, so
that the algorithm determines the α-th quantile; it will then be denoted by
QuickQuantαpnq. For α “ 0, the rank m equals 1 and this is QuickMinpnq.
For α “ 1, the rank m equals n and this is QuickMaxpnq (both QuickMin

and QuickMax are particular cases of QuickSelect). We also consider the case
where m is randomly chosen in r1 . . ns, and this is QuickRandpnq which is
clearly not a “real” algorithm and is introduced for modelling purposes.

Our main result describes the case of the QuickSelect (or more accurately
QuickQuantα) algorithm with all its variants. We first show in Theorem 1 that,
with respect to the number of symbol comparisons, and provided the source
be tame1, the mean cost of QuickSelect remains of order Θpnq. However,
this cost involves various constants that depend on the source S (and possibly
on the real α); these are precisely described in Theorem 2 and displayed in
Figure 2. Here, for the QuickSelect algorithms, we prove all the results which
were only stated in the extended abstract [26], and we exhibit the probabilistic
features of the source which play a role in the analysis: each algorithm of inter-
est is related to a particular constant depending on the source; this constant
describes the interplay between the algorithm and the source and explains how
the efficiency of the algorithm depends on the source.

General methodology and plan of the paper. Like many studies in ana-
lytic combinatorics, our analysis is divided into two main parts: an algebraic

1 The word “tame” was proposed by Philippe Flajolet and used for the first time in [26].
Later on, most of the papers which deal with probabilistic sources use similar notions and
the word “tame” is now largely used.
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or combinatorial part and an asymptotic and analytic step. In analytic combi-
natorics, the first part computes a mathematical object (most of the times a
generating function) with algebraic and exact tools, and the second part deals
with the generating function as a function of the complex variable, studies
its singularities, and transfers this knowledge about its singularities into an
asymptotic expansion. We adopt and adapt the same philosophy here.

After a description of the main results done in Section 1, we first draw
our general framework in Section 2, and introduce the two main objects: the
algorithm and its inputs. We begin in Section 2.2 by a description of the al-
gorithm QuickSelect and some particular cases of this algorithm, and, inside
the classical model of permutations, we are interested in the analysis of the
mean number of local key comparisons between a pair of keys of given ranks.
Then, in Section 2.3, we model the inputs, and introduce the mechanism which
emits the words (now the inputs of the algorithm). Such a probabilistic mech-
anism, called a source, is described by two generating functions, of Dirichlet
type, which encapsulate the main probabilistic properties of the source. A
source can be parameterized by the unit interval (see Section 2.6). Here, as we
explain in Section 2.7, the source mainly intervenes via its coincidence, which
measures the similarity between a pair of words with given parameters, and
defines fundamental triangles which describe the location of pairs of words
which share a common prefix.

We then perform our analysis, in the sequel of the paper. We compute
in Section 3 the generating function related to our specific problem: this is
the mixed Dirichlet series $psq, which encapsulates both the properties of the
source and the characteristics of the algorithm. In the algebraic part, it yields
the exact value of the mean number of symbol comparisons performed by each
algorithm on words produced by a parameterized source. We then perform a
second part of the analysis where we study the analytic properties of the mixed
Dirichlet series $psq, namely the position and the nature of its singularities,
and transfer this knowledge to obtain the asymptotic mean number of symbol
comparisons. This transfer may be direct as in Section 4, or indirect as in
Section 5.

Section 3 is devoted to the algebraic part of the analysis. We first compute
the density of the algorithm. It uniquely depends on the algorithm and provides
a precise measure of the mean number of key comparisons performed near
specific points. As it is easier to compute this density in the Poisson model,
where the number of keys instead of being fixed follows a Poisson distribution,
this first step provides an expression of the Poissonized density relative to
each algorithm. We use the following chain to get the result: We begin with
the mean number of local key comparisons between two keys, obtained in
Section 2.2. Viewing keys as words, we use the parameterization of sources
described in Section 2.6. Together with basic properties of the Poisson model,
we obtain a precise expression of the density, but not for all the variants of
QuickSelect. This is why we introduce a new algorithm QuickVal, closely
related to QuickQuant, for which it is possible to compute the density.
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Then, the source intervenes via its coincidence and its fundamental trian-
gles. With integrals on such triangles, we obtain an exact expression for the
mean number of symbol comparisons in the Poisson model in Section 3.7. With
an easy transfer from the Poisson model to the Bernoulli model (where the
number n of keys is fixed), we deduce in Section 3.8 an exact expression of the
mean number of symbol comparisons in the Bernoulli model. This expression
is given as a binomial sum which deals with the mixed Dirichlet series, at least
for the algorithms QuickMin, QuickMax and QuickVal. For the QuickQuant

algorithm, there also exists an exact expression, of another type, which involve
integral expressions and notably the density of the Beta distribution.

For the first three algorithms, we carry out in Section 4 the correspond-
ing asymptotic analysis with Rice’s method (described in Section 4.1) which
transforms a binomial sum into an integral in the complex plane. To use this
method, we need the mixed Dirichlet series to be tame. As this series $psq
is related to the generating functions of the source, it is possible to transfer
the tameness of these generating functions to the series $psq. We prove that
convenient tameness of (the generating functions of) the source indeed entails
tameness of the mixed Dirichlet series in Section 4.3. Then applying the Rice’s
method leads to asymptotic estimates for the mean number of symbol compar-
isons of QuickMin, QuickMax, QuickVal; we also directly deduce the analysis
of QuickRand.

The analysis of the QuickQuant algorithm, i.e., the quantile version of
QuickSelect, is performed in an indirect way in Section 5, and uses the close
connection between QuickValα and QuickQuantα. From the analytic point of
view, this translates into an integral form which involves the density of the α-
quantile. We then use Laplace’s method (see Section 5.2) that leads to asymp-
totic estimates for the mean number of symbol comparisons of QuickQuant.

Finally, the last Section 6 is devoted to the precise study of the constants
that are involved in the analysis, and will depend on the pair algorithm/source
considered.

Relation between the four articles on related subjects. Our approach
relies on methods from analytic combinatorics [10], as well as on information
theory. It also relates to earlier analyses of digital trees (“tries”) by Clément,
Flajolet, and Vallée [2,25]. But we now discuss the relation between the present
paper and three other studies on closely related subjects.

There are two extended abstracts: the paper [26], in the proceedings of
ICALP 2009, and the paper [3], in the proceedings of STACS 2013. Then,
there are two long papers which are journal versions of the previous ones: The
paper [4] is the journal version of [3], whereas the present paper can be viewed
as the journal version of [26].

The paper [26] was the first paper devoted to the general subject “analysis
with respect to symbol comparisons”; this short paper just mentioned the
main steps of the methodology: even if the algebraic steps are well described
(as in our Section 3), the analytic steps (as in our Sections 4 and 5) are just
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mentioned. It then focused on the QuickSort and QuickSelect algorithms.
It stated the results which are described here in the introduction, but did not
provide any proofs: the present Section 4.3 is completely new.

The paper [3] was the second paper devoted to the subject, and it per-
formed two tasks: it shows the generality of the method, and designs a quite
general framework for the “analysis with respect to symbol comparisons”. It
provides a precise description of the algebraic steps, and also explains the
analytic steps, with the introduction of the various notions of tameness. The
second aim of [3] was to apply the method to five algorithms: amongst them,
one again finds QuickSort and QuickMin, but also other classical algorithms,
as insertion sort, bubble sort and minimum selection. Again, this is only a
extended abstract in which most proofs are omitted.

The two journal versions provide all the details for the methodology, and
precise analyses for algorithms of interest; each of the two journal versions is
devoted to a class of algorithms. The paper [4] focuses on the three sorting
algorithms QuickSort, InsSort, BubSort, whereas the present paper adapts
the general method to the algorithms of the QuickSelect class, for which it
provides a complete analysis. This analysis is particular and somehow indirect,
as was already announced in [3]: it does not seem possible to directly analyse
QuickSelect, and there is a “detour” via the QuickVal algorithm. Then, in
the long present paper, we explain how to precisely return from QuickVal to
QuickSelect.

Relation with other studies. Here, we restrict ourselves to a precise average-
case analysis of the QuickSelect algorithm (with respect to the number of
symbol comparisons). Other studies, done by the second author with collabo-
rators, focus on distributional analyses in the same framework (see [8,6]).

1 Main results.

1.1 Classical results on the QuickSelect algorithm

We recall classical results on the average-case analysis of the QuickSelect

algorithm. They involve the κ function, defined from the entropy function h,

κpαq “ 2r1` hpαqs, with hpαq “ α |logα|` p1´ αq |logp1´ αq| , (1)

that plays an important role here, notably in the analysis of QuickQuantα
(and where |¨| denotes the absolute value). Its graph is represented in Fig-
ure 1. The exact mean number Kpm,nq of key comparisons performed by
QuickSelectpm,nq for any m was obtained by Knuth in [15]. It is given in
the following proposition. The column 4 of Table 1 gives asymptotic estimates
for some particular cases of interest.

Lemma 1 [Classical Average-case analysis] The mean number of key compar-
isons performed by the algorithm QuickSelectpm,nq in the uniform permuta-
tion model satisfies the following:
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paq For a general rank m, it involves the harmonic number Hk under the form

Kpm,nq “ 2 rpn` 1qHn ´ pn` 3´mqHn`1´m ´ pm` 2qHm ` n` 3s .

In the case of QuickMin pm “ 1q and QuickMax pm “ nq, one has

Kp1, nq “ Kpn, nq “ 2n´ 2Hn.

pbq For QuickQuantα, the mean number Kαpnq involves the κ function defined
in (1), under the form

Kαpnq „ κpαqn.

We have in the case of QuickMed (selecting for the median),

K 1
2
pnq „ κp 12 qn “ 2p1` log 2qn.

pcq For QuickRandpnq, one has Kpnq „ 3n.

Fig. 1: The functions h and κ.

Special cases of

QuickSelectpm,nq
Output Value of m

Asymptotic

estimate

of Kpm,nq

QuickQuantα α-quantile m “ t1` αpn´ 1qu κpαqn

QuickMed median m “ tpn` 1q{2u 2p1` log 2qn

QuickMin minimum m “ 1 2n

QuickMax maximum m “ n 2n

QuickRand random m P r1 . . nsR 3n

Table 1: Asymptotic estimates for the mean number of key comparisons for
QuickSelect and special cases of QuickSelect.
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1.2 Tameness of sources.

For a source S on the alphabet Σ, and for a prefix w P Σ‹, we define the
fundamental probability pw as the probability that a word emitted by the
source S begins with the prefix w. We consider two generating functions of the
source, of Dirichlet type, which are built with fundamental probabilities. They
encapsulate the main probabilistic properties of the source and are central in
our study.

Definition 1 (Dirichlet series of the source) There are two main types
of Dirichlet series associated to a source S.

piq The Λ generating functions is defined as

Λpsq “
ÿ

wPΣ‹

psw “
ÿ

kě0

Λkpsq, with Λkpsq “
ÿ

wPΣk

psw.

piiq The Π generating function is defined as

Πpsq “
ÿ

kě0

πsk, with πk “ suptpw, w P Σ
ku.

The Λ series was introduced for the first time in [25]. It plays a central
role in many probabilistic studies about sources which adopt the point of
view of analytic combinatorics. This series intervenes mainly in the analysis
of sorting algorithms. The Π series was introduced for the first time in [26],
and is suited to the analysis of selection algorithms (like QuickSelect). Here,
these two series are important to us notably via the following definition which
will be motivated later on in the paper.

Definition 2 (Tameness) There are two different notions for the tameness
of the source:

piq A source is weakly Λ-tame with width δ “ δΛ if the abscissa of absolute
convergence of the Dirichlet series Λpsq is equal to 1` δ.

piiq A source is Π-tame with width δ “ δΠ if the abscissa of absolute conver-
gence of the Dirichlet series Πpsq is equal to δ.

We now see that the tameness width which intervenes in most of our results
is δ0 :“ maxp2δΛ, δπq, notably via its position with respect to 1.

1.3 General result.

We provide general asymptotic estimates for the algorithm QuickSelect (or
more accurately QuickQuantα), particular cases like QuickMin and QuickMax,
as well as QuickRand (which models the average behaviour of QuickSelect

for a random uniform rank).
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Theorem 1 (General asymptotic estimates) For a source S both Π-tame
and weakly Λ-tame with a small enough width, the mean number of symbol
comparisons of all the variants of QuickSelectpm,nq is Θpnq. More precisely,
the following holds:

paq Consider a source which is both weakly Λ-tame with width δΛ and Π-tame
with width δΠ and assume that δ0 :“ maxp2δΛ, δΠq is strictly less than
1. Then the mean number of symbol comparisons QQαpnq performed by
QuickQuantα satisfies, for any δ Psp1` δ0q{2, 1r and any α P r0, 1s,

QQαpnq “ ρSpαqn`Opn
δq.

Moreover the constant hidden in the O-term is uniform (with respect to α)
for any interval of the form rα1, 1´ α1s with α1 ą 0.

pbq Consider a source which is both weakly Λ-tame with width δΛ and Π-
tame with width δΠ and assume that δ0 :“ maxp2δΛ, δΠq is strictly less
than 1. Then, the mean number QRpnq of symbol comparisons performed by
QuickRandpnq satisfies, for δ Psδ0, 1r,

QRpnq “ γS n`Opn
δq, with γS “

ż 1

0

ρSpαq dα.

pcq If the source is weakly Λ-tame with width δΛ ă 1{2, the mean number of
symbol comparisons, QMp´qpnq “ QQ0pnq for QuickMinpnq and QMp`qpnq “
QQ1pnq for QuickMaxpnq, satisfies, for δ Ps2δΛ, 1r, with ε “ ˘,

QMpεqpnq “ ρ
pεq
S n`Opnδq, with ρ

p`q

S “ ρSp1q, ρ
p´q

S “ ρSp0q.

1.4 Expressions for the constants.

The following result provides precise expressions for the constants which ap-
pear in the dominant terms of the previous Theorem2:

Theorem 2 (Expressions for constants) For a general source S, where

the probabilities p
p`q
w , p

p´q
w , and pw “ 1 ´ p

p`q
w ´ p

p´q
w are defined as in Defi-

nition 3 and Eq. (5), the constants involved in Theorem 1 admit the following
expressions:

paq The quantile constant ρSpαq is defined as

ρSpαq “
ÿ

wPΣ‹

pw κ

˜

α´ p
p´q
w

pw

¸

,

and involves the function κ given by κpyq “ 2r1`Hpyqs, with

Hpyq “

$

’

’

&

’

’

%

y log
´

1´ 1
y

¯

if y ă 0,

hpyq “ ´y log y ´ p1´ yq logp1´ yq, if y P r0, 1s,

py ´ 1q log
´

1´ 1
y

¯

if y ą 1.

2 This corrects small errors in Figure 1 of [26].
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Fig. 2: Plots of the function ρSpαq for α P r0, 1s and three sources: Bp1{2, 1{2q,
Bp1{3, 2{3q, and Bp1{3, 1{3, 1{3q. The curves are deformations of the curve
α ÞÑ κpαq whose plot is on the bottom right corner. The plots illustrate the
fractal character of the constants involved in QuickQuant.

pbq The Random selection constant is

γS “
ÿ

wPΣ‹

p2w

»

–2`
1

pw
`

ÿ

ε“˘

»

–log

˜

1`
p
pεq
w

pw

¸

´

˜

p
pεq
w

pw

¸2

log

˜

1`
pw

p
pεq
w

¸

fi

fl

fi

fl.

pcq The Min/Max constants are

ρ
pεq
S “ 2

ÿ

wPΣ‹

pw

«

1´
p
pεq
w

pw
log

˜

1`
pw

p
pεq
w

¸ff

.

Note that the function H of Assertion paq is a continuous extension, sym-
metric about y “ 1{2, of the entropic function h to the whole real line. Note
also that the κ function—at least its restriction to the interval r0, 1s—already
intervenes in the mean number Kpnq of key comparisons of the QuickQuant

algorithm, as recalled in Lemma 1. Figure 2 shows the graphs of the function
α ÞÑ ρpαq for different Bernoulli sources, together with the graph of the κ func-
tion. It appears that the graph of ρ is a deformation of the graph of κ, and the
plots illustrate the fractal character of the constants involved in QuickQuant,
as the expression for ρ in terms of κ suggests. We see that the function ρ is not
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always maximised at α “ 1{2, not even for symmetric sources, even though κ
is maximised at 1{2. There is then a natural question to be asked: For which
(symmetric) sources is the maximum for ρ attained at α “ 1{2? If the maxi-
mum is not attained at α “ 1{2, at which point is it attained? We return to
this question in Section 6.

1.5 Particular case of the binary source.

All these constants specialise nicely for the standard binary source B (under
which keys are compared via their binary expansions, with uniform indepen-
dent bits), in which case they admit pleasant expressions that simplify and
extend those of Fill and Nakama [7] and Grabner and Prodinger [11] and lead
themselves to precise numerical evaluations.

Proposition 1 For a binary source, the constants admit the following expres-
sions:

ρBpαq “
ÿ

`ě0

1

2`

2`´1
ÿ

k“0

κp2`α´ kq

ρ
pεq
B “ 4` 2

ÿ

`ě0

1

2`

2`´1
ÿ

k“1

„

1´ k log

ˆ

1`
1

k

˙

.
“ 5.27937 82410 80958,

and also

γB “
14

3
`2

8
ÿ

`“0

1

22`

2`´1
ÿ

k“1

„

k ` 1` logpk ` 1q ´ k2 log

ˆ

1`
1

k

˙

.
“ 8.20730 88638.

Here, the function κ is first defined in (1) on the interval r0, 1s and extended
to the whole real line in Theorem 2(a).

2 General framework.

Here, we draw our general framework, already provided in [26] and [3]. We
first characterise in Section 2.1 the strategy of each algorithm (which keys are
compared? with which probability?), then we describe the model of source in
Section 2.3, together with the particular cases of “simple” sources. We then
describe the modelling of a parameterized source in Section 2.6, and introduce
the central notion of coincidence in Section 2.7.

2.1 The classical probabilistic model based on permutations.

Consider a totally ordered set of keys U “ tU1 ă U2 ă ¨ ¨ ¨ ă Unu and
any algorithm A which only performs comparisons and exchanges between
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keys. The initial input is the sequence V “ pV1, V2, . . . , Vnq defined from U
by a permutation σ P Sn via the equalities Vi “ Uσpiq. The execution of
the algorithm does not actually depend on the input sequence, but only on
the permutation σ which defines the input sequence from the final (ordered)
sequence. Thus the permutation σ is the actual input of the algorithm and the
set of all possible inputs is the set Sn.

The classical average-case analysis deals with the (total) mean number of
key comparisons performed by the algorithm. Here, we fix a pair of keys Ui
and Uj and we are interested by the mean number of comparisons performed
by the algorithm between the two keys Ui and Uj , which will be denoted
by πnpi, jq. The computation of πnpi, jq is not usual in classical analysis of
algorithms, and this is the first step of our method. Indeed, when keys become
words, their relative positions will have an influence on the “cost” needed for
distinguishing them.

When we take the sum over all the pairs pi, jq of the probabilities πnpi, jq,
(with 1 ď i ă j ď n), we obtain the mean number of key comparisons per-
formed by each algorithm. We thus obtain here a new derivation of well-known
results for popular algorithms in the uniform permutation model.

2.2 The algorithms QuickSort, QuickSelect and QuickVal.

These algorithms are based on the “Divide and Conquer” principle. All other
keys are compared to the first key of the array, which is used as a pivot. During
the Partition stage, the keys that are smaller than the pivot are placed on
its left in the array, whereas the keys that are greater are placed on its right.
After this partitioning, the pivot is at the right place. In the sequel, the sets
Uri,js formed by all the keys U` with ` P ri, js play an important rôle in the
description of the algorithms.

QuickSort. The algorithm was introduced in 1962 by C.A.R Hoare in his orig-
inal papers [12,13,14] and improved by several authors, including Knuth [16],
van Emden [27], and Sedgewick [21]. The QuickSortpnq algorithm recursively
sorts the two sub-arrays. While the pivot does not belong to the subset Uri,js,
this set is not separated by the pivot. When the pivot belongs to the subset
Uri,js, the keys Ui and Uj are compared if and only if Ui or Uj is a pivot. This
event coincides with the event “Ui or Uj is the first key among those in the
subset Uri,js”. After such a comparison, the keys are separated and no longer
compared. Thus, the mean number of key comparisons between Ui and Uj is,
for i ă j, equal to

πnpi, jq “
2

cardUri,js
“

2

j ´ i` 1
.
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Algorithm Partition(V, left, right)

/* Partition (V, left, right) rearranges the sub-array V rleft . . rights according

to its first element V rlefts, called the pivot, and returns the position

of the pivot after partitioning */

v Ð V rlefts;
iÐ left;
j Ð right;
repeat

repeat
iÐ i` 1;

until V ris ě v;
repeat

j Ð j ´ 1;
until V rjs ď v;
SwappV ris, V rjsq;

until j ď i;
SwappV ris, V rleftsq;

Fig. 3: Partition Algorithm.

Algorithm QuickSort(V, left, right)

/* Sorts the sub-array V rleft . . rights. */

/* Recursive function for an array V r1 . . ns: QuickSort (V, 1, n) */

if left ă right then
k Ð PartitionpV, left, rightq;
QuickSort (V , left, k ´ 1);
QuickSort (V , k ` 1, right);

Fig. 4: QuickSort Algorithm.

QuickSelect. The QuickSelectpm,nq algorithm described in Figure 5 re-
turns the key of rank m in an array of size n. As previously, it uses the first
key of the array as a pivot and performs the partition operation. If the rank
k of the pivot equals m, the algorithm returns the pivot. If k ą m, the algo-
rithm continues with the left sub-array; otherwise, it continues with the right
sub-array.

In the rest of this paper, we use here the notation

x^ y “ minpx, yq, x_ y “ maxpx, yq. (2)

In the QuickSelect algorithm, as in the QuickSort algorithm, the keys Ui
and Uj are compared if and only if Ui or Uj is the first key among the subset
Urk,`s, with k “ i^m, ` “ j_m. Then, the mean number of key comparisons
between Ui and Uj performed by QuickSelectpm,nq is, for i ă j, equal to

πpmqn pi, jq “
2

cardUrk,`s
“

2

`´ k ` 1
, k “ i^m, ` “ j _m.
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Algorithm QuickSel(V, left, right,m)

/* Returns the element of rank m of the array V rleft . . rights */

/* Recursive function for an array V r1 . . ns: QuickSel (V, 1, n,m) */

k Ð PartitionpV, left, rightq;
if k ą m then

return QuickSel (V, left, k ´ 1,m);
else

if k ă m then
return QuickSel (V, k, right,m´ k);

else
return V rks;

Algorithm QuickVal(V, left, right, v)

/* Returns the rank of the element v in the array V rleft . . rights. */

/* Recursive function for an array V r1 . . ns: QuickVal (V, 1, n, v) */

k Ð PartitionpV, left, rightq;
if V rks ą v then

return QuickVal (V, left, k ´ 1, v);
else

if V rks ă v then
return QuickVal (V, k, right, v);

else
return k;

Fig. 5: Algorithms QuickSelect and QuickVal. Algorithms QuickMin and QuickMax corre-
spond to the QuickSelect algorithm with particular ranks m “ 1 and m “ n for an array
of size n.

Observe that this probability depends on both i and j, except when m “ 1
(case of QuickMin) or m “ n (case of QuickMax), where it satisfies

πp1qn pi, jq “
2

cardUr1,js
“

2

j
, πpnqn pi, jq “

2

cardUri,ns
“

2

n´ i` 1
.

We are also interested in two “variants” of the QuickSelectpm,nq algorithm:

paq The QuickQuantαpnq algorithm outputs the α-quantile, namely, the key
of rank t1` αpn´ 1qu. With this definition, we remark that for α “ 0,
QuickQuantα coincides with QuickMin, whereas for α “ 1, QuickQuantα
coincides with QuickMax.

pbq The QuickRandpnq algorithm outputs a key whose rank is chosen uniformly
at random in the interval r1 . . ns.

QuickVal. We will be led (see Section 3.3) to consider another algorithm,
named QuickVal, which may be of independent interest. Given an array of
size n and a key which belongs to the array, it returns the rank of this key.
This algorithm has the same structure as QuickSelect: it uses the first key of
the array as a pivot and performs the partition operation. If the value of the
pivot is equal to the input key, the algorithm returns the rank of the pivot.
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If the value of the pivot is larger than the input key, the algorithm continues
with the left sub-array; otherwise, it continues with the right sub-array. It is
important to note that this algorithm rearrange the array exactly in the same
way QuickSelect (using the partition algorithm).

About the Partition process. They are various possibilities for implementing
this process. It is first important to remark that all the partition processes
share the common following features: each element of the array V rleft . . rights
with i ­“ left is compared to the pivot V rlefts (and thus the number of com-
parisons is always greater or equal to n´ 1). At the end of the procedure, the
pivot is at the right place, the keys that are smaller than the pivot are placed
on its left, and keys that are greater than the pivot are placed on its right.
However, the number of exchanges, and the final positions of the elements in-
side the two sub-arrays, the left one and the right, may depend on the precise
implementation of the Partition procedure.

We now describe the implementation described in Figure 3, see also [23].
We choose the first element of the array V rleft . . rights as the pivot, and the
variable v holds the value of the pivot V rlefts. We use two scan pointers i and
j, the left pointer i scans from the left, and the right pointer j scans from
the right. Each time we find a pair pi, jq such that V ris ě v and V rjs ď v,
we exchange V ris and V rjs. When the pointers cross each other, an extra
exchange of V ris and V rjs is done with j ă i just after the pointers cross
(but before the crossing is detected) and the outer repeat loop exited. The
last three assignments implement the exchange between V ris and V rjs (to
undo the extra exchange), and between V ris and V rlefts to put the pivot into
position.

2.3 Sources and their Dirichlet series

Here, we consider that the keys are words produced by a general source on a
finite alphabet Σ. A general source S built on the alphabet Σ produces at each
discrete time t “ 0, 1, . . . a symbol from Σ. If Xn is the symbol emitted at
time t “ n, a source produces the infinite word pX0, X1, . . . , Xn, . . . q. For any
finite prefix w P Σ‹, the probability pw that a word produced by the source S
begins with the finite prefix w is called the fundamental probability of prefix
w. The set of probabilities pw (for w P Σ‹) completely defines the source S,
and the two equalities hold

for k ě 0
ÿ

wPΣk

pw “ 1, and for any w P Σ‹
ÿ

iPΣ

pw¨i “ pw.

Definition 3 Let Σ be a totally ordered alphabet of cardinality r. A source
over the alphabet Σ produces infinite words of ΣN, and is specified by the
fundamental probabilities pw, w P Σ‹, where pw is the probability that an
infinite word begins with the finite prefix w. When the two following properties
hold:

piq pw ą 0 for any w P Σ‹,
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piiq πk “ maxtpw : w P Σku tends to 0 as k Ñ8,

the source is said to be non-ambiguous.

In the sequel, all the sources are assumed to be non-ambiguous.

As already mentioned in Section 1.2, our analyses deal with the two Dirichlet
series of fundamental probabilities Λpsq and Πpsq introduced in Definition 1.

2.4 Instances of classical sources and their Dirichlet series.

We describe here four models of sources, and begin with two models of simple
sources, namely memoryless sources and Markov chains. We also give expres-
sions for Dirichlet series Λpsq and Πpsq in each case.

Memoryless sources. A memoryless source associated to the alphabet Σ is a
source where the symbols Xi P Σ are independent and identically distributed.
It is defined by the set ppjqjPΣ of probabilities, with pj “ PrXk “ js for any
k ě 0. The Dirichlet series Λ and Λk can be expressed in terms of

λpsq “
ÿ

iPΣ

psi as Λkpsq “ λpsqk, Λpsq “
1

1´ λpsq
. (3)

The maximum probability πk satisfies πk “ ρk where ρ “ maxtpi : i P Σu,
and the equality Πpsq “ 1{p1´ ρsq holds.

Markov chains. A Markov chain associated to the finite alphabet Σ is defined
by the (column) vector R of initial probabilities priqiPΣ together with the
transition matrix P “ ppi,jqpi,jqPΣˆΣ , with each row summing to 1. Here one

has ri “ PrX0 “ is and pi,j “ PrXk`1 “ j | Xk “ is for any i, j P Σ and
k ě 0. We denote by P psq the matrix with entry psi,j for general pi, jq, and

by Rpsq the vector with entries rsi . Then (with QT denoting the transpose of
matrix Q)

Λkpsq “ RpsqTP psqk´11 for k ě 1, Λpsq “ 1`RpsqT pI ´ P psqq´11. (4)

If, moreover, the matrix P is irreducible and aperiodic, then, for any real
s ą 0, the matrix P psq has a unique dominant eigenvalue λpsq. The maximum
probability πk satisfies πk ď ρk where ρ is the maximum of all the entries in R
and P , and the inequality |Πpsq| ď 1{p1´ ρσq holds with σ “ <s.
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Other instances of “simple” sources: intermittent sources. Intermittent sources
are an interesting particular case of a source of VLMC type (Variable Length
Markov Chain), where the dependency from the past is unbounded (see [1]).
An intermittent source has two regimes, depending on whether it emits a par-
ticular symbol σ P Σ or not. Consider a source with an alphabet of finite
cardinality r ě 2. The source is intermittent of exponent a ą 0 with respect to
σ if one has the following conditional probability distribution for the emission
of each symbol in the word given the prefix preceding it. Let us define the
event Sk as

Sk “ tthe prefix finishes with a sequence of exactly k occurrences of σu.
Then the conditional distribution of the next symbol emitted depends on the
length k; more precisely, one has Prσ | S0s “ 1{r and, for k ě 1,

Prσ | Sks “
ˆ

1´
1

k ` 1

˙a

, Prσ | Sks “
ˆ

1´

ˆ

1´
1

k ` 1

˙a˙
1

r ´ 1
for σ ‰ σ.

Then, in the case of a binary alphabet Σ “ t0, 1u, when the source is in-
termittent with respect to 0, the probability of the prefixes 0k and 0k1 are
respectively equal to

p0k “
1

2

ˆ

1

ka

˙

, p0k1 “
1

2

ˆ

1

ka
´

1

pk ` 1qa

˙

,

and, with the equality t0, 1u‹ “ p0‹1q‹0‹, the series Λpsq admits the expression

Λpsq “
1` 2´sζpasq

1´ 2´sr1`Σapsqs
with Σapsq “

ÿ

kě1

„

1

ka
´

1

pk ` 1qa

s

.

(Here, ζp¨q is the Riemann zeta function.) Moreover, for a ě 1, and k ě 1, the
maximum probability πk is attained for the word 0k; it satisfies π0 “ 1, and

πk “
1

2

ˆ

1

ka

˙

for k ě 1, so that Πpsq “ 1`

ˆ

1

2

˙s

ζpasq.

Dynamical sources. An important subclass is formed by dynamical sources,
which are closely related to dynamical systems on the interval; see [25]. One
starts with a partition tIσu indexed by symbols σ P Σ, a coding map τ : I Ñ Σ
which equals σ on Iσ, and a shift map T : I Ñ I whose restriction to each
Iσ is increasing, invertible, and of class C2. Then the word Mpuq is the word
that encodes the trajectory pu, Tu, T 2u . . . q via the coding map τ , namely,
Mpuq “ pτpuq, τpTuq, τpT 2uq, . . . q. All memoryless (Bernoulli) sources and all
Markov chain sources can be viewed as dynamical sources: they correspond to
a piecewise linear shift. For instance, the standard binary system is obtained by
T pxq “ t2xu (t¨u is the fractional part). Dynamical sources with a non-linear
shift allow for correlations that depend on the entire past (e.g., sources related
to continued fractions obtained by T pxq “ t1{xu). Moreover, the Λ-series can
be expressed as the quasi-inverse of a variant of the transfer operator of the
system [25], and this gives a precise tool for investigating the tameness of
such a model of sources.
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2.5 Return to tameness of sources.

We recall that tameness of sources is described via the abscissa of absolute
convergence of series Λpsq and Πpsq. The series Λpsq always satisfies Λkp1q “ 1
and thus Λp1q “ `8; its abscissa of convergence is then at least 1, and we
define it as 1 ` δΛ where δΛ ě 0 is the width of Λ. In the same vein, the
series Πpsq always satisfies π0

k “ 1 and thus Πp0q “ `8; its abscissa of
convergence is then at least 0. and we define it as δΠ where δΠ ě 0 is the
width of Π. Furthermore, the inequality Λpsq ď Πps´1q for real s ě 1 entails
the inequality δΠ ě δΛ between the two widths.

In general, the simple sources (memoryless sources, aperiodic Markov chains
or good dynamical sources) are both weakly Λ-tame and Π-tame with both
widths δΠ “ δΛ “ 0. However, there exist “natural” sources, for example
intermittent sources described in Section 2.4 which are Π-tame with width
δΠ “ 1{a and weakly Λ-tame with δΛ “ 0 as soon as a ą 1. In the following,
the condition under which our results hold is

max p2δΛ, δΠq ă 1,

and it is satisfied for all the examples of sources which are described in the
previous section, except for the intermittent source with a “ 1.

2.6 Parameterization of a source.

The parameterization of a source is based on the same principles as those
used for arithmetic coding in compression frameworks. It also aims to extend
what we have done in the case of a dynamical system. We have associated
to a real u P I a word Mpuq that is the encoding of the trajectory T puq.
We wish also to build a family of fundamental intervals Iw whose measures
are the fundamental probabilities of the source. Then, for each depth k, the
fundamental intervals Iw will form a topological partition of the interval I.

For any prefix w P Σ‹, we denote by |w| the length of w (i.e., the number

of the symbols that it contains) and p
p´q
w , p

p`q
w , pw the probabilities that a

word produced by the source begins with a prefix u of the same length as w,
which satisfies u ă w, u ą w, or u “ w, meaning

pp´qw “
ÿ

u: |u|“|w|,
uăw

pu, pp`qw “
ÿ

u: |u|“|w|,
uąw

pu, pw “ 1´
´

pp`qw ` pp´qw

¯

. (5)

We also use alternative notations for these probabilities, especially when we
represent them on the interval r0, 1s, and we let

aw “ pp´qw “
ÿ

u: |u|“|w|
uăw

pu, bw “ aw ` pw “
ÿ

u: |u|“|w|,
uĺw

pu “ 1´ pp`qw . (6)
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Fig. 6: The parameterization of a source.

Thus, for a given k, when the prefix w varies in Σk, this gives rise to a partition
of the unit interval with sub-intervals of length pw. When the prefixes w P

Σk are ordered in increasing lexicographic order, and the sub-intervals are
arranged from left to right, then, the sub-interval corresponding to prefix w
has left (respectively, right) endpoint equal to aw (resp., bw). See Figure 6.

Consider the set ΣN of (infinite) words produced by the source S, ordered
via the lexicographic order. Given an infinite word X P ΣN, denote by wk its
prefix of length k. The sequence pawkqkě0 is increasing, the sequence pbwkqkě0

is decreasing, and bwk ´ awk “ pwk tends to 0 when k tends to infinity. Thus
a unique real P pXq P r0, 1s is defined as the common limit of pawkq and pbwkq,
and P pXq is simply the probability that an infinite word Y generated by
the source is smaller than X. The mapping P : ΣN Ñ r0, 1s is surjective
and strictly increasing outside the exceptional set formed with words of ΣN

which end with an infinite sequence of the smallest symbol or with an infinite
sequence of the largest symbol.

Conversely, almost everywhere (except on the set taw, w P Σ
‹u), there is

a mapping M which associates to a number u from the interval I “ r0, 1s a
word Mpuq P ΣN. Hence, the probability that a word Y be smaller than Mpuq
equals u. The lexicographic order on words (‘ă’) is then compatible with the
natural order on the interval I, namely, Mptq ă Mpuq if and only if t ă u. The
interval Iw “ raw, bws, of length pw, gathers (up to a denumerable set) all the
reals u for which Mpuq begins with the finite prefix w. This is the fundamental
interval of the prefix w.

Reflected source. Such a source will be used in the proofs of Propositions 8 and

9. The reflected source

p

S of a source S is defined on the same alphabet Σ :“
r0 . . r´1s. However, this alphabet is ordered with the “reflected” order; namely,
we consider the mapping Σ Ñ Σ which maps the symbol σ to the symbol
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σ̌ “ pr ´ 1q ´ σ. This mapping is then extended to Σ‹ using concatenation:
for any w P Σ‹, of the form w “ w1 ¨ w2 . . . wk, the word

p

w is defined asp

w “
p

w1 ¨

p

w2 . . .
p

wk. This is further extended to ΣN in a similar way, and gives

rises to a parameterization

x

M for the source

p

S which is closely related to the

initial parameterization of the source S via the equality

x

Mpuq “ Mp1 ´ uq.

Note that the source S and its reflected source

p

S have, for each k, the same
set tpw : w P Σku of fundamental probabilities for prefixes of length k, and
thus have the same Dirichlet series Λ and Π.

2.7 Geometry of the source and coincidence

We are interested in a more realistic cost related to the number of symbol
comparisons performed by these algorithms, when the keys are words inde-
pendently produced by the same source. The words are ordered with respect
to the lexicographic order, and the cost for comparing two words (measured
as the number of symbol comparisons needed) is closely related to the coinci-
dence, defined as follows.

Definition 4 The coincidence function γpu, tq : r0, 1s ˆ r0, 1s Ñ NY t`8u is
the length of the largest common prefix of words Mpuq and Mptq.

More precisely, the realistic cost of the comparison between Mpuq and Mptq
equals γpu, tq ` 1.

We represent the pair of words pMpuq,Mptqq with u ď t by the point pu, tq
of the triangle T “ tpu, tq : 0 ď u ď t ď 1u, and the fundamental triangles

Tw “ pIw ˆ Iwq X T “ tpu, tq : aw ď u ď t ď bwu (7)

define the level sets of the function γ. Indeed, the coincidence γpu, tq is at least
` if and only if Mpuq and Mptq have the same common prefix w of length `,
so that the parameters u and t belong to the same fundamental interval Iw
relative to a prefix w of length `. Then, the two relations

T X rγ ě `s “
ď

wPΣ`

Tw,
ÿ

`ě0

1rγě`s “
ÿ

`ě0

p`` 1q1rγ“`s,

entail the following equality which deals with the functional J and holds for
any integrable function g on the unit triangle T ,

J rgs “
ż

T
rγpu, tq ` 1sgpu, tq du dt “

ÿ

wPΣ‹

ż

Tw
gpu, tq du dt. (8)

This functional J will be extensively used in the sequel.
The family of triangles Tw, defines the “geometry” of the source. Figure 7

represents the geometry of two memoryless sources.
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Fig. 7: The geometry of two memoryless sources. On the left, the case of
Σ “ ta, bu with pa “ pb “ 1{2. On the right, the case of Σ “ ta, b, cu with
pa “ 1{2, pb “ 1{6, pc “ 1{3.

3 Algebraic analysis.

We are now ready to begin our probabilistic analysis. The set of inputs is the
set M‹ of all the sequences of words emitted by the source, and all the costs of
interest (for instance the number of key or symbol comparisons) are defined on
M‹. The purpose of average-case analysis of structures (or algorithms) is to
characterise the mean value of their “costs” under a well-defined probabilistic
model that describes the initial distribution of its inputs.

3.1 Two probabilistic models.

The two models. Here, the set of inputs for the algorithm is the set of all the
sequences of words V emitted by the source, denoted here by M‹, and all the
costs are defined on M‹. For such a cost R, we denote by RrVs its value on
the sequence V.

We consider two distinct probabilistic models on the set M‹, each of them
being of interest. When the cardinality n of V is fixed, and words Vi P V are
independently emitted by the source S, this is the Bernoulli model denoted
by pBn,Sq. There is also another model, where the sequence V has a variable
number N of elements that obeys a Poisson law of rate Z,

PrN “ ks “ e´Z
Zk

k!
.

In this model, called the Poisson model of rate Z, the rate Z plays a role quite
similar to the cardinality of V. When it is relative to probabilistic source S,
the model, denoted by pPZ ,Sq, is composed with two main steps:

paq The number N of words is drawn according to the Poisson law of rate Z;
pbq Then the N words are independently drawn from the source S.

Random variables NI . Thanks to the mapping M , we can associate with a se-
quence V “ pV1, . . . , Vnq of infinite words a sequence of real points pv1, . . . , vnq
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in r0, 1s such that Vi “ Mpviq for i P r1 . . ns. This correspondence exists for
almost all sequences in M‹ (up to a set of sequences of zero measure). For
I Ă r0, 1s, consider the variable NI , defined on M‹ by the equality

NI rVs “ the number of words in V whose parameter lies in the interval I.

We have of course N :“ Nr0,1s. The random variables NI are easier to deal
with in the Poisson model, due to very useful independence properties. In the
Poisson model of rate Z, for two disjoint intervals I and J in r0, 1s, the random
variables NI and NJ are both independent Poisson variables with adequate
rates: For any interval I Ă r0, 1s of measure λ, NI obeys a Poisson law of rate
λZ.

This is very often the case in our study: the Poisson model is easier to deal
with, but the Bernoulli model is more natural. So, we begin the analysis in the
Poisson model, and then we wish to return to the Bernoulli model.

Notation. For a random variable R defined on the set M‹ and a sequence
V PM‹, we denote by RrVs the value of R on V and by RxVy the average of
the cost R on all sequences equivalent to V up to a permutation

RxVy “ 1

|V|!
ÿ

V 1”V
RrV 1s,

where, again, the equivalence ‘”’ relation means up to a permutation. We note
that, when R depends only on the set underlying the sequence V, the equality
RrVs “ RxVy holds. This is the case for the variables NI aforementioned.

Relation between the two models. Consider a random variable R defined on the
set M‹. Denote by Rpnq its expectation in the Bernoulli model pBn,Sq, and by
RZ its expectation in the Poisson model pPZ ,Sq of rate Z. Using conditional
probabilities, the following equalities relate the two types of expectations,

RZ “
ÿ

ně0

EZrR | N “ nsPZrN “ ns “ e´Z
ÿ

ně0

ErnsrRs
Zn

n!
“ e´Z

ÿ

ně0

Rpnq
Zn

n!
,

and the Poisson expectation RZ can be expressed with the exponential gen-
erating function GpZq of the sequence Rpnq of the Bernoulli expectations via
the relation

RZ “ e´ZGpZq, with GpZq “
ÿ

ně0

Rpnq
Zn

n!
. (9)

Assume now that the expectation RZ of the random variable R is known in
the Poisson model, via its coefficients ϕpnq in its series expansion,

ϕpnq “ p´1qnrZnsRZ , with the expansion RZ “
ÿ

ně0

p´1qnϕpnq
Zn

n!
. (10)
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The equality (9) between the series RZ and GpZq is also written as GpZq “
eZRZ , and entails the following binomial relation between the coefficients Rpnq
and ϕpnq:

Rpnq “
ÿ

kďn

ˆ

n

k

˙

p´1qkϕpkq. (11)

It is then possible to return to the Bernoulli model pBn,Sq and obtain the
expectation Rpnq in the Bernoulli model, that is expressed as a binomial re-
currence involving the coefficients ϕpkq of the Poisson expectation RZ .

3.2 When the keys are words.

Now, the keys are words, and we denote by M :“ ΣN the set of all the words
emitted by the source. The set of inputs for the algorithm is thus the set M‹

which gathers all the possible sequences of words. Consider a sequence V PM‹

that contains two given words Mpuq and Mptq. The following equalities hold:

RankV Mpuq “ Nr0,urrVs ` 1, RankV Mptq “ Nr0,urrVs `Nsu,trrVs ` 2,

where the respective translations of 1 and 2 express that Mpuq and Mptq
belong to V.

We denote by Φpu, tqrVs the number of key comparisons performed by
the algorithm on the input sequence V between the keys Mpuq and Mptq.
This defines a cost on M‹. We also consider the mean Φpu, tqxVy of the cost
taken with respect to all the permutations of V. There is a relation between
Φpu, tqxVy and the mean number πN pi, jq defined in Section 2.1. More precisely,
the following equality holds:

Φpu, tqxVy “ π|V|pNr0,urrVs ` 1, Nr0,urrVs `Nsu,trrVs ` 2q. (12)

We remark that the right member of (12) is defined on the whole set M‹ (even
for sequences which do not contain Mpuq or Mptq). Setting N “ Nr0,1s, the
function

pπpu, tq :“ πN pNr0,ur ` 1, Nr0,ur `Nsu,tr ` 2q (13)

provides thus an extension of the function V ÞÑ Φpu, tqxVy on the set M‹. This
expression plays a central role in our analyses.

Applying these principles, with expressions of πnpi, jq obtained in Sec-
tion 2.2, we obtain an expression for random variable pπ˘pu, tq associated with
QuickMin and QuickMax, namely

pπ´pu, tq “
2

Nr0,ts
, pπ`pu, tq “

2

Nru,1s

pπ´pu, tq “
2

Nr0,ur `Nsu,tr ` 2
, pπ`pu, tq “

2

Nsu,tr `Nst,1s ` 2
(14)
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For the algorithm QuickSelect the mean number of comparisons pπαpu, tq
performed by the QuickSelect algorithm between the words Mpuq and Mptq
chosen as keys when it searches the word Mpαq is

pπαpu, tq “
2

Nrx,ys
with x :“ u^ α, y :“ t_ α,

with the usual notation of (2). We denote by z the “middle point” (i.e., x ď
z ď y), so that the equality tx, y, zu “ tα, u, tu holds.

piq In the case when α ‰ u and α ‰ t, the three words Mpxq, Mpyq, and Mpzq
are distinct and, in the same vein as previously, Nrx,ys “ Nsx,zr`Nsz,yr`3
where the translation of 3 expresses that the three wordsMpxq,Mpyq,Mpzq
belong to V.

piiq In the case when α “ u or α “ t, there are only two distinct words amongst
Mpxq, Mpyq, and Mpzq.

In fact, we will be interested only in the first case piq, as the second case arises
when pu, tq belongs to the union of the two lines u “ α and t “ α, which will
be of measure 0 in the triangle T . This is why we focus only on the case piq
where, with x :“ u^ α, y :“ t_ α, tx, y, zu “ tα, u, tu, we obtain for pπαpu, tq,

pπαpu, tq “
2

Nsx,zr `Nsz,yr ` 3
, when u ‰ α and t ‰ α (15)

3.3 The QuickVal algorithm

We remark that Eq. (15) does not provide a clear way for computing the
function pπpu, tq of the QuickSelectpm,nq algorithm, for a general rank m.
This is due to the fact that the interval rx, ys depends on the parameter α of
the word of rank m, which is not directly related to the rank m. In fact, the
real α is mostly the output of the QuickSelect algorithm.

This is why we consider an algorithm (already described in Figure 5) that
is the counterpart of QuickSelect: it takes as input a set of words V and a
given word V P V, and returns the rank of V inside the set V. This algorithm is
of independent interest and is easily implemented as a variant of QuickSelect
by resorting to the usual partitioning phase, then doing a comparison between
the value of the pivot and the input word V (rather than a comparison between
their ranks). We call this algorithm QuickValα when it is used to seek the rank
of the word Mpαq. By definition, the two algorithms QuickSelectpm,nq and
QuickValα behave exactly in the same way when the rank of the word Mpαq
equals m. Now, with (15), one computes the mean number of key comparisons
pπαpu, tq performed by QuickValα between two words Mpuq and Mptq.

If we consider the algorithm QuickQuantαpnq which outputs the key of rank
t1` pn´ 1qαu “ tnα` 1´ αu, then, for α “ 0, we recover QuickMin, and, for
α “ 1, we recover QuickMax. For a general α Ps0, 1r, the behaviors of the two
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algorithms of QuickValαpnq and QuickQuantαpnq should be asymptotically
similar. Indeed, the parameter of the α-quantile of a random set of words of
large enough cardinality must be, with high probability, close to α. It is proven
in [17] that this parameter follows asymptotically a Gaussian law with mean
α and variance αp1´ αq{n. We will return to this question in Section 5.

3.4 Plan of our approach.

We deal with the random variable S counting the number of symbol compar-
isons which is defined on the set M‹: for each V P M‹, SrVs is the number
of symbol comparisons performed by the algorithm on the input V. We are
interested in its expectation Spnq in the Bernoulli model, but it proves con-
venient to first perform the study in the Poisson model, and we denote by SZ
the expectation in the Poisson model. This study has four main steps:

paqWe begin by studying the density of the algorithm in the Poisson model,
which deals with the mean number of local key comparisons performed by the
algorithm on pairs of words whose parameters are close to pu, tq.

pbq With the coincidence of the source described by γpu, tq, we obtain
information about the mean number of local symbol comparisons on pairs of
words whose parameters are close to pu, tq.

pcq Integrating on all possible points pu, tq of triangle T gives rise to the
mean number SZ .

pdq We return to Spnq using (11). The binomial expression involves the
coefficients ϕpkq of the series SZ , and the mixed Dirichlet series $psq will be
defined as the analytic lifting of the sequence ϕpkq.

For reference, the main objects used in the analysis are gathered in Table 2.

3.5 Density: a first expression in the Poisson model.

The density of an algorithm is the expectation of the random variable Φpu, tq,
defined in Section 3.2, which associates with a random sequence V PM‹ the
number of key comparisons Φpu, tqrVs performed by the algorithm on the input
sequence V between the keys Mpuq and Mptq.

Definition 5 (Poissonized density) For a given algorithm, and a param-
eterized source S, the Poissonized density ΦZpu, tq is the expectation of the
variable Φpu, tq in the Poisson model pPZ ,Sq.

We remark that the density ΦZpu, tq can be also defined by the relation

ΦZpu, tq du dt is the mean number of key comparisons in the Poisson
model performed by the algorithm between two words Mpu1q and Mpt1q
with parameters u1 P ru´ du, us and t1 P rt, t` dts.
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Objects of
the analysis

Definition Computation

πnpi, jq Mean number of key comparisons between the keys of
rank i and j

Sec. 2.1

Φpu, tq Number of key comparisons between the words of pa-
rameters u and t

Eq. (12)

pπpu, tq Extension of the random variable Φpu, tq Eq. (13)

ΦZpu, tq Density of the algorithm at pu, tq in the model PZ Eq. (16)

ϕpk, u, tq k-th coefficient in the series expansion of ΦZpu, tq

i.e., ϕpk, u, tq “ p´1qkk!rZksΦZpu, tq Prop. 2

SZ Mean number of symbol comparisons in the model PZ Eq. (21)

ϕpkq k-th Coefficient of pSZ , i.e., ϕpkq “ p´1qkk!rZksSZ Eq. (23)

Spnq Exact mean number of symbol comparisons in the
model Bn

Eq. (24)

$psq Analytic lifting of the sequence ϕpkq, also called

the mixed Dirichlet series (algorithm/source) Sec. 4.2

Table 2: The main objects used in the analysis, with their names, their defi-
nitions, and their computations.

It is then possible to relate the Poissonized density and the expectation of
the random variable pπpu, tq defined in (13) which provides an extension of the
variable Φpu, tq. This is due to the nice properties of this model, and this is
why we choose the Poisson model as our (first) probabilistic model.

Lemma 2 The Poissonized density ΦZpu, tq satisfies

ΦZpu, tq “ Z2 ¨ EZ rpπpu, tqs (16)

and involves the random variable pπpu, tq defined as

pπpu, tq “ πN pNr0,ur ` 1, Nr0,ur `Nsu,tr ` 2q .

Proof First, we recall a notation which has been already used in Section 3.2.
For a random variable R defined on the set M‹ and a sequence V P M‹, we
denote by RrVs the value of R on V and by RxVy the average of the cost R
on all sequences equivalent to V up to a permutation.

We consider the “interesting” sequences K PM‹ for which

K XM ru´ du, us ‰ H, K XM rt, t` dts ‰ H,

and the subset K Ă M‹ which gathers such sequences, that contain a pair
pMpu1q,Mpt1qq with u1 P ru ´ du, us and t1 P rt, t ` dts. Gathering all the
sequences V corresponding to the same set gives rise to the expression

ΦZpu, tq “

ż

M‹

Φpu, tqxVy dZV .
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Now, as the variable pπpu, tq provides an extension of the random variable
V ÞÑ Φpu, tq 〈V〉 outside K which only depends on the underlying set, the
following equalities hold:

Φpu, tqxVy du dt “ 1KxVy ¨ pπpu, tqxVy “ 1KrVs ¨ pπpu, tqrVs,

where the last equality comes from the fact that 1KrVs and pπpu, tqrVs depend
only on the underlying set of the sequence V. This yields another expression
for ΦZpu, tq d dt, namely,

ΦZpu, tq du dt “

ż

M‹

1KrVs ¨ pπpu, tqrVs .

Observe that the variable pπpu, tq depends only on the intervals r0, ur and su, tr,
whereas 1K depends only on the intervals ru´ du, us and rt, t` dts. Then, in
the Poisson model, the two functions are independent, and we finally get

ΦZpu, tq du dt “

ˆ
ż

M‹

1KrVs dZV
˙

¨

ˆ
ż

M‹

pπpu, tqrVsdZV
˙

.

As the two intervals ru´du, us and rt, t`dts are disjoint, by the independence
property of the Poisson model the first integral equals

EZr1Ks “ PZrKs “ Z du ¨ Z dt “ Z2 du dt,

and the lemma is proven. [\

3.6 Density: a second expression in the Poisson model.

In order to return to the Bernoulli model, we are interested in the coefficients
of the series expansion of ΦZpu, tq defined as

ΦZpu, tq “
ÿ

kě2

p´1qk
Zk

k!
ϕpk, u, tq, ϕpk, u, tq :“ p´1qkk!rZksΦZpu, tq (17)

and, with (16), the coefficients ϕpk, u, tq satisfy ϕpk, u, tq “ 0 for k “ 0, 1.

The following Lemma provides nice expressions for these coefficients for
three algorithms:

Lemma 3 For each algorithm QuickMin, QuickMax and QuickValα, the se-
quence of functions ϕpk, u, tq satisfies, for k ě 2,

ϕ´pk, u, tq “ 2tk´2, ϕ`pk, u, tq “ 2p1´ uqk´2,

and

ϕαpk, u, tq “
4

k ` 1
pt_ α´ u^ αqk´2 if u ‰ α and t ‰ α .

The proof of Lemma 3 is based on two assertions:
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piq For any of the three algorithms, the expressions obtained in (14) and (15)
show that the functions pπpu, tq that arise is our framework are always
expressed as a linear combination of basic random variables gmpNIq with

gmpXq :“
1

pX ` 1qpX ` 2q . . . pX `mq
pm ě 1q,

and I an interval I Ă r0, 1s. Here, as before, NI is a variable defined on
M‹ as the number of words whose parameter belongs to I.

piiq It is easy to compute the coefficients of the expectation EZrgmpNJ qs, as
the following proposition shows.

Proposition 2 Consider an integer m ě 1 and an interval I Ă I “ r0, 1s.
The expectation in the Poisson model pPZ ,Sq of the random variable gmpNIq
only depends on m and λZ where λ is the length of the interval I. It is denoted
by FmpλZq. Moreover, for k ě 2, the sequence

βmpk, λq “ p´1qkk!rZks
`

Z2 FmpλZq
˘

admits the following expression:

βmpk, λq “
1

pm´ 1q!

kpk ´ 1q

k `m´ 2
λk´2. (18)

Proof Using the independence property of the Poisson model, we know that
NI follows a Poisson law of parameter λZ. Then, EZrgmpNIqs only depends
on m and λZ, and

EZrgmpNIqs “
ÿ

kě0

gmpkqPZrNI “ ks “ e´λZ
ÿ

kě0

gmpkq
pλZqk

k!
:“ FmpλZq.

The coefficients αmpk, λq in the series expansion of FmpZq satisfy

αmpkq :“ p´1qkk!rZksFmpZq “
1

pm´ 1q!

1

k `m
. (19)

Then, the coefficients βmpk, λq are related to αmpkq for k ě 2:

βmpk, λq “ kpk ´ 1qλk´2αmpk ´ 2q,

this proves, with the help of (19), the expressions in Eq. (18) and finally the
result. [\

We now use Proposition 2 to prove Lemma 3.

Proof First, we observe the decompositions

1

X ` 2
“ g1pXq ´ g2pXq,

1

X ` 3
“ 2g3pXq ´ 2g2pXq ` g1pXq.
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Then, with λ “ t, this gives the density for QuickMin; and for λ “ 1´ u, this
gives the following density for QuickMax:

ΦZpu, tq “

#

2Z2 rF1pZtq ´ F2pZtqs (QuickMin),

2Z2 rF1pZp1´ uqq ´ F2pZp1´ uqqs (QuickMax).

For QuickValα, we pose x “ u^α, y “ t_α, and we obtain, in the case when
t ‰ α and u ‰ α,

ΦZpu, tq “ 2Z2 r2F3pZpy ´ xqq ´ 2F2pZpy ´ xqq ` F1pZpy ´ xqqs . (20)

Applying the previous proposition then ends the proof of Lemma. [\

3.7 Exact mean number of comparisons in the Poisson model.

In the model pPZ ,Sq, the density ΦZ is a main tool for computing not only
the mean number of key comparisons KZ performed by the algorithm, but
also the mean number of symbol comparisons SZ .

With the definition of density ΦZpu, tq given in Definition 5, the mean
number of key comparisons KZ is obtained via the integral

KZ “ LrΦZs, (21)

where L is the linear functional defined for a function Φ : T Ñ R as

LrΦs “
ż

T
Φpu, tq du dt.

The definitions of the density ΦZpu, tq and the coincidence given in Definition 4
enable us to define symbol-density as the product rγpu, tq` 1sΦZpu, tq. This is
the mean number of symbol comparisons (in the Poisson model PZ) between
two words Mpu1q and Mpt1q for pu1, t1q close to pu, tq. Then, the mean number
of symbol comparisons SZ is obtained via the formula

SZ “ J rΦZs with J rΦs “
ż

T
rγpu, tq ` 1sΦpu, tq du dt.

As we have already seen in Section 2.3 (also Eq. (8)), the functional J admits
an alternative expression which involves the fundamental triangles Tw,

J rΦZs :“

ż

T
pγpu, tq ` 1qΦZpu, tq du dt “

ÿ

wPΣ‹

ż

Tw
ΦZpu, tq du dt. (22)

This is a general phenomenon: formulas for the mean number of key
comparisons or symbol comparisons are similar. When considering sym-
bol comparisons, the functional J replaces the simple integral L used
for key comparisons.
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Coefficients of the mean number of symbol comparisons in the Poisson model.
The expectation SZ is then computed via its series expansion

SZ “
ÿ

kě2

p´1qk
Zk

k!
ϕpkq.

Using the series expansion stated in (17), the expressions of SZ as integrals
given in (22), and the linearity of such integrals, the sequence ϕpkq is now
defined, for any k ě 2, in terms of integrals,

ϕpkq :“

ż

T
pγpu, tq ` 1qϕpk, u, tq du dt “

ÿ

wPΣ‹

ż

Tw
ϕpk, u, tq du dt. (23)

This sequence ϕpkq depends both on the algorithm (via the sequence of func-
tions ϕpk, u, tq) and the source (via the fundamental triangles Tw). In Lemma 3,
for the QuickVal algorithm, we have only given the expression for ϕαpk, u, tq
which holds almost everywhere on the triangle T , except on the union of the
two lines u “ α and t “ α. In the integral, it is only this expression which
intervenes.

Lemma 4 For each algorithm QuickMin, QuickMax, and QuickValα, the se-
quence ϕpkq satisfies, for k ě 2,

ϕ´pkq “ 2J rtk´2s, ϕ`pkq “ 2J rp1´ uqk´2s,

and

ϕαpkq “
4

k ` 1
J rpt_ α´ u^ αqk´2s.

3.8 Exact expression of the mean number of symbol comparisons in
the Bernoulli model.

We now wish to return to the Bernoulli model pBn,Sq, where the number of
keys is fixed and equal to n. The mean number Spnq of symbol comparisons
used by the algorithm when it deals with n words independently drawn from
the same source is related to SZ and then to the sequence ϕpkq by the equation

Spnq “
n
ÿ

k“2

p´1qk
ˆ

n

k

˙

ϕpkq . (24)

Case of the first three algorithms. Lemma 4 provides in these three cases an
exact formula for the mean number Spnq of symbol comparisons:



Towards a realistic analysis of QuickSelect 31

Proposition 3 The mean number of symbol comparisons, namely QM˘pnq for
QuickMin and QuickMax, and QVαpnq for QuickValαpnq, admits an exact ex-
pression which involves the functional J of the source:

QM´pnq “ 2
n
ÿ

k“2

p´1qk
ˆ

n

k

˙

J rtk´2s,

QM`pnq “ 2
n
ÿ

k“2

p´1qk
ˆ

n

k

˙

J rp1´ uqk´2s,

QVαpnq “ 4
n
ÿ

k“2

p´1qk

k ` 1

ˆ

n

k

˙

J rpt_ α´ u^ αqk´2s.

Note that our principle applies and, when we replace the functional J by
the integral L on the triangle T , we obtain a formula for the number of key
comparisons for each algorithm.

Case of QuickQuantα and QuickRand. We now relate the mean number of
symbol comparisons QQαpnq of the algorithm QuickQuantαpnq to the mean
number of symbol comparisons QVαpnq of the algorithm QuickValαpnq.

For a sequence x “ px1, x2, . . . , xnq P In, the algorithm QuickQuantpα, n,xq
outputs the word whose parameter is the real of rank t1 ` αpn ´ 1qu “
tαn` 1´αu in the sequence x, denoted by Rankpα, n,xq. The two algorithms
QuickQuantpα, n,xq and QuickValpRankpα, n,xq, n,xq behave exactly in the
same way. This is why we have to study, for each α and n fixed, the distri-
bution of the random variable r0, 1sn Ñ r0, 1s, defined as x ÞÑ Rankpα, n,xq.
This variable is just the order statistic of rank m “ tαn ` 1 ´ αu, and its
density fnpα, vq is the Beta density with parameters pm,n´m` 1q, namely

fnpα, vq “
n!

pm´ 1q!pn´mq!
vm´1p1´vqn´m, with m “ tαn`1´αu. (25)

This means that fnpα, vq dv is the probability that Rankpα, n,xq belongs to
the interval rv, v ` dvs, and the following relation holds:

QQpα, n,xq “

ż

I
QVpv, n,xq fnpα, vq dv. (26)

On the other hand, if we denote by QQpα, n,xq and QVpα, n,xq the number
of symbol comparisons of each algorithm when it is given the sequence x, the
two mean numbers QQαpnq, QVαpnq are given by

QQαpnq “

ż

In
QQpα, n,xq dx, QVαpnq “

ż

In
QVpα, n,xq dx.
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Then, using (26), there is an exact integral formula for QQαpnq, namely,

QQαpnq “

ż

In
QQpα, n,xq dx

“

ż

InˆI
QVpv, n,xq fnpα, vq dv dx

“

ż

I
QVvpnq fnpα, vq dv. (27)

In the same vein, the mean number QSpm,nq of symbol comparisons of
QuickSelectpm,nq is then related to the Beta distribution βm,n´m`1 via the
equality

QSpm,nq “

ż

I
QVvpnqβm,n´m`1pvq dv

“
n!

pm´ 1q!pn´mq!

ż

I
QVvpnqv

m´1p1´ vqn´m dv.

The mean number of symbol comparisons QRpnq performed by the QuickRand

algorithm on n words is equal to

QRpnq “
1

n

n
ÿ

m“1

QSpm,nq,

and involves the mean of the densities βm,n´m`1, which can be written as a
binomial sum:

1

n

n
ÿ

m“1

βm,n´m`1pvq “
n
ÿ

m“1

pn´ 1q!

pm´ 1q!pn´mq!
vm´1p1´ vqn´m “ 1.

This proves the equality

QRpnq “

ż

I
QVvpnq dv.

We have thus obtained an exact formula for the mean number Spnq for the
other two variants QuickQuantα and QuickRand.

Proposition 4 The mean numbers of symbol comparisons QQαpnq for the al-
gorithm QuickQuantα and QRpnq for QuickRand each admit exact expression
as a function of QVαpnq:

QQαpnq “

ż

I
fnpα, vq QVvpnq dv, QRpnq “

ż

I
QVvpnq dv.
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Towards the analytic part of the analysis. We have now obtained the exact
expression of Spnq, and this concludes the algebraic part of the analysis. How-
ever, the formulae obtained in Propositions 3 and 4 do not give an easy or
straightforward access to the asymptotic behaviour of Spnq (when nÑ8). In
order to obtain asymptotic estimates, we have now to conduct the asymptotic
part of the analysis, which deals with analytic tools. This will be accomplished
in the following two sections, as there are indeed two different cases:

paq For the algorithms QuickVal (and its variants), the Rice’s method will
be applied to expressions obtained in Proposition 3, and this is done in
Section 4.

pbq For the QuickQuantαpnq algorithm, we operate in an indirect way, and we
deal with QQαpnq by comparing it to QVαpnq, with Proposition 4. This is
done in Section 5, with a strong use of Laplace’s method.

4 Asymptotic Analysis of QuickMin, QuickMax, QuickVal, and
QuickRand.

In order to obtain asymptotic estimates of the mean Spnq, we now use analytic
tools, namely the Rice’s method, which transforms a binomial recurrence into
an integral in the complex plane. We are led to deal with the mixed Dirichlet
series $psq, which will be the analytic lifting of the sequence ϕpnq. We then
need tameness properties of the source, which entail tameness for the series
$psq, so that the asymptotic behaviour can be estimated.

4.1 Rice’s method.

First step: An integral form. The first step of the Rice’s method transforms a
binomial recurrence of type (11) into an integral form (see [19,20]).

Proposition 5 Let Spnq be a numerical sequence which can be written as

Spnq “
n
ÿ

k“2

ˆ

n

k

˙

p´1qkϕpkq.

Assume that the sequence pϕpkqq admits an analytic lifting $psq in the half-
plane <s ą 1, which is there of polynomial growth with order at most r. Then
the sequence Spnq admits a Nörlund-Rice representation, for n ą r ` 1 and
any d with d Ps1, 2r, namely,

Spnq “ ´
1

2iπ

ż d`i8

d´i8

Lnpsq ¨$psq with Lnpsq :“
p´1qn n!

sps´ 1q . . . ps´ nq
. (28)

The function Lnpsq is called the Rice kernel.
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Second step: shifting to the left. Then, along general principles in analytic
combinatorics as explained in [9,10], the integration line can be pushed to the
left, as soon as $psq has good analytic properties.

Proposition 6 Assume that the lifting $psq is meromorphic in a region R
on the left of <s “ 1 and of polynomial growth there (for |=s|Ñ8). Then

Spnq “ ´

«

ÿ

k

ResrLnpsq$psq; s “ sks `
1

2iπ

ż

C
Lnpsq$psq ds

ff

, (29)

where C is a curve (oriented from the south to the north) of class C1 included
in R and the sum is extended to all poles sk of Lnpsq inside the domain D
delimited by the vertical line <s “ d and the curve C.

The dominant singularities of Lnpsq ¨$psq provide the asymptotic behaviour
of Spnq, and the remainder integral is estimated using the polynomial growth
of Lnpsq ¨$psq when |=psq|Ñ8.

A particular case. We thus need a region R on the left of <s “ 1, where $psq
is of polynomial growth (for |=s| Ñ 8) and meromorphic. We need also a
good knowledge of its poles. The functions $psq involved in this paper fulfil
nice properties, and the general framework for applying the Rice’s method can
be described as follows:

Proposition 7 If the Dirichlet series $psq has an abscissa of absolute conver-
gence equal to δ with δ Ps0, 1r, then, for any δ1 Psδ, 1r, the following asymptotics
holds for the sequence Spnq:

Spnq “ $p1q ¨ n`Opnδ
1

q.

Here the constant of the O–term only depends on δ1.

4.2 Expression of the analytic lifting.

We need first the analytic lifting s ÞÑ $psq of coefficients ϕpkq computed in
Lemma 4 to exist in the half-plane <s ą 1.

Lemma 5 For each of the algorithms QuickMin, QuickMax, and QuickValα,
the analytic lifting s ÞÑ $psq of coefficients ϕpkq computed in Lemma 4 exists
in the half-plane <s ą 1, and satisfies

$´psq “ 2J rts´2s, $`psq “ 2J rp1´ uqs´2s,

and

$pα, sq “
4

s` 1
J rpt_ α´ u^ αqs´2s.

As we wish to apply Rice’s Method, we need stronger properties for the se-
ries $psq. We will prove in the following Proposition 8 that, under tameness
properties of Dirichlet series of the source, then the Dirichlet series $psq will
satisfy hypotheses of Proposition 7.



Towards a realistic analysis of QuickSelect 35

4.3 Tameness of the mixed series.

We will show the following result, which relates the tameness of the mixed
series $pα, sq to the tameness of the source.

Proposition 8 Consider a source, its mixed series $´psq, $`psq relative to
QuickMin, QuickMax, and, for α P r0, 1s, the series $pα, sq relative to the
QuickValα algorithm. Then the following holds:

paq If the source is weakly Λ-tame with a width δΛ ă 1{2, let δ0 :“ 2δΛ. Then
the abscissa of absolute convergence of the mixed series $´psq, $`psq,
$p0, sq, $p1, sq is at most equal to δ0.

pbq If the source is weakly Λ-tame with a width δΛ and Π-tame with a width δΠ ,
let δ0 :“ maxp2δΛ, δΠq. Then, for any α P r0, 1s, the abscissa of absolute
convergence of the mixed series $pα, sq is at most equal to δ0.

We defer the proof of this proposition to Sections 4.5 through 4.8. We recall
that the relation between the series Π and Λ entails the inequality δΛ ď δΠ .

4.4 Final asymptotic estimates.

Now Rice’s method, with Lemma 5 and Propositions 7 and 8, leads to the
following result:

Theorem 3 The following holds:

paq Consider a source which is weakly Λ-tame with a width δΛ, and Π-tame
with a width δΠ . Assume that δ0 :“ maxp2δΛ, δΠq is strictly less than
1. Then the mean number of symbol comparisons for the QuickValαpnq
algorithm satisfies

QVαpnq “ nρpαq `Opnδq, with δ Psδ0, 1r.

The constant ρpαq is the value of the mixed series $pα, sq at s “ 1, and
the constant hidden in the O-term is uniform for α P r0, 1s. The function
α ÞÑ ρpαq is called the asymptotic slope of the QuickVal algorithm.

pbq Consider a source which is weakly Λ-tame with a width δΛ, and Π-tame
with a width δΠ . Assume that δ0 :“ maxp2δΛ, δΠq is strictly less than
1. Then, the mean number of symbol comparisons for the QuickRandpnq
algorithm satisfies

QRpnq “ n

„
ż

I
ρpαqdα



`Opnδq, δ Psδ0, 1r.

pcq Consider a weakly Λ-tame source with width δΛ ă 1{2. Then, the mean
number of symbol comparisons for the QuickMinpnq and QuickMaxpnq al-
gorithm satisfy

QM˘pnq “ nρ˘ `Opn
δq, with δ Ps2δΛ, 1r.

The constant ρ˘ is the value of the mixed series $˘psq at s “ 1. The
equalities ρ´ “ ρp0q and ρ` “ ρp1q hold.
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Proof This is a clear application of the Rice’s method, as stated in Proposition
7, with together with Proposition 8. [\

It then remains to study the tameness of $psq and prove Proposition 8.

4.5 Principles of the proof of Proposition 8.

We recall that the analysis of the QuickMin or QuickMax algorithms is based
on the study of the mixed series

$˘psq “ 2J rφs´2
˘ s, with φ´pu, tq “ t and φ`pu, tq “ 1´ u,

whereas the analysis of the algorithm QuickValα is based on the study of the
mixed series

$pα, sq :“
4

s` 1
$pα, sq, with $pα, sq “ J rφs´2

α s (30)

which involves the function

φαpu, tq :“ t_ α´ u^ α. (31)

For α “ 0, the function φ0pu, tq coincides with the function φ´pu, tq “ t of
QuickMin on the whole triangle T , whereas, for α “ 1, the function φ1pu, tq
coincides with the function φ`pu, tq “ 1´ u of QuickMax on the triangle T .

For α Ps0, 1r, there are three domains for the function φα, shown in Fig-
ure 8:

– The rectangle R “ r0, αs ˆ rα, 0s where φαpu, tq equals t´ u.
– The lower triangle T´ “ Tr0,αs, where φαpu, tq equals α´ u.
– The upper triangle T` “ Trα,1s, where φαpu, tq equals t´ α.

There is only one domain of interest (the whole triangle T ) when α equals 0
or 1, and

$´psq “
s` 1

2
$p0, sq, $`psq “

s` 1

2
$p1, sq.

The important behaviour of the mixed series $psq is around <s “ 1 and more
precisely at s “ 1, where the factor ps` 1q{2 equals 1. This explains why the
behaviours of QuickMin and QuickVal0 on the one hand, and the behaviours
of QuickMax and QuickVal1 on the other hand, are asymptotically equivalent.
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Trα,1sRα

6

ap`q

6

bp`q

Fig. 8: The three domains useful for the study of $pα, sq (left) and the strad-
dling triangle (right).

Scheme of the proof of Proposition 8. For a domain U Ă T and any integer
` ě 2, and any function φ P L1pT q we define

J pUqrφs :“

ż

U
pγpu, tq ` 1qφpu, tqdu dt, J pUq` rφs :“

ż

T p`qXU
φpu, tq du dt,

where T p`q is the union of all triangles Tw with w P Σ`. Then the following
decomposition holds:

J pUqrφs “
ÿ

`ě0

J pUq` rφs.

In the case of general α, the integral $pα, sq is the sum of three terms. Each
term is of the form

$pUqpα, sq “
4

s` 1
$pUqpα, sq, with $pUqpα, sq :“ J pUqrφs´2

α s,

and U is any subset Rα, Tr0,αs or Trα,1s. Furthermore, the following decompo-
sition holds:

$pUqpα, sq “
ÿ

`ě0

$
pUq
` pα, sq, with $

pUq
` pα, sq :“ J pUq` rφs´2

α s. (32)

Relation between $psq and Dirichlet series Λpsq, Πpsq. This study aims at
relating the series $psq to (one of) the series Λpsq or Πpsq. This entails a
relation between their abscissae of absolute convergence. We deal with the

functions $
pUq
` psq and with the inequality

ˇ

ˇ

ˇ
$
pUq
` psq

ˇ

ˇ

ˇ
ď $

pUq
` pσq for σ “ <s,

it is sufficient to deal with real values of parameters σ, and obtain inequalities
of the kind

$
pUq
` pσq ď C1 Λ`pσ0q or $

pUq
` pσq ď C2Π`pσ1q (33)
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for some constants C1 and C2 and some abscissae σ0 or σ1 related to σ. When
now one of the inequalities σ0 ą 1 ` δΛ or σ1 ą δΠ holds, then weak Λ-
tameness or Π–tameness entails that the abscissa of absolute convergence of
the series $pUqpsq is at most σ.

We first consider the integral on the two triangles, then on the (possible)
rectangle, and aim to obtain bounds of the kind (33). We will see that Lemmas
6 or 7 indeed provide such bounds.

4.6 Study of integrals over triangles.

We first consider integrals over triangles Tr0,αs, Trα,1s and we prove the follow-
ing estimates:

Lemma 6 For any σ1 ą 0, there exists a constant C, such that, for any
α P r0, 1s, and for U P tTr0,αs, Trα,1su, the function $pUqpα, sq satisfies the
inequality, for σ :“ <s ě σ1,∣∣∣$pUqpα, sq∣∣∣ ď CΛ

´

1`
σ

2

¯

.

If the source is weakly Λ-tame with width δΛ, then the abscissa of absolute
convergence of the series s ÞÑ $pUqpα, sq is at most 2δΛ.

Proof This proof is an easy extension of the proof which is done in [4] for the

QuickMin algorithm. Using the reflected source

p

S described in Section 2.6, it is
sufficient to deal with one of the two cases for U . Indeed, the mixed Dirichlet
series $pα, sq relative to a source S and the mixed Dirichlet series

p

$pα, sq

relative to the reflected source

p

S satisfy the identity
p

$
pTr0,αsq

pα, sq “ $pTr1´α,1sqp1´ α, sq.

Since the two sources have the same Dirichlet series Πpsq :“

p

Πpsq, they share
the same tameness properties.

We consider the function on the upper triangle, and we study the “under-
lined” functions, namely

$pTrα,1sqpα, sq “
ÿ

`ě0

$
pTrα,1sq
` pα, sq

$
pTrα,1sq
` pα, sq “

ÿ

wPΣ`

ż

TwXTrα,1s
pt´ αqs´2du dt.

For each `, we consider some real A P rα, 1s (to be fixed later as a function of
σ and `) and split the sum into three sums, each of them relative to a subset
of prefixes: the prefixes w for which the right end bw belongs to rα,Ar, the
prefixes w for which the left end aw belongs to rA, 1s, and finally the unique
prefix τ for which A P raτ , bτ s. We omit the reference to the real α, and the

three sums are respectively denoted by $
p`q

` pσq, $
p´q

` pσq, $
p“q

` pσq.



Towards a realistic analysis of QuickSelect 39

For bw P rα,As, we use the inequality

ż bw

aw

pt´ awqpt´ αq
σ´2dt ď

ż bw

aw

pt´ αqσ´1dt,

yielding

$
p´q

` pσq ď

ż A

α

pt´ αqσ´1dt “
1

σ
pA´ αqσ.

For aw P rA, 1s, we observe the inequality

ż bw

aw

pt´ awqpt´ αq
σ´2dt ď

1

2
pA´ αqσ´2p2w,

which entails

$
p`q

` pσq ď
1

2
pA´ αqσ´2Λ

rα,1s
` p2q.

We now choose A such that the two previous bounds are equal, namely,

A´ α “
´σ

2
Λ
rα,1s
` p2q

¯1{2

ď 1´ α,

so that A belongs to the interval rα, 1s. Then

$
p`q

` pσq `$
p´q

` pσq ď C1pσq
”

Λ
rα,1s
` p2q

ıσ{2

,

where C1pσq is bounded for σ ě σ1 (for any σ1 ą 0).

The middle part $
p“q

` pσq corresponds to the fundamental interval raτ , bτ s of

length pτ ď Λ
rα,1s
` p2q1{2, and

$
p“q

` pσq ď

ż bτ

aτ

pt´ αqσ´1dt ď
1

σ
pA´ α` pτ q

σ ď C2pσq
”

Λ
rα,1s
` p2q

ıσ{2

,

where C2pσq is bounded for σ ě σ1 (for any σ1 ą 0).

Finally, we use the inequality Λ
rα,1s
` p2q ď Λ`p2q, the log-convexity of Λ`p2q,

and the equality Λ`p1q “ 1 which together entail the inequality, for σ ď 2,

Λ`p2q
σ{2 “ Λ`p2q

σ{2Λ`p1q
1´σ{2 ď Λ`

´

2
σ

2
` 1´

σ

2

¯

“ Λ`

´

1`
σ

2

¯

,

and, taking the sum over integers `, we have obtained the bound for the integral
over the upper triangle,

ˇ

ˇ

ˇ
$pTr1,αsqpα, sq

ˇ

ˇ

ˇ
ď C Λ

´

1`
σ

2

¯

.

This is the same bound for the integral on the lower triangle. [\
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4.7 Study of the integral over the rectangle.

We prove the following:

Lemma 7 For any σ1 ą 0, there exists a constant C for which the integral
$pRqpα, sq satisfies∣∣∣$pRqpα, sq∣∣∣ ď CΠpσq for any σ ě σ1.

If the source is Π-tame with width δΠ , then the abscissa of convergence of all
the series s ÞÑ $pRqpα, sq is at most δΠ .

Proof The integral $pRqpα, sq is the sum of the integrals $
pRq
` pα, sq defined

as

$
pRq
` pα, sq :“

ż

T p`qXR
pt´ uqs´2 du dt.

For each depth `, and for each α, there exists a unique word wp`q whose
fundamental interval of the form rap`q, bp`qs contains α. Then, the intersection
T p`q XR is the rectangle rap`q, αs ˆ rα, bp`qs, and

$
pRq
` pα, σq “

ż bp`q

α

dt

ż α

ap`q
pt´ uqσ´2du

“
1

σpσ ´ 1q

”

pbp`q ´ ap`qqσ ´ pbp`q ´ αqσ ´ pα´ ap`qqσ
ı

.

If we let

c “
bp`q ´ α

bp`q ´ ap`q
, d “

α´ ap`q

bp`q ´ ap`q
, with c` d “ 1,

then the integral is written as

$
pRq
` pα, σq “

1

σpσ ´ 1q
pbp`q ´ ap`qqσ

“

cp1´ cσ´1q ` dp1´ dσ´1q
‰

.

There are two cases for σ :“ <s. Consider any ρ0 ą 0. The (easy) first case
arises for σ ě 1` ρ0 ą 1, where

$
Rq
` pσq ď

2

ρ0p1` ρ0q
pbp`q ´ ap`qqσ ď

2

ρ0p1` ρ0q
Π`pσq.

Consider now the case when |σ ´ 1| ď ρ0, and let ρ :“ σ ´ 1. The series
expansion

xρ ´ 1 “
ÿ

kě1

ρk

k!
logk x “ ρ log x` ρ2 |log x|2

ÿ

kě0

ρk

pk ` 2q!
logk x

of x ÞÑ xρ provides the estimate

|xρ ´ 1´ ρ log x| ď ρ2 |log x|2 e|ρ log x|.



Towards a realistic analysis of QuickSelect 41

For x P r0, 1s, one has |log x| “ ´ log x and e|ρ||log x| “ e´|ρ| log x “ x´|ρ|, so
that ∣∣∣∣xp1´ xρqρ

` x log x

∣∣∣∣ ď ρ x log2 x e|ρ||log x| “ ρx1´|ρ| log2 x.

If now |ρ| ď ρ0, with ρ0 ă 1, there exists C1 (which depends on ρ0) for
which the inequality x1´|ρ| log2 x ď C1 holds for any x P r0, 1s and any ρ with
|ρ| ď ρ0. Furthermore, the entropic sum hpxq “ ´x log x ´ p1 ´ xq logp1 ´ xq
belongs to r0, log 2s, and finally

$
pRq
` pα, σq “

2

σ
pbp`q ´ ap`qqσ rhpcq ` |σ ´ 1| Op1qs .

Returning to $pα, sq itself and taking the sum over all the integers ` gives the
final bound

$pRqpα, σq ď CpσqΠpσq, for any σ ě σ0 ą 0.

[\

4.8 End of the proof.

With the two Lemmas, and the formula

$pα, sq “ $pT´qpα, sq `$pT`qpα, sq `$pRqpα, sq,

we obtain the following bound

|$pα, sq| ď C
”

Λ
´

1`
σ

2

¯

`Πpσq
ı

for some constant C.

This entails that the series $pα, sq is (absolutely) convergent as soon as σ ě
max p2δΛ, δπq, and thus the result for QuickValα. Observe that, in the cases
α “ 0 or α “ 1, there is only one triangle (either T´ or T`) and no rectangle,
and the weak Λ-tameness is then sufficient to conclude.

5 Asymptotic estimates for the QuickQuantα Algorithm.

We return to the analysis of the QuickQuant algorithm with Proposition 4 and
Theorem 3, and will prove the following result that exactly entails Assertion paq
of Theorem 1.

Theorem 4 Consider a source which is weakly Λ-tame with a width δΛ, and
Π-tame with a width δΠ . Assume that δ0 :“ maxp2δΛ, δΠq is strictly less than
1. Then, for any α P r0, 1s, the mean number of symbols comparisons performed
by the QuickQuantα algorithm satisfies

QQαpnq “ nρpαq `Opnδq, with δ Psp1` δ0q{2, 1r.

Moreover, the constant hidden in the O-term is uniform on any interval of the
form rα1, 1´ α1s with α1 ą 0.
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We first remark that the theorem is already proven for α “ 0 or α “ 1.
Indeed, for α “ 0, the QuickQuantα algorithm coincides with QuickMin and for
α “ 1, with QuickMax. In these cases, this is just an application of Theorem 3,
which provides an exponent δ Psδ0, 1r (a priori smaller than the exponent of
the present Theorem 4).

We now focus on the case when α belongs to the open interval s0, 1r. The
relation between the costs QQαpnq and QVvpnq given in Proposition 4 together
with the estimate for QVvpnq obtained in Theorem 3 leads us to the following
estimate for QQαpnq, with δ Psδ0, 1r:

QQαpnq “

ż 1

0

fnpα, vq QVvpnq dv “

ż 1

0

fnpα, vq
“

nρpvq `Opnδq
‰

dv.

Since the constant of the O-term is uniform with respect to v, we obtain

QQαpnq “ n ¨ Inpαq `Opn
δq with Inpαq :“

ż 1

0

fnpα, vqρpvq dv. (34)

It remains to study the integral Inpαq, and compare it to the value ρpαq. As
the density fnpα, vq can be compared to a large power of a function fα, we are
then led to apply Laplace’s method (see for instance [10] or [5]), which first
needs some regularity properties of the function ρ that we now establish.

5.1 Regularity of the asymptotic slope of QuickVal.

In order to compare the behaviors of the algorithms QuickVal and QuickQuant,
and use Laplace’s method, we need the asymptotic slope to be regular enough.

Proposition 9 Consider a source which is weakly Λ-tame with a width δΛ,
and Π-tame with a width δΠ . Assume that δ0 :“ maxp2δΛ, δΠq is strictly less
than 1. Then, the asymptotic slope α ÞÑ ρpαq of the QuickVal algorithm is
Hölder with exponent η with η ă 1´ δ0: for any η with 0 ă η ă 1´ δ0, there
exists a constant Cη for which

|ρpβq ´ ρpαq| ď Cη |β ´ α|η @pα, βq P r0, 1s2.

Proof We assume that the inequality α ď β holds and begin with the inequality

|ρpβq ´ ρpαq| ď 2J
”
∣∣∣φ´1
α ´ φ´1

β

∣∣∣ı .
There are six domains, described in Figure 9. On each domain, we obtain an

upper bound for the function
∣∣∣φ´1
α ´ φ´1

β

∣∣∣, of the form∣∣∣φ´1
α ´ φ´1

β

∣∣∣ ď |β ´ α|η
´

φ´1´η
α ` φ´1´η

β

¯

, for any η P r0, 1s.

We do not directly obtain such an upper bound: on each domain we get a
“natural” upper bound of the form∣∣∣φ´1

α ´ φ´1
β

∣∣∣ ď |β ´ α|η Fα,β , (35)
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p0, 0q

p1, 1q

pα, αq

pβ, βq

q
Tr0,αs

Trα,βs

Trβ,1s
Domain U Fα,βpu, tq for pu, tq P U

Tr0,αs pα´ uq´1´η “ φ´1´η
α pu, tq

Trβ,1s pt´ βq´1´η “ φ´1´η
β pu, tq

Trα,βs pt´ αq´1´η ` pβ ´ uq´1´η

“ φ´1´η
α pu, tq ` φ´1´η

β pu, tq

rα, βs ˆ rβ, 1s pt´ uq´1´η “ φ´1´η
β pu, tq

r0, αs ˆ rα, βs pt´ uq´1´η “ φ´1´η
α pu, tq

r0, αs ˆ rβ, 1s 0

Fig. 9: The six domains for the study of |ρpαq ´ ρpβq| for any η P r0, 1s. The
second column of the table on the right describes the “natural” intermediary
function Fα,β mentioned in (35); it is expressed as a function of φα and φβ .

and, on each domain, the function Fα,β is related to the functions φα or φβ or
both. This approach is summarised in Figure 9. The exponent η will be chosen
later on.

We first explain how to obtain the results described in the table of Figure 9.
Using the reflected source (described in Section 2.6), it is enough to study the
function |φ´1

α ´ φ´1
β | on three domains: two triangles, Tr0,αs and Trα,βs, and

one rectangle, rα, βs ˆ rβ, 1s.

On the triangle Tr0,αs, with the inequalities β ´ α ď β ´ u and α´ u ď β ´ u
we have∣∣∣φ´1

β pu, tq ´ φ
´1
α pu, tq

∣∣∣ “ pβ ´ αq

pβ ´ uqpα´ uq
ď

pβ ´ αqη

pβ ´ uqηpα´ uq
ď

pβ ´ αqη

pα´ uq1`η
.

On the rectangle rα, βs ˆ rβ, 1s, using the inequalities u´ α ď β ´ α ď t´ α
and t´ u ď t´ α we have∣∣∣φ´1
β pu, tq ´ φ

´1
α pu, tq

∣∣∣ “ pu´ αq

pt´ αqpt´ uq
ď pβ´αqη

pt´ αq1´η

pt´ αqpt´ uq
ď
pβ ´ αqη

pt´ uq1`η
.

On the triangle Trα,βs, with the inequalities β ´ α ě t´ α and β ´ α ě β ´ u,
we obtain∣∣∣φ´1
β pu, tq ´ φ

´1
α pu, tq

∣∣∣ ď 1

t´ α
`

1

β ´ u
ď pβ´αqη

ˆ

1

pt´ αq1`η
`

1

pβ ´ uq1`η

˙

.

Now, Figure 9 states six domains partitioning the unit triangle and gives in a
table expressions for Fα,βpu, tq in each of these domains. For each domain U
this yields

J pUq
”
∣∣∣φ´1
α ´ φ´1

β

∣∣∣ı ď |β ´ α|η
´

J pUq
”

|φα|´1´η
ı

` J pUq
”

|φβ |´1´η
ı¯

.

We take the sum over the six domains U , and we obtain

J
”

|φα|´1
´ |φβ |´1

ı

ď |β ´ α|η
`

$pα, 1´ ηq `$pβ, 1´ ηq
˘

.
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We now use the results of Proposition 8 which proves that the functions s ÞÑ
$pα, sq are uniformly bounded on the half-plane <s ě 1´ δ, with δ ă 1´ 2δ0.
Then, choosing any η with 0 ă η ă δ, we obtain, with

Cη :“ 2 sup t$pα, 1´ ηq, α P r0, 1su,

the inequality

J
”
∣∣∣φ´1
α ´ φ´1

β

∣∣∣ı ď |β ´ α|η
`

$pα, 1´ ηq `$pβ, 1´ ηq
˘

ď Cη |β ´ α|η .

[\

5.2 A tailored version of Laplace’s method.

Since we can only guarantee the function ρ to be Hölder, we need, and now
state, a version of Laplace’s method suited to this situation.

Theorem 5 (Laplace’s method) Let ρ and f be positive functions defined
over the unit interval I “ r0, 1s of the real line, and consider the integrals

Jn :“

ż

I
ρpvq fpvqn dv, Kn :“

ż

I
fpvqn dv.

Assume the following:

piq ρ is Hölder with exponent η;
piiq f is continuous on r0, 1s and infinitely differentiable on s0, 1r;
piiiq f attains its maximum at a unique point v0 Ps0, 1r;
pivq The three real numbers ρpv0q, fpv0q, f

2pv0q are non zero.

Then, the integrals Jn and Kn satisfy

Jn
Kn

“ ρpv0q
“

1`Opn´η
1
{2q

‰

, with η1 ă η.

Proof [Sketch of proof.] In Laplace’s method, the contribution of a small inter-
val around v0 gives the main asymptotic term. More precisely, one considers
the two integrals

J p1qn :“

ż

An

ρpvqfpvqn dv, Kp1qn :“

ż

An

fpvqn dv,

with An :“ rv0 ´ log n{
?
n, v0 ` log n{

?
ns.

First, the integral K
p1q
n is proven to give the main term for Kn in Laplace’s

method, and, moreover, the Hölder condition for ρ is enough to prove that

J
p1q
n gives the main term for Jn in Laplace’s method. More precisely, one has

J
p1q
n

Jn
“ 1`O

ˆ

1

n

˙

,
K
p1q
n

Kn
“ 1`O

ˆ

1

n

˙

.
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Second, on the interval An, the following estimate holds for ρ:

ρpvq “ ρpv0q `O

ˆ

log n
?
n

˙η

“ ρpv0q
”

1`Opn´η
1
{2q

ı

, with η1 ă η.

Since η1 ă 1, it implies the estimates

J p1qn “ ρpv0qK
p1q
n r1`Opn´η

1
{2qs, and thus Jn “ ρpv0qKn r1`Opn

´η1{2qs.

[\

We now study the integral Inpαq defined in (34),

Inpαq “

ż

I
ρpvq fnpα, vq dv,

which involves the beta density fnpα, vq with parameters ptαn` p1´ αqu, n´
tαn ` p1 ´ αqu ` 1q. We follow the principles of Laplace’s method, and we
perform two steps.

5.3 Proof of Theorem 4. First step.

In the first step, we “forget” the integer parts in the expression of fnpα, vq, and

we deal with the Beta density pfnpα, vq of parameters pαn`1´α, n´αn`αq,
and we wish to study the integral

pInpαq :“

ż

I
ρpvq pfnpα, vqdv.

The function pfnpα, vq is written as a product

pfnpα, vq “ pCpα, nq fαpvq
n´1,

with pCpα, nq :“
Γ pn` 1q

Γ pαn` 1´ αqΓ pn´ αn` αq
, fαpvq :“ vαp1´ vqp1´αq.

We first deal with the integrals without the Gamma-factor pCpα, nq, namely

Jnpαq :“

ż

I
ρpvqfαpvq

n´1 dv, Knpαq :“

ż

I
fαpvq

n´1 dv,

and use Laplace’s method. We first check the hypotheses for the function fα.
For α Ps0, 1r, the function fαpvq satisfies

f 1αpvq “ vα´1p1´ vq´α pα´ vq so that f 1αpαq “ 0,

f2αpαq “ ´
1

αp1´ αq
fαpαq so that f2αpαq ‰ 0,
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and fαpvq attains its maximum at v “ α. Then, Laplace’s method can be
applied for any α Ps0, 1r, and provides the estimate

Jnpαq “ ρpαq ¨Knpαq ¨ r1`Opn
´η1{2qs.

Now, the initial integral of interest is

pInpαq :“

ż

I
ρpvq pfnpα, vq dv “ pCpα, nqJnpαq,

whereas the product pCpα, nqKnpαq equals 1, since pfnpα, vq is a density. This
leads to the estimate

pInpαq :“

ż

I
ρpvq pfnpα, vq dv “ ρpαq ¨ r1`Opn´η

1
{2qs.

5.4 Proof of Theorem 4. Second step.

We now take into account the “integer part”, and we have to estimate the
difference ∣∣∣Inpαq ´ pInpαq

∣∣∣ ď ż

I
ρpvq

∣∣∣fnpα, vq ´ pfnpα, vq
∣∣∣ dv ď KRn

with Rn :“
ş

I

∣∣∣fnpα, vq ´ pfnpα, vq
∣∣∣ dv. We compare Rn to the integrals

Knpαq :“

ż 1

0

fnpα, vq dv, pKnpαq :“

ż 1

0

pfnpα, vq dv, (36)

which are both equal to 1. We will show that Rn is “negligible” with respect
to these integrals. Here, Un is said to be negligible with respect to Vn if Un{Vn
is Op1{nq.

The two Beta densities fnpα, vq and pfnpα, vq have the same shape: they are
both unimodal, attain their maxima respectively at v “ α and v “ tαn´αu{n,
and are equal to 0 at v “ 0 and v “ 1. We write the difference |fnpα, vq ´
pfnpα, vq| as

∣∣∣fnpα, vq ´ pfnpα, vq
∣∣∣ “ ∣∣∣ pfnpα, vq∣∣∣

∣∣∣∣∣1´ fnpα, vq

pfnpα, vq

∣∣∣∣∣ ;

and the ratio fnpα, vq{ pfnpα, vq is a product of two ratios, namely, the ratio
between the Gamma factors and the ratio between the functions. First, the
ratio between the Gamma factors, namely,

Cpα, nq

pCpα, nq
“

Γ pαn` 1´ αqΓ pn´ αn` αq

Γ ptαn´ αu` 1qΓ pn´ tαn´ αuq
,
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is evaluated thanks to Stirling’s formula for xÑ8 and a P r0, 1s:

Γ px` aq

Γ pxq
“ xa

„

1`O

ˆ

1

x

˙

and thus
Cpα, nq

pCpα, nq
“

ˆ

α

1´ α

˙tαn´αu

`O

ˆ

1

n

˙

.

On any interval rα1, 1´α1s, with α1 ą 0, the ratio α{p1´αq is bounded both
from above and below, and the fractional part belongs to r0, 1s so that

Cpα, nq

pCpα, nq
“

ˆ

α

1´ α

˙tαn´αu „

1`O

ˆ

1

n

˙

. (37)

Second, it is possible to choose an interval An for which the following holds:

paq The interval An contains the two points α and tαn´ αu{n “ α`Op1{nq;

pbq The two integrals of fnpα, vq and pfnpα, vq on the two intervals which form

IzAn are negligible with respect to the integral Knpαq or pKnpαq. It is then

the same for the integral of the difference |fnpα, vq ´ pfnpα; vq|;
pcq On the interval An, the ratio p1´ vq{v is uniformly bounded (with respect

to n) both from below and above, and the ratio fn{ pfn satisfies

fnpα, vq

pfnpα, vq
“

ˆ

1´ v

v

˙tαn´αu

¨
Cpα, nq

pCpα, nq

“

ˆ

1´ v

v

˙tαn´αuˆ
α

1´ α

˙tαn´αu „

1`O

ˆ

1

n

˙

.

These three properties for the interval An, entail the estimate, for v P An,∣∣∣∣∣1´ fnpα, vq

pfnpα, vq

∣∣∣∣∣ “ gnpvq`O

ˆ

1

n

˙

, with gnpvq “

∣∣∣∣∣1´
ˆ

1´ v

v

α

1´ α

˙tαn´αu
∣∣∣∣∣ ,

and thus the function
∣∣∣fnpα, vq ´ pfnpα, vq

∣∣∣ satisfies

∣∣∣fnpα, vq ´ pfnpα, vq
∣∣∣ “ pfnpα, vq ¨

∣∣∣∣∣1´ fnpα, vq

pfnpα, vq

∣∣∣∣∣ “ pfnpα, vq

ˆ

O

ˆ

1

n

˙

` gnpvq

˙

.

We observe the upper bound

gnpvq ď gpvq with gpvq “

∣∣∣∣1´ ˆ

1´ v

v

α

1´ α

˙
∣∣∣∣ “ ∣∣∣∣ v ´ α

vp1´ αq

∣∣∣∣ .
As the last function is zero at v “ α, Laplace’s method applies and shows that
the integral

ż

An

pfnpα, vqgnpvq dv
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is negligible with respect to the integral pKnpαq. And finally, the integral of

|fnpα, vq´ pfnpα, vq| on the interval An is negligible with respect to the integral
pKnpαq. We have proven in this section the estimate

Inpαq :“

ż 1

0

ρpvqfnpα, vq dv “ pInpαq `Op1{nq,

and, together with the estimate of the previous section,

Inpαq “ ρpαqr1`Opn´η
1
{2qs `Op1{nq “ ρpαq `Opn´η

1
{2q.

5.5 Conclusion of the proof of Theorem 4.

First we recall that, for α “ 0 the QuickQuantα algorithm coincides with
QuickMin, and for α “ 1 the QuickQuantα algorithm coincides with QuickMax.
Then, the theorem holds for α “ 0 and α “ 1. For α Ps0, 1r, we begin with
(34), and, with δ ą δ0 and δ0 “ maxp2δΛ, δπq, we relate QQαpnq to the integral
Inpαq:

QQαpnq “ nInpαq `Opn
δq.

Moreover, we have obtained an estimate for Inpαq which involves an exponent
η1 ă η ă 1´ δ0:

Inpαq “ ρpαq `Opn´η
1
{2q .

We finally obtain

QQαpnq “ n ¨ ρpαq `Opn1´pη
1
{2qq `Opnδq .

As 1 ´ pη1{2q ą 1 ´ pη{2q ą 1 ´ p1 ´ δ0q{2 “ p1 ` δ0q{2 ą δ0, we obtain a
remainder term of order Opnδ

1

q with δ1 ą p1 ` δ0q{2. This proves Assertion
paq of Theorem 1 for any α Ps0, 1r. Note that on the interval rα1, 1´α1s, with
α1 ą 0, the constant hidden in the O-term is uniform with respect to α.

Remark. It is probably possible to use the asymptotic normality of the α-
quantile (as proven by Mosteller in [17]) for comparing more directly QVαpnq
and QQαpnq. As we wish to obtain the precise remainder terms, we prefer to
give the proof described here.

Now, we have proven all the assertions of Theorem 1. We now focus on the
explicit expressions of the constants and prove Theorem 2.

6 Study of the asymptotic slope ρpαq.

We first provide an alternative expression for the asymptotic slope α ÞÑ ρpαq.
Then we use it to study the maximality of the function α ÞÑ ρpαq at α “ 1{2
when the source is unbiased memoryless, with an alphabet of odd size.
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6.1 An alternative expression for the asymptotic slope of
QuickQuant.

Let α P r0, 1s. The asymptotic slope κpαq for the mean number of key com-
parisons and the asymptotic slope ρpαq for the mean number of symbol com-
parisons are given by

κpαq “ 2

ż

T
φαpu, tq

´1 du dt,

ρpαq “ 2J rφ´1
α s “

ż

T
rγpu, tq ` 1sφαpu, tq

´1 du dt, (38)

where φα is defined as φαpu, tq :“ t_ α´ u^ α for a parameter α P r0, 1s.
We are interested in giving a “short” expression for the asymptotic slope

ρpαq. We first extend the definition of φα for any α P R, with

φαpu, tq “ t´ α (for α ď 0), φαpu, tq “ α´ u (for α ě 1).

This leads to an explicit expression for κ, now defined on the whole real line,
which involves an extension H of the entropy function h, usually only defined
on the interval r0, 1s. More precisely, we write κpyq “ 2r1`Hpyqs where Hpyq
is an extension of the entropic function h, defined as

Hpyq :“

$

’

’

’

’

&

’

’

’

’

%

y log

ˆ

1´
1

y

˙

if y ă 0

hpyq “ ´y log y ´ p1´ yq logp1´ yq, if y P r0, 1s

py ´ 1q log

ˆ

1´
1

y

˙

if y ą 1.

(39)

With such an extension of the function κ, we obtain the following “short”
expression for the asymptotic slope.

Proposition 10 For a source S with fundamental intervals raw, bws, the asymp-
totic slope of the QuickVal algorithm satisfies, for any α P r0, 1s,

ρpαq “
ÿ

wPΣ‹

pbw ´ awqκ

ˆ

α´ aw
bw ´ aw

˙

.

Proof Starting with the expression of ρpαq :“ $pα, 1q, namely,

1

2
ρpαq “

ÿ

wPΣ‹

ż

Tw
rpα_ tq ´ pα^ uqs´1 du dt,

we use the simple change of variables which maps Tw onto T , of the form
t “ aw ` pwt

1, u “ aw ` pwu
1, and the relations

pα_ tq “ aw ` rpα´ awq _ ppwt
1qs “ awpw ` pw

„ˆ

α´ aw
pw

˙

_ t1


,

pα^ uq “ aw ` rpα´ awq ^ ppwu
1qs “ awpw ` pw

„ˆ

α´ aw
pw

˙

^ u1


.
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These entail the equality

1

pw
pα_ tq ´ pα^ uq “

„ˆ

α´ aw
pw

˙

_ t1


´

„ˆ

α´ aw
pw

q ^ u1
˙

,

yielding the final result. [\

6.2 Maximality of the asymptotic slope of the QuickVal algorithm at
α “ 1{2.

It is not always true that the asymptotic slope ρpαq is maximal at ρ “ 1{2,
even for a symmetric source. A clear counterexample is shown for the simplest
source, the binary source, in Figure 2. The following result shows that this is
true for any unbiased memoryless source over an alphabet of odd size.

Proposition 11 For an unbiased memoryless source over an alphabet of odd
size, the constant ρpαq is maximised by α “ 1{2.

Proof For an unbiased memoryless source over an alphabet of finite size r, we
can express ρpαq in terms of κ, for any α P R, as

ρpαq “
8
ÿ

`“0

r´`ρ`pαq with ρ`pαq :“
r`´1
ÿ

k“0

κpr`α´ kq.

We will prove that each ρ`pαq is maximum at α “ 1{2. When r is odd, we
let r` ´ 1 “ 2J , and we write the index k P r0 . . 2Js as k “ ´j ` J with
j P r´J, Js, together with r`α´ k “ p2J ` 1qα´J ` j. Now, for integer J ě 0
we define

fJpxq :“
J
ÿ

j“´J

κpj ` xq, x P R, (40)

so that

ρ`pαq “ fJpxq with x :“ p2J ` 1qα´ J.

It is then sufficient to study fJ on the interval r´J, J ` 1s and prove that fJ
is maximal at x “ 1{2. This will prove that ρ` is maximal at α “ 1{2.

Fix J ě 1 and write f as shorthand for fJ . First observe that

sup
xPR

fpxq “ sup
xPr0,1s

sup
kPZ

fpk ` xq. (41)

We will prove the following two facts:

piq For any x P r0, 1s the expression fpj`xq is non-increasing in integer j ě 0.
piiq The expression fpxq is maximised over x P r0, 1s by x “ 1{2.



Towards a realistic analysis of QuickSelect 51

With piq, and the symmetry of fpxq with respect to x “ 1{2, it follows, for
any x P r0, 1s, that fpj`xq is unimodal in j P Z with maximum at j “ 0. The
lemma then follows from piiq and (41).

To establish piq, let j ě 0 and observe

fpj ` 1` xq ´ fpj ` xq “ κpj ` J ` 1` xq ´ κpj ´ J ` xq. (42)

If j´J`x ě 1{2, then the difference (42) is ď 0 because κpxq is non-increasing
for x ě 1{2. On the other hand, if j ´ J ` x ă 1{2, then the difference (42) is
upper-bounded by

κpj ` J ` 1q ´ κpj ´ Jq “ κp´j ´ Jq ´ κpj ´ Jq ď 0.

To establish piiq, we begin by calculating fpxq explicitly when x P r0, 1s.
First, using the first line of (39), we find

1

2

J
ÿ

j“1

κpj ` xq “ J `
J
ÿ

j“1

p1´ j ´ xqrlogpj ` xq ´ logpj ´ 1` xqs.

Using Abel’s transform, and introducing the function gpyq :“ p1´ yq log y, we
obtain

1

2

J
ÿ

j“1

κpj ` xq “ J ` gpJ ` xq ` x log x`
J´1
ÿ

j“1

logpj ` xq.

Next, using the symmetry of κpxq about x “ 1{2, we observe

1

2

´1
ÿ

k“´J

κpj ` xq “
1

2

J
ÿ

j“1

κpj ` 1´ xq

“ J ` gpJ ` 1´ xq ` p1´ xq logp1´ xq `
J´1
ÿ

j“1

logpj ` 1´ xq.

Summing these last two expressions together with the expression for κpxq in
the second line of (39) we arrive at

1

2
fpxq “ p2J`1q`rgpJ`xq`gpJ`1´xqs`

J´1
ÿ

j“1

logrpj`xqpj`1´xqs. (43)

Of the three terms here, the first is constant, the third is unimodal with max-
imum at x “ 1{2 (since each term in the sum has this property), and the
second is maximised at x “ 1{2 because gpyq is concave for y ě 1. (In fact, it
is concave for all y ą 0.) Thus piiq is established, as is the proposition. [\

Some experiments performed by Philippe Flajolet showed that this property
does not hold for every memoryless source, even if it is symmetric and built
on an alphabet of odd size. However, we conjecture the following:

Conjecture. Consider a symmetric memoryless source over an ordered alpha-
bet Σ of odd size denoted by t0, 1, . . . , r ´ 1u and assume that the middle
symbol pr´1q{2 is the most probable, namely ppr´1q{2 ě pi for all i P Σ. Then
the constant ρpαq is maximised by α “ 1{2.



52 J. Clément, J.A. Fill, T. H. Nguyen Thi and B. Vallée

Conclusion

Our study shows that the QuickSelect algorithm uses a linear number of
comparisons (on average) for a wide variety of models, considering either key
or symbol comparisons, or even changing the type of sources for symbol com-
parisons. We exhibit a striking fact: the constants change but the complexity
remains linear. The situation is completely different for sorting algorithms:
in [4], we study for instance the QuickSort algorithm, and we show that the
mean number of comparisons goes from Θpn log nq to Θpn log2 nq depending if
we consider key or symbol comparisons on a “nice” source. Moreover, there are
intermittent sources (of type described in Section 2.4) on which the complexity
of QuickSort becomes Θpnβq for some β ą 1.

Then, there is a strong contrast between the behaviour of QuickSelect

and QuickSort, and the QuickSelect algorithm seems to be more “robust”
to the change of model, and notably the quality of the source. Our analysis
exhibits such a phenomenon, via the tameness properties of the source which
are needed for the mixed series to be itself tame. The two kinds of tameness
are directed related for sorting algorithms, whereas this relation is less tight
for selection algorithms and gives more latitude to the source. It would be
thus interesting to find (or design) sources which could change the symbol
complexity of QuickSelect; such a candidate could be the intermittent sources
of Section 2.4 with exponent a “ 1, or their extension presented in [1]. This
will help to better understand the extent of our framework.

It would be also interesting to investigate the lower bound of the selection
problem in our symbol comparison model. We have conducted such a study
in [4] for the mean number of comparisons performed by sorting algorithms:
we start with the decision tree used in the classical key comparison model,
and we “mix” it with a trie, along the approach described by Seidel [24].
However, for the selection problem, the lower bound is already more intricate
in the classical key comparison model, at least for a general rank m, even
though there are some results given in [16], for instance. It would be natural
to begin with the minimum problem, where the lower bound is n in the usual
key comparison model. In [18], we have analysed, in our symbol comparison
model, another algorithm for the selection of the minimum (the first step of
the sorting Selection algorithm), and proved its complexity to be Θpnq, with
another constant. It would be interesting to exhibit the constant for the lower
bound of the minimum selection problem in our symbol comparison model.

Acknowledgements. The authors wish to thank an anonymous reviewer for
constructive comments, and also Jérémie Lumbroso and Bruno Salvy for their
wise advice concerning the last part of the abstract.
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