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Abstract

For over a decade, MapReduce has become the leading programming model for parallel
and massive processing of large volumes of data. This has been driven by the development
of many frameworks such as Spark, Pig and Hive, facilitating data analysis on large-scale
systems. However, these frameworks still remain vulnerable to communication costs, data
skew and tasks imbalance problems. This can have a devastating effect on the performance
and on the scalability of these systems, more particularly when treating GroupBy-Join
queries of large datasets.

In this paper, we present a new GroupBy-Join algorithm allowing to reduce communi-
cation costs considerably while avoiding data skew effects. A cost analysis of this algorithm
shows that our approach is insensitive to data skew and ensures perfect balancing prop-
erties during all stages of GroupBy-Join computation even for highly skewed data. These
performances have been confirmed by a series of experimentations.

Keywords: Join and GroupBy-join operations, Data skew, MapReduce programming
model, Distributed file systems, Hadoop framework, Apache Pig Latin.

1 Introduction

Business intelligence and large-scale data analysis have been recently the object of increased
research activity using MapReduce model and especially in the evaluation of complex queries
involving GroupBy-Joins using hash based approach [1, 9, 13]. GroupBy-joins still suffer from
the effect of high redistribution cost, disk I/O and task imbalance in the presence of skewed
data in large scale systems.

GroupBy-Join queries are queries involving join and group-by operations in addition to
aggregate functions. In these queries, aggregate functions allow us to obtain a summary data
for each group of tuples based on a designated grouping. We can distinguish two types of
GroupBy-Join queries as illustrated in the following table. The difference between queries Q1

Query Q1 Query Q2

SELECT R.x,R.y, S.z, f(S.u) SELECT R.y, S.z, f(S.u)
FROM R,S FROM R,S
WHERE R.x = S.x WHERE R.x = S.x
GROUP BY R.x,R.y, S.z GROUP BY R.y, S.z

Table 1: Different types of ”GroupBy-Join” queries.

and Q2 resides in the GroupBy and Join attributes. In query Q1, the join attribute x is part of
the GroupBy attributes which is not the case in query Q2. This difference plays an important
role in processing the queries especially on parallel and distributed systems.
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In traditional algorithms that treat such queries, join operation is performed in the first
step and then the group-by operation [3, 14]. But the response time of these queries may be
significantly reduced if the group-by operation and aggregate function are performed before the
join [3]. This helps in reducing the size of the relations to be joined. In addition, redistribution
of tuples of both relations is necessary in join evaluation on parallel and distributed systems.
Thus, reducing the size of relations to be joined helps in reducing the communication cost and
by consequence in reducing the execution time of queries in parallel and distributed systems.
Several optimization techniques were introduced in the literature in order to generate the query
execution plan with the lowest processing costs [3,6,14,15]. Their aim is to study the necessary
and sufficient conditions that must be satisfied by the relational query in order to be able to
push the GroupBy past join operation and to find when this transformation helps in decreasing
the execution time. In general, when the join attributes are part of the group-by attributes, as
in query Q1, it is preferable to evaluate the group-by and aggregate function first and then the
join operation [7, 8, 12]. In the contrary, group-by cannot be applied before the join in query
Q2 because the join attribute x is not part of the group-by attributes [10,11].

We have recently proposed in [9], MRFA-Join algorithm, a MapReduce based algorithm for
evaluating join operations on DFS. MRFA-Join algorithm is a scalable and skew-insensitive join
algorithm based on distributed histograms and on a randomised key redistribution approach
while guaranteeing perfect balancing during all stages of join computation. MRFA-Join algo-
rithm, or other MapReduce hash based join algorithms presented in the literature [1,16], could
be easily extended to evaluate GroupBy-Join queries by adding a final job that redistributes
the join result based on the values of the select attributes ((R.x,R.y, S.z) for query Q1 and
(R.y, S.z) for query Q2). However, this does not allow us to benefit from the optimization
techniques described above.

In this paper, we introduce a new GroupBy-Join algorithm called MRFAG-Join (MapReduce
Frequency Adaptive Groupby-Join) based on distributed histograms to get detailed information
about data distribution. Information provided by distributed histograms in both MRFA-Join
and MRFAG-join algorithms allow us to balance load processing among processor nodes due
to the fact that all the generated join tasks and buffered data never exceed a user defined
size, using threshold frequencies, while reducing communication costs to only relevant data.
Moreover in MRFAG-Join, we partially apply the group-by operation and aggregate function
before evaluating the join. In addition, we do not fully materialize the join result. This helps
us to reduce the communication and disk input/output costs to a minimum while preserving
the efficiency and the scalability of the algorithm even for highly skewed data. We recall that
all existing MapReduce GroupBy-Join algorithms presented in the literature are derived from
parallel hashing approaches which make them very sensitive to data skew.

2 The MapReduce Programming Model

MapReduce [4] is a simple yet powerful framework for implementing distributed applications
without having extensive prior knowledge of issues related to data redistribution, task allocation
or fault tolerance in large scale distributed systems.

Google’s MapReduce programming model presented in [4] is based on two functions: map
and reduce, that the programmer is supposed to provide to the framework. These two functions
should have the following signatures:

map: (k1, v1) −→ list(k2, v2),
reduce: (k2, list(v2)) −→ list(v3).
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The user must write the map function that has two input parameters, a key k1 and an associated
value v1. Its output is a list of intermediate key/value pairs (k2, v2). This list is partitioned
by the MapReduce framework depending on the values of k2, where all pairs having the same
value of k2 belong to the same group.

The reduce function, that must also be written by the user, has two parameters as input:
an intermediate key k2 and a list of intermediate values list(v2) associated with k2. It applies
the user defined merge logic on list(v2) and outputs a list of values list(v3). In this paper, we
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Figure 1: Map-reduce framework.

used an open source version of MapReduce called Hadoop developed by ”The Apache Software
Foundation”. Hadoop framework includes a distributed file system called HDFS1 designed to
store very large files with streaming data access patterns.

For efficiency reasons, in Hadoop MapReduce framework, users may also specify a “Combine
function”, to reduce the amount of data transmitted from Mappers to Reducers during shuffle
phase (see fig 1). The “Combine function” is like a local reduce applied (at map worker) before
storing or sending intermediate results to the reducers. The signature of combine function is:

combine: (k2, list(v2)) −→ (k2, list(v3)).

To cover a large range of applications needs in term of computation and data redistribution,
in Hadoop framework, the user can optionally implement two additional functions : init() and
close() called before and after each map or reduce task. The user can also specify a “partition
function” to send each key k2 generated in map phase to a specific reducer destination. The
reducer destination may be computed using only a part of the input key k2. The signature of
the partition function is:

partition: k2 −→ Integer,

where the output of partition should be a positive number strictly smaller than the number of
reducers. Hadoop’s default partition function is based on “hashing” the whole input key k2.

1HDFS: Hadoop Distributed File System.
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3 MRFAG-Join : a solution for data skew for GroupBy
joins using MapReduce model

In this section, we describe the implementation of MRFAG-Join, to evaluate GroupBy-join

query Q1, defined in section 1, using Hadoop MapReduce framework as it is, without any
modification. Therefore, the support for fault tolerance and load balancing in MapReduce and
Distributed File System are preserved if possible: the inherent load imbalance due to repeated
values must be handled efficiently by the join algorithm and not by the MapReduce framework.

In queryQ1, “x” refers to join attribute, attributes “y” and “z” are called Select attributes

whereas attribute “u” refers to Aggregate attribute. We assume that input relations (or
datasets) R and S are divided into blocks (splits) of data. These splits are stored in Hadoop
Distributed File System (DFS). These splits are also replicated on several nodes for reliability
issues. Throughout this paper, for a relation T ∈ {R,S}, we use the following notations:

• |T |: number of pages (or blocks of data) forming T ,

• ||T ||: number of tuples (or records) in relation T ,

• T : the restriction (a fragment) of relation T which contains tuples which appear in the
final GroupBy-join result. ||T || is, in general, very small compared to ||T ||,

• Tmap
i : the split(s) of relation T affected to mapper i,

• T red
i : the split(s) of relation T affected to reducer i, after a shuffle step,

• Ti: the split(s) of relation T affected to mapper i,

• ||Ti||: number of tuples in split Ti,

• Histx(Tmap
i ): Mapper’s local histogram of Tmap

i , i.e. the list of pairs (k, nk) where k is a
value of attribute “x” and nk its corresponding frequency in relation Tmap

i on mapper i,

• Histxi (T ) : the fragment of global histogram of relation T of attribute “x” on reducer i,

• Histxi (T )(vx): is the global frequency nvx of value vx of attribute “x” in relation T ,

• Histx,y(Ti): is the local histogram of relation Ti with respect to both “x” and “y”: the
list of pairs ((vx,vy),nx,y) where vx and vy are respectively values of attributes “x” and
“y” and nx,y its corresponding frequency in relation Ti.

• Histx,yi (T ): is the fragment of Histx,y(T ) affected to reducer i,

• AGGRw
f(u)(Ti): is the result of applying the aggregate function f on the values of the

aggregate attribute u on every group of tuples of Ti having identical values of the group-
by attribute w. AGGRw

f(u)(Ti) is formed of a list of tuples having the form (v, fv) where
fv is the result of applying the aggregate function on the group of tuples, in Ti, having
value v for the attribute w (w may be formed of more than one attribute),

• AGGRw
f(u),i(T ): is the fragment of AGGRw

f(u)(T ) affected to reducer i,

• HistIndex(R 1 S): join attribute values that appear in both R and S and their corre-
sponding three parameters: Frequency index, Nb buckets1 and Nb buckets2 used in com-
munication templates,

• cr/w: read/write cost of a page of data from/to distributed file system (DFS),

• ccomm: communication cost per page of data,

• tis: time to perform a simple search in a Hashtable on node i,

• tih: time to add an entry to a Hashtable on node i,

• NB mappers: number of job mapper nodes,

• NB reducers: number of job reducer nodes.

We will describe MRFAG-Join algorithm while giving a cost analysis of each computation
phase. Join computation in MRFAG-Join proceeds in three MapReduce jobs:
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a. the first map-reduce job is performed to compute global distributed histogram and to cre-
ate randomized communication templates to redistribute only relevant data while avoiding
the effect of data skew,

b. the second one, is used to compute partial aggregation of relevant data by using commu-
nication templates carried out in the previous job,

c. the third job, is used to redistribute relevant partial aggregated data by using communi-
cation templates carried out in the first job and then compute final GroupBy-join result.

The O(. . .) notation only hides small constant factors: they only depend on program’s imple-
mentation but neither on data nor on machine parameters. Data redistribution in MRFAG-Join
algorithm is the basis for efficient and scalable join processing while avoiding the effect of data
skew in all the stages of GroupBy-join computation. MRFAG-Join algorithm (see Appendix
Algorithm 1) proceeds in 6 steps:

a.1: Map phase to generate tagged “local histograms” for input relations:
In this step, each mapper i reads its assigned data splits (blocks) of relations R and S from
distributed file system (DFS) and emits a couple (<K,tag>,1) for each record in Rmap

i (resp.
Smap
i ) where K is a value of join attribute “x” and tag represents input relation tag. The cost

of this step is :

T ime(a.1.1) = O
(NB mappers

max
i=1

cr/w ∗ (|Rmap
i |+ |Smap

i |) +
NB mappers

max
i=1

(||Rmap
i ||+ ||Smap

i ||)
)
.

Emitted couples (<K,tag>,1) are then combined and partitioned using a user defined partition-
ing function by hashing only key part K and not the whole mapper tagged key <K,tag>. The
result of combine phase is then sent to destination reducers in the shuffle phase of the following
reduce step. The cost of this step is at most :

T ime(a.1.2) = O

(
NB mappers

max
i=1

(
||Histx(Rmap

i )|| ∗ log ||Histx(Rmap
i )||+ ||Histx(Smap

i )||∗

log ||Histx(Smap
i )||) + ccomm ∗ (|Histx(Rmap

i )|+ |Histx(Smap
i )|

))
.

And the global cost of this step is: Time(a.1) = Time(a.1.1) + Time(a.1.2).

We recall that, in this step, only local histograms Histx(Rmap
i ) and Histx(Smap

i ) are sorted and
transmitted across the network and the sizes of these histograms are very small compared to
the size of input relations Rmap

i and Smap
i owing to the fact that, for a relation T , Histx(T )

contains only distinct entries of the form (k, nk) where k is a value of join attribute “x” and nk

its corresponding frequency.

a.2: Reduce phase to create join result global histogram index and randomized
communication templates for relevant data:
At the end of shuffle phase, each reducer i will receive a fragment of Histxi (R) (resp. Histxi (S))
obtained through hashing of distinct values of Histx(Rmap

j ) (resp. Histx(Smap
j )) of each mapper

j. Received fragments of Histxi (R) and Histxi (S) are then merged to compute global histogram
HistIndexi(R 1 S) on each reducer i. HistIndex(R 1 S) is used to compute randomized com-
munication templates for only records associated to relevant join attribute values (i.e. values
which will effectively be present in the final GroupBy-Join result).

In this step, each reducer i, computes the global frequencies for join attribute values which
are present in both left and right relations and emits, for each join attribute K, an entry of the
form : (K,<Frequency index(K),Nb buckets1(K),Nb buckets2(K)>) where:
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• Frequency index(K) ∈ {0, 1, 2} will allow us to decide if, for a given relevant join attribute
value K, the frequencies of tuples in relations R and S, having the value K, are greater
(resp. smaller) than a defined threshold frequency f0. It also permits us to choose
dynamically the probe and the build relation for each value K of the join attribute. This
choice reduces the global redistribution cost to a minimum.
For a given join attribute value K ∈ HistIndexi(R 1 S),

à Frequency index(K)=0 If Histxi (R)(K) < f0 and Histxi (S)(K) < f0
(i.e. values associated to low frequencies in both relations),

à Frequency index(K)=1 If Histxi (R)(K) ≥ f0 and Histxi (R)(K) ≥ Histxi (S)(K)
(i.e. Frequency in relation R is higher than those of S),

à Frequency index(K)=2 If Histxi (S)(K) ≥ f0 and Histxi (S)(K) > Histxi (R)(K)
(i.e. Frequency in relation S is higher than those of R).

• Nb buckets1(K): is the number of buckets used to partition records of relation associated
to the highest frequency for join attribute value K,

• Nb buckets2(K): is the number of buckets used to partition records of relation associated
to the lowest frequency for join attribute value K.

For a join attribute value K, the number of buckets Nb buckets1(K) and Nb buckets2(K) are
generated in a manner that each bucket will fit in reducer’s memory. This makes the algorithm
insensitive to the effect of data skew even for highly skewed input relations.

Figure 2 gives an example of communication templates used to partition data for HistIndex

entry (K,<Frequency index(K),Nb buckets1(K),Nb buckets2(K)>) corresponding to a join attribute
K associated to a high frequency, into small buckets. In this example, data associated to re-
lation corresponding to Tag1 is partitioned into 5 buckets (i.e. Nb buckets1(K) = 5) whereas
those of relation corresponding to Tag2 is partitioned into 3 buckets (i.e. Nb buckets2(K) = 3).
For these buckets, appropriate map keys are generated so that all records in each bucket of re-
lation associated to Tag1 are forwarded to the same reducer holding all the buckets of relation
associated to Tag2. This partitioning guarantees that join tasks, are generated in a manner
that the input data for each join task will fit in the memory of processing node and never exceed
a user defined size, even for highly skewed data [9].

Using HistIndex information, each reducer i, has local knowledge of how relevant records
of input relations will be redistributed in the next map phase. The global cost of this step is
at most: T ime(a.2) = O

(
maxNB reducers

i=1 (||Histxi (R)||+ ||Histxi (S)||)
)
.

Note that, HistIndex(R 1 S) ≡ ∪i(Histxi (R) ∩Histxi (S)) and ||HistIndex(R 1 S)|| is very small
compared to ||Histx(R)|| and ||Histx(S)||.

To guarantee a perfect balancing of the load among processing nodes, communication tem-
plates are carried out jointly by all reducers (and not by a coordinator node) for only join
attribute values which are present in GroupBy-Join result : Each reducer deals with the redis-
tribution of the data associated to a subset of relevant join attribute values.

b.1: Map phase to create a local hashtable and to generate relevant partial aggre-
gated data :
In this step, each mapper i reads join result global histogram index, HistIndex, to create a local
hashtable in time: T ime(b.1.1) = O(maxNB mappers

i=1 tih ∗ ||HistIndex(R 1 S)||).
Once local hashtable is created on each mapper, input relations are then read from DFS, and
each input record is either discarded (if record’s join key value is not present in the local
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Figure 2: Generated buckets associated to a join key K corresponding to a high frequency
where records from relation associated to Tag1 (i.e relation having the highest frequency) are
partitioned into five buckets and those of relation associated to Tag2 are partitioned into three
buckets.

hashtable) or routed to a designated random reducer destination using communication tem-
plates computed in step a.2 (Map phase details are described in Algorithm 5 of appendix). The
cost of this step is :

T ime(b.1.2) = O

(
NB mappers

max
i=1

(cr/w ∗ (|Rmap
i |+ |Smap

i |) + tis ∗ (||Rmap
i ||+ ||Smap

i ||)+

||Histx,y(R
map
i )|| ∗ log ||Histx,y(R

map
i )||+ ||AGGRx,z

f(u)(S
map
i )|| ∗ log ||AGGRx,z

f(u)(S
map
i )||

+ ccomm ∗ (|Histx,y(R
map
i )|+ |AGGRx,z

f(u)(S
map
i )|))

)
.

The term cr/w ∗ (|Rmap
i |+ |Smap

i |) is time to read input relations from DFS on each mapper i,
the term tis ∗ (||Rmap

i || + ||Smap
i ||) is the time to perform a hashtable search for each mapper’s

input record, ||Histx,y(R
map
i )|| ∗ log ||Histx,y(R

map
i )||+ ||AGGRx,z

f(u)(S
map
i )|| ∗ log ||AGGRx,z

f(u)(S
map
i )||

is time to sort relevant aggregated data on mapper i, whereas the term ccomm∗(|Histx,y(R
map
i )|+

|AGGRx,z
f(u)(S

map
i )|) is time to communicate relevant aggregated data from mappers to reducers.

Hence the global cost of this step is: Time(b.1) = Time(b.1.1) + Time(b.1.2).

b.2: Reduce phase to compute relevant partial aggregated data, Histx,yi (R) and
AGGRx,z

f(u),i(S):

At the end of step b.1, each reducer i receives a fragment Histx,yi (R) (resp. AGGRx,z
f(u),i(S))

obtained through a hashing of Histx,y(R
map
j ) (resp. AGGRx,z

f(u)(S
map
j )) on each mapper j and

then a local merge of received data. This partial aggregated data is then written to DFS. This
reduce phase is described in detail in Algorithm 8 of appendix. The cost of this step is:

T ime(b.2) = O(
NB reducers

max
i=1

(||Histx,yi (R)||+||AGGRx,z
f(u),i(S)||)+cr/w∗|Histx,yi (R)|+|AGGRx,z

f(u),i(S)|)).

c.1: Map phase to create a local hashtable and to redistribute relevant aggregated
data using randomized communication templates:
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In this step, each mapper i reads join result global histogram index, HistIndex, to create a local
hashtable in time: T ime(c.1.1) = O(maxNB mappers

i=1 tih ∗ ||HistIndex(R 1 S)||).
Once local hashtable is created on each mapper, input relations are then read from DFS, and
each record is either discarded (if record’s join key is not present in the local hashtable) or
routed to a designated random reducer destination using communication templates computed
in step a.2 (Map phase is detailed in Algorithm 9 of Appendix). The cost of this step is :

T ime(c.1.2) = O

(
NB mappers

max
i=1

(cr/w ∗ (|Histx,yi (R)|+ |AGGRx,z
f(u),i(S)|) + tis ∗ ||Histx,yi (R)||+

tis ∗ ||AGGRx,z
f(u),i(S)||+ ||Histx,yi (R)|| ∗ log ||Histx,yi (R)||+ ||AGGRx,z

f(u),i(S)||∗

log ||AGGRx,z
f(u),i(S)||+ ccomm ∗ (|Histx,yi (R)|+ |AGGRx,z

f(u),i(S)|))
)
.

The term cr/w ∗(|Histx,yi (R)|+|AGGRx,z
f(u),i(S)|) is time to read input relations from DFS on each

mapper i, the term tis∗(||Histx,yi (R)||+||AGGRx,z
f(u),i(S)||) is the time to perform a hashtable search

for each input record, ||Histx,yi (R)|| ∗ log ||Histx,yi (R)||+ ||AGGRx,z
f(u),i(S)|| ∗ log ||AGGRx,z

f(u),i(S)|| is
time to sort relevant data on mapper i, whereas the term ccomm∗(|Histx,yi (R)|+|AGGRx,z

f(u),i(S)|))
is time to communicate relevant data from mappers to reducers, using our communication
templates described in step a.2. Hence the global cost of this step is:

Time(c.1) = Time(c.1.1) + Time(c.1.2).
We recall that, in this step, only relevant data is emitted by mappers (which reduces com-

munication cost in the shuffle step to a minimum) and records associated to high frequencies
(those having a large effect on data skew) are redistributed according to an efficient dynamic
partition/replicate schema to balance load among reducers and avoid the effect of data skew.
However records associated to low frequencies (these records have no effect on data skew) are
redistributed using hashing functions.

c.2: Reduce phase to compute join result:
At the end of step b.1, each reducer i receives a fragment Histx,yi (R) (resp. AGGRx,z

f(u),i(S))

obtained through randomized hashing of R
map
j (resp. S

map
j ) on each mapper j and performs a

local GroupBy-join of received data. This reduce phase is described in detail in Algorithm 11
of Appendix. The cost of this step is:

T ime(c.2) = O(
NB reducers

max
i=1

(||Histx,yi (R)||+||AGGRx,z
f(u),i(S)||+cr/w∗|Histx,yi (R) 1 AGGRx,z

f(u),i(S)|)).

Figure 3 shows how the frequency in Histx,y(R) and the value of aggregate function in
AGGRx,z

f(u)(S) are used to generate final GroupBy-Join result depending on the used aggregate
function f . The final GroupBy-Join is computed in two steps. In the first step, a partial local
computation of the aggregate function is performed on S entries by the combiners (step b.1 of
Algorithm 1). The computation varies depending on the aggregate function f as follows:

• MIN function: the minimum value between the list of values emitted by the mappers for
each key is computed.

• MAX function: the maximum value between the list of values emitted by the mappers
for each key is computed.

• COUNT function: the number of emitted values by the mappers for each key is computed.

• SUM function: the sum of emitted values by the mappers for each key is computed.

• AVG function: the sum and the number of emitted values by the mappers are computed
for each key. The result is the computed sum divided by the computed count value.
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Figure 3: Final GroupBy-Join computation using Histx,y(R) and AGGRx,z
f(u)(S).

In the second step, reducers apply a similar treatment on received data to compute the global
result (step c.2 of Algorithm 1). However, for COUNT, SUM and AVG functions the frequencies
for values (x, y) in R should be multiplied by the result of the aggregate function on S.

The global cost of MRFAG-Join is therefore the sum of the above six steps :

T imeMRFAG−Join = T ime(a.1) + T ime(a.2) + T ime(b.1) + T ime(b.2) + T ime(c.1) + T ime(c.2).

Using hashing technique, the computation of query Q1 requires at least the following lower
bound:

boundinf = Ω

(
NB mappers

max
i=1

(
(cr/w + ccomm) ∗ (|Rmap

i |+ |Smap
i |) + ||Rmap

i || ∗ log ||Rmap
i ||+

||Smap
i || ∗ log ||Smap

i ||
)

+
NB reducers

max
i=1

(
||Rred

i ||+ ||Sred
i ||+ cr/w ∗ |AGGRx,y,z

f(u) (Rred
i 1 Sred

i )|
))

,

where cr/w ∗ (|Rmap
i | + |Smap

i |) is the cost of reading input relations from DFS on node i. The
term ||Rmap

i ||∗ log ||Rmap
i ||+ ||Smap

i ||∗ log ||Smap
i || represents the cost to sort input relations records

in map phase. The term ccomm ∗ (|Rmap
i |+ |Smap

i |) represents the cost to communicate data from
mappers to reducers, the term ||Rred

i || + ||Sred
i || is time to scan input relations on reducer i.

(Note that for relation T ∈ {R,S}, T red
i is the part of T held by reducer i by using hashing

function to redistribute data from mappers to reducers) and cr/w ∗ |AGGRx,y,z
f(u) (Rred

i 1 Sred
i )|

represents the cost to store reducer’s i GroupBy-Join result on the DFS for query Q1.
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MRFAG-Join algorithm has asymptotic optimal complexity when: ||HistIndex(R 1 S)|| ≤

max

(
NB mappers

max
i=1

(||Rmap
i ||∗log ||Rmap

i ||, |Smap
i ||∗log ||Smap

i ||),NB reducers
max
i=1

||AGGRx,y,z
f(u) (Rred

i 1 Sred
i )||

)
,

(1)

this is due to the fact that, all other terms in TimeMRFAG−Join are bounded by those of
boundinf . Inequality 1 holds, in general, since HistIndex(R 1 S) contains only distinct values
that appear in both relations R and S.

Remark: In practice, data imbalance related to the use of hashing functions can be due to:

• a bad choice of used hash function. This imbalance can be avoided by using the hashing
techniques presented in the literature making it possible to distribute evenly the values
of the join attribute with a very high probability [2],

• an intrinsic data imbalance which appears when some values of the join attribute ap-
pear more frequently than others. By definition a hash function maps tuples having
the same join attribute values to the same processor. There is no way for a clever
hash function to avoid load imbalance that results from these repeated values [5]. But
this case cannot arise here owing to the fact that histograms contain only distinct values
of the join attribute and the hashing functions we use are always applied to histograms
or applied to aggregated data.

4 Experiments

To evaluate the performance of MRFAG-Join algorithm presented in this paper, for query Q1,
we compared our algorithm to the best known solution using PigLatin a high-level language for
analyzing large data sets based on Apache Pig plateform which generates optimized MapReduce
programs. Pig includes routines to handle the effects of data skew in join operations.

We ran a large series of experiments on the Grid’5000 testbed where 50 nodes were randomly
selected from three clusters of Grid’5000 Sophia’s site. Nodes characteristics are described in
Table 2. Setting up a Hadoop cluster consisted of deploying each centralized entity (namenode
and jobtracker) on a dedicated machine and co-deploying datanodes and tasktrackers on the
rest of the nodes. Typically, we used a separate machine as a Hadoop client to manage job
submissions. Data replication parameter was fixed to three in Hadoop Distributed File System
(HDFS) configuration file.
To study the effect of data skew on performance, join attribute values in the generated data

Table 2: Grid’5000 - Sophia’s site computing resource characteristics

Cluster Number CPU CPUs Cores Memory Disk
ID of nodes per node per CPU (GB) Storage

1 56 AMD@2.2GHz 2 2 3GB RAM 135GB
2 50 AMD@2.6GHz 2 2 3GB RAM 232GB
3 45 Intel@2.26GHz 2 4 31GB RAM 557GB

have been chosen to follow a Zipf distribution [17] as it is the case in most database tests: Zipf
factor was varied from 0 (for a uniform data distribution) to 1.0 (for a highly skewed data).
Input relations sizes were fixed to 1 Billion records for the right relation (∼100GB of data) and
500M of records for the left relation ∼50GB of data) and the GroupBy-Join result varying from
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Figure 4: Data skew effect on Hadoop GroupBy-join processing time

approximately 20M to 50M records (corresponding respectively to about 400MB and 1GB of
aggregated output data).
We noticed in all the tests and also those presented in Figure 4, that our MRFAG-Join (including
histogram’s and aggregate data preprocessing) algorithm outperforms PigLatin GroupBy Join

execution even for low or moderated skew (∼ 10x faster than PigLatin GroupBy Join). We
recall that our algorithm requires the scan of input data twice: the first scan is performed for
distributed histograms processing and the second one to generate relevant partial aggregated
data.
We can see, in Figure 4, that MRFAG-Join time is relatively very small compared to MRFAG-Join

preprocessing time this is explained by the fact that MRFAG Join Preprocessing operates on
whole input data (to generate distributed histograms or relevant aggregated data) whereas
MRFAG Join operates on relevant aggregated data which is very small compared to the size of
input relations.

The cost analysis and tests performed showed that the overhead related to histogram pro-
cessing is compensated by the gain in GroupBy-join processing since only relevant data (that
appears in the final GroupBy-Join result) is emitted by mappers which reduce considerably
the amount of data transmitted over the network in shuffle phase (see Figure 5). Moreover, in
PigLatin GroupBy Join implementation all records, emitted by the mappers, having the same
value for join attribute are sent and processed by the same reducer which makes the algorithm
very sensitive to data skew and limits its scalability. This cannot occur in MRFAG-Join owing
to the fact that attribute values associated to high frequencies are forwarded to distinct reducers
using randomised join attribute keys and not by a simple hashing of record’s join key.

5 Conclusion and future work

In this paper, we have presented MRFAG-Join (MapReduce Frequency Adaptive GroupBy-Join)
algorithm using MapReduce model based on distributed histograms and a randomised key re-
distribution approach. This algorithm achieves several enhancements compared to hash based
solutions suggested in the literature by reducing communication costs to only relevant or aggre-
gated data while guaranteeing perfect balancing properties even for highly skewed data. The
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phase

cost analysis and the tests performed on Grid5000 infrastructure showed that the overhead re-
lated to distributed histogram management remains very small compared to the gain it provides
to avoid the effect of load imbalance due to data skew, and to reduce the communication costs
in MapReduce’shuffle phase. We recall that, data processing, unnecessary disk I/O and redis-
tribution of the intermediate results can lead to a significant degradation of the performance
using ’pure’ hash based approaches presented in the literature to perform GroupBy joins on
large datasets.
Future work will be devoted to extend this algorithm to multi-join and pipelined GroupBy-join
queries on large scale systems.

Acknowledgements

Experiments presented in this paper were carried out using the Grid’5000 experimental testbed, being
developed under the INRIA ALADDIN development action with support from CNRS, RENATER and
several Universities as well as other funding bodies (see https://www.grid5000.fr).

References

[1] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and Yuanyuan Tian.
A comparison of join algorithms for log processing in mapreduce. In Proceedings of ACM SIGMOD
International Conference on Management of data, pages 975–986, New York, USA, 2010.

[2] J. Lawrence Carter and Mark N. Wegman. Universal Classes of Hash Functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979.

[3] Surajit Chaudhuri and Kyuseok Shim. Including group-by in query optimization. In VLDB ’94:
Proceedings of the 20th International Conference on Very Large Data Bases, pages 354–366, San
Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
In OSDI, pages 137–150. USENIX Association, 2004.

[5] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical Skew Handling in
Parallel Joins. In VLDB, pages 27–40, 1992.

13

https://www.grid5000.fr


[6] Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query processing in data ware-
housing environments. In Proceedings of the 21th International Conference on Very Large Data
Bases, pages 358 – 369, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[7] M. Al Hajj Hassan and M. Bamha. Parallel processing of ’group-by join’ queries on Shared Nothing
machines. In Proceedings of the International Conference on Software and Data Technologies
(ICSOFT’06), volume 1, pages 301–307, Setubal, Portugal, 11-14 September 2006. INSTICC press.

[8] M. Al Hajj Hassan and M. Bamha. An optimal evaluation of groupby-join queries in distributed
architectures. In Proceedings of the third International Conference on Web Information Systems
and Technologies (WEBIST 2007), volume IT, pages 246–252, Barcelona, Spain, 3 - 6 March 2007.

[9] M. Al Hajj Hassan, M. Bamha, and F. Loulergue. Handling data-skew effects in join operations
using mapreduce. In International Conference on Computational Science (ICCS), pages 145–158.
Elsevier, 2014.

[10] Yi Jiang, Kevin H. Liu, and Clement H. C. Leung. Parallel algorithms for queries with aggre-
gate functions in the presence of data skew. In HiPC ’99: Proceedings of the 6th International
Conference on High Performance Computing, pages 207–211, London, UK, 1999. Springer-Verlag.

[11] D. Taniar, Y. Jiang, K.H. Liu, and C.H.C. Leung. Aggregate-join query processing in parallel
database systems,. In Proceedings of The Fourth International Conference/Exhibition on High
Performance Computing in Asia-Pacific Region HPC-Asia2000, volume 2, pages 824–829. IEEE
Computer Society Press, 2000.

[12] David Taniar and Wenny Rahayu. Parallel ”groupby-before-join” query processing for high perfor-
mance parallel/distributed database systems. In Proceedings of the 20th International Conference
on Advanced Information Networking and Applications - Volume 1, pages 693–700, Washington,
USA, 2006. IEEE Computer Society.

[13] Srinivas Vemuri, Maneesh Varshney, Krishna Puttaswamy, and Rui Liu. Execution primitives for
scalable joins and aggregations in map reduce. PVLDB, 7(13):1462–1473, 2014.
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Algorithm 1 MRFAG-join algorithm workflow for query Q1 /* See Appendix for detailed
implementation */

a.1 I Map Phase /* To generate “local histograms” Histx(Rmap
i ) and Histx(Smap

i ) */
� Each mapper i reads its assigned data splits of input relations Rmap

i and Smap
i from DFS

� Extracts join key value from input relation’s record.
� Gets a tag to identify source input relation
� Emits a couple ((join key,tag), 1)
I Combine Phase
� Each combiner, for each pair (join key,tag) computes the sum of generated local frequencies
associated to the join key value in each tagged join key generated in Map phase.
I Partition Phase
� For each emitted tagged join key computes reducer destination according to only join key value.

a.2 I Reducer Phase: /* To combine shuffle’s records and to create Global join histogram index*/
� Compute the global frequencies for only join key values present in both R and S.
� Emit, for each join key, a couple (join key,(frequency index,Nb buckets1, Nb buckets2)).
/*frequency index ∈ {0, 1, 2} is used to get detailed information of data distribution in R and S*/

b.1 I Map Phase /* To compute Histx,y(R
map
i ) and AGGRx,z

f(u)(S
map
i ) */

� Each mapper i reads Global join histogram index from DFS and creates a local HashTable
� Each mapper i reads its assigned data splits of relations Rmap

i and Smap
i from DFS

� Extract join key value from input relation’s record.
If (join key ∈ HashTable) Then

� Extract the groupby attribute y of R (resp. z of S in addition to the aggregate attribute u)
� Get a tag to identify source input relation
� Emit a couple ((join key,groupby attribute,tag), n) where n is 1 for tuples relation R
and the aggregate attribute’s value for S.

End If
I Combine Phase
� Each combiner, for each record with key (join key,groupby attribute,tag) computes the sum of
generated local frequencies for R and applies aggregate function on values of attribute u of S.
I Partition Phase
� For each emitted tagged (join key, groupby attribute), computes reducer destination according
to join key and groupby attribute values.

b.2 I Reduce Phase: /* To create Histx,yi (R) and AGGRx,z
f(u),i(S)*/

� For each key (join key,groupby attribute,tag) compute, freqx,y(R), the global sum of generated
local frequencies for R and globally compute, fx,z

u (S), the result of the aggregate function for S.
� Emit a couple ((join key,groupby attribute, tag),freqx,y(R))

(resp. ((join key,groupby attribute, tag),fx,z
u (S))).

c.1 I Map Phase: /* Repartition of Histx,yi (R) and AGGRx,z
f(u),i(S)*/

� Each mapper i reads Global join histogram index from DFS and creates a local Hashtable

�reads its assigned data splits of Histx,yi (R) and AGGRx,z
f(u),i(S) from DFS,

� Generates randomized communication templates for records in Histx,yi (R) and AGGRx,z
f(u),i(S)

according to join key value and its corresponding frequency index in HashTable.

� Emits relevant randomised tagged records from relations Histx,yi (R) and AGGRx,z
f(u),i(S).

I Partition Phase:
� For each emitted tagged join key, compute reducer destination according to the value of join
attribute and random reducer destination generated in Map phase;

c.2 I Reduce Phase: /* To generate final query Q1 result */
� Combine received entries to create final result, AGGRx,y,z

f(u),i(R 1 S), on each reducer i.
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Algorithm 2 Map function /* To generate local histograms values of join attribute values and tag

input relation records */

map(K: null, V : a record from a split of either relation R or S) {
� relation tag ← get relation tag from current relation split;
� join key ← extract the join column from record V of relation R (resp. S);
� Emit ((join key,relation tag), 1);

}

Algorithm 3 Combine function /* To compute local frequencies for join key*/

combine(Key K, List List V ) { /* List V is the list of values “1” emitted by Mappers */
� frequency ← sum of frequencies in List V ;
� Emit (K,frequency);

}

Algorithm 4 Reduce function /* To compute HistIndex(R 1 S) Global histogram index */

void reduce init(){
hash index ← 0; /* a flag to identify low frequencies records to redistribute using hashing */
partition index ← 1; /* a flag to identify relation’s records to partition */
replicate index ← 2 ; /* a flag to identify relation’s records to replicate */
last inner key ← ”” ; /* to store the last processed key in inner relation */
last inner frequency=0; /* to store the frequency of the last processed key in inner relation */
/* THRESHOLD FREQ: a user defined threshold frequency used for communication templates */
}
reduce(Key K,List List V ) {/* List V :list of local frequencies of join key in either Rmap

i or Smap
i */

� join key ← K.join key; /* extracts join key part from input key K */
� relation tag ← K.relation tag; /* extracts relation tag part from input key K */
If (relation tag corresponds to inner relation ) Then
� last inner key ← join key;
� last inner frequency ← sum of frequencies in List V ;

Else If (join key = last inner key) Then
� frequency ← sum of frequencies in List V ;
If ((last inner frequency<THRESHOLD FREQ) and (frequency<THRESHOLD FREQ) Then
� Emit (join key, (hash index,1,1));

ElseIf (last inner frequency ≥ frequency)
� Nb buckets1 ← dlast inner frequency / THRESHOLD FREQe ;
� Nb buckets2 ← dfrequency / THRESHOLD FREQe;
� Emit (join key, (partition index,Nb buckets1,Nb buckets2));

Else
� Nb buckets1 ← dfrequency / THRESHOLD FREQe;
� Nb buckets2 ← dlast inner frequency / THRESHOLD FREQe;
� Emit (join key, (replicate index,Nb buckets1,Nb buckets2));

End If;
End If;

End If;
}
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Algorithm 5 Map function /* To compute Histx,y(R
map
i ) and AGGRx,z

f(u)(S
map
i ) */

void map init(){
inner tag ← 1 ; /* a tag to identify relation R records */
outer tag ← 2 ; /* a tag to identify relation S records */
hash index ← 0; /* a flag to identify hash based records */
partition index ← 1; /* a flag to identify records to partition */
replicate index ← 2 ; /* a flag to identify records to replicate */
Read HistIndex(R 1 S): histogram index from DFS;
Create a HashTable using join key value, frequency’s index and Nb buckets of HistIndex(R 1 S);

}
map(K: null, V : a record from a split of either relation R or S) {

� relation tag ← get relation tag from current relation split;
� join key ← extract the join column from record V of relation R;
If (join key ∈ HashTable) Then /* To redistribute only relevant records */
� groupby attribute ← extract the group-by attribute’s value y (resp. z) from record V
of R (resp. S);
� aggregate attribute ← extract the aggregate attribute’s value u from record V
of relation S;
� Emit ((join key,groupby attribute,relation tag), 1) for records of R;
� Emit ((join key,groupby attribute,relation tag), aggregate attribute) for records of S;

End If
}

Algorithm 6 Combine function: /* To locally compute frequency of each (join key, group by at-

tribute) for R and partial result of aggregate function for S */

combine(Key K,List List V ) { /* List V is the list of values “1” corresponding to frequencies
in relation Ri or the aggregate attribute value u of Si emitted by Mappers */

If (relation tag represents R) Then
� v ← sum of frequencies in List V ;

Else /* relation tag represents S*/
� v ← apply the aggregate function on values of List V ;

End If
� Emit (K,v);

}

Algorithm 7 Partitioning function /* Returns for each composite key

K=(join key,groupby attribute,relation tag) emitted in Map phase, an integer corresponding to

destination reducer for the input key K. */

int partition(K: input key ){
� subkey ← K.join key + ” ” + K.groupby attribute;
� Return (HashCode(subkey) % NB reducers);

}
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Algorithm 8 Reduce function: /* To globally compute frequency of each (join key, group by at-

tribute) for R and result of aggregate function for S */

combine(Key K,List List V ) { /* List V is the list of values “1” corresponding to frequencies
in relation Ri or the aggregate attribute value u of Si emitted by Mappers */

If (relation tag represents R) Then
� v ← sum of frequencies in List V ;

Else /* relation tag represents S*/
� v ← apply the aggregate function on values of List V ;

End If
� Emit (K,v);

}
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Algorithm 9 Map function: /* To generate relevant randomized tagged records for Histx,yi (R) and

AGGRx,z
f(u),i(S) using HistIndex communication templates.*/

void map init(){
inner tag ← 1 ; /* a tag to identify relation R records */
outer tag ← 2 ; /* a tag to identify relation S records */
hash index ← 0; /* a flag to identify hash based records */
partition index ← 1; /* a flag to identify records to partition */
replicate index ← 2 ; /* a flag to identify records to replicate */
Read HistIndex(R 1 S): histogram index from DFS;
Create a HashTable using join key value, frequency’s index and Nb buckets of HistIndex(R 1 S);
}
map(K: null, V : a record from a split of either relation Histx,yi (R) or AGGRx,z

f(u),i(S)) {
� relation tag ← get relation tag from current relation split;
� join key ← extract the join value from record V of current input relation;
� groupby value ← extract the group-by attribute from record V of current input relation;
� aggregated value ← extract the partial computed aggregate value from record V of current
input relation;
If (join key ∈ HashTable) Then /* To redistribute only relevant records */
� frequency index ← HashTable(join key).frequency index;
� Nb buckets1 ← HashTable(join key).Nb buckets1;
� Nb buckets2 ← HashTable(join key).Nb buckets2;
� random integer ← Generate Random Integer(join key);
If (frequency index = hash index) Then

� Emit ((join key,-1,relation tag), (groupby value, aggregated value)); /* for records, with
low frequencies, to be hashed */

ElseIf
(
((frequency index = partition index) and (relation tag = inner tag))

or ((frequency index = replicate index) and (relation tag=outer tag))
)

� random dest ← (random integer+SRAND(Nb buckets1)) % Nb buckets1;
/* A random integer between 0 and Nb buckets1 */

� flag index ← partition index ;
� Emit ((join key,random dest,(flag index,relation tag)), (groupby value, aggregated value));

Else
For (int i=0; i<Nb buckets1; i++) Do
� random dest ← (random integer+i) % Nb buckets1;
� flag index ← replication index ;
� bucket dest ← i % Nb buckets2; /* A random integer between 0 and Nb buckets2 */
� Emit ((join key,random dest,(flag index,relation tag,bucket dest)),

(groupby value, aggregated value));
End For;

End If;
End If;
}
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Algorithm 10 Partitioning function /* Returns for each composite input key

K =(join key,random integer,DataTags) emitted in Map phase, an integer corresponding to des-

tination reducer for key K. */

int partition(K: input key ){
join key ← K.join key; /* extracts join key part from input key K */
relation tag ← K.relation tag; /* extracts relation tag part from input key K */
reducer dest ← K.random dest; /* extracts reducer destination number from input key K */
If (reducer dest 6= -1) Then

Return (reducer dest % NB reducers);
Else

Return (HashCode(join key) % NB reducers);
End If ;

}

Algorithm 11 Reduce function /* To generate groupby and join result. */

void reduce init(){
last key ← ”” ; /* to store the last processed key */
inner relation tag ← 1 ; /* a tag to identify Inner relation records */
outer relation tag ← 2 ; /* a tag to identify Outer relation records */
Array buffer ← NULL ; /* an array list used to buffer records from one relation */
}
reduce(Key K,List List V ) { /* List List V : the list of records from either Histx,yi (R)

or AGGRx,z
f(u),i(S)) */

� join key ← K.join key; /* extracts the join key part from input key K */
� groupby attribute ← K.groupby attribute;

/* extracts the group by attribute part from input key K */
� relation tag ← K.relation tag; /* extracts relation tag part from input key K */
� flag index ← K.flag index; /* extracts flag index part from input key K */
If ((join key = last key) and (relation tag 6= flag index)) Then

For each record (x ∈ List V ) Do
For each record (y ∈ Array buffer) Do

If (relation tag = outer relation tag) Then
� Emit (NULL, x⊕ y);

Else
� Emit (NULL, y ⊕ x);

End If ;
End For ;

End For ;
Else
� Array buffer.Clear();
For each record (x ∈ List V ) Do

� Array buffer.Add(x);
End For ;
� last key ← K.join key;

End if
}
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