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We revisit the analysis of the classical QuickSelect algorithm. Usually, the analysis deals with the mean number of key comparisons, but here we view keys as words produced by a source, and words are compared via their symbols in lexicographic order. Our probabilistic models belong to a broad category of information sources that encompasses memoryless (i.e., independentsymbols) and Markov sources, as well as many unbounded-correlation sources. The "realistic" cost of the algorithm is here the total number of symbol comparisons performed by the algorithm, and, in this context, the average-case analysis aims to provide estimates for the mean number of symbol comparisons. For the QuickSort algorithm, known average-case complexity results are of Θpn log nq in the case of key comparisons, and Θpn log 2 nq for symbol comparisons. For QuickSelect algorithms, and with respect to key comparisons, the average-case complexity is Θpnq. In this present article, we prove that, with respect to symbol comparisons, QuickSelect's average-case complexity remains Θpnq. In each case, we provide explicit expressions for the dominant constants, closely related to the probabilistic behaviour of the source.

Towards a realistic analysis of the QuickSelect algorithm introduction of the QuickVal algorithm, tameness of sources, and use of the Rice's method. He also made many experiments exhibiting the asymptotic slope ρpαq and plotted nice graphs, which are reproduced in this paper. Even though the extended abstract does not provide any proof of the analysis of the algorithm QuickQuant, Philippe also devised with us a precise plan for this proof which has now completely been written. For all these reasons, we could have added (and certainly would have liked to add) Philippe as a co-author of this paper. On the other hand, Philippe was extremely exacting of how his papers were to be written and organised, and we cannot be sure that he would have liked or validated our editing choices. In the end, this is why we have decided not to include him as a co-author, but instead, to dedicate, with deference and affection, this paper to his memory. Thank you, Philippe! Introduction Every student of a basic algorithms course is taught that, on average, the complexity of QuickSort is Opn log nq, that of binary search is Oplog nq, and that of radix-exchange sort is Opn log nq; see for instance [START_REF] Knuth | The Art of Computer Programming[END_REF], [START_REF] Sedgewick | Quicksort[END_REF]. Such statements are based on specific assumptions -that the comparison of data items (for the first two) and the comparison of symbols (for the third one) have unit cost-and they have the obvious merit of offering an easy-to-grasp picture of the complexity landscape. However, as noted by Sedgewick, these simplifying assumptions suffer from limitations: they do not make possible a precise assessment of the relative merits of algorithms and data structures that resort to different methods (e.g., comparison-based versus radix-based sorting) in a way that would satisfy the requirements of either information theory or algorithms engineering. Indeed, computation is not reduced to its simplest terms, namely, the manipulation of totally elementary symbols, such as bits, bytes, characters. Furthermore, such simplified analyses say little about a great many application contexts, in databases or natural language processing, for instance, where information is highly "non-atomic", in the sense that it does not plainly reduce to a single machine word.

First, we observe that, for commonly used data models, the mean costs Spnq and Kpnq of any algorithm under the symbol comparison and the key comparison model, respectively, are connected by the universal relation Spnq " Kpnq ¨Oplog nq. This results from the fact that at most Oplog nq symbols suffice, with high probability, to distinguish n keys; cf. the analysis of the height of digital trees, also known as "tries", in [START_REF] Clément | Dynamical sources in information theory: A general analysis of trie structures[END_REF]. The surprise is that there are cases where this upper bound is tight, as in QuickSort; others where both costs are of the same order, as in QuickSelect. In previous works [START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF][START_REF] Clément | A general framework for the realistic analysis of sorting and searching algorithms. Application to some popular algorithms[END_REF], we have already shown that the expected cost of QuickSort is Θpn log 2 nq, not Θpn log nq, when all elementary operations-symbol comparisons-are taken into account. By contrast, we prove here that the cost of QuickSelect turns out to be Θpnq, in both the old and the new world, albeit, of course, with different implied constants.

Main results. Our main object of study is the QuickSelect algorithm, when the keys are words that are drawn from a given source S, and we deal with the mean number of symbol comparisons performed by the algorithm. This analysis is more realistic than the classical analyses which study the mean number of keys comparisons in two ways. First it studies a more realistic cost, that is the number of symbol comparisons instead of the number of key comparisons. Second it deals with more realistic inputs: words drawn from a specified source instead of keys. However, we do not claim that this is an actual realistic analysis: this is just a first step towards such an analysis.

When applied to n keys assumed to be independently drawn from the same source S, the QuickSelectpm, nq algorithm selects the m-th smallest element. We shall mostly focus our attention on situations where the rank m is proportional to n, being of the form m " t1 `αpn ´1qu, for some α P r0, 1s, so that the algorithm determines the α-th quantile; it will then be denoted by QuickQuant α pnq. For α " 0, the rank m equals 1 and this is QuickMinpnq. For α " 1, the rank m equals n and this is QuickMaxpnq (both QuickMin and QuickMax are particular cases of QuickSelect). We also consider the case where m is randomly chosen in r1 . . ns, and this is QuickRandpnq which is clearly not a "real" algorithm and is introduced for modelling purposes.

Our main result describes the case of the QuickSelect (or more accurately QuickQuant α ) algorithm with all its variants. We first show in Theorem 1 that, with respect to the number of symbol comparisons, and provided the source be tame1 , the mean cost of QuickSelect remains of order Θpnq. However, this cost involves various constants that depend on the source S (and possibly on the real α); these are precisely described in Theorem 2 and displayed in Figure 2. Here, for the QuickSelect algorithms, we prove all the results which were only stated in the extended abstract [START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF], and we exhibit the probabilistic features of the source which play a role in the analysis: each algorithm of interest is related to a particular constant depending on the source; this constant describes the interplay between the algorithm and the source and explains how the efficiency of the algorithm depends on the source.

General methodology and plan of the paper. Like many studies in analytic combinatorics, our analysis is divided into two main parts: an algebraic or combinatorial part and an asymptotic and analytic step. In analytic combinatorics, the first part computes a mathematical object (most of the times a generating function) with algebraic and exact tools, and the second part deals with the generating function as a function of the complex variable, studies its singularities, and transfers this knowledge about its singularities into an asymptotic expansion. We adopt and adapt the same philosophy here.

After a description of the main results done in Section 1, we first draw our general framework in Section 2, and introduce the two main objects: the algorithm and its inputs. We begin in Section 2.2 by a description of the algorithm QuickSelect and some particular cases of this algorithm, and, inside the classical model of permutations, we are interested in the analysis of the mean number of local key comparisons between a pair of keys of given ranks. Then, in Section 2.3, we model the inputs, and introduce the mechanism which emits the words (now the inputs of the algorithm). Such a probabilistic mechanism, called a source, is described by two generating functions, of Dirichlet type, which encapsulate the main probabilistic properties of the source. A source can be parameterized by the unit interval (see Section 2.6). Here, as we explain in Section 2.7, the source mainly intervenes via its coincidence, which measures the similarity between a pair of words with given parameters, and defines fundamental triangles which describe the location of pairs of words which share a common prefix.

We then perform our analysis, in the sequel of the paper. We compute in Section 3 the generating function related to our specific problem: this is the mixed Dirichlet series psq, which encapsulates both the properties of the source and the characteristics of the algorithm. In the algebraic part, it yields the exact value of the mean number of symbol comparisons performed by each algorithm on words produced by a parameterized source. We then perform a second part of the analysis where we study the analytic properties of the mixed Dirichlet series psq, namely the position and the nature of its singularities, and transfer this knowledge to obtain the asymptotic mean number of symbol comparisons. This transfer may be direct as in Section 4, or indirect as in Section 5.

Section 3 is devoted to the algebraic part of the analysis. We first compute the density of the algorithm. It uniquely depends on the algorithm and provides a precise measure of the mean number of key comparisons performed near specific points. As it is easier to compute this density in the Poisson model, where the number of keys instead of being fixed follows a Poisson distribution, this first step provides an expression of the Poissonized density relative to each algorithm. We use the following chain to get the result: We begin with the mean number of local key comparisons between two keys, obtained in Section 2.2. Viewing keys as words, we use the parameterization of sources described in Section 2.6. Together with basic properties of the Poisson model, we obtain a precise expression of the density, but not for all the variants of QuickSelect. This is why we introduce a new algorithm QuickVal, closely related to QuickQuant, for which it is possible to compute the density.

Then, the source intervenes via its coincidence and its fundamental triangles. With integrals on such triangles, we obtain an exact expression for the mean number of symbol comparisons in the Poisson model in Section 3.7. With an easy transfer from the Poisson model to the Bernoulli model (where the number n of keys is fixed), we deduce in Section 3.8 an exact expression of the mean number of symbol comparisons in the Bernoulli model. This expression is given as a binomial sum which deals with the mixed Dirichlet series, at least for the algorithms QuickMin, QuickMax and QuickVal. For the QuickQuant algorithm, there also exists an exact expression, of another type, which involve integral expressions and notably the density of the Beta distribution.

For the first three algorithms, we carry out in Section 4 the corresponding asymptotic analysis with Rice's method (described in Section 4.1) which transforms a binomial sum into an integral in the complex plane. To use this method, we need the mixed Dirichlet series to be tame. As this series psq is related to the generating functions of the source, it is possible to transfer the tameness of these generating functions to the series psq. We prove that convenient tameness of (the generating functions of) the source indeed entails tameness of the mixed Dirichlet series in Section 4.3. Then applying the Rice's method leads to asymptotic estimates for the mean number of symbol comparisons of QuickMin, QuickMax, QuickVal; we also directly deduce the analysis of QuickRand.

The analysis of the QuickQuant algorithm, i.e., the quantile version of QuickSelect, is performed in an indirect way in Section 5, and uses the close connection between QuickVal α and QuickQuant α . From the analytic point of view, this translates into an integral form which involves the density of the αquantile. We then use Laplace's method (see Section 5.2) that leads to asymptotic estimates for the mean number of symbol comparisons of QuickQuant.

Finally, the last Section 6 is devoted to the precise study of the constants that are involved in the analysis, and will depend on the pair algorithm/source considered.

Relation between the four articles on related subjects. Our approach relies on methods from analytic combinatorics [START_REF] Flajolet | Analytic Combinatorics[END_REF], as well as on information theory. It also relates to earlier analyses of digital trees ("tries") by Clément,Flajolet,and Vallée [2,[START_REF] Vallée | Dynamical sources in information theory: Fundamental intervals and word prefixes[END_REF]. But we now discuss the relation between the present paper and three other studies on closely related subjects.

There are two extended abstracts: the paper [START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF], in the proceedings of ICALP 2009, and the paper [START_REF] Clément | A general framework for the realistic analysis of sorting and searching algorithms. Application to some popular algorithms[END_REF], in the proceedings of STACS 2013. Then, there are two long papers which are journal versions of the previous ones: The paper [START_REF] Clément | Towards a realistic analysis of some popular sorting algorithms[END_REF] is the journal version of [START_REF] Clément | A general framework for the realistic analysis of sorting and searching algorithms. Application to some popular algorithms[END_REF], whereas the present paper can be viewed as the journal version of [START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF].

The paper [START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF] was the first paper devoted to the general subject "analysis with respect to symbol comparisons"; this short paper just mentioned the main steps of the methodology: even if the algebraic steps are well described (as in our Section 3), the analytic steps (as in our Sections 4 and 5) are just mentioned. It then focused on the QuickSort and QuickSelect algorithms. It stated the results which are described here in the introduction, but did not provide any proofs: the present Section 4.3 is completely new.

The paper [START_REF] Clément | A general framework for the realistic analysis of sorting and searching algorithms. Application to some popular algorithms[END_REF] was the second paper devoted to the subject, and it performed two tasks: it shows the generality of the method, and designs a quite general framework for the "analysis with respect to symbol comparisons". It provides a precise description of the algebraic steps, and also explains the analytic steps, with the introduction of the various notions of tameness. The second aim of [START_REF] Clément | A general framework for the realistic analysis of sorting and searching algorithms. Application to some popular algorithms[END_REF] was to apply the method to five algorithms: amongst them, one again finds QuickSort and QuickMin, but also other classical algorithms, as insertion sort, bubble sort and minimum selection. Again, this is only a extended abstract in which most proofs are omitted.

The two journal versions provide all the details for the methodology, and precise analyses for algorithms of interest; each of the two journal versions is devoted to a class of algorithms. The paper [START_REF] Clément | Towards a realistic analysis of some popular sorting algorithms[END_REF] focuses on the three sorting algorithms QuickSort, InsSort, BubSort, whereas the present paper adapts the general method to the algorithms of the QuickSelect class, for which it provides a complete analysis. This analysis is particular and somehow indirect, as was already announced in [START_REF] Clément | A general framework for the realistic analysis of sorting and searching algorithms. Application to some popular algorithms[END_REF]: it does not seem possible to directly analyse QuickSelect, and there is a "detour" via the QuickVal algorithm. Then, in the long present paper, we explain how to precisely return from QuickVal to QuickSelect.

Relation with other studies. Here, we restrict ourselves to a precise averagecase analysis of the QuickSelect algorithm (with respect to the number of symbol comparisons). Other studies, done by the second author with collaborators, focus on distributional analyses in the same framework (see [START_REF] Fill | Distributional convergence for the number of symbol comparisons used by QuickSelect[END_REF][START_REF] Fill | QuickSelect tree process convergence, with an application to distributional convergence for the number of symbol comparisons used by worst-case Find[END_REF]).

1 Main results.

Classical results on the QuickSelect algorithm

We recall classical results on the average-case analysis of the QuickSelect algorithm. They involve the κ function, defined from the entropy function h, κpαq " 2r1 `hpαqs, with hpαq " α |log α| `p1 ´αq |logp1 ´αq| , (

that plays an important role here, notably in the analysis of QuickQuant α (and where |¨| denotes the absolute value). Its graph is represented in Figure 1. The exact mean number Kpm, nq of key comparisons performed by QuickSelectpm, nq for any m was obtained by Knuth in [START_REF] Knuth | Mathematical Analysis of Algorithms[END_REF]. It is given in the following proposition. The column 4 of Table 1 gives asymptotic estimates for some particular cases of interest.

Lemma 1 [Classical Average-case analysis] The mean number of key comparisons performed by the algorithm QuickSelectpm, nq in the uniform permutation model satisfies the following:

paq For a general rank m, it involves the harmonic number H k under the form Kpm, nq " 2 rpn `1qH n ´pn `3 ´mqH n`1´m ´pm `2qH m `n `3s .

In the case of QuickMin pm " 1q and QuickMax pm " nq, one has Kp1, nq " Kpn, nq " 2n ´2H n .

pbq For QuickQuant α , the mean number K α pnq involves the κ function defined in (1), under the form K α pnq " κpαqn.

We have in the case of QuickMed (selecting for the median),

K 1 2 pnq " κp 1 2 q n " 2p1 `log 2qn.
pcq For QuickRandpnq, one has Kpnq " 3n.

Fig. 1: The functions h and κ. For a source S on the alphabet Σ, and for a prefix w P Σ ‹ , we define the fundamental probability p w as the probability that a word emitted by the source S begins with the prefix w. We consider two generating functions of the source, of Dirichlet type, which are built with fundamental probabilities. They encapsulate the main probabilistic properties of the source and are central in our study.

Special cases of

Definition 1 (Dirichlet series of the source) There are two main types of Dirichlet series associated to a source S.

piq The Λ generating functions is defined as

Λpsq " ÿ wPΣ ‹ p s w " ÿ kě0 Λ k psq, with Λ k psq " ÿ wPΣ k p s w .
piiq The Π generating function is defined as

Πpsq " ÿ kě0 π s k , with π k " suptp w , w P Σ k u.
The Λ series was introduced for the first time in [START_REF] Vallée | Dynamical sources in information theory: Fundamental intervals and word prefixes[END_REF]. It plays a central role in many probabilistic studies about sources which adopt the point of view of analytic combinatorics. This series intervenes mainly in the analysis of sorting algorithms. The Π series was introduced for the first time in [START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF], and is suited to the analysis of selection algorithms (like QuickSelect). Here, these two series are important to us notably via the following definition which will be motivated later on in the paper.

Definition 2 (Tameness)

There are two different notions for the tameness of the source: piq A source is weakly Λ-tame with width δ " δ Λ if the abscissa of absolute convergence of the Dirichlet series Λpsq is equal to 1 `δ. piiq A source is Π-tame with width δ " δ Π if the abscissa of absolute convergence of the Dirichlet series Πpsq is equal to δ.

We now see that the tameness width which intervenes in most of our results is δ 0 :" maxp2δ Λ , δ π q, notably via its position with respect to 1.

General result.

We provide general asymptotic estimates for the algorithm QuickSelect (or more accurately QuickQuant α ), particular cases like QuickMin and QuickMax, as well as QuickRand (which models the average behaviour of QuickSelect for a random uniform rank).

Theorem 1 (General asymptotic estimates) For a source S both Π-tame and weakly Λ-tame with a small enough width, the mean number of symbol comparisons of all the variants of QuickSelectpm, nq is Θpnq. More precisely, the following holds:

paq Consider a source which is both weakly Λ-tame with width δ Λ and Π-tame with width δ Π and assume that δ 0 :" maxp2δ Λ , δ Π q is strictly less than 1. Then the mean number of symbol comparisons QQ α pnq performed by QuickQuant α satisfies, for any δ Psp1 `δ0 q{2, 1r and any α P r0, 1s, QQ α pnq " ρ S pαq n `Opn δ q.

Moreover the constant hidden in the O-term is uniform (with respect to α) for any interval of the form rα 1 , 1 ´α1 s with α 1 ą 0. pbq Consider a source which is both weakly Λ-tame with width δ Λ and Πtame with width δ Π and assume that δ 0 :" maxp2δ Λ , δ Π q is strictly less than 1. Then, the mean number QRpnq of symbol comparisons performed by QuickRandpnq satisfies, for δ Psδ 0 , 1r,

QRpnq " γ S n `Opn δ q, with γ S "

ż 1 0 ρ S pαq dα.
pcq If the source is weakly Λ-tame with width δ Λ ă 1{2, the mean number of symbol comparisons, QM p´q pnq " QQ 0 pnq for QuickMinpnq and QM p`q pnq " QQ 1 pnq for QuickMaxpnq, satisfies, for δ Ps2δ Λ , 1r, with " ˘, QM p q pnq " ρ p q S n `Opn δ q, with ρ p`q S " ρ S p1q, ρ p´q S " ρ S p0q.

1.4 Expressions for the constants.

The following result provides precise expressions for the constants which appear in the dominant terms of the previous Theorem2 :

Theorem 2 (Expressions for constants) For a general source S, where the probabilities p p`q w , p p´q w , and p w " 1 ´pp`q w ´pp´q w are defined as in Definition 3 and Eq. (5), the constants involved in Theorem 1 admit the following expressions:

paq The quantile constant ρ S pαq is defined as

ρ S pαq " ÿ wPΣ ‹ p w κ ˜α ´pp´q w p w ¸,
and involves the function κ given by κpyq " 2r1 `Hpyqs, with

Hpyq " $ ' ' & ' ' % y log ´1 ´1 y ¯if y ă 0,
hpyq " ´y log y ´p1 ´yq logp1 ´yq, if y P r0, 1s, py ´1q log ´1 ´1 y ¯if y ą 1. pcq The Min/Max constants are

ρ p q S " 2 ÿ wPΣ ‹ p w « 1 ´pp q w p w log ˜1 `pw p p q w ¸ff .
Note that the function H of Assertion paq is a continuous extension, symmetric about y " 1{2, of the entropic function h to the whole real line. Note also that the κ function-at least its restriction to the interval r0, 1s-already intervenes in the mean number Kpnq of key comparisons of the QuickQuant algorithm, as recalled in Lemma 1. Figure 2 shows the graphs of the function α Þ Ñ ρpαq for different Bernoulli sources, together with the graph of the κ function. It appears that the graph of ρ is a deformation of the graph of κ, and the plots illustrate the fractal character of the constants involved in QuickQuant, as the expression for ρ in terms of κ suggests. We see that the function ρ is not always maximised at α " 1{2, not even for symmetric sources, even though κ is maximised at 1{2. There is then a natural question to be asked: For which (symmetric) sources is the maximum for ρ attained at α " 1{2? If the maximum is not attained at α " 1{2, at which point is it attained? We return to this question in Section 6.

1.5 Particular case of the binary source.

All these constants specialise nicely for the standard binary source B (under which keys are compared via their binary expansions, with uniform independent bits), in which case they admit pleasant expressions that simplify and extend those of Fill and Nakama [START_REF] Fill | Analysis of the expected number of bit comparisons required by QuickSelect[END_REF] and Grabner and Prodinger [START_REF] Grabner | On a constant arising in the analysis of bit comparisons in Quickselect[END_REF] and lead themselves to precise numerical evaluations.

Proposition 1 For a binary source, the constants admit the following expressions:

ρ B pαq " ÿ ě0 1 2 2 ´1 ÿ k"0 κp2 α ´kq ρ p q B " 4 `2 ÿ ě0 1 2 2 ´1 ÿ k"1 " 1 ´k log ˆ1 `1 k ˙ . " 5.27937 82410 80958,
and also

γ B " 14 3 `2 8 ÿ "0 1 2 2 2 ´1 ÿ k"1 " k `1 `logpk `1q ´k2 log ˆ1 `1 k ˙ . " 8.20730 88638.
Here, the function κ is first defined in (1) on the interval r0, 1s and extended to the whole real line in Theorem 2(a).

2 General framework.

Here, we draw our general framework, already provided in [START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF] and [START_REF] Clément | A general framework for the realistic analysis of sorting and searching algorithms. Application to some popular algorithms[END_REF]. We first characterise in Section 2.1 the strategy of each algorithm (which keys are compared? with which probability?), then we describe the model of source in Section 2.3, together with the particular cases of "simple" sources. We then describe the modelling of a parameterized source in Section 2.6, and introduce the central notion of coincidence in Section 2.7.

2.1

The classical probabilistic model based on permutations.

Consider a totally ordered set of keys U " tU 1 ă U 2 ă ¨¨¨ă U n u and any algorithm A which only performs comparisons and exchanges between keys. The initial input is the sequence V " pV 1 , V 2 , . . . , V n q defined from U by a permutation σ P S n via the equalities V i " U σpiq . The execution of the algorithm does not actually depend on the input sequence, but only on the permutation σ which defines the input sequence from the final (ordered) sequence. Thus the permutation σ is the actual input of the algorithm and the set of all possible inputs is the set S n . The classical average-case analysis deals with the (total) mean number of key comparisons performed by the algorithm. Here, we fix a pair of keys U i and U j and we are interested by the mean number of comparisons performed by the algorithm between the two keys U i and U j , which will be denoted by π n pi, jq. The computation of π n pi, jq is not usual in classical analysis of algorithms, and this is the first step of our method. Indeed, when keys become words, their relative positions will have an influence on the "cost" needed for distinguishing them.

When we take the sum over all the pairs pi, jq of the probabilities π n pi, jq, (with 1 ď i ă j ď n), we obtain the mean number of key comparisons performed by each algorithm. We thus obtain here a new derivation of well-known results for popular algorithms in the uniform permutation model.

2.2

The algorithms QuickSort, QuickSelect and QuickVal.

These algorithms are based on the "Divide and Conquer" principle. All other keys are compared to the first key of the array, which is used as a pivot. During the Partition stage, the keys that are smaller than the pivot are placed on its left in the array, whereas the keys that are greater are placed on its right. After this partitioning, the pivot is at the right place. In the sequel, the sets U ri,js formed by all the keys U with P ri, js play an important rôle in the description of the algorithms.

QuickSort. The algorithm was introduced in 1962 by C.A.R Hoare in his original papers [START_REF] Hoare | Algorithm 63: partition[END_REF][START_REF] Hoare | Algorithm 64: Quicksort[END_REF]14] and improved by several authors, including Knuth [START_REF] Knuth | The Art of Computer Programming[END_REF], van Emden [START_REF] Van Emden | Increasing the efficiency of quicksort[END_REF], and Sedgewick [START_REF] Sedgewick | Quicksort. Outstanding Dissertations in the Computer Sciences[END_REF]. The QuickSortpnq algorithm recursively sorts the two sub-arrays. While the pivot does not belong to the subset U ri,js , this set is not separated by the pivot. When the pivot belongs to the subset U ri,js , the keys U i and U j are compared if and only if U i or U j is a pivot. This event coincides with the event "U i or U j is the first key among those in the subset U ri,js ". After such a comparison, the keys are separated and no longer compared. Thus, the mean number of key comparisons between U i and U j is, for i ă j, equal to

π n pi, jq " 2 card U ri,js " 2 j ´i `1 .
Algorithm Partition(V, left, right)

/* Partition (V, left, right) rearranges the sub-array V rleft . . rights according to its first element V rlefts, called the pivot, and returns the position of the pivot after partitioning * */ /* Recursive function for an array V r1 . . ns: QuickSelect. The QuickSelectpm, nq algorithm described in Figure 5 returns the key of rank m in an array of size n. As previously, it uses the first key of the array as a pivot and performs the partition operation. If the rank k of the pivot equals m, the algorithm returns the pivot. If k ą m, the algorithm continues with the left sub-array; otherwise, it continues with the right sub-array.

/ v Ð V rlefts; i Ð left; j Ð right; repeat repeat i Ð i `1; until V ris ě v; repeat j Ð j ´1; until V rjs ď v; SwappV ris, V rjsq; until j ď i; SwappV ris, V rleftsq;
QuickSort (V, 1, n) */ if left ă right then k Ð PartitionpV, left, rightq; QuickSort (V , left, k ´1); QuickSort (V , k `1, right);
In the rest of this paper, we use here the notation

x ^y " minpx, yq, x _ y " maxpx, yq. (2) 
In the QuickSelect algorithm, as in the QuickSort algorithm, the keys U i and U j are compared if and only if U i or U j is the first key among the subset U rk, s , with k " i ^m, " j _ m. Then, the mean number of key comparisons between U i and U j performed by QuickSelectpm, nq is, for i ă j, equal to

π pmq n pi, jq " 2 card U rk, s " 2 ´k `1 , k " i ^m, " j _ m.
Algorithm QuickSel(V, left, right, m)

/* Returns the element of rank m of the array V rleft . . rights */ /* Recursive function for an array V r1 . . ns:

QuickSel (V, 1, n, m) */ k Ð PartitionpV, left, rightq; if k ą m then return QuickSel (V, left, k ´1, m); else if k ă m then return QuickSel (V, k, right, m ´k); else return V rks; Algorithm QuickVal(V, left, right, v)
/* Returns the rank of the element v in the array V rleft . . rights. */ /* Recursive function for an array V r1 . . ns: Observe that this probability depends on both i and j, except when m " 1 (case of QuickMin) or m " n (case of QuickMax), where it satisfies

QuickVal (V, 1, n, v) */ k Ð PartitionpV, left, rightq; if V rks ą v then return QuickVal (V, left, k ´1, v); else if V rks ă v then return QuickVal (V, k, right, v); else return k;
π p1q n pi, jq " 2 card U r1,js " 2 j , π pnq n pi, jq " 2 card U ri,ns " 2 n ´i `1 .
We are also interested in two "variants" of the QuickSelectpm, nq algorithm:

paq The QuickQuant α pnq algorithm outputs the α-quantile, namely, the key of rank t1 `αpn ´1qu. With this definition, we remark that for α " 0, QuickQuant α coincides with QuickMin, whereas for α " 1, QuickQuant α coincides with QuickMax. pbq The QuickRandpnq algorithm outputs a key whose rank is chosen uniformly at random in the interval r1 . . ns.

QuickVal. We will be led (see Section 3.3) to consider another algorithm, named QuickVal, which may be of independent interest. Given an array of size n and a key which belongs to the array, it returns the rank of this key. This algorithm has the same structure as QuickSelect: it uses the first key of the array as a pivot and performs the partition operation. If the value of the pivot is equal to the input key, the algorithm returns the rank of the pivot.

If the value of the pivot is larger than the input key, the algorithm continues with the left sub-array; otherwise, it continues with the right sub-array. It is important to note that this algorithm rearrange the array exactly in the same way QuickSelect (using the partition algorithm). About the Partition process. They are various possibilities for implementing this process. It is first important to remark that all the partition processes share the common following features: each element of the array V rleft . . rights with i " left is compared to the pivot V rlefts (and thus the number of comparisons is always greater or equal to n ´1). At the end of the procedure, the pivot is at the right place, the keys that are smaller than the pivot are placed on its left, and keys that are greater than the pivot are placed on its right. However, the number of exchanges, and the final positions of the elements inside the two sub-arrays, the left one and the right, may depend on the precise implementation of the Partition procedure.

We now describe the implementation described in Figure 3, see also [START_REF] Sedgewick | An introduction to the analysis of algorithms[END_REF]. We choose the first element of the array V rleft . . rights as the pivot, and the variable v holds the value of the pivot V rlefts. We use two scan pointers i and j, the left pointer i scans from the left, and the right pointer j scans from the right. Each time we find a pair pi, jq such that V ris ě v and V rjs ď v, we exchange V ris and V rjs. When the pointers cross each other, an extra exchange of V ris and V rjs is done with j ă i just after the pointers cross (but before the crossing is detected) and the outer repeat loop exited. The last three assignments implement the exchange between V ris and V rjs (to undo the extra exchange), and between V ris and V rlefts to put the pivot into position.

Sources and their Dirichlet series

Here, we consider that the keys are words produced by a general source on a finite alphabet Σ. A general source S built on the alphabet Σ produces at each discrete time t " 0, 1, . . . a symbol from Σ. If X n is the symbol emitted at time t " n, a source produces the infinite word pX 0 , X 1 , . . . , X n , . . . q. For any finite prefix w P Σ ‹ , the probability p w that a word produced by the source S begins with the finite prefix w is called the fundamental probability of prefix w. The set of probabilities p w (for w P Σ ‹ ) completely defines the source S, and the two equalities hold for k ě 0 ÿ wPΣ k p w " 1, and for any w P Σ ‹ ÿ iPΣ p w¨i " p w .

Definition 3 Let Σ be a totally ordered alphabet of cardinality r. A source over the alphabet Σ produces infinite words of Σ N , and is specified by the fundamental probabilities p w , w P Σ ‹ , where p w is the probability that an infinite word begins with the finite prefix w. When the two following properties hold: piq p w ą 0 for any w P Σ ‹ , piiq π k " maxtp w : w P Σ k u tends to 0 as k Ñ 8, the source is said to be non-ambiguous.

In the sequel, all the sources are assumed to be non-ambiguous.

As already mentioned in Section 1.2, our analyses deal with the two Dirichlet series of fundamental probabilities Λpsq and Πpsq introduced in Definition 1.

Instances of classical sources and their Dirichlet series.

We describe here four models of sources, and begin with two models of simple sources, namely memoryless sources and Markov chains. We also give expressions for Dirichlet series Λpsq and Πpsq in each case.

Memoryless sources. A memoryless source associated to the alphabet Σ is a source where the symbols X i P Σ are independent and identically distributed. It is defined by the set pp j q jPΣ of probabilities, with p j " PrX k " js for any k ě 0. The Dirichlet series Λ and Λ k can be expressed in terms of λpsq "

ÿ iPΣ p s i as Λ k psq " λpsq k , Λpsq " 1 1 ´λpsq . (3) 
The maximum probability π k satisfies π k " ρ k where ρ " maxtp i : i P Σu, and the equality Πpsq " 1{p1 ´ρs q holds. Markov chains. A Markov chain associated to the finite alphabet Σ is defined by the (column) vector R of initial probabilities pr i q iPΣ together with the transition matrix P " pp i,j q pi,jqPΣˆΣ , with each row summing to 1. Here one has r i " PrX 0 " is and p i,j " PrX k`1 " j | X k " is for any i, j P Σ and k ě 0. We denote by P psq the matrix with entry p s i,j for general pi, jq, and by Rpsq the vector with entries r s i . Then (with Q T denoting the transpose of matrix Q)

Λ k psq " Rpsq T P psq k´1 1 for k ě 1, Λpsq " 1 `Rpsq T pI ´P psqq ´11. ( 4 
)
If, moreover, the matrix P is irreducible and aperiodic, then, for any real s ą 0, the matrix P psq has a unique dominant eigenvalue λpsq. The maximum probability π k satisfies π k ď ρ k where ρ is the maximum of all the entries in R and P , and the inequality |Πpsq| ď 1{p1 ´ρσ q holds with σ " s.

Other instances of "simple" sources: intermittent sources. Intermittent sources are an interesting particular case of a source of VLMC type (Variable Length Markov Chain), where the dependency from the past is unbounded (see [START_REF] Cénac | Uncommon suffix tries. Random Structures & Algorithms[END_REF]).

An intermittent source has two regimes, depending on whether it emits a particular symbol σ P Σ or not. Consider a source with an alphabet of finite cardinality r ě 2. The source is intermittent of exponent a ą 0 with respect to σ if one has the following conditional probability distribution for the emission of each symbol in the word given the prefix preceding it. Let us define the event S k as S k " tthe prefix finishes with a sequence of exactly k occurrences of σu. Then the conditional distribution of the next symbol emitted depends on the length k; more precisely, one has Prσ | S 0 s " 1{r and, for k ě 1,

Prσ | S k s " ˆ1 ´1 k `1 ˙a , Prσ | S k s " ˆ1 ´ˆ1 ´1 k `1 ˙a˙1 r ´1 for σ ‰ σ.
Then, in the case of a binary alphabet Σ " t0, 1u, when the source is intermittent with respect to 0, the probability of the prefixes 0 k and 0 k 1 are respectively equal to

p 0 k " 1 2 ˆ1 k a ˙, p 0 k 1 " 1 2 ˆ1 k a ´1 pk `1q a ˙,
and, with the equality t0, 1u ‹ " p0 ‹ 1q ‹ 0 ‹ , the series Λpsq admits the expression

Λpsq " 1 `2´s ζpasq 1 ´2´s r1 `Σa psqs with Σ a psq "

ÿ kě1 " 1 k a ´1 pk `1q a  s .
(Here, ζp¨q is the Riemann zeta function.) Moreover, for a ě 1, and k ě 1, the maximum probability π k is attained for the word 0 k ; it satisfies π 0 " 1, and

π k " 1 2 ˆ1 k a ˙for k ě 1, so that Πpsq " 1 `ˆ1 2 ˙s ζpasq.
Dynamical sources. An important subclass is formed by dynamical sources, which are closely related to dynamical systems on the interval; see [START_REF] Vallée | Dynamical sources in information theory: Fundamental intervals and word prefixes[END_REF]. One starts with a partition tI σ u indexed by symbols σ P Σ, a coding map τ : I Ñ Σ which equals σ on I σ , and a shift map T : I Ñ I whose restriction to each I σ is increasing, invertible, and of class C 2 . Then the word M puq is the word that encodes the trajectory pu, T u, T 2 u . . . q via the coding map τ , namely, M puq " pτ puq, τ pT uq, τ pT 2 uq, . . . q. All memoryless (Bernoulli) sources and all Markov chain sources can be viewed as dynamical sources: they correspond to a piecewise linear shift. For instance, the standard binary system is obtained by T pxq " t2xu (t¨u is the fractional part). Dynamical sources with a non-linear shift allow for correlations that depend on the entire past (e.g., sources related to continued fractions obtained by T pxq " t1{xu). Moreover, the Λ-series can be expressed as the quasi-inverse of a variant of the transfer operator of the system [START_REF] Vallée | Dynamical sources in information theory: Fundamental intervals and word prefixes[END_REF], and this gives a precise tool for investigating the tameness of such a model of sources.

Return to tameness of sources.

We recall that tameness of sources is described via the abscissa of absolute convergence of series Λpsq and Πpsq. The series Λpsq always satisfies Λ k p1q " 1 and thus Λp1q " `8; its abscissa of convergence is then at least 1, and we define it as 1 `δΛ where δ Λ ě 0 is the width of Λ. In the same vein, the series Πpsq always satisfies π 0 k " 1 and thus Πp0q " `8; its abscissa of convergence is then at least 0. and we define it as δ Π where δ Π ě 0 is the width of Π. Furthermore, the inequality Λpsq ď Πps ´1q for real s ě 1 entails the inequality δ Π ě δ Λ between the two widths.

In general, the simple sources (memoryless sources, aperiodic Markov chains or good dynamical sources) are both weakly Λ-tame and Π-tame with both widths δ Π " δ Λ " 0. However, there exist "natural" sources, for example intermittent sources described in Section 2.4 which are Π-tame with width δ Π " 1{a and weakly Λ-tame with δ Λ " 0 as soon as a ą 1. In the following, the condition under which our results hold is max p2δ Λ , δ Π q ă 1, and it is satisfied for all the examples of sources which are described in the previous section, except for the intermittent source with a " 1.

Parameterization of a source.

The parameterization of a source is based on the same principles as those used for arithmetic coding in compression frameworks. It also aims to extend what we have done in the case of a dynamical system. We have associated to a real u P I a word M puq that is the encoding of the trajectory T puq. We wish also to build a family of fundamental intervals I w whose measures are the fundamental probabilities of the source. Then, for each depth k, the fundamental intervals I w will form a topological partition of the interval I.

For any prefix w P Σ ‹ , we denote by |w| the length of w (i.e., the number of the symbols that it contains) and p p´q w , p p`q w , p w the probabilities that a word produced by the source begins with a prefix u of the same length as w, which satisfies u ă w, u ą w, or u " w, meaning

p p´q w " ÿ u: |u|"|w|, uăw p u , p p`q w " ÿ u: |u|"|w|, uąw p u , p w " 1 ´´p p`q w `pp´q w ¯. (5) 
We also use alternative notations for these probabilities, especially when we represent them on the interval r0, 1s, and we let Thus, for a given k, when the prefix w varies in Σ k , this gives rise to a partition of the unit interval with sub-intervals of length p w . When the prefixes w P Σ k are ordered in increasing lexicographic order, and the sub-intervals are arranged from left to right, then, the sub-interval corresponding to prefix w has left (respectively, right) endpoint equal to a w (resp., b w ). See Figure 6.

a w " p p´q w " ÿ u: |u|"|w| uăw p u , b w " a w `pw " ÿ u: |u|"|w|, uĺw p u " 1 ´pp`q w . ( 6 
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Consider the set Σ N of (infinite) words produced by the source S, ordered via the lexicographic order. Given an infinite word X P Σ N , denote by w k its prefix of length k. The sequence pa w k q kě0 is increasing, the sequence pb w k q kě0 is decreasing, and b w k ´aw k " p w k tends to 0 when k tends to infinity. Thus a unique real P pXq P r0, 1s is defined as the common limit of pa w k q and pb w k q, and P pXq is simply the probability that an infinite word Y generated by the source is smaller than X. The mapping P : Σ N Ñ r0, 1s is surjective and strictly increasing outside the exceptional set formed with words of Σ N which end with an infinite sequence of the smallest symbol or with an infinite sequence of the largest symbol.

Conversely, almost everywhere (except on the set ta w , w P Σ ‹ u), there is a mapping M which associates to a number u from the interval I " r0, 1s a word M puq P Σ N . Hence, the probability that a word Y be smaller than M puq equals u. The lexicographic order on words ('ă') is then compatible with the natural order on the interval I, namely, M ptq ă M puq if and only if t ă u. The interval I w " ra w , b w s, of length p w , gathers (up to a denumerable set) all the reals u for which M puq begins with the finite prefix w. This is the fundamental interval of the prefix w.

Reflected source. Such a source will be used in the proofs of Propositions 8 and 9. The reflected source p S of a source S is defined on the same alphabet Σ :" r0 . . r´1s. However, this alphabet is ordered with the "reflected" order; namely, we consider the mapping Σ Ñ Σ which maps the symbol σ to the symbol σ " pr ´1q ´σ. This mapping is then extended to Σ ‹ using concatenation: for any w P Σ ‹ , of the form w " w 1 ¨w2 . . . w k , the word p w is defined as p w " p w 1 ¨p w 2 . . . p w k . This is further extended to Σ N in a similar way, and gives rises to a parameterization x M for the source p S which is closely related to the initial parameterization of the source S via the equality x M puq " M p1 ´uq. Note that the source S and its reflected source p S have, for each k, the same set tp w : w P Σ k u of fundamental probabilities for prefixes of length k, and thus have the same Dirichlet series Λ and Π.

Geometry of the source and coincidence

We are interested in a more realistic cost related to the number of symbol comparisons performed by these algorithms, when the keys are words independently produced by the same source. The words are ordered with respect to the lexicographic order, and the cost for comparing two words (measured as the number of symbol comparisons needed) is closely related to the coincidence, defined as follows.

Definition 4

The coincidence function γpu, tq : r0, 1s ˆr0, 1s Ñ N Y t`8u is the length of the largest common prefix of words M puq and M ptq.

More precisely, the realistic cost of the comparison between M puq and M ptq equals γpu, tq `1.

We represent the pair of words pM puq, M ptqq with u ď t by the point pu, tq of the triangle T " tpu, tq : 0 ď u ď t ď 1u, and the fundamental triangles T w " pI w ˆIw q X T " tpu, tq : a w ď u ď t ď b w u [START_REF] Fill | Analysis of the expected number of bit comparisons required by QuickSelect[END_REF] define the level sets of the function γ. Indeed, the coincidence γpu, tq is at least if and only if M puq and M ptq have the same common prefix w of length , so that the parameters u and t belong to the same fundamental interval I w relative to a prefix w of length . Then, the two relations T X rγ ě s " 

This functional J will be extensively used in the sequel. The family of triangles T w , defines the "geometry" of the source. Figure 7 represents the geometry of two memoryless sources. Fig. 7: The geometry of two memoryless sources. On the left, the case of Σ " ta, bu with p a " p b " 1{2. On the right, the case of Σ " ta, b, cu with p a " 1{2, p b " 1{6, p c " 1{3.

Algebraic analysis.

We are now ready to begin our probabilistic analysis. The set of inputs is the set M ‹ of all the sequences of words emitted by the source, and all the costs of interest (for instance the number of key or symbol comparisons) are defined on M ‹ . The purpose of average-case analysis of structures (or algorithms) is to characterise the mean value of their "costs" under a well-defined probabilistic model that describes the initial distribution of its inputs.

Two probabilistic models.

The two models. Here, the set of inputs for the algorithm is the set of all the sequences of words V emitted by the source, denoted here by M ‹ , and all the costs are defined on M ‹ . For such a cost R, we denote by RrVs its value on the sequence V.

We consider two distinct probabilistic models on the set M ‹ , each of them being of interest. When the cardinality n of V is fixed, and words V i P V are independently emitted by the source S, this is the Bernoulli model denoted by pB n , Sq. There is also another model, where the sequence V has a variable number N of elements that obeys a Poisson law of rate Z,

PrN " ks " e ´Z Z k k! .
In this model, called the Poisson model of rate Z, the rate Z plays a role quite similar to the cardinality of V. When it is relative to probabilistic source S, the model, denoted by pP Z , Sq, is composed with two main steps:

paq The number N of words is drawn according to the Poisson law of rate Z; pbq Then the N words are independently drawn from the source S.

Random variables N I . Thanks to the mapping M , we can associate with a sequence V " pV 1 , . . . , V n q of infinite words a sequence of real points pv 1 , . . . , v n q in r0, 1s such that V i " M pv i q for i P r1 . . ns. This correspondence exists for almost all sequences in M ‹ (up to a set of sequences of zero measure). For I Ă r0, 1s, consider the variable N I , defined on M ‹ by the equality N I rVs " the number of words in V whose parameter lies in the interval I.

We have of course N :" N r0,1s . The random variables N I are easier to deal with in the Poisson model, due to very useful independence properties. In the Poisson model of rate Z, for two disjoint intervals I and J in r0, 1s, the random variables N I and N J are both independent Poisson variables with adequate rates: For any interval I Ă r0, 1s of measure λ, N I obeys a Poisson law of rate λZ.

This is very often the case in our study: the Poisson model is easier to deal with, but the Bernoulli model is more natural. So, we begin the analysis in the Poisson model, and then we wish to return to the Bernoulli model.

Notation. For a random variable R defined on the set M ‹ and a sequence V P M ‹ , we denote by RrVs the value of R on V and by RxVy the average of the cost R on all sequences equivalent to V up to a permutation

RxVy " 1 |V|! ÿ V 1 "V RrV 1 s,
where, again, the equivalence '"' relation means up to a permutation. We note that, when R depends only on the set underlying the sequence V, the equality RrVs " RxVy holds. This is the case for the variables N I aforementioned.

Relation between the two models. Consider a random variable R defined on the set M ‹ . Denote by Rpnq its expectation in the Bernoulli model pB n , Sq, and by R Z its expectation in the Poisson model pP Z , Sq of rate Z. Using conditional probabilities, the following equalities relate the two types of expectations,

R Z " ÿ ně0 E Z rR | N " ns P Z rN " ns " e ´Z ÿ ně0 E rns rRs Z n n! " e ´Z ÿ ně0 Rpnq Z n n! ,
and the Poisson expectation R Z can be expressed with the exponential generating function GpZq of the sequence Rpnq of the Bernoulli expectations via the relation

R Z " e ´Z GpZq, with GpZq " ÿ ně0 Rpnq Z n n! . (9) 
Assume now that the expectation R Z of the random variable R is known in the Poisson model, via its coefficients ϕpnq in its series expansion, ϕpnq " p´1q n rZ n sR Z , with the expansion R Z "

ÿ ně0 p´1q n ϕpnq Z n n! . (10) 
The equality (9) between the series R Z and GpZq is also written as GpZq " e Z R Z , and entails the following binomial relation between the coefficients Rpnq and ϕpnq:

Rpnq "

ÿ kďn ˆn k ˙p´1q k ϕpkq. (11) 
It is then possible to return to the Bernoulli model pB n , Sq and obtain the expectation Rpnq in the Bernoulli model, that is expressed as a binomial recurrence involving the coefficients ϕpkq of the Poisson expectation R Z .

3.2 When the keys are words.

Now, the keys are words, and we denote by M :" Σ N the set of all the words emitted by the source. The set of inputs for the algorithm is thus the set M ‹ which gathers all the possible sequences of words. Consider a sequence V P M ‹ that contains two given words M puq and M ptq. The following equalities hold:

Rank V M puq " N r0,ur rVs `1, Rank V M ptq " N r0,ur rVs `Nsu,tr rVs `2,
where the respective translations of 1 and 2 express that M puq and M ptq belong to V.

We denote by Φpu, tqrVs the number of key comparisons performed by the algorithm on the input sequence V between the keys M puq and M ptq. This defines a cost on M ‹ . We also consider the mean Φpu, tqxVy of the cost taken with respect to all the permutations of V. There is a relation between Φpu, tqxVy and the mean number π N pi, jq defined in Section 2.1. More precisely, the following equality holds: Φpu, tqxVy " π |V| pN r0,ur rVs `1, N r0,ur rVs `Nsu,tr rVs `2q.

(

) 12 
We remark that the right member of ( 12) is defined on the whole set M ‹ (even for sequences which do not contain M puq or M ptq). Setting N " N r0,1s , the function p πpu, tq :" π N pN r0,ur `1, N r0,ur `Nsu,tr `2q

provides thus an extension of the function V Þ Ñ Φpu, tqxVy on the set M ‹ . This expression plays a central role in our analyses.

Applying these principles, with expressions of π n pi, jq obtained in Section 2.2, we obtain an expression for random variable p π ˘pu, tq associated with QuickMin and QuickMax, namely

p π ´pu, tq " 2 N r0,ts , p π `pu, tq " 2 N ru,1s p π ´pu, tq " 2 N r0,ur `Nsu,tr `2 , p π `pu, tq " 2 N su,tr `Nst,1s `2 (14) 
For the algorithm QuickSelect the mean number of comparisons p π α pu, tq performed by the QuickSelect algorithm between the words M puq and M ptq chosen as keys when it searches the word M pαq is p π α pu, tq " 2 N rx,ys with x :" u ^α, y :" t _ α, with the usual notation of (2). We denote by z the "middle point" (i.e., x ď z ď y), so that the equality tx, y, zu " tα, u, tu holds.

piq In the case when α ‰ u and α ‰ t, the three words M pxq, M pyq, and M pzq are distinct and, in the same vein as previously, N rx,ys " N sx,zr `Nsz,yr `3 where the translation of 3 expresses that the three words M pxq, M pyq, M pzq belong to V. piiq In the case when α " u or α " t, there are only two distinct words amongst M pxq, M pyq, and M pzq.

In fact, we will be interested only in the first case piq, as the second case arises when pu, tq belongs to the union of the two lines u " α and t " α, which will be of measure 0 in the triangle T . This is why we focus only on the case piq where, with x :" u ^α, y :" t _ α, tx, y, zu " tα, u, tu, we obtain for p π α pu, tq, p π α pu, tq " 2 N sx,zr `Nsz,yr `3 , when u ‰ α and t ‰ α (15)

The QuickVal algorithm

We remark that Eq. ( 15) does not provide a clear way for computing the function p πpu, tq of the QuickSelectpm, nq algorithm, for a general rank m. This is due to the fact that the interval rx, ys depends on the parameter α of the word of rank m, which is not directly related to the rank m. In fact, the real α is mostly the output of the QuickSelect algorithm. This is why we consider an algorithm (already described in Figure 5) that is the counterpart of QuickSelect: it takes as input a set of words V and a given word V P V, and returns the rank of V inside the set V. This algorithm is of independent interest and is easily implemented as a variant of QuickSelect by resorting to the usual partitioning phase, then doing a comparison between the value of the pivot and the input word V (rather than a comparison between their ranks). We call this algorithm QuickVal α when it is used to seek the rank of the word M pαq. By definition, the two algorithms QuickSelectpm, nq and QuickVal α behave exactly in the same way when the rank of the word M pαq equals m. Now, with [START_REF] Knuth | Mathematical Analysis of Algorithms[END_REF], one computes the mean number of key comparisons p π α pu, tq performed by QuickVal α between two words M puq and M ptq.

If we consider the algorithm QuickQuant α pnq which outputs the key of rank t1 `pn ´1qαu " tnα `1 ´αu, then, for α " 0, we recover QuickMin, and, for α " 1, we recover QuickMax. For a general α Ps0, 1r, the behaviors of the two algorithms of QuickVal α pnq and QuickQuant α pnq should be asymptotically similar. Indeed, the parameter of the α-quantile of a random set of words of large enough cardinality must be, with high probability, close to α. It is proven in [START_REF] Mosteller | On some useful inefficient statistics[END_REF] that this parameter follows asymptotically a Gaussian law with mean α and variance αp1 ´αq{n. We will return to this question in Section 5.

Plan of our approach.

We deal with the random variable S counting the number of symbol comparisons which is defined on the set M ‹ : for each V P M ‹ , SrVs is the number of symbol comparisons performed by the algorithm on the input V. We are interested in its expectation Spnq in the Bernoulli model, but it proves convenient to first perform the study in the Poisson model, and we denote by S Z the expectation in the Poisson model. This study has four main steps:

paq We begin by studying the density of the algorithm in the Poisson model, which deals with the mean number of local key comparisons performed by the algorithm on pairs of words whose parameters are close to pu, tq.

pbq With the coincidence of the source described by γpu, tq, we obtain information about the mean number of local symbol comparisons on pairs of words whose parameters are close to pu, tq.

pcq Integrating on all possible points pu, tq of triangle T gives rise to the mean number S Z .

pdq We return to Spnq using [START_REF] Grabner | On a constant arising in the analysis of bit comparisons in Quickselect[END_REF]. The binomial expression involves the coefficients ϕpkq of the series S Z , and the mixed Dirichlet series psq will be defined as the analytic lifting of the sequence ϕpkq.

For reference, the main objects used in the analysis are gathered in Table 2.

Density: a first expression in the Poisson model.

The density of an algorithm is the expectation of the random variable Φpu, tq, defined in Section 3.2, which associates with a random sequence V P M ‹ the number of key comparisons Φpu, tqrVs performed by the algorithm on the input sequence V between the keys M puq and M ptq.

Definition 5 (Poissonized density) For a given algorithm, and a parameterized source S, the Poissonized density Φ Z pu, tq is the expectation of the variable Φpu, tq in the Poisson model pP Z , Sq.

We remark that the density Φ Z pu, tq can be also defined by the relation Φ Z pu, tq du dt is the mean number of key comparisons in the Poisson model performed by the algorithm between two words M pu 1 q and M pt 1 q with parameters u 1 P ru ´du, us and t 1 P rt, t `dts. Eq. ( 24)

psq Analytic lifting of the sequence ϕpkq, also called the mixed Dirichlet series (algorithm/source) Sec. 4.2

Table 2: The main objects used in the analysis, with their names, their definitions, and their computations.

It is then possible to relate the Poissonized density and the expectation of the random variable p πpu, tq defined in ( 13) which provides an extension of the variable Φpu, tq. This is due to the nice properties of this model, and this is why we choose the Poisson model as our (first) probabilistic model.

Lemma 2

The Poissonized density Φ Z pu, tq satisfies

Φ Z pu, tq " Z 2 ¨EZ rp πpu, tqs (16) 
and involves the random variable p πpu, tq defined as p πpu, tq " π N pN r0,ur `1, N r0,ur `Nsu,tr `2q .

Proof First, we recall a notation which has been already used in Section 3.2. For a random variable R defined on the set M ‹ and a sequence V P M ‹ , we denote by RrVs the value of R on V and by RxVy the average of the cost R on all sequences equivalent to V up to a permutation. We consider the "interesting" sequences K P M ‹ for which

K X M ru ´du, us ‰ H, K X M rt, t `dts ‰ H,
and the subset K Ă M ‹ which gathers such sequences, that contain a pair pM pu 1 q, M pt 1 qq with u 1 P ru ´du, us and t 1 P rt, t `dts. Gathering all the sequences V corresponding to the same set gives rise to the expression

Φ Z pu, tq " ż M ‹ Φpu, tqxVy d Z V .
Now, as the variable p πpu, tq provides an extension of the random variable V Þ Ñ Φpu, tq V outside K which only depends on the underlying set, the following equalities hold: Φpu, tqxVy du dt " 1 K xVy ¨p πpu, tqxVy " 1 K rVs ¨p πpu, tqrVs, where the last equality comes from the fact that 1 K rVs and p πpu, tqrVs depend only on the underlying set of the sequence V. This yields another expression for Φ Z pu, tq d dt, namely,

Φ Z pu, tq du dt " ż M ‹ 1 K rVs ¨p πpu, tqrVs .
Observe that the variable p πpu, tq depends only on the intervals r0, ur and su, tr, whereas 1 K depends only on the intervals ru ´du, us and rt, t `dts. Then, in the Poisson model, the two functions are independent, and we finally get

Φ Z pu, tq du dt " ˆżM ‹ 1 K rVs d Z V ˙¨ˆż M ‹ p πpu, tqrVsd Z V ˙.
As the two intervals ru ´du, us and rt, t `dts are disjoint, by the independence property of the Poisson model the first integral equals

E Z r1 K s " P Z rKs " Z du ¨Z dt " Z 2 du dt,
and the lemma is proven.

[ \ 3.6 Density: a second expression in the Poisson model.

In order to return to the Bernoulli model, we are interested in the coefficients of the series expansion of Φ Z pu, tq defined as

Φ Z pu, tq " ÿ kě2 p´1q k Z k k! ϕpk, u, tq, ϕpk, u, tq :" p´1q k k!rZ k sΦ Z pu, tq (17) 
and, with ( 16), the coefficients ϕpk, u, tq satisfy ϕpk, u, tq " 0 for k " 0, 1.

The following Lemma provides nice expressions for these coefficients for three algorithms: Lemma 3 For each algorithm QuickMin, QuickMax and QuickVal α , the sequence of functions ϕpk, u, tq satisfies, for k ě 2, ϕ ´pk, u, tq " 2t k´2 , ϕ `pk, u, tq " 2p1 ´uq k´2 , and ϕ α pk, u, tq " 4 k `1 pt _ α ´u ^αq k´2 if u ‰ α and t ‰ α . The proof of Lemma 3 is based on two assertions: piq For any of the three algorithms, the expressions obtained in ( 14) and [START_REF] Knuth | Mathematical Analysis of Algorithms[END_REF] show that the functions p πpu, tq that arise is our framework are always expressed as a linear combination of basic random variables g m pN I q with g m pXq :" 1 pX `1qpX `2q . . . pX `mq pm ě 1q, and I an interval I Ă r0, 1s. Here, as before, N I is a variable defined on M ‹ as the number of words whose parameter belongs to I. piiq It is easy to compute the coefficients of the expectation E Z rg m pN J qs, as the following proposition shows.

Proposition 2 Consider an integer m ě 1 and an interval I Ă I " r0, 1s.

The expectation in the Poisson model pP Z , Sq of the random variable g m pN I q only depends on m and λZ where λ is the length of the interval I. It is denoted by F m pλZq. Moreover, for k ě 2, the sequence

β m pk, λq " p´1q k k!rZ k s `Z2 F m pλZq ȃdmits
the following expression:

β m pk, λq " 1 pm ´1q! kpk ´1q k `m ´2 λ k´2 . ( 18 
)
Proof Using the independence property of the Poisson model, we know that N I follows a Poisson law of parameter λZ. Then, E Z rg m pN I qs only depends on m and λZ, and

E Z rg m pN I qs " ÿ kě0 g m pkq P Z rN I " ks " e ´λZ ÿ kě0 g m pkq pλZq k k! :" F m pλZq.
The coefficients α m pk, λq in the series expansion of F m pZq satisfy

α m pkq :" p´1q k k!rZ k sF m pZq " 1 pm ´1q! 1 k `m . ( 19 
)
Then, the coefficients β m pk, λq are related to α m pkq for k ě 2:

β m pk, λq " kpk ´1q λ k´2 α m pk ´2q,
this proves, with the help of ( 19), the expressions in Eq. ( 18) and finally the result.

[ \ We now use Proposition 2 to prove Lemma 3.

Proof First, we observe the decompositions 1 X `2 " g 1 pXq ´g2 pXq,

1 X `3 " 2g 3 pXq ´2g 2 pXq `g1 pXq.
Then, with λ " t, this gives the density for QuickMin; and for λ " 1 ´u, this gives the following density for QuickMax:

Φ Z pu, tq " # 2Z 2 rF 1 pZtq ´F2 pZtqs (QuickMin), 2Z 2 rF 1 pZp1 ´uqq ´F2 pZp1 ´uqqs (QuickMax).
For QuickVal α , we pose x " u ^α, y " t _ α, and we obtain, in the case when t ‰ α and u ‰ α, Φ Z pu, tq " 2Z 2 r2F 3 pZpy ´xqq ´2F 2 pZpy ´xqq `F1 pZpy ´xqqs .

(

) 20 
Applying the previous proposition then ends the proof of Lemma.

[ \

Exact mean number of comparisons in the Poisson model.

In the model pP Z , Sq, the density Φ Z is a main tool for computing not only the mean number of key comparisons K Z performed by the algorithm, but also the mean number of symbol comparisons S Z .

With the definition of density Φ Z pu, tq given in Definition 5, the mean number of key comparisons K Z is obtained via the integral

K Z " LrΦ Z s, ( 21 
)
where L is the linear functional defined for a function Φ : T Ñ R as

LrΦs " ż T Φpu, tq du dt.
The definitions of the density Φ Z pu, tq and the coincidence given in Definition 4 enable us to define symbol-density as the product rγpu, tq `1s Φ Z pu, tq. This is the mean number of symbol comparisons (in the Poisson model P Z ) between two words M pu 1 q and M pt 1 q for pu 1 , t 1 q close to pu, tq. Then, the mean number of symbol comparisons S Z is obtained via the formula S Z " J rΦ Z s with J rΦs " ż T rγpu, tq `1s Φpu, tq du dt.

As we have already seen in Section 2.3 (also Eq. ( 8)), the functional J admits an alternative expression which involves the fundamental triangles T w ,

J rΦ Z s :" ż T pγpu, tq `1q Φ Z pu, tq du dt " ÿ wPΣ ‹ ż Tw Φ Z pu, tq du dt. ( 22 
)
This is a general phenomenon: formulas for the mean number of key comparisons or symbol comparisons are similar. When considering symbol comparisons, the functional J replaces the simple integral L used for key comparisons.

Coefficients of the mean number of symbol comparisons in the Poisson model.

The expectation S Z is then computed via its series expansion

S Z " ÿ kě2 p´1q k Z k k! ϕpkq.
Using the series expansion stated in [START_REF] Mosteller | On some useful inefficient statistics[END_REF], the expressions of S Z as integrals given in [START_REF] Sedgewick | Quicksort[END_REF], and the linearity of such integrals, the sequence ϕpkq is now defined, for any k ě 2, in terms of integrals, ϕpkq :"

ż T pγpu, tq `1q ϕpk, u, tq du dt " ÿ wPΣ ‹ ż Tw ϕpk, u, tq du dt. ( 23 
)
This sequence ϕpkq depends both on the algorithm (via the sequence of functions ϕpk, u, tq) and the source (via the fundamental triangles T w ). In Lemma 3, for the QuickVal algorithm, we have only given the expression for ϕ α pk, u, tq which holds almost everywhere on the triangle T , except on the union of the two lines u " α and t " α. In the integral, it is only this expression which intervenes.

Lemma 4 For each algorithm QuickMin, QuickMax, and QuickVal α , the sequence ϕpkq satisfies, for k ě 2, ϕ ´pkq " 2J rt k´2 s, ϕ `pkq " 2J rp1 ´uq k´2 s, and ϕ α pkq " 4 k `1 J rpt _ α ´u ^αq k´2 s.

Exact expression of the mean number of symbol comparisons in the Bernoulli model.

We now wish to return to the Bernoulli model pB n , Sq, where the number of keys is fixed and equal to n. The mean number Spnq of symbol comparisons used by the algorithm when it deals with n words independently drawn from the same source is related to S Z and then to the sequence ϕpkq by the equation

Spnq " n ÿ k"2 p´1q k ˆn k ˙ϕpkq . ( 24 
)
Case of the first three algorithms. Lemma 4 provides in these three cases an exact formula for the mean number Spnq of symbol comparisons:

Proposition 3 The mean number of symbol comparisons, namely QM ˘pnq for QuickMin and QuickMax, and QV α pnq for QuickVal α pnq, admits an exact expression which involves the functional J of the source:

QM ´pnq " 2 n ÿ k"2 p´1q k ˆn k ˙J rt k´2 s, QM `pnq " 2 n ÿ k"2 p´1q k ˆn k ˙J rp1 ´uq k´2 s, QV α pnq " 4 n ÿ k"2 p´1q k k `1 ˆn k ˙J rpt _ α ´u ^αq k´2 s.
Note that our principle applies and, when we replace the functional J by the integral L on the triangle T , we obtain a formula for the number of key comparisons for each algorithm.

Case of QuickQuant α and QuickRand. We now relate the mean number of symbol comparisons QQ α pnq of the algorithm QuickQuant α pnq to the mean number of symbol comparisons QV α pnq of the algorithm QuickVal α pnq.

For a sequence x " px 1 , x 2 , . . . , x n q P I n , the algorithm QuickQuantpα, n, xq outputs the word whose parameter is the real of rank t1 `αpn ´1qu " tαn `1 ´αu in the sequence x, denoted by Rankpα, n, xq. The two algorithms QuickQuantpα, n, xq and QuickValpRankpα, n, xq, n, xq behave exactly in the same way. This is why we have to study, for each α and n fixed, the distribution of the random variable r0, 1s n Ñ r0, 1s, defined as x Þ Ñ Rankpα, n, xq. This variable is just the order statistic of rank m " tαn `1 ´αu, and its density f n pα, vq is the Beta density with parameters pm, n ´m `1q, namely f n pα, vq " n! pm ´1q!pn ´mq! v m´1 p1´vq n´m , with m " tαn`1´αu. [START_REF] Vallée | Dynamical sources in information theory: Fundamental intervals and word prefixes[END_REF] This means that f n pα, vq dv is the probability that Rankpα, n, xq belongs to the interval rv, v `dvs, and the following relation holds:

QQpα, n, xq " ż I QVpv, n, xq f n pα, vq dv. ( 26 
)
On the other hand, if we denote by QQpα, n, xq and QVpα, n, xq the number of symbol comparisons of each algorithm when it is given the sequence x, the two mean numbers QQ α pnq, QV α pnq are given by

QQ α pnq " ż I n QQpα, n, xq dx, QV α pnq " ż I n
QVpα, n, xq dx.

Then, using [START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF], there is an exact integral formula for QQ α pnq, namely,

QQ α pnq " ż I n QQpα, n, xq dx " ż I n ˆI QVpv, n, xq f n pα, vq dv dx " ż I QV v pnq f n pα, vq dv. ( 27 
)
In the same vein, the mean number QSpm, nq of symbol comparisons of QuickSelectpm, nq is then related to the Beta distribution β m,n´m`1 via the equality QSpm, nq "

ż I QV v pnq β m,n´m`1 pvq dv " n! pm ´1q!pn ´mq! ż I QV v pnqv m´1 p1 ´vq n´m dv.
The mean number of symbol comparisons QRpnq performed by the QuickRand algorithm on n words is equal to

QRpnq " 1 n n ÿ m"1
QSpm, nq, and involves the mean of the densities β m,n´m`1 , which can be written as a binomial sum:

1 n n ÿ m"1 β m,n´m`1 pvq " n ÿ m"1
pn ´1q! pm ´1q!pn ´mq! v m´1 p1 ´vq n´m " 1.

This proves the equality

QRpnq "

ż I QV v pnq dv.
We have thus obtained an exact formula for the mean number Spnq for the other two variants QuickQuant α and QuickRand.

Proposition 4

The mean numbers of symbol comparisons QQ α pnq for the algorithm QuickQuant α and QRpnq for QuickRand each admit exact expression as a function of QV α pnq:

QQ α pnq " ż I f n pα, vq QV v pnq dv, QRpnq " ż I QV v pnq dv.
Towards the analytic part of the analysis. We have now obtained the exact expression of Spnq, and this concludes the algebraic part of the analysis. However, the formulae obtained in Propositions 3 and 4 do not give an easy or straightforward access to the asymptotic behaviour of Spnq (when n Ñ 8). In order to obtain asymptotic estimates, we have now to conduct the asymptotic part of the analysis, which deals with analytic tools. This will be accomplished in the following two sections, as there are indeed two different cases:

paq For the algorithms QuickVal (and its variants), the Rice's method will be applied to expressions obtained in Proposition 3, and this is done in Section 4. pbq For the QuickQuant α pnq algorithm, we operate in an indirect way, and we deal with QQ α pnq by comparing it to QV α pnq, with Proposition 4. This is done in Section 5, with a strong use of Laplace's method.

4 Asymptotic Analysis of QuickMin, QuickMax, QuickVal, and QuickRand.

In order to obtain asymptotic estimates of the mean Spnq, we now use analytic tools, namely the Rice's method, which transforms a binomial recurrence into an integral in the complex plane. We are led to deal with the mixed Dirichlet series psq, which will be the analytic lifting of the sequence ϕpnq. We then need tameness properties of the source, which entail tameness for the series psq, so that the asymptotic behaviour can be estimated.

4.1 Rice's method.

First step: An integral form. The first step of the Rice's method transforms a binomial recurrence of type [START_REF] Grabner | On a constant arising in the analysis of bit comparisons in Quickselect[END_REF] into an integral form (see [START_REF] Nörlund | Leçons sur les équations linéaires aux différences finies[END_REF][START_REF] Nörlund | Vorlesungen über Differenzenrechnung[END_REF]).

Proposition 5 Let Spnq be a numerical sequence which can be written as

Spnq " n ÿ k"2 ˆn k ˙p´1q k ϕpkq.
Assume that the sequence pϕpkqq admits an analytic lifting psq in the halfplane s ą 1, which is there of polynomial growth with order at most r. Then the sequence Spnq admits a Nörlund-Rice representation, for n ą r `1 and any d with d Ps1, 2r, namely,

Spnq " ´1 2iπ 
ż d`i8 d´i8
L n psq ¨ psq with L n psq :" p´1q n n! sps ´1q . . . ps ´nq .

The function L n psq is called the Rice kernel.

Second step: shifting to the left. Then, along general principles in analytic combinatorics as explained in [START_REF] Flajolet | Mellin transforms and asymptotics: Finite differences and Rice's integrals[END_REF][START_REF] Flajolet | Analytic Combinatorics[END_REF], the integration line can be pushed to the left, as soon as psq has good analytic properties.

Proposition 6 Assume that the lifting psq is meromorphic in a region R on the left of s " 1 and of polynomial growth there (for | s| Ñ 8). Then

Spnq " ´«ÿ k ResrL n psq psq; s " s k s `1 2iπ ż C L n psq psq ds ff , ( 29 
)
where C is a curve (oriented from the south to the north) of class C 1 included in R and the sum is extended to all poles s k of L n psq inside the domain D delimited by the vertical line s " d and the curve C.

The dominant singularities of L n psq ¨ psq provide the asymptotic behaviour of Spnq, and the remainder integral is estimated using the polynomial growth of L n psq ¨ psq when | psq| Ñ 8.

A particular case. We thus need a region R on the left of s " 1, where psq is of polynomial growth (for | s| Ñ 8) and meromorphic. We need also a good knowledge of its poles. The functions psq involved in this paper fulfil nice properties, and the general framework for applying the Rice's method can be described as follows:

Proposition 7 If the Dirichlet series psq has an abscissa of absolute convergence equal to δ with δ Ps0, 1r, then, for any δ 1 Psδ, 1r, the following asymptotics holds for the sequence Spnq:

Spnq " p1q ¨n `Opn δ 1 q.

Here the constant of the O-term only depends on δ 1 .

Expression of the analytic lifting.

We need first the analytic lifting s Þ Ñ psq of coefficients ϕpkq computed in Lemma 4 to exist in the half-plane s ą 1.

Lemma 5 For each of the algorithms QuickMin, QuickMax, and QuickVal α , the analytic lifting s Þ Ñ psq of coefficients ϕpkq computed in Lemma 4 exists in the half-plane s ą 1, and satisfies ´psq " 2J rt s´2 s, `psq " 2J rp1 ´uq s´2 s, and pα, sq " 4 s `1 J rpt _ α ´u ^αq s´2 s. As we wish to apply Rice's Method, we need stronger properties for the series psq. We will prove in the following Proposition 8 that, under tameness properties of Dirichlet series of the source, then the Dirichlet series psq will satisfy hypotheses of Proposition 7.

Tameness of the mixed series.

We will show the following result, which relates the tameness of the mixed series pα, sq to the tameness of the source.

Proposition 8 Consider a source, its mixed series ´psq, `psq relative to QuickMin, QuickMax, and, for α P r0, 1s, the series pα, sq relative to the QuickVal α algorithm. Then the following holds:

paq If the source is weakly Λ-tame with a width δ Λ ă 1{2, let δ 0 :" 2δ Λ . Then the abscissa of absolute convergence of the mixed series ´psq, `psq, p0, sq, p1, sq is at most equal to δ 0 . pbq If the source is weakly Λ-tame with a width δ Λ and Π-tame with a width δ Π , let δ 0 :" maxp2δ Λ , δ Π q. Then, for any α P r0, 1s, the abscissa of absolute convergence of the mixed series pα, sq is at most equal to δ 0 .

We defer the proof of this proposition to Sections 4.5 through 4.8. We recall that the relation between the series Π and Λ entails the inequality δ Λ ď δ Π .

4.4 Final asymptotic estimates. Now Rice's method, with Lemma 5 and Propositions 7 and 8, leads to the following result:

Theorem 3 The following holds:

paq Consider a source which is weakly Λ-tame with a width δ Λ , and Π-tame with a width δ Π . Assume that δ 0 :" maxp2δ Λ , δ Π q is strictly less than 1. Then the mean number of symbol comparisons for the QuickVal α pnq algorithm satisfies QV α pnq " nρpαq `Opn δ q, with δ Psδ 0 , 1r.

The constant ρpαq is the value of the mixed series pα, sq at s " 1, and the constant hidden in the O-term is uniform for α P r0, 1s. The function α Þ Ñ ρpαq is called the asymptotic slope of the QuickVal algorithm. pbq Consider a source which is weakly Λ-tame with a width δ Λ , and Π-tame with a width δ Π . Assume that δ 0 :" maxp2δ Λ , δ Π q is strictly less than 1. Then, the mean number of symbol comparisons for the QuickRandpnq algorithm satisfies

QRpnq " n "ż I ρpαqdα  `Opn δ q, δ Psδ 0 , 1r.
pcq Consider a weakly Λ-tame source with width δ Λ ă 1{2. Then, the mean number of symbol comparisons for the QuickMinpnq and QuickMaxpnq algorithm satisfy

QM ˘pnq " nρ ˘`Opn δ q, with δ Ps2δ Λ , 1r.
The constant ρ ˘is the value of the mixed series ˘psq at s " 1. The equalities ρ ´" ρp0q and ρ `" ρp1q hold.

Proof This is a clear application of the Rice's method, as stated in Proposition 7, with together with Proposition 8.

[ \ It then remains to study the tameness of psq and prove Proposition 8.

4.5 Principles of the proof of Proposition 8.

We recall that the analysis of the QuickMin or QuickMax algorithms is based on the study of the mixed series ˘psq " 2J rφ s´2 ˘s, with φ ´pu, tq " t and φ `pu, tq " 1 ´u, whereas the analysis of the algorithm QuickVal α is based on the study of the mixed series pα, sq :" 4 s `1 pα, sq, with pα, sq " J rφ s´2 α s

which involves the function

φ α pu, tq :" t _ α ´u ^α. (31) 
For α " 0, the function φ 0 pu, tq coincides with the function φ ´pu, tq " t of QuickMin on the whole triangle T , whereas, for α " 1, the function φ 1 pu, tq coincides with the function φ `pu, tq " 1 ´u of QuickMax on the triangle T . For α Ps0, 1r, there are three domains for the function φ α , shown in Figure 8: -The rectangle R " r0, αs ˆrα, 0s where φ α pu, tq equals t ´u.

-The lower triangle T ´" T r0,αs , where φ α pu, tq equals α ´u.

-The upper triangle T `" T rα,1s , where φ α pu, tq equals t ´α.

There is only one domain of interest (the whole triangle T ) when α equals 0 or 1, and

´psq " s `1 2 p0, sq, `psq " s `1 2 p1, sq.
The important behaviour of the mixed series psq is around s " 1 and more precisely at s " 1, where the factor ps `1q{2 equals 1. This explains why the behaviours of QuickMin and QuickVal 0 on the one hand, and the behaviours of QuickMax and QuickVal 1 on the other hand, are asymptotically equivalent. Scheme of the proof of Proposition 8. For a domain U Ă T and any integer ě 2, and any function φ P L 1 pT q we define J pU q rφs :" ż U pγpu, tq `1qφpu, tqdu dt, J pU q rφs :"

ż T p q XU φpu, tq du dt,
where T p q is the union of all triangles T w with w P Σ . Then the following decomposition holds:

J pU q rφs " ÿ ě0 J pU q rφs.
In the case of general α, the integral pα, sq is the sum of three terms. Each term is of the form pU q pα, sq " 4 s `1 pU q pα, sq, with pU q pα, sq :" J pU q rφ s´2 α s, and U is any subset R α , T r0,αs or T rα,1s . Furthermore, the following decomposition holds: pU q pα, sq " ÿ ě0 pU q pα, sq, with pU q pα, sq :" J pU q rφ s´2 α s.

Relation between psq and Dirichlet series Λpsq, Πpsq. This study aims at relating the series psq to (one of) the series Λpsq or Πpsq. This entails a relation between their abscissae of absolute convergence. We deal with the functions pU q psq and with the inequality ˇˇ pU q psq ˇˇď pU q pσq for σ " s, it is sufficient to deal with real values of parameters σ, and obtain inequalities of the kind pU q pσq ď C 1 Λ pσ 0 q or pU q pσq ď C 2 Π pσ 1 q (33)

for some constants C 1 and C 2 and some abscissae σ 0 or σ 1 related to σ. When now one of the inequalities σ 0 ą 1 `δΛ or σ 1 ą δ Π holds, then weak Λtameness or Π-tameness entails that the abscissa of absolute convergence of the series pU q psq is at most σ.

We first consider the integral on the two triangles, then on the (possible) rectangle, and aim to obtain bounds of the kind (33). We will see that Lemmas 6 or 7 indeed provide such bounds.

Study of integrals over triangles.

We first consider integrals over triangles T r0,αs , T rα,1s and we prove the following estimates: Lemma 6 For any σ 1 ą 0, there exists a constant C, such that, for any α P r0, 1s, and for U P tT r0,αs , T rα,1s u, the function pU q pα, sq satisfies the inequality, for σ :" s ě σ 1 ,

pU q pα, sq ď CΛ ´1 `σ 2 ¯.
If the source is weakly Λ-tame with width δ Λ , then the abscissa of absolute convergence of the series s Þ Ñ pU q pα, sq is at most 2δ Λ .

Proof This proof is an easy extension of the proof which is done in [START_REF] Clément | Towards a realistic analysis of some popular sorting algorithms[END_REF] for the QuickMin algorithm. Using the reflected source p S described in Section 2.6, it is sufficient to deal with one of the two cases for U. Indeed, the mixed Dirichlet series pα, sq relative to a source S and the mixed Dirichlet series p pα, sq relative to the reflected source p S satisfy the identity p pT r0,αs q pα, sq " pT r1´α,1s q p1 ´α, sq.

Since the two sources have the same Dirichlet series Πpsq :" p Πpsq, they share the same tameness properties.

We consider the function on the upper triangle, and we study the "underlined" functions, namely pT rα,1s q pα, sq " ÿ ě0 pT rα,1s q pα, sq pT rα,1s q pα, sq "

ÿ wPΣ ż TwXT rα,1s
pt ´αq s´2 du dt.

For each , we consider some real A P rα, 1s (to be fixed later as a function of σ and ) and split the sum into three sums, each of them relative to a subset of prefixes: the prefixes w for which the right end b w belongs to rα, Ar, the prefixes w for which the left end a w belongs to rA, 1s, and finally the unique prefix τ for which A P ra τ , b τ s. We omit the reference to the real α, and the three sums are respectively denoted by p`q pσq, p´q pσq, p"q pσq. For a w P rA, 1s, we observe the inequality ż bw aw pt ´aw qpt ´αq σ´2 dt ď 1 2 pA ´αq σ´2 p 2 w , which entails p`q pσq ď 1 2 pA ´αq σ´2 Λ rα,1s p2q.

We now choose A such that the two previous bounds are equal, namely,

A ´α " ´σ 2 Λ rα,1s p2q ¯1{2 ď 1 ´α,
so that A belongs to the interval rα, 1s. Then

p`q pσq ` p´q pσq ď C 1 pσq " Λ rα,1s p2q ı σ{2 ,
where C 1 pσq is bounded for σ ě σ 1 (for any σ 1 ą 0). The middle part p"q pσq corresponds to the fundamental interval ra τ , b τ s of length p τ ď Λ rα,1s p2q 1{2 , and p"q pσq ď ż bτ aτ pt ´αq σ´1 dt ď 1 σ pA ´α `pτ q σ ď C 2 pσq

" Λ rα,1s p2q ı σ{2 ,
where C 2 pσq is bounded for σ ě σ 1 (for any σ 1 ą 0). Finally, we use the inequality Λ rα,1s p2q ď Λ p2q, the log-convexity of Λ p2q, and the equality Λ p1q " 1 which together entail the inequality, for σ ď 2,

Λ p2q σ{2 " Λ p2q σ{2 Λ p1q 1´σ{2 ď Λ ´2 σ 2 `1 ´σ 2 ¯" Λ ´1 `σ 2 ¯,
and, taking the sum over integers , we have obtained the bound for the integral over the upper triangle,

ˇˇ pT r1,αs q pα, sq ˇˇď C Λ ´1 `σ 2 ¯.
This is the same bound for the integral on the lower triangle.

[ \ 4.7 Study of the integral over the rectangle.

We prove the following:

Lemma 7 For any σ 1 ą 0, there exists a constant C for which the integral pRq pα, sq satisfies pRq pα, sq ď CΠpσq for any σ ě σ 1 .

If the source is Π-tame with width δ Π , then the abscissa of convergence of all the series s Þ Ñ pRq pα, sq is at most δ Π .

Proof The integral pRq pα, sq is the sum of the integrals pRq pα, sq defined as pRq pα, sq :"

ż T p q XR
pt ´uq s´2 du dt.

For each depth , and for each α, there exists a unique word w p q whose fundamental interval of the form ra p q , b p q s contains α. Then, the intersection T p q X R is the rectangle ra p q , αs ˆrα, b p q s, and pRq pα, σq "

ż b p q α dt ż α a p q
pt ´uq σ´2 du " 1 σpσ ´1q " pb p q ´ap q q σ ´pb p q ´αq σ ´pα ´ap q q σ ı .

If we let

c " b p q ´α b p q ´ap q , d " α ´ap q b p q ´ap q , with c `d " 1, then the integral is written as pRq pα, σq " 1 σpσ ´1q pb p q ´ap q q σ " cp1 ´cσ´1 q `dp1 ´dσ´1 q ‰ .

There are two cases for σ :" s. Consider any ρ 0 ą 0. The (easy) first case arises for σ ě 1 `ρ0 ą 1, where

Rq pσq ď 2 ρ 0 p1 `ρ0 q pb p q ´ap q q σ ď 2 ρ 0 p1 `ρ0 q Π pσq.

Consider now the case when |σ ´1| ď ρ 0 , and let ρ :" σ ´1. The series expansion

x ρ ´1 " ÿ kě1 ρ k k! log k x " ρ log x `ρ2 |log x| 2 ÿ kě0 ρ k pk `2q! log k x of x Þ Ñ x ρ provides the estimate |x ρ ´1 ´ρ log x| ď ρ 2 |log x| 2 e |ρ log x| .
For x P r0, 1s, one has |log x| " ´log x and e |ρ||log x| " e ´|ρ| log x " x ´|ρ| , so that xp1 ´xρ q ρ `x log x ď ρ x log 2 x e |ρ||log x| " ρx 1´|ρ| log 2 x.

If now |ρ| ď ρ 0 , with ρ 0 ă 1, there exists C 1 (which depends on ρ 0 ) for which the inequality x 1´|ρ| log 2 x ď C 1 holds for any x P r0, 1s and any ρ with |ρ| ď ρ 0 . Furthermore, the entropic sum hpxq " ´x log x ´p1 ´xq logp1 ´xq belongs to r0, log 2s, and finally pRq pα, σq " 2 σ pb p q ´ap q q σ rhpcq `|σ ´1| Op1qs .

Returning to pα, sq itself and taking the sum over all the integers gives the final bound pRq pα, σq ď CpσqΠpσq, for any σ ě σ 0 ą 0.

[ \ 4.8 End of the proof.

With the two Lemmas, and the formula pα, sq " pT´q pα, sq ` pT`q pα, sq ` pRq pα, sq, we obtain the following bound

| pα, sq| ď C " Λ ´1 `σ 2 ¯`Πpσq ı for some constant C.
This entails that the series pα, sq is (absolutely) convergent as soon as σ ě max p2δ Λ , δ π q, and thus the result for QuickVal α . Observe that, in the cases α " 0 or α " 1, there is only one triangle (either T ´or T `) and no rectangle, and the weak Λ-tameness is then sufficient to conclude.

5 Asymptotic estimates for the QuickQuant α Algorithm.

We return to the analysis of the QuickQuant algorithm with Proposition 4 and Theorem 3, and will prove the following result that exactly entails Assertion paq of Theorem 1.

Theorem 4 Consider a source which is weakly Λ-tame with a width δ Λ , and Π-tame with a width δ Π . Assume that δ 0 :" maxp2δ Λ , δ Π q is strictly less than 1. Then, for any α P r0, 1s, the mean number of symbols comparisons performed by the QuickQuant α algorithm satisfies QQ α pnq " nρpαq `Opn δ q, with δ Psp1 `δ0 q{2, 1r.

Moreover, the constant hidden in the O-term is uniform on any interval of the form rα 1 , 1 ´α1 s with α 1 ą 0.

We first remark that the theorem is already proven for α " 0 or α " 1. Indeed, for α " 0, the QuickQuant α algorithm coincides with QuickMin and for α " 1, with QuickMax. In these cases, this is just an application of Theorem 3, which provides an exponent δ Psδ 0 , 1r (a priori smaller than the exponent of the present Theorem 4).

We now focus on the case when α belongs to the open interval s0, 1r. The relation between the costs QQ α pnq and QV v pnq given in Proposition 4 together with the estimate for QV v pnq obtained in Theorem 3 leads us to the following estimate for QQ α pnq, with δ Psδ 0 , 1r:

QQ α pnq " ż 1 0 f n pα, vq QV v pnq dv " ż 1 0 f n pα, vq " nρpvq `Opn δ q ‰ dv.
Since the constant of the O-term is uniform with respect to v, we obtain QQ α pnq " n ¨In pαq `Opn δ q with I n pαq :"

ż 1 0 f n pα, vqρpvq dv. ( 34 
)
It remains to study the integral I n pαq, and compare it to the value ρpαq. As the density f n pα, vq can be compared to a large power of a function f α , we are then led to apply Laplace's method (see for instance [START_REF] Flajolet | Analytic Combinatorics[END_REF] or [START_REF] Bruijn | Asymptotic methods in Analysis[END_REF]), which first needs some regularity properties of the function ρ that we now establish.

5.1 Regularity of the asymptotic slope of QuickVal.

In order to compare the behaviors of the algorithms QuickVal and QuickQuant, and use Laplace's method, we need the asymptotic slope to be regular enough.

Proposition 9 Consider a source which is weakly Λ-tame with a width δ Λ , and Π-tame with a width δ Π . Assume that δ 0 :" maxp2δ Λ , δ Π q is strictly less than 1. Then, the asymptotic slope α Þ Ñ ρpαq of the QuickVal algorithm is Hölder with exponent η with η ă 1 ´δ0 : for any η with 0 ă η ă 1 ´δ0 , there exists a constant C η for which |ρpβq ´ρpαq| ď C η |β ´α| η @pα, βq P r0, 1s 2 .

Proof We assume that the inequality α ď β holds and begin with the inequality

|ρpβq ´ρpαq| ď 2J " φ ´1 α ´φ´1 β ı .
There are six domains, described in Figure 9. On each domain, we obtain an upper bound for the function φ ´1 α ´φ´1 β , of the form

φ ´1 α ´φ´1 β ď |β ´α| η ´φ´1´η α `φ´1´η β ¯,
for any η P r0, 1s.

We do not directly obtain such an upper bound: on each domain we get a "natural" upper bound of the form and, on each domain, the function F α,β is related to the functions φ α or φ β or both. This approach is summarised in Figure 9. The exponent η will be chosen later on. We first explain how to obtain the results described in the On the triangle T rα,βs , with the inequalities β ´α ě t ´α and β ´α ě β ´u, we obtain

φ ´1 α ´φ´1 β ď |β ´α| η F α,β , (35) 
φ ´1 β pu, tq ´φ´1 α pu, tq ď 1 t ´α `1 β ´u ď pβ´αq η ˆ1 pt ´αq 1`η `1 pβ ´uq 1`η ˙.
Now, Figure 9 states six domains partitioning the unit triangle and gives in a table expressions for F α,β pu, tq in each of these domains. For each domain U this yields

J pU q " φ ´1 α ´φ´1 β ı ď |β ´α| η ´J pU q " |φ α | ´1´η ı `J pU q " |φ β | ´1´η ı¯.
We take the sum over the six domains U, and we obtain

J " |φ α | ´1 ´|φ β | ´1ı ď |β ´α| η ` pα, 1 ´ηq ` pβ, 1 ´ηq ˘.
We now use the results of Proposition 8 which proves that the functions s Þ Ñ pα, sq are uniformly bounded on the half-plane s ě 1 ´δ, with δ ă 1 ´2δ 0 . Then, choosing any η with 0 ă η ă δ, we obtain, with C η :" 2 sup t pα, 1 ´ηq, α P r0, 1su, the inequality

J " φ ´1 α ´φ´1 β ı ď |β ´α| η ` pα, 1 ´ηq ` pβ, 1 ´ηq ˘ď C η |β ´α| η .
[ \ 5.2 A tailored version of Laplace's method.

Since we can only guarantee the function ρ to be Hölder, we need, and now state, a version of Laplace's method suited to this situation.

Theorem 5 (Laplace's method) Let ρ and f be positive functions defined over the unit interval I " r0, 1s of the real line, and consider the integrals

J n :" ż I ρpvq f pvq n dv, K n :" ż I f pvq n dv.
Assume the following:

piq ρ is Hölder with exponent η; piiq f is continuous on r0, 1s and infinitely differentiable on s0, 1r; piiiq f attains its maximum at a unique point v 0 Ps0, 1r; pivq The three real numbers ρpv 0 q, f pv 0 q, f 2 pv 0 q are non zero.

Then, the integrals J n and K n satisfy

J n K n " ρpv 0 q " 1 `Opn ´η1 {2 q ‰ , with η 1 ă η.
Proof [Sketch of proof.] In Laplace's method, the contribution of a small interval around v 0 gives the main asymptotic term. More precisely, one considers the two integrals

J p1q n :" ż An ρpvqf pvq n dv, K p1q n :" ż An f pvq n dv,
with A n :" rv 0 ´log n{ ? n, v 0 `log n{ ? ns. First, the integral K p1q n is proven to give the main term for K n in Laplace's method, and, moreover, the Hölder condition for ρ is enough to prove that J p1q n gives the main term for J n in Laplace's method. More precisely, one has

J p1q n J n " 1 `O ˆ1 n ˙, K p1q n K n " 1 `O ˆ1 n ˙.
Second, on the interval A n , the following estimate holds for ρ:

ρpvq " ρpv 0 q `O ˆlog n ? n ˙η " ρpv 0 q " 1 `Opn ´η1 {2 q ı , with η 1 ă η.

Since η 1 ă 1, it implies the estimates J p1q n " ρpv 0 q K p1q n r1 `Opn ´η1 {2 qs, and thus J n " ρpv 0 q K n r1 `Opn ´η1 {2 qs.

[ \

We now study the integral I n pαq defined in (34),

I n pαq " ż I ρpvq f n pα, vq dv,
which involves the beta density f n pα, vq with parameters ptαn `p1 ´αqu, n tαn `p1 ´αqu `1q. We follow the principles of Laplace's method, and we perform two steps.

Proof of Theorem 4. First step.

In the first step, we "forget" the integer parts in the expression of f n pα, vq, and we deal with the Beta density p f n pα, vq of parameters pαn `1 ´α, n ´αn `αq, and we wish to study the integral p I n pαq :"

ż I ρpvq p f n pα, vqdv.
The function p f n pα, vq is written as a product p f n pα, vq " p Cpα, nq f α pvq n´1 , with p Cpα, nq :" Γ pn `1q Γ pαn `1 ´αqΓ pn ´αn `αq , f α pvq :" v α p1 ´vq p1´αq .

We first deal with the integrals without the Gamma-factor p Cpα, nq, namely

J n pαq :" ż I ρpvqf α pvq n´1 dv, K n pαq :" ż I f α pvq n´1 dv,
and use Laplace's method. We first check the hypotheses for the function f α . For α Ps0, 1r, the function f α pvq satisfies f 1 α pvq " v α´1 p1 ´vq ´α pα ´vq so that f 1 α pαq " 0,

f 2 α pαq " ´1 αp1 ´αq f α pαq so that f 2 α pαq ‰ 0,
and f α pvq attains its maximum at v " α. Then, Laplace's method can be applied for any α Ps0, 1r, and provides the estimate J n pαq " ρpαq ¨Kn pαq ¨r1 `Opn We now take into account the "integer part", and we have to estimate the difference

I n pαq ´p I n pαq ď ż I ρpvq f n pα, vq ´p f n pα, vq dv ď KR n with R n :" ş I f n pα, vq ´p f n pα, vq dv. We compare R n to the integrals K n pαq :" ż 1 0 f n pα, vq dv, p K n pαq :" ż 1 0 p f n pα, vq dv, (36) 
which are both equal to 1. We will show that R n is "negligible" with respect to these integrals. Here, U n is said to be negligible with respect to V n if U n {V n is Op1{nq.

The two Beta densities f n pα, vq and p f n pα, vq have the same shape: they are both unimodal, attain their maxima respectively at v " α and v " tαn´αu{n, and are equal to 0 at v " 0 and v " 1. We write the difference |f n pα, vq ṕ f n pα, vq| as f n pα, vq ´p f n pα, vq " p f n pα, vq 1 ´fn pα, vq p f n pα, vq ;

and the ratio f n pα, vq{ p f n pα, vq is a product of two ratios, namely, the ratio between the Gamma factors and the ratio between the functions. First, the ratio between the Gamma factors, namely, As the last function is zero at v " α, Laplace's method applies and shows that the integral ż An p f n pα, vqg n pvq dv is negligible with respect to the integral p K n pαq. And finally, the integral of |f n pα, vq ´p f n pα, vq| on the interval A n is negligible with respect to the integral p K n pαq. We have proven in this section the estimate I n pαq :" ż 1 0 ρpvqf n pα, vq dv " p I n pαq `Op1{nq, and, together with the estimate of the previous section, I n pαq " ρpαqr1 `Opn ´η1 {2 qs `Op1{nq " ρpαq `Opn ´η1 {2 q.

Conclusion of the proof of Theorem 4.

First we recall that, for α " 0 the QuickQuant α algorithm coincides with QuickMin, and for α " 1 the QuickQuant α algorithm coincides with QuickMax.

Then, the theorem holds for α " 0 and α " 1. For α Ps0, 1r, we begin with (34), and, with δ ą δ 0 and δ 0 " maxp2δ Λ , δ π q, we relate QQ α pnq to the integral I n pαq: QQ α pnq " nI n pαq `Opn δ q.

Moreover, we have obtained an estimate for I n pαq which involves an exponent η 1 ă η ă 1 ´δ0 : I n pαq " ρpαq `Opn ´η1 {2 q .

We finally obtain QQ α pnq " n ¨ρpαq `Opn 1´pη 1 {2q q `Opn δ q .

As 1 ´pη 1 {2q ą 1 ´pη{2q ą 1 ´p1 ´δ0 q{2 " p1 `δ0 q{2 ą δ 0 , we obtain a remainder term of order Opn δ 1 q with δ 1 ą p1 `δ0 q{2. This proves Assertion paq of Theorem 1 for any α Ps0, 1r. Note that on the interval rα 1 , 1 ´α1 s, with α 1 ą 0, the constant hidden in the O-term is uniform with respect to α.

Remark.

It is probably possible to use the asymptotic normality of the αquantile (as proven by Mosteller in [START_REF] Mosteller | On some useful inefficient statistics[END_REF]) for comparing more directly QV α pnq and QQ α pnq. As we wish to obtain the precise remainder terms, we prefer to give the proof described here. Now, we have proven all the assertions of Theorem 1. We now focus on the explicit expressions of the constants and prove Theorem 2.

6 Study of the asymptotic slope ρpαq.

We first provide an alternative expression for the asymptotic slope α Þ Ñ ρpαq. Then we use it to study the maximality of the function α Þ Ñ ρpαq at α " 1{2 when the source is unbiased memoryless, with an alphabet of odd size. 

where φ α is defined as φ α pu, tq :" t _ α ´u ^α for a parameter α P r0, 1s. We are interested in giving a "short" expression for the asymptotic slope ρpαq. We first extend the definition of φ α for any α P R, with φ α pu, tq " t ´α (for α ď 0), φ α pu, tq " α ´u (for α ě 1). This leads to an explicit expression for κ, now defined on the whole real line, which involves an extension H of the entropy function h, usually only defined on the interval r0, 1s. More precisely, we write κpyq " 2r1 `Hpyqs where Hpyq is an extension of the entropic function h, defined as 

With such an extension of the function κ, we obtain the following "short" expression for the asymptotic slope. we use the simple change of variables which maps T w onto T , of the form t " a w `pw t 1 , u " a w `pw u 1 , and the relations pα _ tq " a w `rpα ´aw q _ pp w t 1 qs " a w p w `pw "ˆα ´aw p w ˙_ t 1  , pα ^uq " a w `rpα ´aw q ^pp w u 1 qs " a w p w `pw "ˆα ´aw p w ˙^u 1  .

These entail the equality 1 p w pα _ tq ´pα ^uq " "ˆα ´aw p w ˙_ t 1 

´"ˆα ´aw p w q ^u1 ˙ , yielding the final result.

[ \ 6.2 Maximality of the asymptotic slope of the QuickVal algorithm at α " 1{2.

It is not always true that the asymptotic slope ρpαq is maximal at ρ " 1{2, even for a symmetric source. A clear counterexample is shown for the simplest source, the binary source, in Figure 2. The following result shows that this is true for any unbiased memoryless source over an alphabet of odd size.

Proposition 11 For an unbiased memoryless source over an alphabet of odd size, the constant ρpαq is maximised by α " 1{2.

Proof For an unbiased memoryless source over an alphabet of finite size r, we can express ρpαq in terms of κ, for any α P R, as ρpαq " We will prove that each ρ pαq is maximum at α " 1{2. When r is odd, we let r ´1 " 2J, and we write the index k P r0 . . 2Js as k " ´j `J with j P r´J, Js, together with r α ´k " p2J `1qα ´J `j. Now, for integer J ě 0 we define f J pxq :" J ÿ j"´J κpj `xq, x P R, (40) so that ρ pαq " f J pxq with x :" p2J `1qα ´J.

It is then sufficient to study f J on the interval r´J, J `1s and prove that f J is maximal at x " 1{2. This will prove that ρ is maximal at α " 1{2. 

We will prove the following two facts:

piq For any x P r0, 1s the expression f pj `xq is non-increasing in integer j ě 0. piiq The expression f pxq is maximised over x P r0, 1s by x " 1{2.

Conclusion

Our study shows that the QuickSelect algorithm uses a linear number of comparisons (on average) for a wide variety of models, considering either key or symbol comparisons, or even changing the type of sources for symbol comparisons. We exhibit a striking fact: the constants change but the complexity remains linear. The situation is completely different for sorting algorithms: in [START_REF] Clément | Towards a realistic analysis of some popular sorting algorithms[END_REF], we study for instance the QuickSort algorithm, and we show that the mean number of comparisons goes from Θpn log nq to Θpn log 2 nq depending if we consider key or symbol comparisons on a "nice" source. Moreover, there are intermittent sources (of type described in Section 2.4) on which the complexity of QuickSort becomes Θpn β q for some β ą 1.

Then, there is a strong contrast between the behaviour of QuickSelect and QuickSort, and the QuickSelect algorithm seems to be more "robust" to the change of model, and notably the quality of the source. Our analysis exhibits such a phenomenon, via the tameness properties of the source which are needed for the mixed series to be itself tame. The two kinds of tameness are directed related for sorting algorithms, whereas this relation is less tight for selection algorithms and gives more latitude to the source. It would be thus interesting to find (or design) sources which could change the symbol complexity of QuickSelect; such a candidate could be the intermittent sources of Section 2.4 with exponent a " 1, or their extension presented in [START_REF] Cénac | Uncommon suffix tries. Random Structures & Algorithms[END_REF]. This will help to better understand the extent of our framework.

It would be also interesting to investigate the lower bound of the selection problem in our symbol comparison model. We have conducted such a study in [START_REF] Clément | Towards a realistic analysis of some popular sorting algorithms[END_REF] for the mean number of comparisons performed by sorting algorithms: we start with the decision tree used in the classical key comparison model, and we "mix" it with a trie, along the approach described by Seidel [START_REF] Seidel | Data-specific analysis of string sorting[END_REF]. However, for the selection problem, the lower bound is already more intricate in the classical key comparison model, at least for a general rank m, even though there are some results given in [START_REF] Knuth | The Art of Computer Programming[END_REF], for instance. It would be natural to begin with the minimum problem, where the lower bound is n in the usual key comparison model. In [START_REF] Nguyen | Towards a realistic analysis of sorting and searching algorithms[END_REF], we have analysed, in our symbol comparison model, another algorithm for the selection of the minimum (the first step of the sorting Selection algorithm), and proved its complexity to be Θpnq, with another constant. It would be interesting to exhibit the constant for the lower bound of the minimum selection problem in our symbol comparison model.
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 2 Fig. 2: Plots of the function ρ S pαq for α P r0, 1s and three sources: Bp1{2, 1{2q, Bp1{3, 2{3q, and Bp1{3, 1{3, 1{3q. The curves are deformations of the curve α Þ Ñ κpαq whose plot is on the bottom right corner. The plots illustrate the fractal character of the constants involved in QuickQuant. pbq The Random selection constant is
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 3 Fig. 3: Partition Algorithm.
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 4 Fig. 4: QuickSort Algorithm.
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 5 Fig. 5: Algorithms QuickSelect and QuickVal. Algorithms QuickMin and QuickMax correspond to the QuickSelect algorithm with particular ranks m " 1 and m " n for an array of size n.
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 6 Fig. 6: The parameterization of a source.

  rγ" s , entail the following equality which deals with the functional J and holds for any integrable function g on the unit triangle T , J rgs " ż T rγpu, tq `1sgpu, tq du dt " ÿ wPΣ ‹ ż Tw gpu, tq du dt.

Fig. 8 :

 8 Fig. 8: The three domains useful for the study of pα, sq (left) and the straddling triangle (right).

For b w P rα, As, we use the inequality ż bw aw pt ´aw qpt ´αq σ´2 dt ď ż bw aw pt ´αq σ´1 dt, yielding p´q pσq ď ż A α pt ´αq σ´1 dt " 1 σ

 1 pA ´αq σ .

6. 1

 1 An alternative expression for the asymptotic slope of QuickQuant.Let α P r0, 1s. The asymptotic slope κpαq for the mean number of key comparisons and the asymptotic slope ρpαq for the mean number of symbol comparisons are given by κpαq " 2 ż T φ α pu, tq ´1 du dt, ρpαq " 2J rφ ´1 α s " ż T rγpu, tq `1sφ α pu, tq ´1 du dt,

  ´1 y ˙if y ă 0 hpyq " ´y log y ´p1 ´yq logp1 ´yq, if y P r0, 1s py ´1q log ˆ1 ´1 y ˙if y ą 1.

Proposition 10 Proof

 10 For a source S with fundamental intervals ra w , b w s, the asymptotic slope of the QuickVal algorithm satisfies, for any α P r0, 1s, Starting with the expression of ρpαq :" pα, 1q, namely, Tw rpα _ tq ´pα ^uqs ´1 du dt,

Fix J ě 1

 1 and write f as shorthand for f J . First observe that sup xPR f pxq " sup xPr0,1s sup kPZ f pk `xq.

Table 1 :

 1 Asymptotic estimates for the mean number of key comparisons for QuickSelect and special cases of QuickSelect.

				Asymptotic
	QuickSelectpm, nq	Output	Value of m	estimate of Kpm, nq
	QuickQuant α	α-quantile m " t1 `αpn ´1qu κpαqn
	QuickMed	median	m " tpn `1q{2u	2p1 `log 2qn
	QuickMin	minimum	m " 1	2n
	QuickMax	maximum m " n	2n
	QuickRand	random	m P r1 . . ns R	3n

1.2 Tameness of sources.

  Fig.9:The six domains for the study of |ρpαq ´ρpβq| for any η P r0, 1s. The second column of the table on the right describes the "natural" intermediary function F α,β mentioned in (35); it is expressed as a function of φ α and φ β .

				T rβ,1s	p1, 1q	Domain U T r0,αs	F α,β pu, tq for pu, tq P U pα ´uq ´1´η " φ ´1´η α pu, tq
		T rα,βs	pβ, βq		T rβ,1s T rα,βs	pt ´βq ´1´η " φ ´1´η β pt ´αq ´1´η `pβ ´uq ´1´η pu, tq " φ ´1´η α pu, tq `φ´1´η β pu, tq
	T r0,αs	q	pα, αq			rα, βs ˆrβ, 1s r0, αs ˆrα, βs	pt ´uq ´1´η " φ ´1´η β pt ´uq ´1´η " φ ´1´η α	pu, tq pu, tq
	p0, 0q					r0, αs ˆrβ, 1s	0

  table of Figure 9. Using the reflected source (described in Section 2.6), it is enough to study the function |φ ´1 α ´φ´1 β | on three domains: two triangles, T r0,αs and T rα,βs , and one rectangle, rα, βs ˆrβ, 1s.On the triangle T r0,αs , with the inequalities β ´α ď β ´u and α ´u ď β

							´u
	we have					
	φ ´1 β pu, tq ´φ´1 α pu, tq "	pβ ´αq pβ ´uqpα ´uq	ď	pβ ´αq η pβ ´uq η pα ´uq	ď	pβ ´αq η pα ´uq 1`η .
	φ ´1 β pu, tq ´φ´1 α pu, tq "	pu ´αq pt ´αqpt ´uq	ď pβ´αq η pt ´αq 1´η pt ´αqpt ´uq	ď	pβ ´αq η pt ´uq 1`η .

On the rectangle rα, βs ˆrβ, 1s, using the inequalities u ´α ď β ´α ď t ´α and t ´u ď t ´α we have

  ´η1 {2 qs. Proof of Theorem 4. Second step.

	Now, the initial integral of interest is
		ż	
	p I n pαq :"	ρpvq p f n pα, vq dv " p Cpα, nqJ n pαq,
		I	
	whereas the product p Cpα, nqK n pαq equals 1, since p f n pα, vq is a density. This
	leads to the estimate		
	ż		
	p I n pαq :"	ρpvq p f n pα, vq dv " ρpαq ¨r1 `Opn	´η1 {2 qs.
	I		
	5.4		

  On any interval rα 1 , 1 ´α1 s, with α 1 ą 0, the ratio α{p1 ´αq is bounded both from above and below, and the fractional part belongs to r0, 1s so that Second, it is possible to choose an interval A n for which the following holds: paq The interval A n contains the two points α and tαn ´αu{n " α `Op1{nq; pbq The two integrals of f n pα, vq and p f n pα, vq on the two intervals which form IzA n are negligible with respect to the integral K n pαq or p K n pαq. It is then the same for the integral of the difference |f n pα, vq ´p f n pα; vq|; pcq On the interval A n , the ratio p1 ´vq{v is uniformly bounded (with respect to n) both from below and above, and the ratio f n { p f n satisfies These three properties for the interval A n , entail the estimate, for v P A n , and thus the function f n pα, vq ´p f n pα, vq satisfies f n pα, vq ´p f n pα, vq " p f n pα, vq ¨ 1

	is evaluated thanks to Stirling's formula for x Ñ 8 and a P r0, 1s:
	Γ px `aq Γ pxq	" x a	"	1	`O ˆ1 x	˙ and thus	Cpα, nq p Cpα, nq	"	ˆα 1 ´α ˙tαn´αu	`O ˆ1 n	˙.
							Cpα, nq p Cpα, nq	"	ˆα 1 ´α ˙tαn´αu " 1	`O ˆ1 n	˙ .	(37)
			f n pα, vq p f n pα, vq	"	ˆ1	´v v	˙tαn´αu	¨Cpα, nq p Cpα, nq
								"	ˆ1	´v v	˙tαn´αu ˆα 1 ´α ˙tαn´αu "	1	`O ˆ1 n	˙ .
	1	´fn pα, vq p f n pα, vq	" g n pvq	`O ˆ1 n	˙, with g n pvq " 1	´ˆ1	´v v	1	α ´α ˙tαn´αu	,
												´fn pα, vq p f n pα, vq	" p f n pα, vq	ˆO ˆ1 n	˙`g n pvq ˙.
	We observe the upper bound
		g n pvq ď gpvq with gpvq " 1	´ˆ1	´v v	1	α ´α ˙	"	v vp1 ´αq ´α	.
						Cpα, nq p Cpα, nq	"	Γ pαn `1 ´αqΓ pn ´αn `αq Γ ptαn ´αu `1qΓ pn ´tαn ´αuq	,

The word "tame" was proposed by Philippe Flajolet and used for the first time in[START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF]. Later on, most of the papers which deal with probabilistic sources use similar notions and the word "tame" is now largely used.

This corrects small errors in Figure1of[START_REF] Vallée | The number of symbol comparisons in QuickSort and QuickSelect[END_REF].
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With piq, and the symmetry of f pxq with respect to x " 1{2, it follows, for any x P r0, 1s, that f pj `xq is unimodal in j P Z with maximum at j " 0. The lemma then follows from piiq and (41).

To establish piq, let j ě 0 and observe

If j ´J `x ě 1{2, then the difference (42) is ď 0 because κpxq is non-increasing for x ě 1{2. On the other hand, if j ´J `x ă 1{2, then the difference (42) is upper-bounded by κpj `J `1q ´κpj ´Jq " κp´j ´Jq ´κpj ´Jq ď 0.

To establish piiq, we begin by calculating f pxq explicitly when x P r0, 1s. First, using the first line of (39), we find

p1 ´j ´xqrlogpj `xq ´logpj ´1 `xqs.

Using Abel's transform, and introducing the function gpyq :" p1 ´yq log y, we obtain

Next, using the symmetry of κpxq about x " 1{2, we observe

Summing these last two expressions together with the expression for κpxq in the second line of (39) we arrive at 1 2 f pxq " p2J `1q `rgpJ `xq `gpJ `1 ´xqs `J´1 ÿ j"1 logrpj `xqpj `1 ´xqs. (43)

Of the three terms here, the first is constant, the third is unimodal with maximum at x " 1{2 (since each term in the sum has this property), and the second is maximised at x " 1{2 because gpyq is concave for y ě 1. (In fact, it is concave for all y ą 0.) Thus piiq is established, as is the proposition.

[ \ Some experiments performed by Philippe Flajolet showed that this property does not hold for every memoryless source, even if it is symmetric and built on an alphabet of odd size. However, we conjecture the following:

Conjecture. Consider a symmetric memoryless source over an ordered alphabet Σ of odd size denoted by t0, 1, . . . , r ´1u and assume that the middle symbol pr ´1q{2 is the most probable, namely p pr´1q{2 ě p i for all i P Σ. Then the constant ρpαq is maximised by α " 1{2.