M Al

Hajj Hassan

Mostafa Bamha
email: mostafa.bamha@univ-orleans.fr

Scalability and Optimisation of GroupBy-Joins in MapReduce

Keywords: Join and GroupBy-join operations, Data skew, MapReduce programming model, Distributed file systems, Hadoop framework, Apache Pig Latin

For over a decade, MapReduce has become the leading programming model for parallel and massive processing of large volumes of data. This has been driven by the development of many frameworks such as Spark, Pig and Hive, facilitating data analysis on large-scale systems. However, these frameworks still remain vulnerable to communication costs, data skew and tasks imbalance problems. This can have a devastating effect on the performance and on the scalability of these systems, more particularly when treating GroupBy-Join queries of large datasets.

In this paper, we present a new GroupBy-Join algorithm allowing to reduce communication costs considerably while avoiding data skew effects. A cost analysis of this algorithm shows that our approach is insensitive to data skew and ensures perfect balancing properties during all stages of GroupBy-Join computation even for highly skewed data. These performances have been confirmed by a series of experimentations.

Introduction

Business intelligence and large-scale data analysis have been recently the object of increased research activity using MapReduce model and especially in the evaluation of complex queries involving GroupBy-Joins using hash based approach [START_REF] Blanas | A comparison of join algorithms for log processing in mapreduce[END_REF][START_REF] Al Hajj Hassan | Handling data-skew effects in join operations using mapreduce[END_REF][START_REF] Vemuri | Execution primitives for scalable joins and aggregations in map reduce[END_REF]. GroupBy-joins still suffer from the effect of high redistribution cost, disk I/O and task imbalance in the presence of skewed data in large scale systems.

GroupBy-Join queries are queries involving join and group-by operations in addition to aggregate functions. In these queries, aggregate functions allow us to obtain a summary data for each group of tuples based on a designated grouping. We can distinguish two types of GroupBy-Join queries as illustrated in the following table. The difference between queries and Q 2 resides in the GroupBy and Join attributes. In query Q 1 , the join attribute x is part of the GroupBy attributes which is not the case in query Q 2 . This difference plays an important role in processing the queries especially on parallel and distributed systems.

Q 1 Query Q 1 Query Q 2 SELECT R.x,
In traditional algorithms that treat such queries, join operation is performed in the first step and then the group-by operation [START_REF] Chaudhuri | Including group-by in query optimization[END_REF][START_REF] Weipeng | Performing group-by before join[END_REF]. But the response time of these queries may be significantly reduced if the group-by operation and aggregate function are performed before the join [START_REF] Chaudhuri | Including group-by in query optimization[END_REF]. This helps in reducing the size of the relations to be joined. In addition, redistribution of tuples of both relations is necessary in join evaluation on parallel and distributed systems. Thus, reducing the size of relations to be joined helps in reducing the communication cost and by consequence in reducing the execution time of queries in parallel and distributed systems. Several optimization techniques were introduced in the literature in order to generate the query execution plan with the lowest processing costs [START_REF] Chaudhuri | Including group-by in query optimization[END_REF][START_REF] Gupta | Aggregate-query processing in data warehousing environments[END_REF][START_REF] Weipeng | Performing group-by before join[END_REF][START_REF] Weipeng | Eager aggregation and lazy aggregation[END_REF]. Their aim is to study the necessary and sufficient conditions that must be satisfied by the relational query in order to be able to push the GroupBy past join operation and to find when this transformation helps in decreasing the execution time. In general, when the join attributes are part of the group-by attributes, as in query Q 1 , it is preferable to evaluate the group-by and aggregate function first and then the join operation [START_REF] Hajj Hassan | Parallel processing of 'group-by join' queries on Shared Nothing machines[END_REF][START_REF] Hajj Hassan | An optimal evaluation of groupby-join queries in distributed architectures[END_REF][START_REF] Taniar | Parallel "groupby-before-join" query processing for high performance parallel/distributed database systems[END_REF]. In the contrary, group-by cannot be applied before the join in query Q 2 because the join attribute x is not part of the group-by attributes [START_REF] Jiang | Parallel algorithms for queries with aggregate functions in the presence of data skew[END_REF][START_REF] Taniar | Aggregate-join query processing in parallel database systems[END_REF].

We have recently proposed in [START_REF] Al Hajj Hassan | Handling data-skew effects in join operations using mapreduce[END_REF], MRFA-Join algorithm, a MapReduce based algorithm for evaluating join operations on DFS. MRFA-Join algorithm is a scalable and skew-insensitive join algorithm based on distributed histograms and on a randomised key redistribution approach while guaranteeing perfect balancing during all stages of join computation. MRFA-Join algorithm, or other MapReduce hash based join algorithms presented in the literature [START_REF] Blanas | A comparison of join algorithms for log processing in mapreduce[END_REF][START_REF] Yang | Map-reduce-merge: simplified relational data processing on large clusters[END_REF], could be easily extended to evaluate GroupBy-Join queries by adding a final job that redistributes the join result based on the values of the select attributes ((R.x, R.y, S.z) for query Q 1 and (R.y, S.z) for query Q 2). However, this does not allow us to benefit from the optimization techniques described above.

In this paper, we introduce a new GroupBy-Join algorithm called MRFAG-Join (MapReduce Frequency Adaptive Groupby-Join) based on distributed histograms to get detailed information about data distribution. Information provided by distributed histograms in both MRFA-Join and MRFAG-join algorithms allow us to balance load processing among processor nodes due to the fact that all the generated join tasks and buffered data never exceed a user defined size, using threshold frequencies, while reducing communication costs to only relevant data. Moreover in MRFAG-Join, we partially apply the group-by operation and aggregate function before evaluating the join. In addition, we do not fully materialize the join result. This helps us to reduce the communication and disk input/output costs to a minimum while preserving the efficiency and the scalability of the algorithm even for highly skewed data. We recall that all existing MapReduce GroupBy-Join algorithms presented in the literature are derived from parallel hashing approaches which make them very sensitive to data skew.

The MapReduce Programming Model

MapReduce [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF] is a simple yet powerful framework for implementing distributed applications without having extensive prior knowledge of issues related to data redistribution, task allocation or fault tolerance in large scale distributed systems.

Google's MapReduce programming model presented in [START_REF] Dean | MapReduce: Simplified Data Processing on Large Clusters[END_REF] is based on two functions: map and reduce, that the programmer is supposed to provide to the framework. These two functions should have the following signatures:

map: (k 1 , v 1) -→ list(k 2 , v 2), reduce: (k 2 , list(v 2)) -→ list(v 3).

Map phase

Reduce phase DFS data read.

Sort, Combine and Partition data.

DFS data write.

Shuffle and Sort data

Distributed File System (DFS) For efficiency reasons, in Hadoop MapReduce framework, users may also specify a "Combine function", to reduce the amount of data transmitted from Mappers to Reducers during shuffle phase (see fig 1). The "Combine function" is like a local reduce applied (at map worker) before storing or sending intermediate results to the reducers. The signature of combine function is:

combine: (k 2 , list(v 2)) -→ (k 2 , list(v 3)).
To cover a large range of applications needs in term of computation and data redistribution, in Hadoop framework, the user can optionally implement two additional functions : init() and close() called before and after each map or reduce task. The user can also specify a "partition function" to send each key k 2 generated in map phase to a specific reducer destination. The reducer destination may be computed using only a part of the input key k 2 . The signature of the partition function is:

partition: k 2 -→ Integer,
where the output of partition should be a positive number strictly smaller than the number of reducers. Hadoop's default partition function is based on "hashing" the whole input key k 2 .

3 MRFAG-Join : a solution for data skew for GroupBy joins using MapReduce model

In this section, we describe the implementation of MRFAG-Join, to evaluate GroupBy-join query Q 1 , defined in section 1, using Hadoop MapReduce framework as it is, without any modification. Therefore, the support for fault tolerance and load balancing in MapReduce and Distributed File System are preserved if possible: the inherent load imbalance due to repeated values must be handled efficiently by the join algorithm and not by the MapReduce framework. In query Q 1 , "x" refers to join attribute, attributes "y" and "z" are called Select attributes whereas attribute "u" refers to Aggregate attribute. We assume that input relations (or datasets) R and S are divided into blocks (splits) of data. These splits are stored in Hadoop Distributed File System (DFS). These splits are also replicated on several nodes for reliability issues. Throughout this paper, for a relation T ∈ {R, S}, we use the following notations: is the global frequency n vx of value v x of attribute "x" in relation T , • Hist x,y (Ti): is the local histogram of relation T i with respect to both "x" and "y": the list of pairs ((v x ,v y),n x,y) where v x and v y are respectively values of attributes "x" and "y" and n x,y its corresponding frequency in relation T i . • Hist x,y i (T): is the fragment of Hist x,y (T) affected to reducer i,

• AGGR w f (u) (Ti):
is the result of applying the aggregate function f on the values of the aggregate attribute u on every group of tuples of T i having identical values of the groupby attribute w. AGGR w f (u) (Ti) is formed of a list of tuples having the form (v, f v) where f v is the result of applying the aggregate function on the group of tuples, in T i , having value v for the attribute w (w may be formed of more than one attribute), (T) affected to reducer i, • HistIndex(R I S): join attribute values that appear in both R and S and their corresponding three parameters: Frequency index, Nb buckets1 and Nb buckets2 used in communication templates, • c r/w : read/write cost of a page of data from/to distributed file system (DFS), • c comm : communication cost per page of data, • t i s : time to perform a simple search in a Hashtable on node i, • t i h : time to add an entry to a Hashtable on node i, • N B mappers: number of job mapper nodes,

• AGGR w f (u),i (T): is the fragment of AGGR w f (u)
• N B reducers: number of job reducer nodes.

We will describe MRFAG-Join algorithm while giving a cost analysis of each computation phase. Join computation in MRFAG-Join proceeds in three MapReduce jobs: a. the first map-reduce job is performed to compute global distributed histogram and to create randomized communication templates to redistribute only relevant data while avoiding the effect of data skew, b. the second one, is used to compute partial aggregation of relevant data by using communication templates carried out in the previous job, c. the third job, is used to redistribute relevant partial aggregated data by using communication templates carried out in the first job and then compute final GroupBy-join result.

The O(. . .) notation only hides small constant factors: they only depend on program's implementation but neither on data nor on machine parameters. Data redistribution in MRFAG-Join algorithm is the basis for efficient and scalable join processing while avoiding the effect of data skew in all the stages of GroupBy-join computation. MRFAG-Join algorithm (see Appendix Algorithm 1) proceeds in 6 steps: a.1: Map phase to generate tagged "local histograms" for input relations: In this step, each mapper i reads its assigned data splits (blocks) of relations R and S from distributed file system (DFS) and emits a couple (<K,tag>,1) for each record in R map i (resp. S map i) where K is a value of join attribute "x" and tag represents input relation tag. The cost of this step is :

T ime(a.1.1) = O N B mappers max i=1 c r/w * (|R map i | + |S map i |) + N B mappers max i=1 (||R map i || + ||S map i ||) .
Emitted couples (<K,tag>,1) are then combined and partitioned using a user defined partitioning function by hashing only key part K and not the whole mapper tagged key <K,tag>. The result of combine phase is then sent to destination reducers in the shuffle phase of the following reduce step. The cost of this step is at most :

T ime(a.1.2) = O N B mappers max i=1 ||Hist x (R map i)|| * log ||Hist x (R map i)|| + ||Hist x (S map i)|| * log ||Hist x (S map i)||) + ccomm * (|Hist x (R map i)| + |Hist x (S map i)| .
And the global cost of this step is: T ime(a.1) = T ime(a.1.1) + T ime(a.1.2).

We recall that, in this step, only local histograms Hist x (R map i) and Hist x (S map i) are sorted and transmitted across the network and the sizes of these histograms are very small compared to the size of input relations R map i and S map i owing to the fact that, for a relation T , Hist x (T) contains only distinct entries of the form (k, n k) where k is a value of join attribute "x" and n k its corresponding frequency.

a.2: Reduce phase to create join result global histogram index and randomized communication templates for relevant data:

At the end of shuffle phase, each reducer i will receive a fragment of

Hist x i (R) (resp. Hist x i (S))
obtained through hashing of distinct values of Hist x (R map j) (resp. Hist x (S map j

)) of each mapper j. Received fragments of Hist x i (R) and Hist x i (S) are then merged to compute global histogram HistIndexi(R I S) on each reducer i. HistIndex(R I S) is used to compute randomized communication templates for only records associated to relevant join attribute values (i.e. values which will effectively be present in the final GroupBy-Join result).

In this step, each reducer i, computes the global frequencies for join attribute values which are present in both left and right relations and emits, for each join attribute K, an entry of the form : (K,<Frequency index(K),Nb buckets1(K),Nb buckets2(K)>) where:

• F requency index(K) ∈ {0, 1, 2} will allow us to decide if, for a given relevant join attribute value K, the frequencies of tuples in relations R and S, having the value K, are greater (resp. smaller) than a defined threshold frequency f 0 . It also permits us to choose dynamically the probe and the build relation for each value K of the join attribute. This choice reduces the global redistribution cost to a minimum. For a given join attribute value K ∈ HistIndexi(R I S),

               « Frequency index(K)=0 If Hist x i (R)(K) < f0 and Hist x i (S)(K) < f0 (i.e. values associated to low frequencies in both relations), « Frequency index(K)=1 If Hist x i (R)(K) ≥ f0 and Hist x i (R)(K) ≥ Hist x i (S)(K) (i.e. Frequency in relation R is higher than those of S), « Frequency index(K)=2 If Hist x i (S)(K) ≥ f0 and Hist x i (S)(K) > Hist x i (R)(K) (i.e.
Frequency in relation S is higher than those of R).

• Nb buckets1(K): is the number of buckets used to partition records of relation associated to the highest frequency for join attribute value K, • Nb buckets2(K): is the number of buckets used to partition records of relation associated to the lowest frequency for join attribute value K.

For a join attribute value K, the number of buckets N b buckets1(K) and N b buckets2(K) are generated in a manner that each bucket will fit in reducer's memory. This makes the algorithm insensitive to the effect of data skew even for highly skewed input relations. Figure 2 gives an example of communication templates used to partition data for HistIndex entry (K,<Frequency index(K),Nb buckets1(K),Nb buckets2(K)>) corresponding to a join attribute K associated to a high frequency, into small buckets. In this example, data associated to relation corresponding to T ag 1 is partitioned into 5 buckets (i.e. N b buckets1(K) = 5) whereas those of relation corresponding to T ag 2 is partitioned into 3 buckets (i.e. N b buckets2(K) = 3). For these buckets, appropriate map keys are generated so that all records in each bucket of relation associated to T ag 1 are forwarded to the same reducer holding all the buckets of relation associated to T ag 2 . This partitioning guarantees that join tasks, are generated in a manner that the input data for each join task will fit in the memory of processing node and never exceed a user defined size, even for highly skewed data [START_REF] Al Hajj Hassan | Handling data-skew effects in join operations using mapreduce[END_REF]. Using HistIndex information, each reducer i, has local knowledge of how relevant records of input relations will be redistributed in the next map phase. The global cost of this step is at most:

T ime(a.2) = O max N B reducers i=1 (||Hist x i (R)|| + ||Hist x i (S)||) .
Note that, HistIndex(R I S) ≡ ∪i(Hist

x i (R) ∩ Hist x i (S)) and ||HistIndex(R I S)|| is very small compared to ||Hist x (R)|| and ||Hist x (S)||.
To guarantee a perfect balancing of the load among processing nodes, communication templates are carried out jointly by all reducers (and not by a coordinator node) for only join attribute values which are present in GroupBy-Join result : Each reducer deals with the redistribution of the data associated to a subset of relevant join attribute values. Once local hashtable is created on each mapper, input relations are then read from DFS, and each input record is either discarded (if record's join key value is not present in the local)|| * log ||Hist x,y (R

(K,Tag1) (K,Tag2) (K,i 0 ,1,Tag1) (K,i 1 ,1,Tag1) (K,i 2 ,1,Tag1) (K,i 3 ,1,Tag1) (K,i 1 ,2,Tag2,0) (K,i 2 ,2,Tag2,0) (K,i 4 ,2,Tag2,0) (K,i 3 ,2,Tag2,0) (K,i 0 ,2,Tag2,0) (K,i 1 ,2,Tag2,1) (K,i 2 ,2,Tag2,1) (K,i 4 ,2,Tag2,1) (K,i 3 ,2,Tag2,1) (K,i 0 ,2,Tag2,1) (K,i 1 ,2,Tag2,2) (K,i 2 ,2,Tag2,2) (K,i 4 ,2,Tag2,1) (K,i 3 ,2,Tag2,2) (K,i 0 ,2,Tag2,2) (K,i 4 ,1,Tag1) Reducer: i 0 Reducer: i 1 = i 0 +1 Reducer: i 2 = i 0 +2 Reducer: i 3 = i 0 +3 Reducer: i 4 = i 0 +4
map i)|| + ||AGGR x,z f (u) (S map i)|| * log ||AGGR x,z f (u) (S map i)|| + ccomm * (|Hist x,y (R map i)| + |AGGR x,z f (u) (S map i)|)) .
The

)|| * log ||Hist x,y (R map i)|| + ||AGGR x,z f (u) (S map i)|| * log ||AGGR x,z f (u) (S map i)||
is time to sort relevant aggregated data on mapper i, whereas the term ccomm * (|Hist x,y (R map i b.2: Reduce phase to compute relevant partial aggregated data, Hist x,y i (R) and

)|+ |AGGR x,z f (u) (S map
AGGR x,z f (u),i (S):
At the end of step b.1, each reducer i receives a fragment Hist x,y i (R) (resp. AGGR x,z f (u),i (S))

obtained through a hashing of Hist x,y (R map j

) (resp. AGGR x,z f (u) (S map j
)) on each mapper j and then a local merge of received data. This partial aggregated data is then written to DFS. This reduce phase is described in detail in Algorithm 8 of appendix. The cost of this step is:

T ime(b.2) = O(N B reducers max i=1 (||Hist x,y i (R)||+||AGGR x,z f (u),i (S)||)+c r/w * |Hist x,y i (R)|+|AGGR x,z f (u),i (S)|)).
c. Once local hashtable is created on each mapper, input relations are then read from DFS, and each record is either discarded (if record's join key is not present in the local hashtable) or routed to a designated random reducer destination using communication templates computed in step a.2 (Map phase is detailed in Algorithm 9 of Appendix). The cost of this step is :

T ime(c.1.2) = O N B mappers max i=1 (c r/w * (|Hist x,y i (R)| + |AGGR x,z f (u),i (S)|) + t i s * ||Hist x,y i (R)||+ t i s * ||AGGR x,z f (u),i (S)|| + ||Hist x,y i (R)|| * log ||Hist x,y i (R)|| + ||AGGR x,z f (u),i (S)|| * log ||AGGR x,z f (u),i (S)|| + ccomm * (|Hist x,y i (R)| + |AGGR x,z f (u),i (S)|)) .
The term c r/w * (|Hist

(R)|+|AGGR x,z f (u),i (S)|))
is time to communicate relevant data from mappers to reducers, using our communication templates described in step a.2. Hence the global cost of this step is: T ime(c.1) = T ime(c.1.1) + T ime(c.1.2). We recall that, in this step, only relevant data is emitted by mappers (which reduces communication cost in the shuffle step to a minimum) and records associated to high frequencies (those having a large effect on data skew) are redistributed according to an efficient dynamic partition/replicate schema to balance load among reducers and avoid the effect of data skew. However records associated to low frequencies (these records have no effect on data skew) are redistributed using hashing functions.) on each mapper j and performs a local GroupBy-join of received data. This reduce phase is described in detail in Algorithm 11 of Appendix. The cost of this step is:

T ime(c.2) = O(N B reducers max i=1 (||Hist x,y i (R)||+||AGGR x,z f (u),i (S)||+c r/w * |Hist x,y i (R) I AGGR x,z f (u),i (S)|)).
Figure 3 shows how the frequency in Hist x,y (R) and the value of aggregate function in (S) are used to generate final GroupBy-Join result depending on the used aggregate function f . The final GroupBy-Join is computed in two steps. In the first step, a partial local computation of the aggregate function is performed on S entries by the combiners (step b.1 of Algorithm 1). The computation varies depending on the aggregate function f as follows:

AGGR x,z f (u)
• MIN function: the minimum value between the list of values emitted by the mappers for each key is computed. • MAX function: the maximum value between the list of values emitted by the mappers for each key is computed. • COUNT function: the number of emitted values by the mappers for each key is computed.

• SUM function: the sum of emitted values by the mappers for each key is computed.

• AVG function: the sum and the number of emitted values by the mappers are computed for each key. The result is the computed sum divided by the computed count value. Using hashing technique, the computation of query Q 1 requires at least the following lower bound:

bound inf = Ω N B mappers max i=1 (c r/w + ccomm) * (|R map i | + |S map i |) + ||R map i || * log ||R map i ||+ ||S map i || * log ||S map i || + N B reducers max i=1 ||R red i || + ||S red i || + c r/w * |AGGR x,y,z f (u) (R red i I S red i)| ,
max i=1 ||AGGR x,y,z f (u) (R red i I S red i)|| , (1)
this is due to the fact that, all other terms in T ime M RF AG-Join are bounded by those of bound inf . Inequality 1 holds, in general, since HistIndex(R 1 S) contains only distinct values that appear in both relations R and S.

Remark: In practice, data imbalance related to the use of hashing functions can be due to:

• a bad choice of used hash function. This imbalance can be avoided by using the hashing techniques presented in the literature making it possible to distribute evenly the values of the join attribute with a very high probability [START_REF] Carter | Universal Classes of Hash Functions[END_REF], • an intrinsic data imbalance which appears when some values of the join attribute appear more frequently than others. By definition a hash function maps tuples having the same join attribute values to the same processor. There is no way for a clever hash function to avoid load imbalance that results from these repeated values [START_REF] Dewitt | Practical Skew Handling in Parallel Joins[END_REF]. But this case cannot arise here owing to the fact that histograms contain only distinct values of the join attribute and the hashing functions we use are always applied to histograms or applied to aggregated data.

Experiments

To evaluate the performance of MRFAG-Join algorithm presented in this paper, for query Q 1 , we compared our algorithm to the best known solution using PigLatin a high-level language for analyzing large data sets based on Apache Pig plateform which generates optimized MapReduce programs. Pig includes routines to handle the effects of data skew in join operations. We ran a large series of experiments on the Grid'5000 testbed where 50 nodes were randomly selected from three clusters of Grid'5000 Sophia's site. Nodes characteristics are described in Table 2. Setting up a Hadoop cluster consisted of deploying each centralized entity (namenode and jobtracker) on a dedicated machine and co-deploying datanodes and tasktrackers on the rest of the nodes. Typically, we used a separate machine as a Hadoop client to manage job submissions. Data replication parameter was fixed to three in Hadoop Distributed File System (HDFS) configuration file.

To study the effect of data skew on performance, join attribute values in the generated data have been chosen to follow a Zipf distribution [START_REF] Zipf | Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology[END_REF] as it is the case in most database tests: Zipf factor was varied from 0 (for a uniform data distribution) to 1.0 (for a highly skewed data). Input relations sizes were fixed to 1 Billion records for the right relation (∼100GB of data) and 500M of records for the left relation ∼50GB of data) and the GroupBy-Join result varying from We noticed in all the tests and also those presented in Figure 4, that our MRFAG-Join (including histogram's and aggregate data preprocessing) algorithm outperforms PigLatin GroupBy Join execution even for low or moderated skew (∼ 10x faster than PigLatin GroupBy Join). We recall that our algorithm requires the scan of input data twice: the first scan is performed for distributed histograms processing and the second one to generate relevant partial aggregated data. We can see, in Figure 4, that MRFAG-Join time is relatively very small compared to MRFAG-Join preprocessing time this is explained by the fact that MRFAG Join Preprocessing operates on whole input data (to generate distributed histograms or relevant aggregated data) whereas MRFAG Join operates on relevant aggregated data which is very small compared to the size of input relations.

The cost analysis and tests performed showed that the overhead related to histogram processing is compensated by the gain in GroupBy-join processing since only relevant data (that appears in the final GroupBy-Join result) is emitted by mappers which reduce considerably the amount of data transmitted over the network in shuffle phase (see Figure 5). Moreover, in PigLatin GroupBy Join implementation all records, emitted by the mappers, having the same value for join attribute are sent and processed by the same reducer which makes the algorithm very sensitive to data skew and limits its scalability. This cannot occur in MRFAG-Join owing to the fact that attribute values associated to high frequencies are forwarded to distinct reducers using randomised join attribute keys and not by a simple hashing of record's join key.

Conclusion and future work

In this paper, we have presented MRFAG-Join (MapReduce Frequency Adaptive GroupBy-Join) algorithm using MapReduce model based on distributed histograms and a randomised key redistribution approach. This algorithm achieves several enhancements compared to hash based solutions suggested in the literature by reducing communication costs to only relevant or aggregated data while guaranteeing perfect balancing properties even for highly skewed data. The cost analysis and the tests performed on Grid5000 infrastructure showed that the overhead related to distributed histogram management remains very small compared to the gain it provides to avoid the effect of load imbalance due to data skew, and to reduce the communication costs in MapReduce'shuffle phase. We recall that, data processing, unnecessary disk I/O and redistribution of the intermediate results can lead to a significant degradation of the performance using 'pure' hash based approaches presented in the literature to perform GroupBy joins on large datasets. Future work will be devoted to extend this algorithm to multi-join and pipelined GroupBy-join queries on large scale systems.

End If

Combine Phase £ Each combiner, for each record with key (join key,groupby attribute,tag) computes the sum of generated local frequencies for R and applies aggregate function on values of attribute u of S.

Partition Phase £ For each emitted tagged (join key, groupby attribute), computes reducer destination according to join key and groupby attribute values. b.2 Reduce Phase: /* To create Hist x,y i (R) and AGGR x,z f (u),i (S)*/ £ For each key (join key,groupby attribute,tag) compute, f req x,y (R), the global sum of generated local frequencies for R and globally compute, f x,z u (S), the result of the aggregate function for S. £ Emit a couple ((join key,groupby attribute, tag),f req x,y (R)) (resp. ((join key,groupby attribute, tag),f x,z u (S))). c.1 Map Phase: /* Repartition of Hist x,y i (R) and AGGR x,z f (u),i (S)*/ £ Each mapper i reads Global join histogram index from DFS and creates a local Hashtable £reads its assigned data splits of Hist x,y i (R) and AGGR x,z f (u),i (S) from DFS, £ Generates randomized communication templates for records in Hist x,y i (R) and AGGR x,z f (u),i (S) according to join key value and its corresponding frequency index in HashTable. £ Emits relevant randomised tagged records from relations Hist x,y i (R) and AGGR x,z f (u),i (S). Partition Phase: £ For each emitted tagged join key, compute reducer destination according to the value of join attribute and random reducer destination generated in Map phase; c.

Figure 1 :

 1 Figure 1: Map-reduce framework.

b. 1 :

 1 Map phase to create a local hashtable and to generate relevant partial aggregated data : In this step, each mapper i reads join result global histogram index, HistIndex, to create a local hashtable in time: T ime(b.1.1) = O(max N B mappers i=1 t i h * ||HistIndex(R I S)||).

Figure 2 :

 2 Figure 2: Generated buckets associated to a join key K corresponding to a high frequency where records from relation associated to T ag 1 (i.e relation having the highest frequency) are partitioned into five buckets and those of relation associated to T ag 2 are partitioned into three buckets.

 i)|) is time to communicate relevant aggregated data from mappers to reducers. Hence the global cost of this step is: T ime(b.1) = T ime(b.1.1) + T ime(b.1.2).

c. 2 :

 2 Reduce phase to compute join result: At the end of step b.1, each reducer i receives a fragment Hist x,y i (R) (resp. AGGR x,z f (u),i (S)) obtained through randomized hashing of R map j (resp. S map j

Figure 3 :

 3 Figure 3: Final GroupBy-Join computation using Hist x,y (R) and AGGR x,z f (u) (S).

 where c r/w * (|R map i | + |S map i |) is the cost of reading input relations from DFS on node i. The term ||R map i || * log ||R map i ||+||S map i || * log ||S map i || represents the cost to sort input relations records in map phase. The term ccomm * (|R map i | + |S map i |) represents the cost to communicate data from mappers to reducers, the term ||R red i || + ||S red i || is time to scan input relations on reducer i. (Note that for relation T ∈ {R, S}, T red i is the part of T held by reducer i by using hashing function to redistribute data from mappers to reducers) and c r/w * |AGGR x,y,z f (u) (R red i I S red i)| represents the cost to store reducer's i GroupBy-Join result on the DFS for query Q 1 . MRFAG-Join algorithm has asymptotic optimal complexity when: ||HistIndex(R I S)|| ≤ max

Figure 4 :

 4 Figure 4: Data skew effect on Hadoop GroupBy-join processing time

Figure 5 :

 5 Figure 5: Data skew effect on the amount of data moved across the network during shuffle phase

Table 1 :

 1 Different types of "GroupBy-Join" queries.

		R.y, S.z, f (S.u) SELECT	R.y, S.z, f (S.u)
	FROM	R, S	FROM	R, S
	WHERE	R.x = S.x	WHERE	R.x = S.x
	GROUP BY R.x, R.y, S.z	GROUP BY R.y, S.z

 The user must write the map function that has two input parameters, a key k 1 and an associated value v 1 . Its output is a list of intermediate key/value pairs (k 2 , v 2). This list is partitioned by the MapReduce framework depending on the values of k 2 , where all pairs having the same value of k 2 belong to the same group.The reduce function, that must also be written by the user, has two parameters as input: an intermediate key k 2 and a list of intermediate values list(v 2) associated with k 2 . It applies the user defined merge logic on list(v 2) and outputs a list of values list(v 3). In this paper, we

	Distributed File System (DFS) split split split split split split split split split	Mapper Mapper Mapper	bucket bucket bucket bucket bucket bucket bucket bucket bucket bucket bucket bucket	Reducer Reducer Reducer	split split split split split split split
		Mapper	bucket bucket bucket bucket		

 ||) is the time to perform a hashtable search for each mapper's input record, ||Hist x,y (R

	the term t i s * (||R map i	|| + ||S map i map
		i

term c r/w * (|R map i | + |S map i |) is time to read input relations from DFS on each mapper i,

 In this step, each mapper i reads join result global histogram index, HistIndex, to create a local hashtable in time: T ime(c.1.1) = O(maxN B mappers

	i=1	t i h * ||HistIndex(R I S)||).

1: Map phase to create a local hashtable and to redistribute relevant aggregated data using randomized communication templates:

 || is time to sort relevant data on mapper i, whereas the term ccomm * (|Hist x,y i

	x,y i (R)|+|AGGR x,z f (u),i (S)|) is time to read input relations from DFS on each
	mapper i, the term t i s * (||Hist x,y i (R)||+||AGGR x,z f (u),i (S)||) is the time to perform a hashtable search
	for each input record, ||Hist x,y

i (R)|| * log ||Hist x,y i (R)|| + ||AGGR x,z f (u),i (S)|| * log ||AGGR x,z f (u),i

(

S)

Table 2 :

 2 Grid'5000 -Sophia's site computing resource characteristics

	Cluster Number	CPU	CPUs	Cores	Memory	Disk
	ID	of nodes		per node per CPU	(GB)	Storage
	1	56	AMD@2.2GHz	2	2	3GB RAM	135GB
	2	50	AMD@2.6GHz	2	2	3GB RAM	232GB
	3	45	Intel@2.26GHz	2	4	31GB RAM 557GB

 Algorithm 1 MRFAG-join algorithm workflow for query Q 1 /* See Appendix for detailed implementation */ Each combiner, for each pair (join key,tag) computes the sum of generated local frequencies associated to the join key value in each tagged join key generated in Map phase. Partition Phase £ For each emitted tagged join key computes reducer destination according to only join key value. a.2 Reducer Phase: /* To combine shuffle's records and to create Global join histogram index*/ £ Compute the global frequencies for only join key values present in both R and S. £ Emit, for each join key, a couple (join key,(frequency index,Nb buckets1, Nb buckets2)). /*frequency index ∈ {0, 1, 2} is used to get detailed information of data distribution in R and S*/ b.1 Map Phase /* To compute Hist x,y (R Each mapper i reads Global join histogram index from DFS and creates a local HashTable £ Each mapper i reads its assigned data splits of relations R map

	a.1 Map Phase /* To generate "local histograms" Hist x (R map i £ Each mapper i reads its assigned data splits of input relations R map) and Hist x (S map i i and S map) */ i from DFS
	£ Extracts join key value from input relation's record.		
	£ Gets a tag to identify source input relation			
	£ Emits a couple ((join key,tag), 1)			
	Combine Phase			
	£ map i) and AGGR x,z f (u) (S	map i) */
	£ i	and S map i	from DFS
	£ Extract join key value from input relation's record.		

If (join key ∈ HashTable) Then £ Extract the groupby attribute y of R (resp. z of S in addition to the aggregate attribute u) £ Get a tag to identify source input relation £ Emit a couple ((join key,groupby attribute,tag), n) where n is 1 for tuples relation R and the aggregate attribute's value for S.

 2 Reduce Phase: /* To generate final query Q1 result */ £ Combine received entries to create final result, AGGR x,y,z f (u),i (R I S), on each reducer i. Combine function /* To compute local frequencies for join key*/ combine(Key K, List List V) { /* List V is the list of values "1" emitted by Mappers */ £ frequency ← sum of frequencies in List V ; £ Emit (K,frequency); } Algorithm 4 Reduce function /* To compute HistIndex(R I S) Global histogram index */ void reduce init(){ hash index ← 0; /* a flag to identify low frequencies records to redistribute using hashing */ partition index ← 1; /* a flag to identify relation's records to partition */ replicate index ← 2 ; /* a flag to identify relation's records to replicate */ last inner key ← "" ; /* to store the last processed key in inner relation */ last inner frequency=0; /* to store the frequency of the last processed key in inner relation */ /* THRESHOLD FREQ: a user defined threshold frequency used for communication templates */ } reduce(Key K,List List V) {/* List V :list of local frequencies of join key in either R map £ join key ← K.join key; /* extracts join key part from input key K */ £ relation tag ← K.relation tag; /* extracts relation tag part from input key K */ If (relation tag corresponds to inner relation) Then £ last inner key ← join key; £ last inner frequency ← sum of frequencies in List V ; Else If (join key = last inner key) Then £ frequency ← sum of frequencies in List V ; If ((last inner frequency<THRESHOLD FREQ) and (frequency<THRESHOLD FREQ) Then £ Emit (join key, (hash index,1,1)); ElseIf (last inner frequency ≥ frequency) £ Nb buckets1 ← last inner frequency / THRESHOLD FREQ ; £ Nb buckets2 ← frequency / THRESHOLD FREQ ; £ Emit (join key, (partition index,Nb buckets1,Nb buckets2)); Else £ Nb buckets1 ← frequency / THRESHOLD FREQ ; £ Nb buckets2 ← last inner frequency / THRESHOLD FREQ ; £ Emit (join key, (replicate index,Nb buckets1,Nb buckets2)); Map function: /* To generate relevant randomized tagged records for Hist x,y i (R) and AGGR x,z f (u),i (S) using HistIndex communication templates.*/ void map init(){ inner tag ← 1 ; /* a tag to identify relation R records */ outer tag ← 2 ; /* a tag to identify relation S records */ hash index ← 0; /* a flag to identify hash based records */ partition index ← 1; /* a flag to identify records to partition */ replicate index ← 2 ; /* a flag to identify records to replicate */ Read HistIndex(R I S): histogram index from DFS; Create a HashTable using join key value, frequency's index and Nb buckets of HistIndex(R I S); } map(K: null, V : a record from a split of either relation Hist x,y i (R) or AGGR x,z f (u),i (S)) { £ relation tag ← get relation tag from current relation split; £ join key ← extract the join value from record V of current input relation; £ groupby value ← extract the group-by attribute from record V of current input relation; £ aggregated value ← extract the partial computed aggregate value from record V of current input relation; If (join key ∈ HashTable) Then /* To redistribute only relevant records */ £ frequency index ← HashTable(join key).frequency index; £ Nb buckets1 ← HashTable(join key).Nb buckets1; £ Nb buckets2 ← HashTable(join key).Nb buckets2; £ random integer ← Generate Random Integer(join key); If (frequency index = hash index) Then £ Emit ((join key,-1,relation tag), (groupby value, aggregated value)); /* for records, with low frequencies, to be hashed */ ElseIf ((frequency index = partition index) and (relation tag = inner tag)) or ((frequency index = replicate index) and (relation tag=outer tag)) £ random dest ← (random integer+SRAND(Nb buckets1)) % Nb buckets1; /* A random integer between 0 and Nb buckets1 */ £ flag index ← partition index ; £ Emit ((join key,random dest,(flag index,relation tag)), (groupby value, aggregated value)); Else For (int i=0; i<Nb buckets1; i++) Do £ random dest ← (random integer+i) % Nb buckets1; £ flag index ← replication index ; £ bucket dest ← i % Nb buckets2; /* A random integer between 0 and Nb buckets2 */ £ Emit ((join key,random dest,(flag index,relation tag,bucket dest)), (groupby value, aggregated value));

	Algorithm 2 Map function /* To generate local histograms values of join attribute values and tag
	input relation records */		
	map(K: null, V : a record from a split of either relation R or S) {		
	£ relation tag ← get relation tag from current relation split; £ join key ← extract the join column from record V of relation R (resp. S); £ Emit ((join key,relation tag), 1); Algorithm 3 i } Algorithm 9 End For;	or S map i	*/
	End If;		
	End If;		
	}		
	End If;		
	End If;		
	End If;		
	}		

HDFS: Hadoop Distributed File System.

Appendix: Implementation of MRFAG-Join functions

Acknowledgements

Experiments presented in this paper were carried out using the Grid'5000 experimental testbed, being developed under the INRIA ALADDIN development action with support from CNRS, RENATER and several Universities as well as other funding bodies (see https://www.grid5000.fr).