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On the asymptotic behaviour of the correlation measure of

sum-of-digits function in base 2

Jordan Emme∗, and Alexander Prikhod’ko†,

Abstract

Let s2(x) denote the number of digits “1” in a binary expansion of any x ∈ N. We study
the mean distribution µa of the quantity s2(x+ a)− s2(x) for a fixed positive integer a. It is
shown that solutions of the equation

s2(x+ a)− s2(x) = d

are uniquely identified by a finite set of prefixes in {0, 1}∗, and that the probability distribution
of differences d is given by an infinite product of matrices whose coefficients are operators of
l1(Z).

Then, denoting by l(a) the number of patterns “01” in the binary expansion of a, we give
the asymptotic behaviour of this probability distribution as l(a) goes to infinity as well as
estimates of the variance of the probability measure µa

Introduction

In this article we are interested in the statistic behaviour of the difference of the number of digits
1 in the binary expansion of an integer x before and after its summation with a. This kind of
question can be linked with carry propagation problems developped in [5] and [9] and has to do
with computer arithmetics as in [8]or [3] but our approach is different. Moreover, the function
s2 modulo 2 was extensively studied for its links with the Thue-Morse sequence (as we can find
in [4]) for example or for arithmetic reason as in [2] and [6]. But in this paper our motivation is
not of the same nature and we will not look at s2 mod 2 but just at the function s2 which is the
sum of the digits in base 2.

Because of the simplicity of base 2 and of the summation process, we can give detailed
behaviour of the correlation between the number of digits 1 in the binary expansion of x and
x+ a for any integer a. More precisely, we are able to compute the distribution of the difference
s2(x + a) − s2(x) where s2(y) denotes the number of digits 1 in the binary expansion of any
integer y. We essentially give two methods in Section 1. The first one, very elementary, just
helps understanding the basics of our construction. The second that follows is a little bit more
involved but allows us to present our result in a much more usable form for what interests us
and what will be developped in the next section.

∗Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France. E-mail :
jordan.emme@univ-amu.fr
†Moscow Institute of Physics and Technology, Moscow, Russia. E-mail : sasha.prihodko@gmail.com
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Section 2 is a technical part that allows us to understand the asymptotical behaviour of such
a correlation as a gets bigger in a certain, non trivial sense. This section develops the idea
that our correlation gets smaller as the number of subwords “01” in the binary expansion of a
increases. To go further and develop this idea of increasing the number of patterns “01” in the
binary expansion of a, we demonstrate a limit theorem for the random variable consisting of the
difference of 1 in x and x+ a for different a going to infinity in the previous sense.

Let us now give some definitions and notations that will be used throughout this article.

Definition 0.0.1. For any integer x ∈ N whose binary expansion is given by :

x =

n∑
k=0

xk2
k, ∀k ∈ {0, ..., n} xk ∈ {0, 1},

we define the quantity

s2(x) =
n∑
k=0

xk

which is the number of digits 1 in the binary expansion of x.

We will also define the following :

Definition 0.0.2. For any integer x whose binary expansion is given by :

x =
n∑
k=0

xk2
k,

we denote by x the word x0...xn in {0, 1}∗.

Remark 0.0.3. Since we are working in the free monöıd {0, 1}∗ of binary words, let us remark
that we will denote the cylinder set of a word w = w0...wn by the standard notation [w] := {v ∈
{0, 1}N | v0...vn = w0...wn}. These sets form a topological basis of clopen of {0, 1}N for the
product topology. Moreover, we endow the set of binary configurations {0, 1}N with the natural
probability measure P that is the balanced Bernouilli probability measure defined on the Borel
sets.

With that in mind, the equation we wish to study is the following, with parameters a ∈ N
and d ∈ Z :

s2(x+ a)− s2(x) = d (1)

More particularly, we wish to understand the behaviour, for any integer a, of the correlation
between s2(x+ a) and s2(x) given by :

µa(d) := lim
N→∞

1

N
# {x ≤ N | s2(x+ a)− s2(x) = d} .

Remark 0.0.4. Let us remark that for all integer a, this defines a probability measure on Z.
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To this end, the first section will essentially be about the combinatorial description of the
solutions of (1). We will describe the addition process via the construction of a particular
tree. This will allow us to have an explicit formula for the desired distribution of probabilty
only depending on the binary expansion of a as a product of matrices. The main result is the
following :

Theorem. The distribution µa is calculated via an infinite product of matrices whose coefficients
are operators of l1(Z) applied to a vector whose coefficients are elements of l1(Z)

µa = (Id, Id) · · ·AanAan−1 · · ·Aa1Aa0
(
δ0
0

)
,

where the sequence (an)n∈N is the binary expansion of a, δ0 is the Dirac mass in 0

A0 =

(
Id 1

2S
−1

0 1
2S

)
, A1 =

(
1
2S
−1 0

1
2S Id

)
,

and S is the left shift transformation on l1(Z).

Remark 0.0.5. We remind that the set of finite measures on Z is in bijection with the elements
of l1(Z). We will always identify finite measures on Z and elements of l1(Z).

Such a result allows an analytical study of these distributions as the binary expansion of a is
more and more complex. Let us introduce this notion of complexity for a :

Definition 0.0.6. For any a ∈ N, let us denote by l(a) the number of subwords 01 in the binary
expansion of a.

We are thus interested in what happens as there are more and more patterns 01 in the word
a. We can precisely estimate the asymptotic behaviour of the l2(Z) norm of this distribution as
a tends to infinity by increasing the number of subwords 01.

Namely, the theorem is as follows :

Theorem. There exists a real constant C0 such that for any integer a we have the following :

‖µa‖2 ≤ C0 · l(a)−1/4.

Finally, in the last section, we wish to obtain a much more precise result regarding the
behaviour of such a distribution than just estimates of the l2 norm. So we study in which way
the variance of the random variable of probability law µa is linked to the number of subwords
01 in the binary expansion of a. We have bounds on this variance as shown in this result :

Theorem. For any integer a such that l(a) is large enough, the variance −2V (a) of µa has
bounds :

l(a)− 1 ≤ −2V (a) ≤ 2(2l(a) + 1).

3



1 Statistics of binary sequences

In this section we wish to understand the following quantity, for any given positive integer a and
any integer d :

µa(d) := lim
N→∞

1

N
# {x ≤ N | s2(x+ a)− s2(x) = d} .

We know from [1] that such a limit exists and has been studied in [7] for example, but we
will give a proof using the structure of solutions of the following equation :

s2(x+ a)− s2(x) = d.

for any a and d.
Let us investigate such solutions as well as their construction in order to understand the

distribution of probability µa of differences d = s2(x+a)−s2(x). We prove that this distribution
is given by an infinite product of matrices whose sequence is given by the binary expansion of a.

1.1 Combinatorial description of summation tree

First we prove the following lemma :

Lemma 1.1.1. For all a ∈ N and d ∈ Z, there exists a finite set of words Pa,d = {p1, ..., pk} ⊂
{0, 1}∗ such that x is solution of (1) if and only if :

x ∈
k⋃
j=1

[pj ]

where [w] denotes the cylinder set of configurations whose prefix is w for any word w ∈ {0, 1}∗.

Remark 1.1.2. Before we prove Lemma 1.1.1, let us remark that for any even integer n the
following holds :

s2(n) = s2(
n

2
).

Proof. Let us prove this lemma by induction on a. It is obviously true that for a = 0 and a = 1,
there exists a set of words for any d ∈ Z (possibly empty) describing the solutions of Equation
1. Let us assume it is true for every integer not greater than a given a ∈ N.

If a is even, then, for any d, let the set of words Pa+1,d be {0w,w ∈ Pa
2
,d−1} ∪ {1w,w ∈

Pa
2
+1,d+1}.
Indeed, x ∈ N being an even solution of s2(x + a + 1) − s2(x) = d is equivalent to having

s2(x+ a) + 1− s2(x2 ) = d which can be written s2(
x
2 + a

2 )− s2(x2 ) = d− 1. From the induction
hypothesis follows that x starts with a 0 followed by a word beginning by a word in Pa

2
,d−1.

Moreover, x ∈ N being an odd solution of s2(x + a + 1) − s2(x) = d is equivalent to having
s2(x−1+2+a)−(s2(

x−1
2 )+1) = d which can be written s2(

x−1
2 + a

2 +1)−s2(x−12 ) = d+1. Then
we can state that x must start with a 1 followed by a word in Pa

2
+1,d+1 by induction hypothesis.
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If a is odd, we have Pa+1,d = {0w,w ∈ Pa+1
2
,d} ∪ {1w,w ∈ Pa+1

2
,d} for any d.

In fact, let x ∈ N be an odd solution of s2(x + a + 1) − s2(x) = d. This is of course
equivalent to having the equality s2(x + a) + 1 − (s2(

x−1
2 ) + 1) = d which can be written

s2(
x−1
2 + a+1

2 ) − s2(x−12 ) = d. Moreover, x being an even solution of s2(x + a + 1) − s2(x) = d
is equivalent to having the equality s2(

x
2 + a+1

2 ) − s2(x2 ) = d. These last equalities, with the
induction hypothesis can be summarized as follows : x begins either by a 0 or a 1 and is followed
by a word in Pa+1

2
,d.

From this lemma follows immediatly that for all positive integer a and integer d, the sequence
(# {x ≤ N |s2(x+ a)− s2(x) = d})N∈N is a sum of sequences which contain an arithmetic pro-
gression and thus the following limit exists :

µa(d) := lim
N→∞

1

N
# {x ≤ N | s2(x+ a)− s2(x) = d} .

Moreover, a quick computation yields

µa(d) =
∑
p∈Pa,d

P(p)

where P is the balanced Bernouilli probability measure on {0, 1}N.
The proof of Lemma 1.1.1 naturally gives the idea of an inductive way to compute the prefixes.

A comfortable way to do that is to span, for every a, a tree τa whose paths will represent the binary
decomposition of some x and which will allow us to keep track of the quantity s2(x+ a)− s2(x)
as the summation goes. Let us state the following lemma :

Lemma 1.1.3. For each a ∈ N, there exists a tree τa with vertices labeled in {0, ..., a} × Z and
edges labelled in {0, 1} such that for any d ∈ Z, words in Pa,d are exactly paths from the vertex
(a, 0) to a vertex (0, d).

Proof. Let us choose a particular a in N and construct the associated tree τa. The tree τa will
have vertices labelled in {0, .., a} ×Z and edges labelled in the binary alphabet {0, 1}. This tree
will also have its vertices on different levels ordered in N. We will construct our tree inductively
on each level.

If the tree is defined up to level n ∈ N. From every vertex we construct the vertices at level
n+ 1 in the following way.

Starting from a vertex labelled by (k, c) :

• If k is even we add a vertex at level n+ 1 labelled by (k2 , c) and add one edge of each type
between these vertices.

• If however k is odd, we add two vertices labelled by (k−12 , c + 1) and (k+1
2 , c − 1) and we

construct an edge of type 0 between (k, c) and (k−12 , c+ 1) and an edge of type 1 between

(k, c) and (k+1
2 , c− 1).
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Figure 1: Infinite subtree spanned by every vertex labelled by 1

The construction starts at level 0 with only one vertex labelled by (a, 0).
Of course such a construction actually spans an infinite tree for we eventually build a vertex

labelled by 1. Then, notice that a vertex 1 is parent of two vertices 0 and 1. Iterating the
procedure builds an infinite subtree rooted in 1 as given in the example of figure 1.

The goal of this construction is then to read prefixes which are solutions of the equation as
paths on this graph. Let us start at the vertex labelled (a, 0). The second coordinate of labels
of vertices is a counter that keeps track of the difference s2(x + a) − s2(x) as the summation is
processed digit by digit, and, in our case, that is represented by which vertex we go through as
we follow x as a path in τa starting from (a, 0).

Starting from an odd vertex, if we follow the edge labelled by 0 then we add one to our
counter and if we follow the edge labelled by 1 then we substract 1 to our counter.

If however we start from an even vertex, the counter remains unchanged, regardless of which
edge we follow.

This allows to keep track of the difference s2(x + a) − s2(x). Once we reach a vertex (0, d),
the summation is completed, so in order to find a prefix we only need to find a path from the
vertex (a, 0) to a vertex (0, d) such that the counter reaches the desired d.

For any a, the associated tree allows us to compute the set of prefixes Pa,d for any d. Let
us choose a positive integer x. We will follow the path associated to x starting from the vertex
a. Then, on every level, following the path and keeping doing the indicated operations on our
counter is just doing the summation digit by digit while keeping track of the 1 we have lost or
added during this summation. If we are not careful, we might not end on a 0 (if the binary
expansion of x is too short and/or a carry is still being propagated). However, adding enough 0
to x ensures that we do not encounter this problem.

This tree is then a convenient way to compute d = s2(x+ a)− s2(x) and as such, to find the
prefixes we are interested in as the different paths starting from (a, 0) and ending on a vertex
(0, d).
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We can see an example of such a construction on figure 2 for a = 5. Vertices’ labels are
boxed, edges labels are above them, the counter numbers are circled and, as a reminder, the
increment or decrement we need to apply after each step are indicated on the edges.

Example 1.1.4. Let a = 5. Then we start our construction on the first level of the tree by
creating the root labeled by (5, 0). The number 5 being odd, we add the vertices (2,1) and (3,-1)
on the second level and add an edge of type 0 between vertices (2,1) and (5,0) and an edge of
type 1 between vertices (3,-1) and (5,0).

We continue the construction on third level by :

• adding a child to vertex (2,1) labelled by (1,1) since 2 is even.

• adding two children to vertex (3,-1) labbeled by vertices (1,0) and (2,-2) since 3 is odd.
The edge between vertices (1,0) and (3,-1) is of type 0 and the edge between vertices (2,-2)
and (3,-1) is of type 1.

And we continue this process on each vertex on each level to obtain the tree of figure 2.

Figure 2: Part of the tree τ5.

Let us compute the words in P5,0. It can be read on the tree τ5 that this set is given by the
words 00110, 01110 and 1010.

We wish to remark that because of the way x is defined, the word 00110 for example is not
the binary expansion of 6 but of 12 as everything is mirrored.

Let us now remark that having such a family of trees proves the following proposition :

Proposition 1.1.5. For every a in N and every d in Z, we have the following identities :

µ2a(d) = µa(d)
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and

µ2a+1(d) =
1

2
µa(d− 1) +

1

2
µa+1(d+ 1).

Proof. For any positive integer a and any integer d, we can read from the tree τ2a that words in
P2a,d are exactly words beginning by either 0 or 1 and followed by a word in Pa,d, thus we have :

µ2a(d) = µa(d)

Notice that words in P2a+1,d are exactly words beginning by a 0 and followed by a word in Pa,d−1
and the ones beginning by a 1 followed by a word in Pa+1,d+1. It follows that :

µ2a+1(d) =
1

2
µa(d− 1) +

1

2
µa+1(d+ 1).

Remark 1.1.6. This proposition allows to compute explicitly any distribution µa since it is
trivial to give explicit closed formulas for µ0 and µ1. It also gives an understanding of the link
between µa and the binary expansion of a. However, we prefer another presentation of such a
result. Namely, one that assembles in a close formula these identities as we follows the binary
decomposition of a. Such a formula is given in Theorem 1.2.1.

Figure 3: Collapsing τ25.

One way to do such a thing is to remark that if we collapse the tree τa by identifying the
vertices whose label’s first coordinate are the same, we obtain a graph whose structure is studied
in the next section.

Looking at this graph after collapsing is quite interesting for it gives us an understanding
of the link between the summation process and the binary expansion of a. It also allows the
statistical study of the behaviour of s2(x + a) − s2(x). An example of the tree τ25 collapsing is
given in Figure 3.
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1.2 Distribution of s2(x+ a)− s2(x)

The goal of this section is to prove the following theorem :

Theorem 1.2.1. The distribution µa is calculated via an infinite product of matrices whose
coefficients are operators of l1(Z)

µa = (Id, Id) · · ·AanAan−1 · · ·Aa1Aa0
(
δ0
0

)
,

where the sequence (an)n∈N is the binary expansion of a, δ0 is the Dirac mass in 0

A0 =

(
Id 1

2S
−1

0 1
2S

)
, A1 =

(
1
2S
−1 0

1
2S Id

)
,

and S is the left shift transformation on l1(Z).

One can notice that only two different patterns can appear between two levels of the collapsed
graph. Those patterns are given by figure 4.

Remark 1.2.2. Let us remark that there are always only two vertices on each level (except at
level 0 where we can add the vertex a + 1 for coherence) labelled by two consecutive integers
and that the order in which each pattern appears and how vertices are labelled are given by the
binary expansion of a.

-
+

Ηa,n
1 Ηa,n

2

Ηa,n+1
1 Ηa,n+1

2

+
-

Ηa,n
1 Ηa,n

2

Ηa,n+1
1 Ηa,n+1

2

Figure 4: The two different patterns encountered in the collapsed graph

First, we begin by a definition :

Definition 1.2.3. Let us define for each positive integer a and each level n of the collapsed graph
the probability measures η1a,n and η2a,n on Z such that ηia,n(d) is the probability that a path of

length n starting from a in the associated collapsed graph ends on the ith vertex at level n with
the counter value being d. Here we still endow {0, 1}∗ with the balanced Bernouilli probability
measure.

This seems to only define a sequence in l1(Z). Let us remind that we can identify finite
measures on Z with sequences in l1(Z). It is a quick check to verify that we did define probability
measures.
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Lemma 1.2.4. The ηia,n are given by induction :

∀n ∈ N,
(
η1a,n+1

η2a,n+1

)
= Aan

(
η1a,n
η2a,n

)
where

a =
+∞∑
k=0

ak2
k.

Proof. Let n ∈ N, d ∈ Z and a ∈ Z+. We wish to compute η1a,n+1 and η2a,n+1. It is obvious that
the pattern we see between levels n and n+ 1 are given by an.

If an = 0, then we encouter the left pattern of figure 4. In this case we have :

η1a,n+1(d) = η1a,n(d) +
1

2
η2a,n(d− 1).

This being true for all d, we can write :

η1a,n+1 = η1a,n +
1

2
S−1(η2a,n),

where S is the left shift transformation on the space l1(Z). For the same pattern we also have :

η2a,n+1(d) =
1

2
η2a,n(d+ 1)

which can be rewritten

η2a,n+1 =
1

2
S(η2a,n).

So in this particular case we can write the relations in the following way :(
η1a,n+1

η2a,n+1

)
=

(
Id 1

2S
−1

0 1
2S

)(
η1a,n
η2a,n

)
.

The same arguments for the right pattern of figure 4 (which corresponds to the case where
an = 1) yields : (

η1a,n+1

η2a,n+1

)
=

(
1
2S
−1 0

1
2S Id

)(
η1a,n
η2a,n

)
which ends the proof of the lemma.

This lemma allows us to prove Theorem 1.2.1 :

Proof. Let a ∈ N and µa ∈ l1(Z) be the distribution of probability of the difference s2(x+ a)−
s2(x). From Lemma 1.1.1 we know that the set of solution for s2(x + a) − s2(x) = d for any
d ∈ Z is given by a finite set of prefixes. We can consider them to be all of size md by adding
prefixes if needed (which means partitionning our cylinder sets from Lemma 1.1.1 into smaller
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cylinders of constant size (12)md). We can also assume that md is bigger that the highest n such
that an = 1 with the same argument of adding prefixes (i.e. partitionning again).

Then the probability µa(d) is given by η1a,md(d) since we need to end the summation on a
vertex labelled by 0. Let us also notice that η2a,md(d) = 0 for otherwise we would have a solution
prefix whose length would be greater than md. With the previous lemma we thus have the
following :

µa(d) =

(
(Id, Id)AamdAamd−1 · · ·Aa1Aa0

(
η1a,0
η2a,0

))
(d).

It is also worth noticing that after rank md keeping multiplying on the left by A0 will not
have any influence on the final result so this allows for a more convenient writing of our result :

µa(d) =

(
(Id, Id) · · ·AanAan−1 · · ·Aa1Aa0

(
η1a,0
η2a,0

))
(d)

which proves the theorem.

2 Asymptotic properties of distributions µa

In this section we study the asymptotic behaviour of the family of distributions µa as l(a)
increases. We prove that the l2(Z) norm of µa tends to 0 as l(a) increases hence the densities
of µa tend to zero.

Let us remind that l(a) denotes the number of distinct patterns 01 in the binary expansion
of a.

Remark 2.0.5. For any integer a there exists k integers p1, ..., pk such that a = 0p11p2 ...1pk or
a = 1p10p2 ...1pk depending on a being even or odd. In the first case, k = 2l(a), and in the second,
k = 2l(a) + 1.

In other words, the number of distinct continous maximal blocks of digits in a is either
2l(a) + 1 or 2l(a).

2.1 Convergence to zero

We start by proving the following theorem.

Theorem 2.1.1. There exists a constant C0 such that for any integer a we have the following :

‖µa‖2 ≤ C0 · l(a)−1/4.

The proof is established in a series of lemmas. Let us recall the notation

A0 =

(
Id 1

2S
−1

0 1
2S

)
, A1 =

(
1
2S
−1 0

1
2S Id

)
,

11



where S is the left shift on l1(Z). Let us define a norm on the space of n × n matrices Y =
(yi,j)i,j∈{1,...,n}2 by the following :

‖Y ‖ = max
1≤j≤n

n∑
i=1

|yi,j |.

Remark 2.1.2. Let us remark right away that this defines a submultiplicative norm.

We consider the Fourier transform µ̂a defined on the circle T by :

∀θ ∈ [0, 2π), µ̂a(θ) =
∑
d∈Z

e−idθµa(d).

Notice that applying the operator S to an element of l1(Z) transforms to the multiplication by eiθ

of the fourier transform hence the linear operators A0, A1 become ordinary linear transformations
in C2 for any given θ defined in the following way

Â0(θ) :=

(
1 1

2e
−iθ

0 1
2e
iθ

)
, Â1(θ) :=

(
1
2e
−iθ 0

1
2e
iθ 1

)
,

Lemma 2.1.3. We have the following elementary inequalities for any θ:
‖Â0(θ)‖1 = ‖Â1(θ)‖1 = ‖Â0(θ)Â1(θ)‖1 = ‖Â1(θ)Â0(θ)‖1 = 1 and

‖Â0(θ)Â1(θ)Â0(θ)‖1 = ‖Â1(θ)Â0(θ)Â1(θ)‖1 := φ(θ) =
1 +
√

5 + 4 cos θ

4
.

Notice that φ is strictly less than 1 except when θ = 0.

Proof. For any θ ∈ [0, 2π), we have :

Â0(θ)Â1(θ)Â0(θ) =

(
1
2e
−iθ + 1

4
1
4e
−2iθ + 1

8e
−iθ + 1

4
1
4e

2iθ 1
8e
iθ + 1

4e
2iθ

)
.

and

Â1(θ)Â0(θ)Â1(θ) =

(
1
8e
−iθ + 1

4e
−2iθ 1

4e
−2iθ

1
4e

2iθ + 1
8e
iθ + 1

4
1
2e
iθ + 1

4

)
.

so he have
‖Â0(θ)Â1(θ)Â0(θ)‖1 = ‖Â1(θ)Â0(θ)Â1(θ)‖1.

Moreover, the triangular inequality yields∣∣∣∣14e−2iθ +
1

8
e−iθ +

1

4

∣∣∣∣+

∣∣∣∣14e2iθ +
1

8
eiθ
∣∣∣∣ ≤ ∣∣∣∣14e−2iθ

∣∣∣∣+

∣∣∣∣18e−iθ +
1

4

∣∣∣∣+

∣∣∣∣14e2iθ +
1

8
eiθ
∣∣∣∣

so we have ∣∣∣∣14e−2iθ +
1

8
e−iθ +

1

4

∣∣∣∣+

∣∣∣∣14e2iθ +
1

8
eiθ
∣∣∣∣ ≤ ∣∣∣∣14e2iθ

∣∣∣∣+

∣∣∣∣12e−iθ +
1

4

∣∣∣∣
12



hence the sum of the modulus of the terms in the first column is less than the sum of the modulus
of the terms of the second column, which implies that

‖Â0(θ)Â1(θ)Â0(θ)‖1 =

∣∣∣∣14e−2iθ
∣∣∣∣+

∣∣∣∣12eiθ +
1

4

∣∣∣∣
so finally

‖Â0(θ)Â1(θ)Â0(θ)‖1 =
1 +
√

5 + 4 cos θ

4
.

Lemma 2.1.4. For any k ∈ N∗ and any θ ∈ [0, 2π)

‖Â0(θ) (Â1(θ))
k Â0(θ)‖1 ≤ ‖Â0(θ) Â1(θ) Â0(θ)‖1.

Proof. First let us state that, for all positive integer k :

∀θ ∈ [0, 2π), (Â1(θ))
k =

(
e−ikθ

2k
0

sk(θ) 1

)

where

sk(θ) = e2iθ
k∑
j=1

e−ijθ

2j
.

We can compute that :

∀k ∈ N, Â0(θ) (Â1(θ))
k Â0(θ) =

 e−ikθ

2k
+ e−iθ

2 sk(θ)
e−i(k+1)θ

2k+1 + e−2iθ

4 sk(θ) + 1
4

eiθ

2 sk(θ)
1
4sk(θ) + e2iθ

4

 .

Moreover, noticing that for every positive integer k and every θ in [0, 2π),

sk+1(θ) =
e−iθ

2
sk(θ) +

eiθ

2

implies that∣∣∣∣∣e−i(k+1)θ

2k+1
+
e−iθ

2
sk+1(θ)

∣∣∣∣∣+

∣∣∣∣eiθ2 sk+1(θ)

∣∣∣∣ =

∣∣∣∣∣e−i(k+1)θ

2k+1
+
e−2iθ

4
sk(θ) +

1

4

∣∣∣∣∣+

∣∣∣∣14sk(θ) +
e2iθ

4

∣∣∣∣ .
Which means that the sum of modulus of coefficient on the first column of matrix

Â0(θ) (Â1(θ))
k+1 Â0(θ) is equal to the sum of the modulus of the coefficients of the second

column of the matrix Â0(θ) (Â1(θ))
k Â0(θ). Hence to prove that

∀k ∈ N, ∀θ ∈ [0, 2π), ‖Â0(θ) (Â1(θ))
k Â0(θ)‖1 ≤ ‖Â0(θ) Â1(θ) Â0(θ)‖1

13



suffices to actually show the following :

∀k ≥ 2, ∀θ ∈ [0, 2π),

∣∣∣∣e−ikθ2k
+
e−iθ

2
sk(θ)

∣∣∣∣+

∣∣∣∣eiθ2 sk(θ)

∣∣∣∣ ≤ ‖Â0(θ) Â1(θ) Â0(θ)‖1.

Using triangular inequality, we have

∀k ≥ 2, ∀θ ∈ [0, 2π),

∣∣∣∣e−ikθ2k
+
e−iθ

2
sk(θ)

∣∣∣∣+

∣∣∣∣eiθ2 sk(θ)

∣∣∣∣ ≤ 1

2k
+ |sk(θ)|

which, still using triangular inequality, yields

∀k ≥ 2, ∀θ ∈ [0, 2π),

∣∣∣∣e−ikθ2k
+
e−iθ

2
sk(θ)

∣∣∣∣+

∣∣∣∣eiθ2 sk(θ)

∣∣∣∣ ≤ 1

2k
+

∣∣∣∣eiθ2 +
1

4

∣∣∣∣+

k∑
j=3

1

2j

and

∀θ ∈ [0, 2π),

∣∣∣∣e−i2θ22
+
e−iθ

2
s2(θ)

∣∣∣∣+

∣∣∣∣eiθ2 s2(θ)

∣∣∣∣ ≤ 1

22
+

∣∣∣∣eiθ2 +
1

4

∣∣∣∣
So, in any case, we get :

∀k ≥ 2, ∀θ ∈ [0, 2π),

∣∣∣∣e−ikθ2k
+
e−iθ

2
sk(θ)

∣∣∣∣+

∣∣∣∣eiθ2 sk(θ)

∣∣∣∣ ≤ ∣∣∣∣eiθ2 +
1

4

∣∣∣∣+
1

4

which completes the proof since∣∣∣∣eiθ2 +
1

4

∣∣∣∣+
1

4
= ‖Â0(θ) Â1(θ) Â0(θ)‖1

Lemma 2.1.5. If −π ≤ θ ≤ π then

φ(θ) ≤ e−θ2/15.

Hence for any positive integer N :

‖φN‖2 ≤ ‖e−Nθ
2/15‖2 =

(
15π

2N

)1/4

with φ as defined in 2.1.3.

The proof is left to the reader.

Proof of theorem 2.1.1. Recall that µa = µa,1 + µa,2 is the sum of the components of the vector
µ̄a, which is calculated as an infinite product

µ̄a =

(
µa,1
µa,2

)
= · · ·AanAan−1 · · ·Aa1Aa0

(
δ0
0

)
.

14



Let us represent the binary expansion of a as a sequence of l(a) groups 11 . . . 1 separated by
zeros:

a = 0m111 . . . 10m211 . . . 10 . . . . . . . . . 0ml(a)11 . . . 1.

We apply Lemma 2.1.4 to half of the patterns 011..10 and use the bound of Lemma 2.1.3 :

‖Â0(θ) (Â1(θ))
k Â0(θ)‖1 ≤ φ(θ).

We can do this only on half of patterns 011..10 to avoid problematic patterns like
. . . 0111011110 . . ., since we need at least two “0” between two blocks on “1” to be able to
apply Lemma 2.1.4 twice but we have only one “0” in between. Thus, we get

‖ · · · Âan(θ) · · · Âa0(θ)‖1 ≤ φ(θ)N , N =
l(a)− 1

2
,

and hence, for each θ ∈ [0, 2π) and j ∈ {1, 2}

|µ̂a,j(θ)| ≤ φ(θ)N ·

∥∥∥∥∥
(

1

0

)∥∥∥∥∥
1

= e−Nθ
2/15,

and

‖µa,j‖2 =
1√
2π
‖µ̂a,j‖2 ≤

1√
2π
‖φN‖2 =

1√
2π

∫ ∞
−∞

e−Nt
2/15 dt =

(
15

8πN

)1/4

.

Finally, we get using lemma 2.1.5

‖µa‖2 ≤
√

2

(
15

π(l(a)− 1)

)1/4

= O
(
l(a)−1/4

)
.

Remark 2.1.6. It follows directly from Theorem 2.1.1 that the density µa(j)→ 0 as l(a)→∞.
Let us also remark that this theorem actually gives an important information as to the fact

that the probability measure µa is linked with the complexity of the binary expansion of a,
complexity which is measured by l(a). In fact, let us remark that for any integer n, µ2n = µ1 so
it is possible to find arbitrarily large a such that ||µa||2 does not tend to zero (actually whenever
l(a) does not tend to infinity).

2.2 Asymptotic mean and variance of µa

Let us first recall the following :

∀θ ∈ [0, 2π), Â0(θ) :=

(
1 1

2e
−iθ

0 1
2e
iθ

)
, Â1(θ) :=

(
1
2e
−iθ 0

1
2e
iθ 1

)
,

We begin by using Taylor’s expansion on the matrices Â0(θ) and Â1(θ) we have :

Âk(θ) = Ik + θ αk + θ2 βk +O(θ3), k ∈ {0, 1},

15



where

I0 =

(
1 1

2

0 1
2

)
, α0 =

i

2

(
0 −1

0 1

)
, β0 = −1

4

(
0 1

0 1

)
,

I1 =

(
1
2 0

1
2 1

)
, α1 =

i

2

(
−1 0

1 0

)
, β1 = −1

4

(
1 0

1 0

)
,

and we observe that the following relations hold

(1, 1)Ik = (1, 1), (2)

(1, 1)αk = (0, 0), (1, 1)β0 = −1

2
(0, 1), (1, 1)β1 = −1

2
(1, 0). (3)

Lemma 2.2.1. For all θ ∈ [0, 2π), the product of matrices (Â0(θ))
k converges as k goes to +∞.

We denote the limit Â∞0 (θ)

Â∞0 (θ) =

(
1 e−iθ

2−eiθ

0 0

)
.

Proof. Remarking the following :

∀θ ∈ [0, 2π), (Â0(θ))
k =

(
1 sk(θ)

0 eikθ

2k

)

where

sk(θ) = e−2iθ
k∑
j=1

eijθ

2j
.

yields the lemma.

Let us now remark that the asymptotic expansion of Â∞0 is :

Â∞0 (θ) = I∞ + θ2β∞ +O(θ3),

where

I∞ =

(
1 1

0 0

)
, β∞ = −

(
0 1

0 0

)
.

Definition 2.2.2. Given a ∈ N of binary length N , let us define Πa(θ) = Â∞0 ÂaN (θ) · · · Âa0(θ).
Let D := {v ∈ R2 : v1 + v2 = 1}.

Lemma 2.2.3. For any real vector v0 ∈ D the product (1, 1) · Πa(θ) · v0 has the following
asymptotic expansion

(1, 1) ·Πa(θ) · v0 = 1 + V (a) θ2 +O(θ3),

16



where
V (a) = (1, 1) (β∞vN+1 + βaN vN + . . .+ βa0v0) ,

and
∀j ∈ {1, ..., N + 1}, vj = Iaj−1 · · · Ia0v0.

Proof. Let us first recall that :

(1, 1)I0 = (1, 1)I1 = (1, 1)I∞ = (1, 1).

Moreover :

(1, 1) ·Πa(θ) · v0 = (1, 1)
(
I∞ + θ2β∞ +O(θ3)

) N∏
i=1

(
Iai + αaiθ + βaiθ

2 +O(θ3)
)
v0.

Hence the constant term in the asymptotic expansion of (1, 1) ·Πa(θ) · v0 is 1 (since v0 is in D).
In addition, we have :

(1, 1)α0 = (1, 1)α1 = (0, 0)

so the term of degree 1 is 0.
With the same argument, we can compute the quadratic term V (a). Notice that any coeffi-

cient α0 or α1 is killed by left multiplication by (1, 1). Hence the terms of the form :

I∞...Iaj+1αajIaj−1 ...Iai+1αaiIai−1 ...Ia0

disappear after the left multiplication by (1, 1) and thus do not contribute in any way to the
coefficient of the quadratic term.

So the only terms contributing to V (a) in the product Â∞(θ)ÂaN (θ)...Âa0(θ) are the terms
with coefficient β0, β1 or β∞.

Lemma 2.2.4. For any j ∈ {0, ..., N}, the value (1, 1)βajvj is estimated as follows

1

2b
1
j

(
1− 1

2b
2
j

)
≤ −(1, 1)βajvj ≤

1

2b
1
j

,

where b1j is the length of a consecutive and maximal sequence of digits equal to aj to the left of j

(including position j) in a, and b2j is the length of the next block of identical digits to the left of
the block containing the digit aj.

Proof. Without loss of generality assume that aj = 0. Observe that I0 and I1 contract the
segment [(1, 0), (0, 1)] to the first and to the second point respectively with the contraction

factor 2. Hence the block I
b2j
1 maps [(1, 0), (0, 1)] into the segment [(2−b

2
j , (1 − 2−b

2
j )), (0, 1)].

Then the block I
b1j−1
0 contracts later to[(
1− 2−b

1
j+1(1− 2−b

2
j ), 2−b

1
j+1(1− 2−b

2
j )
)
,
(
1− 2−b

1
j+1, 2−b

1
j+1)].

And multiplying on the left by (1, 1)βaj = (1, 1)β0 = −1
2(0, 1) means taking the second coordinate

with an additional coefficient −1/2, and the lemma follows.
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Remark 2.2.5. The same proof yields :

−(1, 1)β∞vN+1 ≤
1

2b
1
N−1

.

Moreover, we have the following lemma :

Lemma 2.2.6.

l(a) ≤
N∑
j=0

1

2b
1
j

≤ 2l(a) + 1.

Proof. This lemma is obtained by noticing that each block of identical digits in the binary
expansion of a spans in

∑N
j=0

1

2
b1
j

a partial sum of a geometric sequence of ratio 1
2 and first term

1
2 so each is smaller than 1 and greater than 1

2 . In fact let us assume that there are k blocks in
the binary expansion of a of lengths l1, ..., lk (i.e a = 0l11l2 ...0lk−11lk for example). Then

N∑
j=0

1

2b
1
j

=

k∑
i=1

li∑
j=1

(
1

2

)j
and

k∑
i=1

1

2
≤

k∑
i=1

li∑
j=1

(
1

2

)j
≤

k∑
i=1

1.

Moreover, k can be equal to either 2l(a) + 1 or 2l(a) which completes the proof.

Theorem 2.2.7. For any integer a such that l(a) is large enough, the variance −2V (a) of µa
has bounds :

l(a)− 1 ≤ −2V (a) ≤ 2(2l(a) + 1).

Proof. The idea of this theorem is to see that each block of same digits in the binary expansion
of a has an impact on V (a) estimated by a constant.

Let us estimate the value of V (a) :

−V (a) = −
N∑
j=0

(1, 1)βajvj − (1, 1)β∞vN+1 ≤
N∑
j=0

1

2b
1
j

+
1

2b
1
N−1

,

by Lemma 2.2.4. Moreover, the upper bound of Lemma 2.2.6 yields:

−2V (a) ≤ 2(2l(a) + 2).

Now we will prove the lower bound :

−V (a) ≥ 1

2
(l(a)).

18



Let us remark that

−V (a) = −
N∑
j=0

(1, 1)βajvj − (1, 1)β∞vN+1 ≥ −
N∑
j=0

(1, 1)βajvj

so, using lemma (2.2.4), we have :

−V (a) ≥
N∑
j=0

(
1

2b
1
j

(
1− 1

2b
2
j

))
.

Hence,

−V (a) ≥
N∑
j=0

1

2b
1
j

−
N∑
j=0

1

2b
1
j+b

2
j

.

Let us denote by k the largest integer such that a0 = ... = ak. Noticing that b2j = 0 for all
j ∈ {0, ..., k} we have :

−V (a) ≥
N∑

j=k+1

1

2b
1
j

−
N∑

j=k+1

1

2b
1
j+b

2
j

.

Moreover, for any integer j larger than k, b2j ≥ 1 hence :

−V (a) ≥ 1

2

N∑
j=k+1

1

2b
1
j

from which we derive :

−V (a) ≥ 1

2
(l(a)− 1)

by applying the lower bound of Lemma 2.2.6 . This proves Theorem 2.2.7.

On a final note, it is interesting to remark that the bounds for Theorem 2.2.7 might not be
optimal but that for a sequence of integers (a(n))n∈N such that limn→∞ l(a(n)) = +∞ and such

that the limit of −2V (a(n))
l(a(n)) exists, then this limit value is in [1, 4]. We give some examples of

computer simulations in Figure 5.
It would be interesting to understand the asymptotic behaviour of the ratio −2V (a(n))

l(a(n)) . Having
a necessary condition for convergence and a precise idea of how it behaves asymptotically would
help understanding the variance of the probability measure µa.
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(a) −2V (a(n))
l(a(n))

pour a(n) =
∑n
k=0 22k (b) −2V (a(n))

l(a(n))
pour a(n) =

∑n
k=0 24k + 24k+1

(c) −2V (a(n))
l(a(n))

pour a(n) =
∑n
k=0 26k + 26k+1 + 26k+2 (d) −2V (a(n))

l(a(n))
pour a(n) = 101202...1n

Figure 5: Asymptotics of the ratio −2V (a(n))
l(a(n)) for different sequences (a(n))n∈N
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