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Abstract

Let s2(x) denote the number of occurrences of the digit “1” in the binary expansion
of x in N. We study the mean distribution µa of the quantity s2(x+ a)− s2(x) for
a fixed positive integer a. It is shown that solutions of the equation

s2(x+ a)− s2(x) = d

are uniquely identified by a finite set of prefixes in {0, 1}∗, and that the probability
distribution of differences d is given by an infinite product of matrices whose coef-
ficients are operators of l1(Z). Then, denoting by l(a) the number of occurrences
of the pattern “01” in the binary expansion of a, we give the asymptotic behavior
of this probability distribution as l(a) goes to infinity, as well as estimates of the
variance of the probability measure µa.

1. Introduction

1.1. Background

In this article we are interested in the statistical behavior of the difference of the
number of digits 1 in the binary expansion of an integer x before and after its
summation with a. This kind of question can be linked with carry propagation
problems developed in [5] and [9], and is linked to computer arithmetic as in [8] or
[3], but our approach is different.

The main definitions of the paper are the following.
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Definition 1.1.1. For every integer x in N whose binary expansion is given by

x =

n∑
k=0

xk2k, xk ∈ {0, 1},

we define the quantity

s2(x) =

n∑
k=0

xk,

which is the number of occurrences of the digit 1 in the binary expansion of x.

Definition 1.1.2. For every integer x in N whose binary expansion is given by:

x =

n∑
k=0

xk2k,

we denote by x the word x0...xn in {0, 1}∗.

Remark 1.1.3. Since we are working in the free monoid {0, 1}∗ of binary words,
let us state right away that we will denote the cylinder set of a word w = w0...wn by
the standard notation [w] := {v ∈ {0, 1}N | v0...vn = w0...wn}. These sets form
a topological basis of clopen sets of {0, 1}N for the product topology. Moreover, we
endow the set of binary configurations {0, 1}N with the natural probability measure
P that is the balanced Bernoulli probability measure defined on the Borel sets.

The function s2 modulo 2 was extensively studied for its links with the Thue-
Morse sequence (as found in [4]), for example, or for arithmetic reasons as in [2]
and [6]. In this paper our motivation is not of the same nature. Thus we will not
look at s2 modulo 2, but instead at the function s2, which is the sum of the digits
in base 2.

In [1], Bésineau studied the statistical independence of sets defined via functions
such as s2, i.e. “sum of digits” functions. To this end he studied the correlation
function defined in the following way.

Definition 1.1.4. Let f : N → C. Its correlation γf : N → C is the function, if it
exists, defined by

γf (a) = lim
N→∞

1

N

N∑
k=0

f(k)f(k + a).

This correlation was studied in [1] for functions of the form k 7→ eiπαs(k) where
s is a sum-of-digits function in a given base.

In the case of base 2, this motivates us to understand the following equation,
with parameters a in N and d in Z:

s2(x+ a)− s2(x) = d. (1)
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Namely, we wish to understand, for given integers a and d, the behavior of the
density of the set {x ∈ N | s2(x+ a)− s2(x) = d}, which always exists (from [1, 7]
for instance). We remark that we can define in this way, for every integer a, a
probability measure µa on Z defined, for every d, by

µa(d) := lim
N→∞

1

N
# {x ≤ N | s2(x+ a)− s2(x) = d} .

Example 1.1.5. Let us compute µ1 and deduce µ2n for every n.

First, we remark that s2(x + 1) − s2(x) ≤ 1 for every non-negative integer x,
since there is only one “1” in the binary expansion of 1.

It is easy to see that µ1(1) is the density of the set of even integers, so we
have µ1(1) = 1

2 . We also remark that in order to get a difference d ≤ 0, one has
to propagate a carry in the summation d + 1 times. In other words, suppose we
wish to have s2(x+ 1)− s2(x) = d with a negative d; then x has to start with
1−d+10. This means that x ≡ 2−d+1 − 1 mod (2−d+2). The set {x ∈ N | x ≡
2−d+1 − 1 mod (2−d+2)} is of density 1

2−d+2 .

Finally,

µ1(d) =

{
0 if d > 1
1

2−d+2 if d ≤ 1.

Now notice that µ2a = µa for every a. This is proved later with Proposition 2.1.8.
Hence, for every n in N,

µ2n(d) =

{
0 if d > 1
1

2−d+2 if d ≤ 1.

Section 2 studies the set {x ∈ N | s2(x + a) − s2(x) = d} with a combinatorial
approach, using constructions from theoretical computer science such as languages,
graphs, and automata. In this way we prove that the probability µa is given by a
product of matrices.

Section 3 is a technical part that allows us to understand the asymptotic behavior
of such a measure as a gets bigger in a certain, non-trivial, sense. This section de-
velops the idea that our probability measure gets smaller as l(a) increases. Namely,
we give an upper bound of the l2(Z) norm of the probability measure µa depending
on the number of occurrences of “01” in a.

Finally, we give bounds on the variance of µa, also depending on the number of
patterns “01” in a.

1.2. Results

The main results are the following.

Theorem. The distribution µa is calculated via an infinite product of matrices
whose coefficients are operators of l1(Z) applied to a vector whose coefficients are
elements of l1(Z):

µa = (Id, Id) · · ·AanAan−1 · · ·Aa1Aa0
(
δ0
0

)
,
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where the sequence (an)n∈N is the binary expansion of a, δ0 is the Dirac mass in 0,
the Ai are defined by

A0 =

(
Id 1

2S
−1

0 1
2S

)
, A1 =

(
1
2S
−1 0

1
2S Id

)
,

and S is the left shift transformation on l1(Z).

Remark 1.2.1. We recall that the set of finite measures on Z is in bijection with
the elements of l1(Z). We will always identify finite measures on Z and elements of
l1(Z).

Such a result allows an analytical study of these distributions as the binary
expansion of a becomes more and more ‘complicated.’ Let us formalize this notion
of complexity for a.

Definition 1.2.2. For every a in N, let us denote by l(a) the number of subwords
01 in the binary expansion of a.

Remark 1.2.3. We advise the reader to be careful, as this notion of ‘complexity’
has nothing to do whatsoever with the classical one in the field of language theory.

We are thus interested in what happens as there are more and more patterns 01
in the word a. We can estimate precisely the asymptotic behavior of the l2(Z) norm
‖ · ‖2 of this distribution as a goes to infinity by increasing the number of subwords
01.

Namely, we have the following theorem.

Theorem. There exists a real constant C0 such that for every integer a we have
the following:

‖µa‖2 ≤ C0 · l(a)−1/4.

Finally, in the last section, we wish to obtain a much more precise result regarding
the behavior of such a distribution than just estimates of the l2 norm. So we study
the way in which the variance of the random variable of probability law µa is linked
to the number of subwords that are 01 in the binary expansion of a. We define the
variance of µa to be the quantity

Var(a) =
∑
d∈Z

µa(d)(n−ma,1)2,

where ma,1 is the first moment (the mean) of the probability measure µa. It is
shown in this last section that these moments (the mean and the variance) do exist;
in fact, the mean is always zero. Moreover, we have bounds on this variance as
shown in the following result.

Theorem. For every integer a such that l(a) is large enough, the variance of µa,
denoted by Var(a), has bounds

l(a)− 1 ≤ Var(a) ≤ 2(2l(a) + 1).
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2. Statistics of binary sequences

In this section we wish to understand the following quantity:

µa(d) := lim
N→∞

1

N
# {x ≤ N | s2(x+ a)− s2(x) = d} ,

for every given positive integer a and every integer d.

We know from [1] that such a limit exists, and it has been studied in [7], for
example, but here we give a proof using the structure of solutions of the following
equation:

s2(x+ a)− s2(x) = d

for every a and d.

Let us investigate such solutions, as well as their construction, in order to un-
derstand the distribution of probability µa of differences d = s2(x + a) − s2(x).
We prove that this distribution is given by an infinite product of matrices whose
sequence is given by the binary expansion of a.

2.1. Combinatorial description of summation tree

First we prove the following lemma.

Lemma 2.1.1. For all a in N and d in Z, there exists a finite set of words
Pa,d = {p1, ..., pk} ⊂ {0, 1}∗ such that x is solution of (1) if and only if

x ∈
k⋃
j=1

[pj ]

where, for every word w in {0, 1}∗, [w] denotes the cylinder set of words whose
prefix is w.

Remark 2.1.2. Before we prove Lemma 2.1.1, let us remark that for every even
integer n the following holds:

s2(n) = s2

(n
2

)
.

We also remark that, for every odd integer n, the following holds:

s2(n) = s2

(
n− 1

2

)
+ 1.

Proof. Let us prove this lemma by induction on a. It is obviously true that for
a = 1, there exists a (possibly empty) set of words for every d in Z describing the
solutions of Equation (1). Let us assume that it is true for every integer not greater
than some given a in N. Now let k be an integer not greater than 2a.
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• If k is even then, for every d, Pk,d = {0w,w ∈ P k
2 ,d
} ∪ {1w,w ∈ P k

2 ,d
}.

Indeed, x being an even solution of s2(x + k) − s2(x) = d is equivalent to
having

s2

(
x+ k

2

)
− s2

(x
2

)
= d

which can be written as

s2

(
x

2
+
k

2

)
− s2

(x
2

)
= d.

From the induction hypothesis it follows that x starts with a 0 followed by a
word in P k−1

2 ,d.

Moreover, x being an odd solution of s2 (x+ k) − s2 (x) = d is equivalent to
having

s2

(
x− 1 + k

2

)
+ 1−

(
s2

(
x− 1

2

)
+ 1

)
= d

which can be written as

s2

(
x− 1

2
+
k

2

)
− s2

(
x− 1

2

)
= d.

Then, by the induction hypothesis, x must start with a 1 followed by a word
in P k

2 ,d
.

• If, however, k is odd, then Pk,d = {0w,w ∈ P k−1
2 ,d−1} ∪ {1w,w ∈ P k+1

2 ,d+1}.

Indeed, x being an even solution of s2 (x+ k) − s2 (x) = d is equivalent to
having

s2

(
x+ k − 1

2

)
+ 1− s2

(x
2

)
= d

which can be written as

s2

(
x

2
+
k − 1

2

)
− s2

(x
2

)
= d− 1.

From the induction hypothesis it follows that x starts with a 0 followed by a
word in P k−1

2 ,d−1.

Moreover, x being an odd solution of s2 (x+ k) − s2 (x) = d is equivalent to
having

s2

(
x− 1 + k + 1

2

)
−
(
s2

(
x− 1

2

)
+ 1

)
= d

which can be written as

s2

(
x− 1

2
+
k + 1

2

)
− s2

(
x− 1

2

)
= d+ 1.

Then, by the induction hypothesis, we can state that x must start with a 1
followed by a word in P k+1

2 ,d+1.
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Hence knowing the sets P1,d for every integer d allows to inductively compute
the sets Pa,d for every a in N.

Remark 2.1.3. It should be noted that such a set is not unique. For instance, the
sets {01, 00} and {0} can both qualify as P0,1 with the lemma’s notations.

From the previous lemma it follows immediately that, for all integers d and posi-
tive integers a, the sequence (# {x ≤ N |s2(x+ a)− s2(x) = d})N∈N can be written
as a sum of sequences, all of which contain an arithmetic progression. Thus the
following limit exists:

µa(d) := lim
N→∞

1

N
# {x ≤ N | s2(x+ a)− s2(x) = d} .

Moreover, a quick computation yields

µa(d) = P

 ⋃
p∈Pa,d

[p]


where P is the balanced Bernoulli probability measure on {0, 1}N.

Remark 2.1.4. In all that follows, we always consider sets Pa,d such that for every
words p1, p2 in Pa,d,

p1 6= p2 =⇒ [p1] ∩ [p2] = ∅. (2)

So in this case,

µa(d) =
∑

p∈Pa,d

P([p]).

Remark 2.1.5. Note that a sufficient condition for a set Pa,d to satisfy (2) is that
all the prefixes be of same length since two cylinders defined by prefixes of the same
length are disjoint whenever the prefixes are different.

The proof of Lemma 2.1.1 naturally gives the idea of an inductive way to compute
the prefixes. A comfortable way to do that is to span, for every a, a tree τa in such
a way that the family of trees obtained is consistent with the following recursive
properties for every k:

P2k,d = {0w,w ∈ Pk,d} ∪ {1w,w ∈ Pk,d}

and
P2k+1,d = {0w,w ∈ Pk,d−1} ∪ {1w,w ∈ Pk+1,d+1}

Lemma 2.1.6. For each a in N, there exists a tree τa with vertices labeled in
{0, ..., a} × Z and edges labeled in {0, 1} such that, for every d in Z, words in Pa,d
are exactly paths labels from the vertex (a, 0) to a vertex (0, d).
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Proof. Let us prove this by induction on a. First, assume that a = 1. The tree τ1
is given by Figure 1. Vertices labels are a pair, the first coordinates are boxed (in
the vertex), the second coordinates of the labels are circled. The edges labels (0
or 1) are indicated above the edges. One can check that the path from the vertex
labeled (1, 0) (which is the root in this case) to a vertex (0, d) defines a sequence
of edges whose labels form a word which is the only word in P1,d. For example, if
s2(x+ 1)− s2(x) = −2, then x indeed begins with the word “1110”.

Figure 1: Infinite subtree spanned by every vertex labeled by 1

Let us now assume that every such tree exists until a fixed integer a. Let k be
an integer no greater than 2a.

• If k is even, we add to the tree τk/2 a vertex labeled by (k, 0) and add two

edges between the vertices (k, 0) and (k2 , 0): one labeled by a 0 and the other
one by a 1. This tree does satisfy the property that the set Pk,d is the set of
paths labels from (k, 0) to a vertex (0, d). Indeed,

Pk,d = {0w,w ∈ Pk/2,d} ∪ {1w,w ∈ Pk/2,d},

and starting from vertex (k, 0), one can choose either edge (0 or 1) to get to
the vertex (k2 , 0), from which the induction hypothesis holds.

• If k is odd, we define τ̃ k−1
2

to be a copy of the tree τ k−1
2

where every vertex

labeled (n, c) is relabeled (n, c+ 1). We also denote by τ̃ k+1
2

the copy of τ k+1
2

where every vertex is relabeled from (n, c) to (n, c−1). The tree τk is obtained
by taking the union of τ̃ k−1

2
and τ̃ k+1

2
, adding a vertex labeled (k, 0) and two
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edges: one labeled 0 between (k, 0) and (k−12 , 1) and one labeled 1 between

(k, 0) and (k+1
2 ,−1). We recall that

Pk,d = {0w,w ∈ P k−1
2 ,d−1} ∪ {1w,w ∈ P k+1

2 ,d+1}.

Hence using the induction hypothesis on both τ k+1
2

and τ k−1
2

yields the result

for τk.

Thus for every integer k there exists a tree τk which satisfies the property de-
scribed in the lemma.

If one wishes to construct such a tree for a given positive integer a, let us give a
method to easily do so (which is a direct consequence of the proof).

Let us choose a particular a in N and construct the associated tree τa. The
construction starts at level 0 with only one vertex labeled by (a, 0) and we define
the tree level by level. If τa is defined up to level n in N, from every vertex we
construct the vertices at level n+ 1 in the following way.

Starting from a vertex labeled by (k, c):

• if k is even we add a vertex at level n+ 1 labeled by (k2 , c) and add one edge
of each type between these vertices;

• if, however, k is odd, we add two vertices labeled by (k−12 , c+1) and (k+1
2 , c−1)

and we construct an edge of type 0 between (k, c) and (k−12 , c + 1) and an

edge of type 1 between (k, c) and (k+1
2 , c− 1).

Notice that the second coordinate of the labels of the vertices can be seen as a
counter that keeps track of the difference s2(x + a) − s2(x) as the summation is
processed digit by digit. More precisely, if we actually compute by hand the sum
of x and a, the value of the counter on the nth level is exactly the number of 1’s
lost or gained when the nth digit of the sum is computed. Once we reach a vertex
(0, d), the summation is completed.

We can see an example of such a construction on Figure 2 for a = 5.

Example 2.1.7. Let a = 5. Then we start our construction on the first level of
the tree by creating the root labeled by (5, 0). The number 5 being odd, we add
the vertices (2,1) and (3,-1) on the second level, and add an edge of type 0 between
vertices (2,1) and (5,0) and an edge of type 1 between vertices (3,-1) and (5,0).

We continue the construction on the third level by:

• adding a child to vertex (2,1) labeled by (1,1), since 2 is even;

• adding two children to vertex (3,-1) labeled by vertices (1,0) and (2,-2), since
3 is odd. The edge between vertices (1,0) and (3,-1) is of type 0 and the edge
between vertices (2,-2) and (3,-1) is of type 1.

9



Figure 2: Part of the tree τ5.

We continue this process on each vertex at each level to obtain the tree of Figure 2.

Let us compute the words in P5,0. It can be read from the tree τ5 that this set
is given by the words 00110, 01110, and 1010.

We wish to remark that, because of the way x is defined, the word 00110, for
example, is not the binary expansion of 6 but of 12, as everything is mirrored.

We now remark that having such a family of trees proves the following proposi-
tion.

Proposition 2.1.8. For every a in N and every d in Z, we have the following
identities:

µ2a(d) = µa(d)

and

µ2a+1(d) =
1

2
µa(d− 1) +

1

2
µa+1(d+ 1).

Proof. For every positive integer a and every integer d, we can read from the tree
τ2a that words in P2a,d are exactly words beginning with either 0 or 1, then followed
by a word in Pa,d. Thus we have

µ2a(d) = µa(d).

Notice that words in P2a+1,d are exactly the words beginning with a 0 followed by
a word in Pa,d−1 and the words beginning with a 1 followed by a word in Pa+1,d+1.
It follows that

µ2a+1(d) =
1

2
µa(d− 1) +

1

2
µa+1(d+ 1).
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Remark 2.1.9. This proposition allows us to explicitly compute every distribution
µa, since it is trivial to give explicit closed formulas for µ0 and µ1. It also gives an
understanding of the link between µa and the binary expansion of a. However, we
prefer another presentation of such a result. Namely, one that assembles in a close
formula these identities as we follow the binary decomposition of a. Such a formula
is given in Theorem 2.2.1.

One way to do such a thing is to ‘collapse’ the tree τa in order to obtain a
‘collapsed’ graph. This is more or less done by identifying the vertices whose label’s
first coordinates are the same, and we obtain a graph whose structure is studied in
the next section.

Let us define properly this ‘collapsed’ graph for an integer a.

• The graph has levels indexed on N.

• For every n in N, the level n has exactly two vertices labeled by b a2n c and
b a2n c+ 1.

• There are edges only between vertices on consecutive levels and they are de-
scribed in the following way:

– if b a2n c is even then there are two edges between b a2n c and b a
2n+1 c. There

is also an edge between b a2n c+1 and b a
2n+1 c, and another between b a2n c+1

and b a
2n+1 c+ 1;

– if b a2n c is odd then there are two edges between b a2n c+ 1 and b a
2n+1 c+ 1.

There is also an edge between b a2n c and b a
2n+1 c, and another between

b a2n c and b a
2n+1 c+ 1;

Figure 3: Collapsing τ25.

Remark 2.1.10. If one wants to see this graph as actually being a collapsing of
the tree by identifying vertices on the same level which have the same labels, one

11



Figure 4: “Tail” of a collapsed graph.

should be careful as there are two ambiguities. First of all, for coherence purposes
which will appear latter, we add a vertex a+ 1 on level 0 which does not appear on
the tree. Secondly, notice that for n big enough, a collapsed graph on levels greater
than n is given in Figure 4. Such a “tail” of a collapsed graph is, a priori, different
from what one would get by identifying vertices on levels greater than n on the tree.
Indeed, there should not be edges between vertices labeled by 0 on the collapsed
graph. We deliberately chose to do it this way in order to control the length of the
prefixes in Pa,d. The reason for such a choice appears in the next subsection.

Looking at this graph after collapsing is quite interesting since it gives us an
understanding of the link between the summation process and the binary expansion
of a. It also allows the statistical study of the behavior of s2(x + a) − s2(x). An
example of the tree τ25 collapsing is given in Figure 3.

2.2. Distribution of s2(x+ a)− s2(x)

The goal of this section is to prove the following theorem.

Theorem 2.2.1. The distribution µa is calculated via an infinite product of matri-
ces whose coefficients are operators of l1(Z):

µa = (Id, Id) · · ·AanAan−1
· · ·Aa1Aa0

(
δ0
0

)
,

where the sequence (an)n∈N is the binary expansion of a, δ0 is the Dirac mass in 0,
the Ai are defined by

A0 =

(
Id 1

2S
−1

0 1
2S

)
, A1 =

(
1
2S
−1 0

1
2S Id

)
,

and S is the left shift transformation on l1(Z).
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This theorem follows from observations on the collapsed graph. First, notice
that only two different patterns can appear between any two levels of the collapsed
graph. We add labels on the edges of the collapsed graph in a way consistent with
the tree τa. Those patterns with the labels on edges are given by Figure 5. Notice
also that the order in which the patterns appear is given by the binary expansion
of a.

Now, we remark that we can identify words in {0, 1}∗ with paths in the collapsed
graph whose starting point is the vertex labeled by a on level 0.

Definition 2.2.2. We define the functions E : {0, 1}∗ → {1, 2} and C : {0, 1}∗ → Z
in the following way:

• E(w) = 1 if the path associated to w has endpoint the vertex of smaller label
of its level (the leftmost vertex on Figure 5);

• E(w) = 2 if the path associated to w has endpoint the vertex of greater label
of its level (the rightmost vertex on Figure 5);

• C(w) is the “counter” of the path associated to w (in the same way as for the
tree defined in the previous subsection). The counter of the empty word is 0
and the “+” and “−” on the edges of the graphs in Figure 5 indicate whether
to increment or decrement the counter. In other words, C(w) is the number
of edges of type “+” that the path associated to w contains minus the number
of edges of type “−”.

Notice that the way the counter is defined is consistent with the counter on the
tree τa for every integer a.

Definition 2.2.3. Let us define, for each positive integer a, each level n of the
collapsed graph the probability measures η1a,n and η2a,n on every d in Z:

η1a,n(d) =
1

2n
#{w ∈ {0, 1}n | E(w) = 1 and C(w) = d},

η2a,n(d) =
1

2n
#{w ∈ {0, 1}n | E(w) = 2 and C(w) = d}

This seems to only define a sequence in l1(Z), but we recall that we can identify
finite measures on Z with sequences in l1(Z). It is a quick check to verify that we
actually have defined probability measures.

Notice also that, for every d in Z, η1a,n(d) is the asymptotic density of the set
of integers whose binary expansion starts with a word in {w ∈ {0, 1}n | E(w) =
1 and C(w) = d}.

Lemma 2.2.4. The ηia,n are given by induction:(
η1a,n+1

η2a,n+1

)
= Aan

(
η1a,n
η2a,n

)

13



Figure 5: The two different patterns encountered in the collapsed graph

where

a =

+∞∑
k=0

ak2k.

Proof. We wish to compute η1a,n+1 and η2a,n+1. It is obvious that the pattern we
see between levels n and n+ 1 is given by an.

If an = 0 then we encounter the left pattern of Figure 5. In this case we have

η1a,n+1(d) = η1a,n(d) +
1

2
η2a,n(d− 1).

This being true for all d, we can write

η1a,n+1 = η1a,n +
1

2
S−1(η2a,n),

where S is the left shift transformation on the space l1(Z). For the same pattern
we also have

η2a,n+1(d) =
1

2
η2a,n(d+ 1)

which can be rewritten as

η2a,n+1 =
1

2
S(η2a,n).

So in this particular case we can write the relations in the following way:(
η1a,n+1

η2a,n+1

)
=

(
Id 1

2S
−1

0 1
2S

)(
η1a,n
η2a,n

)
.

The same arguments for the pattern on the right of figure 5 (which corresponds
to the case where an = 1) yields(

η1a,n+1

η2a,n+1

)
=

(
1
2S
−1 0

1
2S Id

)(
η1a,n
η2a,n

)
.

Lemma 2.2.4 allows us to prove Theorem 2.2.1:

14



Proof. We recall that for every a in N and every d in Z, a set Pa,d is given by paths
in the tree τa whose start is the root labeled by a and whose end is a vertex labeled
by (0, d). Let Pa,d = {p1, ..., pj} be this set of words, with pj being the prefix of
maximal length.

Since we defined the ‘collapsed’ graph in a way that is consistent with the tree τa
(namely, the edges have the same labels), for every i in J1, jK, the word pi represents
a path starting from a and ending on a vertex labeled by 0 in the collapsed graph
and satisfying E(pi) = 1 and C(pi) = d.

We denote by md the length of pj , and consider the set of prefixes {p′1, ..., p′k} ⊂
{0, 1}md such that

j⋃
i=1

[pi] =

k⋃
i=1

[p′k].

Notice that every element of {p′1, ..., p′k} has a prefix that is an element of {p1, ..., pj}.
Hence, for every i in J1, kK, we have E(p′i) = 1 and C(p′i) = d and thus:

{p′1, ..., p′k} ⊆ {w ∈ {0, 1}md | E(w) = 1 and C(w) = d}

Let us prove the reciprocal inclusion. Let w be a word in {0, 1}md such that
E(w) = 1 and C(w) = d. Since E(w) = 1, and since w is of length md, its ending
vertex is labeled by a 0 (on the collapsed graph). Let us denote by p the minimal
prefix of w such that the ending vertex of p is a 0. Then necessarily, C(p) = d. Now
notice that such a path p is also a path in τa with ending vertex labeled by (0, d).
Then p is in {p1, ..., pj}. So w is in {p′1, ..., p′k}. Consequently,

{p′1, ..., p′k} = {w ∈ {0, 1}md | E(w) = 1 and C(w) = d}

and thus, by Remark 2.1.5,
η1a,md(d) = µa(d).

Finally, we have the following:

µa(d) =

(
(Id, Id)AamdAamd−1

· · ·Aa1Aa0
(
η1a,0
η2a,0

))
(d).

It is also worth noting that, after rank md, continuing to multiply on the left by
A0 does not change the final result, so this allows for a more convenient expression:

µa(d) =

(
(Id, Id) · · ·AanAan−1

· · ·Aa1Aa0
(
η1a,0
η2a,0

))
(d).

This proves the theorem.

Example 2.2.5. Let us show that Theorem 2.2.1 allows us to find the expression
of µ1 that was computed in the introduction. According to the theorem,

µ1 = (Id, Id) · · ·A0 · · ·A0A1

(
δ0
0

)
.

15



Now A1

(
δ0
0

)
=

(
1
2δ1
1
2δ−1

)
and it can easily be seen that, for every integer k,

Ak0

(
1
2δ1
1
2δ−1

)
=

(∑k
j=−1

(
1
2

)j+2
δ−j

( 1
2 )kδ−k−2

)
whence

µa =

∞∑
j=−1

1

2j+2
δ−j .

Now, for a more involved example, let us assume we wish to compute µ3(0).

Well,

µ3 = (Id, Id) · · ·A0 · · ·A0A1A1

(
δ0
0

)
,

then a quick computation yields

A1A1

(
δ0
0

)
=

(
1
4δ2

1
4δ0 + 1

2δ−1

)
and so

A0A1A1

(
δ0
0

)
=

(
1
4δ2 + 1

8δ1 + 1
4δ0

1
8δ−1 + 1

4δ−2

)
.

Now in order to know µ3(0), we have to multiply by A0 once more:

A0A0A1A1

(
δ0
0

)
=

(
1
4δ2 + 1

8δ1 + 5
16δ0 + 1

8δ−1
1
−16δ−2 + 1

8δ−3

)
.

Note that multiplying by A0 again will never change the value of the coefficient of
δ0 in the first coordinate, neither will δ0 appear in the second coordinate (since we
apply 1

2S to the second coordinate when multiplying by A0). Hence µ3(0) = 5
16 .

In the general case, for given a in N and d in Z, we should first compute

Aan · · ·Aa0
(
δ0
0

)
, which gives a vector whose coordinates are linear combinations

of Dirac measures. Then we should multiply by A0 until the Dirac measures on the
second coordinate have mass only on integers no greater than d− 2, which ensures
that the coefficient of δd in the first coordinate is exactly µa(d).

3. Asymptotic properties of distributions µa

In this section we study the asymptotic behavior of the family of distributions µa
as l(a) increases. We prove that the l2(Z) norm of µa tends to 0 as l(a) increases,
and hence the densities of µa tend to zero.

Let us recall that l(a) denotes the number of distinct patterns 01 in the binary
expansion of a.

16



Remark 3.0.1. For every integer a there exists k integers p1, ..., pk such that a =
0p11p2 ...1pk or a = 1p10p2 ...1pk depending on the parity of a. If a is even, k = 2l(a),
and else, k = 2l(a) + 1.

In other words, the number of distinct continuous maximal blocks of digits in a
is either 2l(a) + 1 or 2l(a).

3.1. Convergence to zero

We start by proving the following theorem.

Theorem 3.1.1. There exists a constant C0 such that for every integer a we have
the following:

‖µa‖2 ≤ C0 · l(a)−1/4.

The proof is established in a series of lemmas. Let us recall the notation

A0 =

(
Id 1

2S
−1

0 1
2S

)
, A1 =

(
1
2S
−1 0

1
2S Id

)
,

where S is the left shift on l1(Z). Let us define a norm on the space of n×n matrices
Y = (yi,j)i,j∈{1,...,n}2 by the following:

‖Y ‖1 = max
1≤j≤n

n∑
i=1

|yi,j |.

Remark 3.1.2. We remark right away that this defines a submultiplicative norm.

We consider the Fourier transform µ̂a defined for every θ in [0, 2π) by

µ̂a(θ) =
∑
d∈Z

e−idθµa(d).

Notice that, given an element f of l1(Z), for every θ in [0, 2π), ˆS(f)(θ) = eiθf̂(θ).
Hence, since

µa(d) =

(
(Id, Id) · · ·AanAan−1

· · ·Aa1Aa0
(
δ0
0

))
(d)

we get that

µ̂a(θ) = (1, 1) · · · Âan(θ)Âan−1(θ) · · · Âa1(θ)Âa0(θ)

(
1
0

)
where

Â0(θ) :=

(
1 1

2e
−iθ

0 1
2e
iθ

)
, Â1(θ) :=

(
1
2e
−iθ 0

1
2e
iθ 1

)
,

Lemma 3.1.3. We have the following elementary identities for every θ:
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• ‖Â0(θ)‖1 = ‖Â1(θ)‖1 = ‖Â0(θ)Â1(θ)‖1 = ‖Â1(θ)Â0(θ)‖1 = 1.

• ‖Â0(θ)Â1(θ)Â0(θ)‖1 = ‖Â1(θ)Â0(θ)Â1(θ)‖1 := φ(θ) = 1+
√
5+4 cos θ
4 .

Notice that φ is strictly less than 1 except when θ = 0.

Proof. For every θ in [0, 2π), we have

Â0(θ)Â1(θ)Â0(θ) =

(
1
2e
−iθ + 1

4
1
4e
−2iθ + 1

8e
−iθ + 1

4
1
4e

2iθ 1
8e
iθ + 1

4e
2iθ

)
,

and

Â1(θ)Â0(θ)Â1(θ) =

(
1
8e
−iθ + 1

4e
−2iθ 1

4e
−2iθ

1
4e

2iθ + 1
8e
iθ + 1

4
1
2e
iθ + 1

4

)
.

So we have
‖Â0(θ)Â1(θ)Â0(θ)‖1 = ‖Â1(θ)Â0(θ)Â1(θ)‖1.

Moreover, the triangular inequality yields∣∣∣∣14e−2iθ +
1

8
e−iθ +

1

4

∣∣∣∣+

∣∣∣∣14e2iθ +
1

8
eiθ
∣∣∣∣ ≤ ∣∣∣∣14e−2iθ

∣∣∣∣+

∣∣∣∣18e−iθ +
1

4

∣∣∣∣+

∣∣∣∣14e2iθ +
1

8
eiθ
∣∣∣∣ ,

so we have∣∣∣∣14e−2iθ +
1

8
e−iθ +

1

4

∣∣∣∣+

∣∣∣∣14e2iθ +
1

8
eiθ
∣∣∣∣ ≤ ∣∣∣∣14e2iθ

∣∣∣∣+

∣∣∣∣12e−iθ +
1

4

∣∣∣∣ .
Hence the sum of the moduli of the terms in the first column is less than the sum
of the moduli of the terms of the second column, which implies that

‖Â0(θ)Â1(θ)Â0(θ)‖1 =

∣∣∣∣14e−2iθ
∣∣∣∣+

∣∣∣∣12eiθ +
1

4

∣∣∣∣
so finally

‖Â0(θ)Â1(θ)Â0(θ)‖1 =
1 +
√

5 + 4 cos θ

4
.

Lemma 3.1.4. For every k in N∗ and every θ in [0, 2π)

‖Â0(θ) (Â1(θ))k Â0(θ)‖1 ≤ ‖Â0(θ) Â1(θ) Â0(θ)‖1.

Proof. First let us state that, for all positive integer k, for all θ in [0, 2π),

(Â1(θ))k =

(
e−ikθ

2k
0

σk(θ) 1

)
where

σk(θ) = e2iθ
k∑
j=1

e−ijθ

2j
. (3)

18



We can compute that, for every k in nN

Â0(θ) (Â1(θ))k Â0(θ) =

 e−ikθ

2k
+ e−iθ

2 σk(θ) e−i(k+1)θ

2k+1 + e−2iθ

4 σk(θ) + 1
4

eiθ

2 σk(θ) 1
4σk(θ) + e2iθ

4

 .

Moreover, noticing that for every positive integer k and every θ in [0, 2π),

σk+1(θ) =
e−iθ

2
σk(θ) +

eiθ

2

implies that ∣∣∣∣e−i(k+1)θ

2k+1
+
e−iθ

2
σk+1(θ)

∣∣∣∣+

∣∣∣∣eiθ2 σk+1(θ)

∣∣∣∣
=

∣∣∣∣e−i(k+1)θ

2k+1
+
e−2iθ

4
σk(θ) +

1

4

∣∣∣∣+

∣∣∣∣14σk(θ) +
e2iθ

4

∣∣∣∣ .
This means that the sum of moduli of coefficient on the first column of matrix

Â0(θ) (Â1(θ))k+1 Â0(θ) is equal to the sum of the moduli of the coefficients of the
second column of the matrix Â0(θ) (Â1(θ))k Â0(θ). Hence, to prove that, for every
integer k and all θ in [0, 2π),

‖Â0(θ) (Â1(θ))k Â0(θ)‖1 ≤ ‖Â0(θ) Â1(θ) Â0(θ)‖1

it is enough to actually show the following:∣∣∣∣e−ikθ2k
+
e−iθ

2
σk(θ)

∣∣∣∣+

∣∣∣∣eiθ2 σk(θ)

∣∣∣∣ ≤ ‖Â0(θ) Â1(θ) Â0(θ)‖1.

Using the triangle inequality, we have∣∣∣∣e−ikθ2k
+
e−iθ

2
σk(θ)

∣∣∣∣+

∣∣∣∣eiθ2 σk(θ)

∣∣∣∣ ≤ 1

2k
+ |σk(θ)|

which, still using the triangle inequality, again gives∣∣∣∣e−ikθ2k
+
e−iθ

2
σk(θ)

∣∣∣∣+

∣∣∣∣eiθ2 σk(θ)

∣∣∣∣ ≤ 1

2k
+

∣∣∣∣eiθ2 +
1

4

∣∣∣∣+

k∑
j=3

1

2j

and ∣∣∣∣e−i2θ22
+
e−iθ

2
σ2(θ)

∣∣∣∣+

∣∣∣∣eiθ2 σ2(θ)

∣∣∣∣ ≤ 1

22
+

∣∣∣∣eiθ2 +
1

4

∣∣∣∣ .
So we get ∣∣∣∣e−ikθ2k

+
e−iθ

2
σk(θ)

∣∣∣∣+

∣∣∣∣eiθ2 σk(θ)

∣∣∣∣ ≤ ∣∣∣∣eiθ2 +
1

4

∣∣∣∣+
1

4
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which completes the proof since∣∣∣∣eiθ2 +
1

4

∣∣∣∣+
1

4
= ‖Â0(θ) Â1(θ) Â0(θ)‖1.

Lemma 3.1.5. If −π ≤ θ ≤ π then

φ(θ) ≤ e−θ
2/15.

Hence, for every positive integer N ,

‖φN‖2 ≤ ‖e−Nθ
2/15‖2 =

(
15π

2N

)1/4

with φ defined as in Lemma 3.1.3.

Proof. The proof is left to the reader.

Proof of Theorem 3.1.1. We remind the reader that µa = µa,1 + µa,2 is the sum of
the components of the vector µ̄a, which is calculated as an infinite product

µ̄a =

(
µa,1
µa,2

)
= · · ·AanAan−1

· · ·Aa1Aa0
(
δ0
0

)
.

Let us represent the binary expansion of a as a sequence of l(a) groups of 11 . . . 1
separated by zeros:

a = 0m111 . . . 10m211 . . . 10 . . . . . . . . . 0ml(a)11 . . . 1.

We apply Lemma 3.1.4 to half of the patterns 011..10 and then use the bound of
Lemma 3.1.3:

‖Â0(θ) (Â1(θ))k Â0(θ)‖1 ≤ φ(θ).

We can do this only on half of 011..10’s because we need to avoid problematic
patterns like . . . 0111011110 . . ., since we need at least two “0” between two blocks
on “1” to be able to apply Lemma 3.1.4 twice but we have only one “0” in between.
Thus we get

‖ · · · Âan(θ) · · · Âa0(θ)‖1 ≤ φ(θ)N , N =
l(a)− 1

2
,

and hence, for each θ in [0, 2π) and j in {1, 2},

|µ̂a,j(θ)| ≤ φ(θ)N

∥∥∥∥∥
(

1

0

)∥∥∥∥∥
1

= e−Nθ
2/15,
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and

‖µa,j‖2 =
1√
2π
‖µ̂a,j‖2 ≤

1√
2π
‖φN‖2 ≤

1√
2π

√∫ ∞
−∞

e−2Nt2/15 dt =

(
15

8πN

)1/4

by Lemma 3.1.5.

Now, N = l(a)−1
2 yields

‖µa‖2 ≤
√

2

(
15

π(l(a)− 1)

)1/4

= O
(
l(a)−1/4

)
.

Remark 3.1.6. It follows directly from Theorem 3.1.1 that the density µa(j)→ 0
as l(a)→∞.

Let us also remark that this theorem actually gives important information con-
cerning the fact that the probability measure µa is linked with the complexity of
the binary expansion of a (which is measured by l(a)). In fact, for every integer n,
µ2n = µ1, so it is possible to find arbitrarily large a such that ||µa||2 does not tend
to zero (actually whenever l(a) does not tend to infinity).

3.2. Asymptotic mean and variance of µa

Let us first recall the following:

Â0(θ) :=

(
1 1

2e
−iθ

0 1
2e
iθ

)
, Â1(θ) :=

(
1
2e
−iθ 0

1
2e
iθ 1

)
,

for every θ in [0, 2π).

We begin by using Taylor’s expansion on the matrices Â0(θ) and Â1(θ) to get

Âk(θ) = Ik + θ αk + θ2 βk +O(θ3), k ∈ {0, 1},

where

I0 =

(
1 1

2

0 1
2

)
, α0 =

i

2

(
0 −1

0 1

)
, β0 = −1

4

(
0 1

0 1

)
,

I1 =

(
1
2 0

1
2 1

)
, α1 =

i

2

(
−1 0

1 0

)
, β1 = −1

4

(
1 0

1 0

)
,

and we observe that the following relations hold

(1, 1)Ik = (1, 1), (4)

(1, 1)αk = (0, 0), (1, 1)β0 = −1

2
(0, 1), (1, 1)β1 = −1

2
(1, 0). (5)
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Lemma 3.2.1. For all θ in [0, 2π), the product of matrices (Â0(θ))k converges as k
goes to +∞. We denote the limit Â∞0 (θ), and further we have the following equality:

Â∞0 (θ) =

(
1 e−iθ

2−eiθ

0 0

)
.

Proof. We recall that σk is defined in Section 3.1, Equation (3).

The lemma is proved by remarking the following:

(Â0(θ))k =

(
1 σk(θ)

0 eikθ

2k

)
.

Now the asymptotic expansion of Â∞0 is

Â∞0 (θ) = I∞ + θ2β∞ +O(θ3),

where

I∞ =

(
1 1

0 0

)
, β∞ = −

(
0 1

0 0

)
.

Definition 3.2.2. Given a in N of binary length N , we define the following product:

Πa(θ) = Â∞0 ÂaN (θ) · · · Âa0(θ)

.

Let us recall that, for every a in N,

µ̂a(θ) = (1, 1) ·Πa(θ) ·
(

1
0

)
.

Lemma 3.2.3. Let v0 =

(
1
0

)
. The product (1, 1) · Πa(θ) · v0 has the following

asymptotic expansion:

(1, 1) ·Πa(θ) · v0 = 1 + V (a) θ2 +O(θ3),

where
V (a) = (1, 1) (β∞vN+1 + βaN vN + . . .+ βa0v0) ,

and, for all j in {1, ..., N + 1},

vj = Iaj−1
· · · Ia0v0.
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In other words, this Lemma 3.2.3 states that µa has mean 0 and variance −2V (a).
Indeed, the moments of a probability measure are given by the successive derivatives
near 0 of its Fourier transform.

Proof. Let us first recall that

(1, 1)I0 = (1, 1)I1 = (1, 1)I∞ = (1, 1).

Moreover,

(1, 1) ·Πa(θ) · v0 = (1, 1)
(
I∞ + θ2β∞ +O(θ3)

) N∏
i=0

(
Iai + αaiθ + βaiθ

2 +O(θ3)
)
v0,

where the product is defined as:

N∏
i=0

Mi := MN ...M0.

Hence the constant term in the asymptotic expansion of (1, 1) ·Πa(θ) · v0 is 1 (since

(1, 1)

(
1
0

)
= 1). In addition, we have

(1, 1)α0 = (1, 1)α1 = (0, 0),

so the term of degree 1 is 0.

With the same argument we can compute the quadratic term V (a). Notice that
every coefficient α0 or α1 is killed by left multiplication by (1, 1). Hence the terms
of the form

I∞...Iaj+1
αajIaj−1

...Iai+1
αaiIai−1

...Ia0

disappear after left multiplication by (1, 1), and thus do not contribute in any way
to the coefficient of the quadratic term.

So the only terms contributing to V (a) in the product Â∞(θ)ÂaN (θ)...Âa0(θ) are
the terms with coefficient βaj with j in J0, NK and the term with coefficient β∞.

Definition 3.2.4. Let a be a positive integer with binary expansion a = a0...an.
For every j ∈ J0, nK, let

b1j := max {k + 1 | aj−k = ... = aj}

and
b2j := b1j−b1j

.

In other words, b1j is the length of a consecutive and maximal sequence of digits

equal to aj to the left of j (including position j) in a and b2j is the length of the
next block of identical digits to the left of the block containing the digit aj .

For instance, if a = 100111110011, then b16 = 4 since a2...a6 = 01111 and b26 = 2.
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Lemma 3.2.5. For every j in {0, ..., N}, the value (1, 1)βajvj is estimated as fol-
lows

1

2b
1
j

(
1− 1

2b
2
j

)
≤ −(1, 1)βajvj ≤

1

2b
1
j

,

Proof. Assume that aj = 0 (the proof for the case aj = 1 is similar). Observe that
I0 and I1 contract the segment [(1, 0), (0, 1)] to the first second point respectively
with a contraction factor of 2.

More precisely,{
I0

(
1− x
x

)
| x ∈ [0, 1]

}
=

{(
1− x
x

)
| x ∈

[
0,

1

2

]}
and {

I1

(
x

1− x

)
| x ∈ [0, 1]

}
=

{(
x

1− x

)
| x ∈

[
0,

1

2

]}
.

Hence, with t = j − b2j − b1j ,

It...I0

(
1
0

)
∈ [(1, 0), (0, 1)].

Moreover, the block I
b2j
1 maps [(1, 0), (0, 1)] to the segment [(2−b

2
j , (1−2−b

2
j )), (0, 1)].

Then the block I
b1j−1
0 contracts the latter to[(

1− 2−b
1
j+1(1− 2−b

2
j ), 2−b

1
j+1(1− 2−b

2
j )
)
,
(
1− 2−b

1
j+1, 2−b

1
j+1
)]
.

Multiplying on the left by (1, 1)βaj = (1, 1)β0 = − 1
2 (0, 1) means taking the second

coordinate with an additional coefficient −1/2, and the lemma then follows.

Remark 3.2.6. The same proof yields

−(1, 1)β∞vN+1 ≤
1

2b
1
N−1

.

Moreover, we have the following lemma.

Lemma 3.2.7.

l(a) ≤
N∑
j=0

1

2b
1
j

≤ 2l(a) + 1.

Proof. This lemma is obtained by noticing that each block of identical digits in the
binary expansion of a spans a term

∑N
j=0

1

2
b1
j

which is a partial sum of a geometric

sequence of ratio 1
2 and first term 1

2 , so each is smaller than 1 and greater than 1
2 .
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In fact, let us assume that there are k blocks in the binary expansion of a of lengths
p1, ..., pk (i.e a = 0p11p2 ...0pk−11pk , for example). Then

N∑
j=0

1

2b
1
j

=

k∑
i=1

pi∑
j=1

(
1

2

)j
and

k∑
i=1

1

2
≤

k∑
i=1

pi∑
j=1

(
1

2

)j
≤

k∑
i=1

1.

Moreover, k can be equal to either 2l(a)+1 or 2l(a), which completes the proof.

Theorem 3.2.8. For every integer a, the variance −2V (a) of µa has bounds

l(a)− 1 ≤ −2V (a) ≤ 2(2l(a) + 2).

Proof. The idea of this theorem is to see that each block of same digits in the binary
expansion of a has an impact on V (a) estimated by a constant.

Let us estimate the value of V (a). By Lemma 3.2.5 we have that

−V (a) = −
N∑
j=0

(1, 1)βajvj − (1, 1)β∞vN+1 ≤
N∑
j=0

1

2b
1
j

+
1

2b
1
N−1

.

Moreover, the upper bound of Lemma 3.2.7 yields

−2V (a) ≤ 2(2l(a) + 2).

Now we will prove the lower bound:

−V (a) ≥ 1

2
(l(a)− 1).

Note that

−V (a) = −
N∑
j=0

(1, 1)βajvj − (1, 1)β∞vN+1 ≥ −
N∑
j=0

(1, 1)βajvj

so, using Lemma 3.2.5, we have:

−V (a) ≥
N∑
j=0

(
1

2b
1
j

(
1− 1

2b
2
j

))
.

Whence,

−V (a) ≥
N∑
j=0

1

2b
1
j

−
N∑
j=0

1

2b
1
j+b

2
j

.
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Let us denote by k the largest integer such that a0 = ... = ak. Noticing that b2j = 0
for all j in {0, ..., k}, we have that

−V (a) ≥
N∑

j=k+1

1

2b
1
j

−
N∑

j=k+1

1

2b
1
j+b

2
j

.

Moreover, for every integer j larger than k, b2j ≥ 1, hence

−V (a) ≥ 1

2

N∑
j=k+1

1

2b
1
j

from which we derive

−V (a) ≥ 1

2
(l(a)− 1)

by applying the lower bound of Lemma 3.2.7. This proves Theorem 3.2.8.

On a final note, it is interesting to remark that the bounds in Theorem 3.2.8
might not be optimal but that for a sequence of integers (a(n))n∈N such that

limn→∞ l(a(n)) = +∞ and such that the limit of −2V (a(n))
l(a(n)) exists, then this limit

can take different values in the interval [1, 4]. We give some examples of computer
simulations in Figure 6.

It would be interesting to understand the asymptotic behavior of −2V (a(n))
l(a(n)) . Hav-

ing a necessary condition for convergence and a precise idea of how it behaves
asymptotically would help in understanding the variance of the probability mea-
sure µa.
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(a)
−2V (a(n))

l(a(n))
for a(n) =

∑n
k=0 2

2k (b)
−2V (a(n))

l(a(n))
for a(n) =

∑n
k=0 2

4k + 24k+1

(c)
−2V (a(n))

l(a(n))
for a(n) =

∑n
k=0 2

6k + 26k+1 +

26k+2

(d)
−2V (a(n))

l(a(n))
for a(n) = 101202...1n

Figure 6: Asymptotics of the ratio −2V (a(n))
l(a(n)) for different sequences (a(n))n∈N
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nombres, Fasc. 2, Exp. No. 23, page 8. Secrétariat Mathematique, Paris, 1973.

[2] M. Drmota, C. Mauduit, and J. Rivat. Primes with an average sum of digits.
Compos. Math., 145(2) 271–292, 2009.

[3] M. Ercegovac and T. Lang. Digital arithmetic. Elsevier, 2003.

[4] M. Keane. Generalized Morse sequences. Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete, 10 (1968), 335–353.

[5] D. Knuth. The average time for carry propagation. Indag. Math. (Proceedings),
81(1) (1978), 238 – 242.

[6] C. Mauduit and J. Rivat. Sur un problème de Gelfond: la somme des chiffres
des nombres premiers. Ann. of Math. (2), 171(3) (2010), 1591–1646.

[7] J. Morgenbesser and L. Spiegelhofer. A reverse order property of correlation
measures of the sum-of-digits function. Integers, 12 (2012), Paper No. A47, 5.

[8] J. Muller. Arithmétique des ordinateurs. Masson, 1989.

[9] N. Pippenger. Analysis of carry propagation in addition: An elementary ap-
proach. Journal of Algorithms, 42(2) (2002), 317 – 333.

28


