
Estimation of the noise level function based on a non-parametric detection
of homogeneous image regions∗

Camille Sutour† ‡, Charles-Alban Deledalle†, and Jean-François Aujol†

Abstract. We propose a two-step algorithm that automatically estimates the noise level function of sta-
tionary noise from a single image, i.e., the noise variance as a function of the image intensity.
First, the image is divided into small square regions and a non-parametric test is applied to de-
cide weather each region is homogeneous or not. Based on Kendall’s τ coefficient (a rank-based
measure of correlation), this detector has a non-detection rate independent on the unknown
distribution of the noise, provided that it is at least spatially uncorrelated. Moreover, we prove
on a toy example, that its overall detection error vanishes with respect to the region size as
soon as the signal to noise ratio level is non-zero. Once homogeneous regions are detected, the
noise level function is estimated as a second order polynomial minimizing the ℓ1 error on the
statistics of these regions. Numerical experiments show the efficiency of the proposed approach
in estimating the noise level function, with a relative error under 10% obtained on a large data
set. We illustrate the interest of the approach for an image denoising application.

Key words. Noise level estimation, non-parametric detection, signal-dependent noise, least absolute devi-
ation
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1. Introduction. Most image processing applications, including denoising [6, 40],
super-resolution [17], or feature extraction [31], require the knowledge of the noise level.
Noise estimation from multiple images is an over-constrained problem that was solved in
[19], but its estimation from a single image remains a challenging problem. We review in
the following some of the main approaches that have been proposed for the estimation of
the noise level when the noise is spatially uncorrelated. Methods dedicated to correlated
noise can be found, e.g, in [13, 35, 27].

A first approach used for the estimation of the noise level consists in applying a linear
transform that maps the image into a suitable domain where the signal and the noise are
relatively well separated. The noise level can then be estimated by performing some statis-
tics in its associated subspace. For instance, when the noise is additive white Gaussian, a
popular estimator of the noise standard deviation is given by the mean absolute deviation
of the finest wavelets coefficients, see e.g. [15]. Nevertheless, this approach tends to over-
estimate the noise level as it assumes there is enough separation between the signal and
the noise coefficients. Indeed, singularities such as edges usually produce high responses
in all sub-bands of the transformed domain. To avoid this issue, some authors [33, 41]
have proposed to pre-filter the image before estimating the noise in order to remove such
high frequency components, e.g., using a Laplacian-based filter together with a Sobel edge
detector [38]. Unfortunately, such approaches still lead to a subsequent over-estimation of
the noise level. Rather than attempting to remove the high frequency components, some
authors have proposed to take them into account by assuming some prior knowledge on
the distribution of the signal coefficients. In [14], the authors use a method of “trained”
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moments from an assumption of Laplacian distribution of the signal coefficients, while
the authors of [43] exploit the invariance of the kurtosis when assuming a generalized
Gaussian distribution. Patch-based approaches have also been proposed for such a task,
e.g., in [39, 30, 37]. While such techniques can be very powerful, they are nevertheless
limited to constant noise levels. In real-world applications, the noise is signal-dependent
and its level varies spatially according to the underlying intensity. Variance stabilizing
transforms [1] can reduce the dependency between the signal intensity and the noise. The
authors of [36] iteratively perform the estimation of Poisson-Gaussian noise by applying a
variance stabilizing transform, then they estimate the noise variance of the stabilized noise
using a principal component analysis. In [5], Poisson-Gaussian noise is stabilized using
the generalized Anscombe transform. However, this transform requires a prior knowledge
of the noise parameters, obtained by linear regression on areas with homogeneous vari-
ance [18]. The generalized Anscombe transform is also optimized for the stabilization of
Poisson-Gaussian noise in [32].

Separation techniques have been extended to specific signal-dependent models, e.g.,
using a wavelet transform for a Poissonian-Gaussian model [16, 2] or using a Gaussian
mixture model of patches for additive noise with affine variance [3]. Unfortunately, in
the general case, it appears pointless to design a linear transform able to separate the
noise from the signal. The noise can also be distinguished from the signal components
by principal component analysis [12] or by selecting blocks with lowest variance [11]. An
alternative consists in pre-filtering the image to analyze the residue as if it was the noise
component. For instance, [20, 9] have proposed different pre-filtering techniques for some
specific types of signal-dependent noise. However, for our general problem, as such pre-
filtering techniques require a certain knowledge of the noise, this leads to a chicken and
egg problem.

Another popular approach encountered in [8, 4] and that we follow here relies on the
fact that natural images contain homogeneous areas, where the signal to noise ratio is very
weak, so only the statistics of the noise intervene. The statistics of the noise can then be
deduced by first detecting homogeneous areas and next estimating the noise parameters in
those regions. However, classic detectors also require assumptions on the noise statistics
(e.g, Gaussian), preventing their use when the nature of the noise is completely unknown.

Our main contribution is to propose a non-parametric detection of homogeneous areas
that only requires the noise to be spatially uncorrelated. This means that the detection
performance of our detector, based on Kendall’s τ coefficient [22], is independent of the
noise statistical distribution. In Section 3, we introduce our homogeneous detector based
on the rank correlation. We show that the performance of the detector relies on the
underlying signal to noise ratio, with an error rate that decreases with the number of
samples available. Once homogeneous areas are detected, we estimate the noise level
function (NLF) [29], i.e., the function of the noise variance with respect to the image
intensities. The NLF estimation is detailed in Section 4. At this step we assume that the
noise is signal-dependent with finite first and second order moments linked together by a
second order polynomial. This can encompass a wide range of noise statistics encountered
in image processing such as additive, multiplicative or Poissonian noise, as well as hybrid
models. In the last step we perform a robust estimation of this polynomial NLF as the
best ℓ1 approximation of the mean/variance relationship of homogeneous regions. Section
5 details how the estimation is performed in practice, then Section 6 shows the efficiency
of the detection of homogeneous areas and of the parameters estimation for different noise
models, by comparing them to the state of the art. The interest of performing a reliable
noise estimation is also illustrated with an application to image denoising: the non-local
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means algorithm [6] is adapted to deal with hybrid noises, thanks to the estimated NLF
parameters. Finally, Section 7 provides discussions and conclusions.

2. Context and notations. We denote by g : Ω → R an image defined on a 2D discrete
domain Ω ⊂ Z× Z such that g can be identified to an element of RN0 with N0 = #Ω the
number of pixels of the image. Hence, for an image g ∈ RN0 , i ∈ [1, . . . , N0] is the index
of its i-th pixel and gi ∈ R the value of g at pixel i.

We assume that g is an observation of a clean unknown image g0 ∈ RN0 corrupted by
a spatially uncorrelated signal dependent noise. More precisely, we assume that g can be
modeled as the realization of a random vector G that verifies

(2.1) E[G] = g0 and Cov[G] =




NLF(g01) 0
NLF(g02)

. . .

0 NLF(g0N0
)


 .

where NLF : R → R+ is coined the noise level function. As Cov[G] is assumed to be
diagonal, this model restricts to spatially uncorrelated noise. But since the i-th diagonal
element depends on g0i , the noise is said to be signal dependent. Remark, that the same
noise level function applies for each diagonal elements, so the noise is assumed to be
stationary. Noise models with spatially varying noise level functions are out of the scope
of this study.

Example 2.1 (Additive white Gaussian noise). A classic example is to consider an
additive white Gaussian noise such that G = g0 + ε, with ε ∼ N (0, σ2 Id). In such a case,
G satisfies eq. (2.1) with NLF(·) = σ2 which reveals that the noise is signal independent.

Example 2.2 (Poisson noise). Another example is to consider a Poisson noise such
that g0 ∈ N, G0

i ∼ P(g0i ) and, for all i 6= j, Gi and Gj are independent. In such a case,
G satisfies eq. (2.1) with NLF(g0i ) = g0i which reveals that the noise is signal dependent.

Example 2.3 (Multiplicative noise). Another example is to consider a multiplicative
noise such that Gi = g0i × Si, with E[S] = 1 and E[SS⊤] = γ Id, γ > 0. In such a
case, G satisfies eq. (2.1) with NLF(g0i ) = γ(g0i )

2 which reveals again that the noise is
signal dependent. A typical example is the gamma noise of parameter L ∈ N∗, for which
γ = 1

L , whose probability density function f is defined for gi ∈ R+ as

f(gi | g0i , L) =
LLgL−1

i

Γ(L)(g0i )
L
exp

(
−Lgi

g0i

)
.(2.2)

The goal of our work is to estimate the unknown noise level function NLF. To do so,
we consider K small disjoint blocks (ωk)k∈[1,...,K] ⊂ Ω of size N such that KN ≤ N0. We

denote by ω any of such block ωk and by b = gω ∈ RN (resp. B = Gω and b0 = g0ω) the
restriction of g in ω (resp. the restriction of G and g0 in ω). Our motivation relies on
the fact that most natural images, provided that their resolution is high enough, contain
small blocks ω for which b0 is constant. In this case we say that B is homogeneous, and
otherwise when b0 varies, B is said to be inhomogeneous. Hence, according to eq. (2.1),
the empirical expectation and variance inside such a block b should provide a punctual
estimation of the noise level function.
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In practice b0 is unknown as well as the homogeneous blocks. We hence propose in
Section 3, a statistical test that can decide weather a block is likely to be homogeneous
or not without more assumptions regarding the noise model introduced in (2.1). Once
homogeneous regions are detected, several punctual estimations of the noise level function
are available. Section 4 describes how these punctual estimates can be used to robustly
estimate a noise level function with few additional assumptions, by fitting a second order
polynomial function to the scatterplot.

3. Detection of homogeneous areas. The noise statistics can be estimated from sev-
eral small homogeneous areas, or in fact areas that are close to be homogeneous, i.e. where
the signal to noise ratio is weak. Indeed, in those regions the signal fluctuations can be
assumed to be negligible compared to the noise fluctuations, so only the statistics of the
noise intervene. Hence, provided that a large number of such regions has been detected,
the statistics of each regions can be used to infer the underlying noise level function. The
goal of this section is then to develop a method that automatically selects homogeneous
areas in the image, based on the fact that natural images contain such regions.

3.1. Homogeneity and uncorrelation. In the light of detection theory, we aim at de-
signing a detector of inhomogeneous blocks that answers the following statistical hypothesis
test from the observation b only

H0 : B is homogeneous, i.e., b0 constant (null hypothesis),
H1 : B is inhomogeneous, i.e., b0 varies (alternative hypothesis).

(3.1)

As b0 is unknown, we cannot directly provide an answer to this test. To alleviate this
difficulty, we suggest making use of this first proposition.

Proposition 3.1. Let B ∈ RN be homogeneous. We denote by BI the sub random vector
of B whose entries are indexed by I ⊂ {1, . . . , N}. Then, for any disjoint subsets I and J
of n elements of {1, . . . , N}, 2n ≤ N , X = BI and Y = BJ are uncorrelated, i.e.:

Corr(X,Y ) = 0 .

This proposition tells us that if two random disjoint sequences X and Y of a block are cor-
related, then the block is inhomogeneous. In practice, the random variables are unknown
and only their single realizations, the noisy sequences x = bI and y = bJ , are available. As
a consequence, the correlation between X and Y is also unknown and the arising question
is “Are the realizations x and y significantly correlated?”.

Hence, the goal is to design a score s : Rn×Rn → R that can be used to answer
correctly to our hypothesis problem. More precisely, the score s should ensure that, for any
constant PFA ∈ [0, 1[, there exists a threshold α > 0 such that, whatever the distribution
of X and Y , the followings are satisfied

lim
n→∞

P(|s(X,Y )| ≥ α︸ ︷︷ ︸
false alarms

| H0) = PFA,(C1)

lim
n→∞

P(|s(X,Y )| < α︸ ︷︷ ︸
miss detections

| H1) = 0.(C2)

The first condition is very important and states that as the size n gets large enough, the
same threshold α can maintain the same probability of false alarms PFA as soon as X
and Y are uncorrelated (regardless of the distribution of X and Y ). The test is said to
be an asymptotically constant false-alarm rate (CFAR) detector. The second condition
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Figure 1. Step signal associated to the alternative hypothesis H1 (see Def. 3.9) and selection of the
neighboring sequences.

is natural and states that with the same threshold α the probability of miss detections
vanishes as the size n of the sequences increases.

In the following, we propose to build such a statistical test between pairs of disjoint
sequences of a block. As in practice, we cannot test every disjoint sequence, we focus
on the correlation between neighboring sequences that we denote by x = (b2k) and y =
(b2k+1), where 2k and 2k + 1 represent neighbor pixel indexes for a given scan path of
the underlying block ω. An example of the construction of the two neighboring sequences
x = (b2k) and y = (b2k+1) is displayed on Figure 1. If these two variables are found to
be significantly correlated, this means that there is some dependencies between the pixels
of the blocks and their neighbors, so we can assume that there is some structure and all
fluctuations are not only due to noise.

A naive approach for answering the above hypothesis test is to use the empirical cor-
relation between the two sequences x and y, i.e., s(x, y) = Corr(x, y). Unfortunately, the
significance of such a test depends on the parameters of the random process that generates
the observation, i.e., it cannot lead to a CFAR detection without extra assumptions on
the distribution of X and Y . As our goal is to estimate the nature of the noise, it is im-
portant for our test of homogeneity not to rely on such parameters. We therefore consider
a non-parametric approach whose statistical answer is independent of the noise model.

3.2. Non parametric test of independence. As mentioned above, the empirical cor-
relation test does not provide a CFAR detector as the threshold α would depend on the
unknown parametrization of the random process that generates the observation. The key
idea of non-parametric tests is to focus on the rank (i.e., on the relative order) of the values
rather than on the values themselves. In this vein, a block is considered homogeneous if
the ranking of the pixel values is uniformly distributed, regardless of the spatial organiza-
tion of the pixels. Such correlation between the sequences x and y can be assessed based
on the ranking of their values using Kendall’s τ coefficient.

3.2.1. Kendall’s τ coefficient. The Kendall’s τ coefficient is a rank correlation mea-
sure [22] that provides a non-parametric hypothesis test for statistical dependence. Before
turning to the definition of the Kendall’s τ coefficient, let us first introduce the definitions
of concordant, discordant and tied pairs.

Definition 3.2. Two pairs of observations (xi, yi) and (xj , yj) are said to be concordant
if the ranks of both elements agree, i.e., if (xi < xj and yi < yj) or (xi > xj and yi > yj).
They are said to be discordant if (xi < xj and yi > yj) or if (xi > xj and yi < yj). If
xi = xj or yi = yj, the pair is neither concordant nor discordant; it is said to be tied.
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We can now turn to the definition of the Kendall’s τ coefficient as introduced in [22].
Definition 3.3. Let x ∈ Rn and y ∈ Rn be two sequences without tied pairs. Kendall’s

τ : Rn×Rn → [−1, 1] coefficient is the quantity given by

(3.2) τ(x, y) =
nc − nd

n(n−1)
2

=
1

n(n− 1)

∑

1≤i,j≤n

sign(xi − xj) sign(yi − yj),

where nc is the number of concordant pairs and nd the number of discordant pairs.
Remark that Kendall’s τ(x, y) coefficient depends only on the relative order of the

values of x and y. It lies in the range −1 ≤ τ(x, y) ≤ 1. If the agreement between the
two rankings is perfect, all pairs are concordant, then τ(x, y) = 1. If the disagreement
between the two rankings is perfect, all pairs are discordant, then τ(x, y) = −1. A value
τ(x, y) = 0 indicates the absence of significant correlation between x and y.

Definition 3.3 is however limited to sequences without tied pairs. This restrict the
measure of correlation to the case where the unknown random process is continuous, e.g.,
Gaussian, and the apparition of tied pairs is hence of zero measure. In our imaging
context, for instance with optical systems, the image formation processes typically include
a photon counting step that is by nature discrete. Then ties in the sequence might appear
with non-zero probability so it is important to take them into account properly.

When the data suffers from tied pairs, the definition of Kendall’s τ coefficient might
be extended according to [23] as follows.

Definition 3.4. Let x ∈ Rn and y ∈ Rn be two arbitrary sequences. Define from x and
y the quantities

n0 = n(n− 1)/2 the total number of pairs,
n1 =

∑
i ti(ti − 1)/2 the total number of tied values for the first quantity,

n2 =
∑

j uj(uj − 1)/2 the total number of tied values for the second quantity,

ti the number of tied values for the ith group for the first quantity,
uj the number of tied values for the jth group for the second quantity.

Kendall’s τ : Rn×Rn ∈ [−1, 1] coefficient is the quantity given by

(3.3) τ(x, y) =
nc − nd√

(n0 − n1)(n0 − n2)
.

Remark that in the absence of ties, Definition 3.4 matches with Definition 3.3. Equipped
with such a measure of correlation, we are now ready to study its ability to answer our
hypothesis test under the requirements (C1) and (C2).

3.2.2. Distribution of τ in homogeneous blocks (under the null hypothesis H0). In
this section, we study the distribution of Kendall’s τ coefficient under the null hypothesis
H0 and show accordingly that it can lead to a statistical test satisfying (C1). In particular
as it is based only on the relative order of the values of x and y, it provides a non-parametric
measure of correlation leading to a CFAR detector.

We first give the distribution of τ in the absence of tied pairs.
Proposition 3.5. Let X and Y be two arbitrary sequences under H0 without tied pairs.

The random variable τ(X,Y ) has an expected value of 0 and a variance of 2(2n+5)
9n(n−1) . More-

over, in case of large samples n, its distribution is approximated by the normal distribution.
More precisely, for any sequences x and y, let z : Rn×Rn ∈ R be the z-score defined as

(3.4) z(x, y) =
3(nc − nd)√

n(n− 1)(2n+ 5)/2
.
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The z-score is asymptotically distributed according to the standard normal distribution

z(X,Y ) ∼
n→∞

N (0, 1) .

The proof can be found in [24].
We now turn to the extension in the case of tied pairs.
Proposition 3.6. For any sequences x ∈ Rn and y ∈ Rn, let z : Rn×Rn ∈ R be the

z-score defined as

(3.5) z(x, y) =
nc − nd√

v

with
v = (v0 − vt − vu)/18 + v1 + v2
v0 = n(n− 1)(2n+ 5)
vt =

∑
i ti(ti − 1)(2ti + 5)

vu =
∑

j uj(uj − 1)(2uj + 5)

v1 =
∑

i ti(ti − 1)
∑

j uj(uj − 1)/(2n(n− 1))

v2 =
∑

i ti(ti − 1)(ti − 2)
∑

j
uj(uj−1)(uj−2)
9n(n−1)(n−2) .

.

Then, for any sequences X and Y under H0, the z-score is asymptotically distributed
according to the standard normal distribution

z(X,Y ) ∼
n→∞

N (0, 1) .

The proof can be found in [23]. A direct consequence of Proposition 3.6 is the following.
Corollary 3.7. Let X and Y be two arbitrary sequences under H0, then

(3.6) lim
n→∞

P(z(X,Y ) > α | H0) =

∫ +∞

α

1√
2π

exp

(
− t2

2

)
dt = 1− φ (α) ,

where φ is the cumulative distributive function (cdf) of the Gaussian distribution

(3.7) φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt.

The proof is immediate and comes from the definition of the probability of false-alarm
given in (C1), combined with the normal distribution of z(X,Y ) under H0.

We now turn to the first theorem that shows that the z-score satisfies the condition
(C1) as its distribution does not rely on any assumption regarding the distribution of X
and Y .

Theorem 3.8. Let X and Y be two arbitrary sequences under H0. Let PFA ∈ [0, 1[ and
choose

(3.8) α = φ−1(1− PFA/2) =
√
2 erf−1 (1− PFA) ,

where erf is the Gauss error function, erf(x) = 1√
π

∫ x
−x e

−t2 dt, then

(3.9) lim
n→∞

P(|z(X,Y )| > α | H0) = PFA .

The proof is given in appendix A. Besides, apart from the standard distribution approxi-
mation, the z-score still satisfies the CFAR condition (C1) for low numbers of samples n,
as the distribution remains the same whatever the noise distribution.
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In practice, the detection is performed by computing the associated p-value

p(x, y) = 2− 2φ(|z(x, y)|),(3.10)

i.e., the probability under the null hypothesis of having |z(X,Y )| greater than |z(x, y)|.
We then reject the null hypothesis if the p-value is smaller than the predetermined

significance level of false alarm PFA. In general, the smaller the p-value, the larger the
significance of the rejection of the null hypothesis H0.

3.2.3. Distribution of τ subject to a step-signal (an alternative hypothesis H1). The
computation of the distribution of τ under the null hypothesis reflects the non-parametric
properties of Kendall’s test, since no assumption on the distribution of X and Y (except
the absence of spatial correlation) has been made.

When X and Y are somehow correlated, a model of dependence has to be assumed
in order to derive some statistical properties for τ . Accordingly, we propose to study the
ability of Kendall’s τ coefficient to accept or to reject the alternative hypothesis H1 when
X and Y correspond to sequences extracted from a 1D step signal corrupted by additive
white Gaussian noise. See Fig. 1 for the illustration of such a signal.

Definition 3.9. Let n be an even size of sequence and H1 be the hypothesis of dependence
between X and Y parametrized by a > 0 and σ2 as follows

∀ 1 ≤ k ≤ n, Xk =

{
εk if k ≤ n/2
a+ εk if k > n/2

and Yk =

{
ηk if k ≤ n/2
a+ ηk if k > n/2

,

where ε and η are independent random variables distributed along N (0, σ2).
Proposition 3.10. Let X and Y be two sequences satisfying H1. Then

(3.11) E[τ(X,Y ) | H1] =
n

2(n− 1)

(
1− 2φ

(
a√
2σ

))2

,

and in particular

(3.12) lim
a
σ→+∞,n→+∞

E[τ(X,Y ) | H1] =
1

2
.

The proof is detailed in appendix B. This proposition shows that, asymptotically to the
dimension n, the expected value of τ in the case of a step tends towards 1/2 when the signal
to noise ratio (a versus σ) is large enough. In other words, since the expected value of τ
under the null hypothesis is zero, the two distributions are expected to be well separated
as soon as the sequences are large enough and the signal to noise ratio is sufficient. It
remains to show that the variance of the sampling distribution of τ decreases with the
length of the sequence.

Proposition 3.11. Let X and Y be two sequences satisfying H1. Then

Var[τ(X,Y ) | H1] = O

(
1

n

)
.

The proof is detailed in appendix C. This proposition guarantees that as the number
of samples n increases, the variance of the sample distribution of τ under H1 decreases
towards zero. Since the expected value of τ under H1 is strictly positive for a > 0, this
statement provides that for a sufficient number of samples, the distributions of τ under
both cases can be distinguished.

The next corollary extends this result to the case of the z-score defined in (3.4),(3.5).
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Figure 2. Empirical distributions of Kendall’s z-score under the null hypothesis H0 (blue) and under
the H1 hypothesis of statistical dependence (red) for a growing number of samples (n = 32, 128, 512). The
threshold α associated to the probability of false alarm PFA = 0.15 is displayed as a green line. On the top
line, the noise power is small (σ = 40) compared to the step size (a = 128), resulting in a signal to noise
ratio a/σ = 3.2, whereas on the bottom line, the noise power is stronger (σ = 60) compared to the step size
(a = 64), resulting in a lower signal to noise ratio a/σ = 1.07, which makes the detection trickier.

Corollary 3.12. Let X and Y be two sequences satisfying H1. Then

(3.13) E[z(X,Y ) | H1] = O(
√
n) and Var[z(X,Y ) | H1] = O (1) .

The proof is detailed in appendix D.
As the distribution of z under H0 is zero mean with a standard deviation of 1, this

corollary guarantees that as the number of samples n increases, the z-score can be used
to discriminates between H0 and H1. Indeed, as a consequence of Chebyshev’s inequality,
the next theorem shows that the z-score satisfies condition (C2).

Theorem 3.13. Let X and Y be two sequences satisfying H1. For any α > 0, we have

(3.14) P(z(X,Y ) < α | H1) ≤
Var(z(X,Y )|H1)

(E[z(X,Y )|H1]− α)2
= O

(
1

n

)
,

and in particular, as P(|z(X,Y )| < α | H1) ≤ P(z(X,Y ) < α | H1), we have

(3.15) P(|z(X,Y )| < α | H1) = O

(
1

n

)
.

The proof is detailed in appendix E.

Illustrations. Figure 2 displays the empirical distributions of Kendall’s z-score under
the null hypothesis H0 (blue) and the alternative hypothesis H1 of statistical dependence
in case of a step (red) for a growing number of samples (n = 32, 128, 512). The threshold α
associated to the probability of non detection PND = 0.15 is displayed as a green line. On
the top line, the noise power is small (σ = 40) compared to the step size (a = 128) so the
signal to noise ratio a/σ = 3.2 is important, whereas on the bottom line, the noise power
is stronger (σ = 60) compared to the step size (a = 64), resulting in a lower signal to noise
ratio a/σ = 1.07, which makes the detection trickier. These empirical distributions show
that the error rate is related to the signal to noise ratio, i.e. the relationship between the
noise power σ and the step size a, due to the proximity of both distributions. Indeed, on
the bottom line where both values are close, according to Proposition 3.10 the expected
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Figure 3. Evolution of the empirical probability of miss-detections as a function of the number of
samples n, with probability of false alarm PFA = 0.15. Displayed in a log-log scale, the bound in 1/n is
verified.

Figure 4. Neighborhood selection for the independence tests.

value of τ , hence z, under H1 is close to zero, hence to the expected value under H0, which
makes the two distributions harder to distinguish. However, when the number of samples
n increases, Corollary 3.12 guarantees that the expected value of z underH1 grows towards
the infinity, enabling to tell them apart more precisely.

Figure 3 illustrates condition (C2). The empirical probability of miss-detection is
displayed as a function of the number of samples, in a log-log scale. The theoretical bound
we derived is shown to decrease asymptotically as 1/n, while the empirical probability of
miss-detection seems to offer an even better decrease rate.

3.3. Extension to homogeneous areas in images. The above study shows that
Kendall’s coefficient is able to distinguish uniform regions from areas that contain an
edge. Based on the fact that natural images can be approximated by a piece-wise con-
stant model, this guarantees that homogeneous regions can be detected, and the error is
controlled by the number of samples and the signal to noise ratio.

In practice, we run K = 4 Kendall’s τ test for four pair of sequences (x(1), y(1)),
(x(2), y(2)), (x(3), y(3)), (x(4), y(4)) corresponding respectively to horizontal, vertical and
the two diagonal neighbors, as shown on Figure 4. We could also investigate other rela-
tionships, for example not directly related neighbors but k-neighbors (located at a distance
of k pixels), for every k, or look at these correlations in another domain, for example in the
Fourier domain, to expose frequency dependencies. The area is considered to be homoge-
neous if each of the K obtained p-values p(x(k), y(k)) reaches a given level of significance α.
By doing so, the overall level of detection αeq after aggregation is no longer α but smaller
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a) Noisy image b) p-value c) Detection

Figure 5. Detection of homogeneous areas in an image corrupted with a hybrid noise as the
sum of Gaussian, Poissonian and multiplicative gamma noise whose NLF parameters are (a, b, c) =
(0.0312, 0.75, 400), resulting in an initial PSNR of 17.93dB. a) Noisy image (range [0, 255]), b) p-value
(range [black = 0,white = 1]) of the associated Kendall’s τ coefficient computed within blocks of size
N = 16× 16, and c) selected homogeneous blocks (red) by thresholding the p-value to reach a probability of
detection of PD = 1− PFA = 0.7.

and given by

(3.16) αeq = P

(
K⋂

k=1

{
p(X(k), Y (k)) > α

})
.

In order to control the overall level of detection αeq, we empirically estimated offline the
relation between αeq and α.

Figure 5 illustrates the selection of homogeneous areas. We synthesize a hybrid noise
as the sum of Gaussian, Poissonian and multiplicative gamma noise, resulting in an initial
PSNR of 17.93dB. We compute Kendall’s τ coefficient within non-overlapping blocks of
size N = 16 × 16, by comparing horizontal, vertical, and diagonal neighbors. Figure 5-
b displays the p-value associated to the rank correlation computed between horizontal
neighbors. Then we perform the selection by thresholding the p-value, in order to obtain
an overall level of detection given by the probability of detection PD = 1−PFA = 0.7. The
blocks that have been considered homogeneous are displayed in red on Figure 5-c.

4. Model estimation. Once the homogeneous blocks B = Gω are detected, the noise
statistics can be estimated on those blocks. More precisely, for an homogeneous block B of
size N , Eq. (2.1) implies that there exists µ ∈ R and σ2 > 0 such that E[Bi] = E[Bj] = µ
and Var[Bi] = Var[Bj ] = σ2 for all i, j ∈ [1, . . . , N ]. Again as B is unknown, we can only
relies on empirical statistics based on the observation b that unbiasedly estimate µ and σ2

as follows

µ̂(b) =
1

N

N∑

i=1

bi and σ̂2(b) =
1

N − 1

N∑

i=1

(bi − µ̂)2 ,(4.1)

meaning that E[µ̂(B)] = µ and E[σ̂2(B)] = σ2. Accordingly, each homogeneous block gives
a punctual estimation of the the noise level function defined in (2.1) as σ̂2(b) ≈ NLF(µ̂(b)).
In this section, we explain how to robustly estimate the noise level function given P pairs
of statistics (µ̂(bp), σ̂2(bp)), p ∈ [1, . . . , P ] from P detected homogeneous blocks bp = gωp .

Before turning to the estimation of the noise level function, it is important to under-
stand the behavior of the above variance estimator inside a single homogeneous region.

4.1. Punctual estimation from a single homogeneous area. The unbiased estimator
of the variance σ2 computed inside a block B of N pixels might suffer from statistical
errors. This section aims at studying the performance of the variance estimator in the best
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possible case, i.e., when all fluctuations in b are only due to the noise (no false alarms).

More precisely, we are interested in quantifying the relative error
|σ̂2(B)−σ2|

σ2 under H0. To
do so, we first introduce the following proposition.

Proposition 4.1. Let B be a homogeneous block satisfying H0. We have

(4.2) Var(σ̂2(B) | H0) ∼
N→∞

σ4

N

(
β2 −

N − 3

N − 1

)
,

where β2 is the kurtosis given, for any i ∈ [1, . . . , N ], by the following formula

(4.3) β2 ∼
N→∞

E

[(
Bi − µ

σ

)4
∣∣∣∣∣ H0

]
.

The proof can be found in [10]. Not surprisingly, this proposition shows that as N in-
creases, the variance vanishes, and as σ̂2 is an unbiased estimator, σ̂2(B) tends towards σ2.
However, it shows also that the variance and hence the efficiency of the unbiased estimator
of σ2 depend on the variance σ2 itself and the kurtosis β2 of the unknown noise process
that generates b.

We are now ready to introduce our third theorem.
Theorem 4.2. Let B be a homogeneous block satisfying H0. The relative error in esti-

mating the variance σ2 has an expected value and a variance given by

E

[∣∣σ̂2(B)− σ2
∣∣

σ2

∣∣∣∣∣ H0

]
∼

N→∞

√
1

N

(
β2 −

N − 3

N − 1

)
× 2

π
,(4.4)

Var

(∣∣σ̂2(B)− σ2
∣∣

σ2

∣∣∣∣∣ H0

)
∼

N→∞
1

N

(
β2 −

N − 3

N − 1

)
×
(
1− 2

π

)
.(4.5)

The proof is detailed in appendix F. This formula gives the expected value and the variance
of the estimation error when computing the variance on a single homogeneous block.

Interestingly, like for the variance of σ̂2(B), this theorem shows that the relative error
vanishes with high probability as the block size N increases. But, unlike the variance
of σ̂2(B), the relative error under H0 solely depends on the kurtosis and the size of the
block irrespectively of the variance σ2 to be estimated. This shows that, for a given size
of block N , the estimation error can then be predicted as a function of the kurtosis, as
displayed on Figure 6-a where N = 16 × 16. Hence, without any assumptions on the
underlying variance, one can bound the expected relative error made by our approach
under H0 provided some mild assumptions on the kurtosis. For instance, assuming the
kurtosis is lower than 40 (that corresponds to a very high peakedness of the noise random
process and so such high kurtosis is very unlikely to appear in practical imaging problem),
the expected relative error will be lower than 30%.

The following examples support our claim in the case of noise distributions classically
encountered in imaging problems.

Example 4.3 (Additive white Gaussian noise).Consider the example of an additive white
Gaussian noise of parameter σ2 as given in Example 2.1. In this case, the kurtosis β2
is constant with respect to σ2 and equal to 3. Provided the block is of size N = 16 × 16,
Theorem 4.2 shows that the expected relative error in estimating σ2 is of about 7%.

Figure 6-b displays the behavior of the variance estimation error as a function of the
block size N in the case of Gaussian noise. The red line displays the mean relative error,
that decreases as 1/

√
N as N increases, the blue curves show the standard deviation around
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a) Error vs. kurtosis b) Error vs. block size
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Figure 6. a) Evolution of the expected value and standard deviation of the relative error of the variance
estimator as a function of the kurtosis β2 for a size of block N = 16× 16, and b) Evolution of the expected
value and standard deviation of the relative variance estimation error as a function of the block size for an
additive white Gaussian noise.

the expected value that tends towards zero at the same rate, and the green line shows the
variance estimation error at each bloc size for different noise realizations.

Example 4.4 (Multiplicative gamma case).Consider the example of the multiplicative
gamma noise of parameter L as given in Example 2.3. In this case, the kurtosis is given
by the formula β2 = 6

L + 3. Here, contrary to the Gaussian case, the estimation error
depends on the parameter of the distribution L. In the worst case when L = 1, Theorem
4.2 shows that for a block of size N = 16× 16 the expected relative error in estimating the
variance is of about 14%.

Example 4.5 (Poisson case).Consider the example of the Poisson noise as given in Ex-
ample 2.3. In this case, the kurtosis varies spatially with the image intensity, and is given
by β2 = 1

g0
i

+ 3, where g0i is the underlying intensity. for example, in a pessimistic case,

where mini∈ω g0i = 0.04 for a block of size N = 16× 16, which corresponds in an imaging
problem of a pixel with a very low expected number of photons, Theorem 4.2 shows that
the expected relative error in estimating the variance is of about 28%.

Besides, the estimation error computed here gives a bound on the error that affects
the estimation of the variance on a single block, i.e., for one point of the NLF. The next
step consists in fitting a NLF to the set of estimated points, so the overall error based on
all the selected blocks should be reduced by the number of selected blocks, which depends
on the image size and the desired level of false alarms.

However, when some false detections arise, i.e., if inhomogeneous blocks are selected,
the variance will be overestimated, resulting in a higher estimation error.

The bounds computed above hence give a safety check for the error one might expect:
if the overall error ends up being higher than the predicted bound, this means either that
too many outliers were taken into account or that the NLF estimator did not fit properly.

4.2. Noise level function estimation from all homogeneous areas. Provided that
uniform regions have been detected, the noise model can be estimated from the
mean/variance couples extracted from these areas. We now explain how to robustly
estimate a noise level function (NLF) as defined in Eq. 2.1 given P pairs of statistics
(µ̂p, σ̂

2
p) = (µ̂(bp), σ̂2(bp)), p ∈ [1, . . . , P ] from P detected homogeneous blocks bp = gωp .

Within the p-th homogeneous block, the intensity variations should be only ascribed to
noise fluctuations, hence σ̂2

p ≈ NLF(µ̂p). As each block provides only a punctual infor-
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mation about the NLF, we are confronted to an under constraint approximation problem
from P points of R×R+ to a function of R → R+. It is then necessary to inject some
extra regularity assumptions. We suggest that the NLF is a positively increasing second
order polynomial of the image intensity, parametrized by θ = (a, b, c)t ∈ (R+)3 and given
by

σ2
p = NLFθ(µp) = aµ2

p + bµp + c.(4.6)

According to examples 2.1, 2.2 and 2.3, this model encompasses Gaussian noise, with
(a, b) = (0, 0), in which case the NLF is constant, Poisson noise, with (a, c) = (0, 0),
in which case the NLF is linear, and multiplicative noise, with (b, c) = (0, 0), in which
case the NLF is parabolic, as well as hybrid models, e.g., Poissonian-Gaussian. Note that
the positivity constraints can be dropped to embrace more general models to allow non
increasing noise level function.

The goal is to find the polynomial coefficients (a, b, c) such that the estimated variances
σ̂2
p can be well approached as NLFθ(µ̂p) = aµ̂2

p + bµ̂p + c. Denoting by µ̂ ∈ RP , σ̂2 ∈
(R+)P and NLFθ(µ̂), the vectors obtained by stacking each of these estimations, our
approximation problem can be expressed in a vectorial form as

σ̂2 ≈ NLFθ(µ̂) = Aθ where A =




µ̂2
1 µ̂1 1

µ̂2
2 µ̂2 1
...

...
...

µ̂2
P µ̂P 1


(4.7)

Of course, if the noise is known to be Gaussian, Poissonian or multiplicative respectively,
the operator A should be adapted, keeping only a single column of ones, of the means or
of the means to the square respectively. In case of the Poisson-Gaussian noise, only the
two columns of ones and of the means should be kept.

We focus in the following on two different estimators in order to robustly estimate θ.

4.2.1. Least squares estimation. The least squares (LS) method consists in minimiz-
ing a ℓ2-norm of the residue NLFθ(µ̂) − σ̂2. The estimation is formalized as the solution
of the follow constraint optimization problem

(4.8) θ̂LS = argmin
θ∈(R+)3

‖NLFθ(µ̂)− σ̂2‖2 = argmin
(a,b,c)∈(R+)3

‖aµ̂2 + bµ̂+ c− σ̂2‖2

whose solutions can be obtained using quadratic programming tools. Remark that without
the positivity constraint on (a, b, c) the least square solution is explicit and the following
holds

(4.9) θ̂LS = (AtA)−1Atσ̂2 and NLFLS
θ (µ̂) = ΠAσ̂

2

where ΠA = A(AtA)−1At is the so-called hat function that is the projector on the space
of second order polynomial.

Assuming σ̂2 would have approximately a normal distribution with covariance propor-
tional to the identity, the above least square estimator would correspond to the maximum
likelihood estimator that is guaranteed to converge in probability towards the underlying
second order polynomial NLF function. However, even though σ̂2 has a diagonal covari-
ance matrix (as the blocks are independent), it is not proportional to the identity. Worst,
the distribution of σ̂2 deviates from normality as the data might suffer from outliers. In-
deed, large errors can arise when some non-homogeneous samples happen to be selected.
This leads us to studying other estimation methods more robust to outliers.
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Algorithm 1 A preconditioned primal-dual algorithm of [7] for least absolute deviation

Set γ ∈ RP,1 and τ ∈ R1,P such that γi = 1/
∑3

j=1 |Aij |, and τj = 1/
∑P

i=1 |Aij |.
Π|z|≤1 the projector of RP such that |zi| ≤ 1 ∀1 ≤ i ≤ p,

Πθ≥0 the projector of R3 such that θj ≥ 0 ∀1 ≤ j ≤ 3,
Initialize z0 = 0 ∈ RP , θ̄0 = 0 ∈ R3 and θ0 = 0 ∈ R3,
Iterate for k ≥ 0 




zk+1 = Π|z|≤1

(
zk + γ(Aθk − σ̂)

)
,

θk+1 = Πθ≥0 (θk − τA∗zk+1) ,

θk+1 = 2θk+1 − θk.

4.2.2. Least absolute deviation. If miss-detections happen as inhomogeneous samples
are selected, the presence of structures in the signal might result in a highly over estimated
variance resulting from the summation of the noise variations with the signal variations. In
order to reduce the impact of such outliers, we suggest using the least absolute deviation
(LAD) method. Unlike the LS estimation, the LAD estimation is shown to be more robust
to outliers [34].

The LAD estimation is based on the minimization of the ℓ1-norm of the residue (instead
of the ℓ2-norm) as the solution of the following constraint problem

(4.10) θ̂LAD = argmin
θ∈(R+)3

‖NLFθ(µ̂)− σ̂2‖1 = argmin
(a,b,c)∈(R+)3

‖aµ̂2 + bµ̂+ c− σ̂2‖1.

There is no close form solution for such a problem even in the un-constrained case. For-
tunately, we can derive a solution based on a fast iterative algorithm, using the precondi-
tioned primal-dual algorithm of Chambolle and Pock [7], as displayed in Algorithm 1 and
where Π is the projection operator on a convex set.

While the LS estimator corresponds to the maximum likelihood estimator in the case
of estimated variances following a specific normal distribution, the LAD estimator is the
maximum likelihood estimator assuming a specific Laplacian distribution. Unlike the
Gaussian distribution, the Laplacian distribution has heavy tails meaning that it is suit-
able to describe data subject to extreme values or outliers. According to the maximum
likelihood interpretation of the LAD estimator, errors are assumed to follow the same
Laplacian distribution, which is not verified in practice, see Theorem 4.2. And even if it
were Laplacian, the scale of the Laplacian should be rescaled with respect to the unknown
underlying variance as suggested by Eq. 4.4. However, due to the performance of the ho-
mogeneous detector the scatterplot is reliable (the amount of false detections is reasonable
and the false detections are not too aberrant). The LAD estimator hence offers a fast and
reliable estimation that is robust to outliers.

A more realistic model would be to use distributions with heavier tails, such as the
Cauchy distribution, as proposed in [2]. This leads to optimization problems that are
typically non convex, and hence harder to minimize. The Laplacian distribution is in this
sense a good trade-off between robustness and computational efficiency.

Examples of other robust estimators include Theil-Sen’s estimator [42] (also referred
to as Kendall robust line-fit method) used to fit affine functions based on median slopes,
its generalization as the quantile regression [26] for finding curves corresponding to the
conditional median or other quantiles of the data and Hubert’s M-estimators [21] designed
to be robust under partial knowledge of the data distribution.
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Figure 7. Images extracted from the database of 150 high quality grayscale images of resolution
540×720, taken from a 7 Mpix Canon Powershot S70 or a 8 Mpix Canon IXY Digital 910IS, where
the noise can be considered to be negligible.

a) Poisson noise b) Hybrid noise
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Figure 8. Mean relative error as a function of the desired probability of detection PD = 1 − PFA. On
the left, the noise is Poissonian, with different levels. It can be estimated with the prior knowledge of the
noise model, using the least squares or the least absolute deviation adapted to the noise model (Poisson LS
or Poisson LAD), or it can be described by the general second order model with the hybrid estimators, LS
or LAD. On the right, the noise is hybrid with different NLF parameters. Hybrid noise are estimated with
the general second order model using the least square and the least absolute deviation estimators. Whereas
the noise model is known or not, the LAD estimator is shown to be more accurate that the LS estimator.

4.3. Comparison of estimators. To compare the least absolute deviations estimator
with the least squares estimator, and for all the following experiments, we have generated
a set of noisy images with different noise levels, using a database of 150 clean grayscale
high quality images of resolution 540×720, taken from a 7 Mpix Canon Powershot S70
or a 8 Mpix Canon IXY Digital 910IS1. The noise on these images can be considered to
negligible, as shown on the sample of this database displayed on Figure 7. Based on the
knowledge of the real noise parameters θ = (a, b, c), we can compute the mean relative
error

(4.11) MRE(θ̂) =
1

|I|
∑

fi∈I

∣∣NLFθ(fi)−NLF
θ̂
(fi)

∣∣
NLFθ(fi)

,

where I is a discretization of the interval of image intensities.
Figure 8 displays the evolution of the mean relative error as a function of the desired

level of detection PD = 1 − PFA. On Figure 8-a, the images have been corrupted by
Poissonian noise with a varying noise level. We can use the prior knowledge of a Poissonian
model, and estimate solely the parameter b with the least square estimator (Poisson LS)
and the least absolute deviation method (Poisson LAD) adapted to the Poisson model,

1http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/imagebase.html

http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/imagebase.html
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a) Gaussian noise, c = 40 b) Poisson noise, b = 12
MRE = 0.0203 MRE = 0.0240

50 100 150 200
0

1000

2000

3000

Intensity

V
a
ri
a
n
ce

 

 

100 150 200
0

1000

2000

3000

Intensity

V
a
ri
a
n
ce

 

 

c) Gamma noise, a = 2 d) Hybrid, (a, b, c) = (0.0312, 0.75, 400)
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Figure 9. Parameter estimation for different types of noise with the LAD estimator. The noise model
is supposed to be unknown so the NLF is estimated as a general second order polynomial function.

while the other two parameters a and c are set to zero. We then compare such estimators
to the least square (LS) and least absolute deviation (LAD) estimators that estimate the
three parameters (a, b, c) of a general second order model without the knowledge of a
Poissonian model. On Figure 8-b, the images have been corrupted by hybrid noise with
varying NLF parameters (a, b, c). In this case, a general second order model is directly
estimated.

4.4. Parameter estimation results. Figure 9 displays the estimation of the NLF with
the least absolute deviations estimator for different noise models (Gaussian, Poisson, multi-
plicative gamma and hybrid). The mean/variance couples extracted from the homogeneous
patches are shown in gray crosses, the real NLF is displayed in green and the estimated
one using the least absolute deviation estimator appears in red. There is no prior on the
noise model, so the estimation is performed by seeking a second order polynomial NLF.
The results fit closely, and the shape of each estimated curve shows that even with no prior
knowledge of the noise level function, the model is accurately guessed. The knowledge of
the noise model can make the parameters estimation even more accurate.

5. Practical settings.

5.1. Automatic adaptation of the block size N . The optimal block size has to satisfy
a compromise between the reliability of the detection and the performance of the estima-
tion. Indeed, both Kendall’s test (see Section 3.2.3) and the computation of the statistics
on each block (see Section 4.1) need a sufficient number of samples, dictated by the block
size. But if the block size is too big then the number of homogeneous zones might be too
small or even null, hence limiting the performance of the NLF estimation.
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Figure 10. Evolution of the mean relative error as a function of the block width W .

To make sure that the estimation remains efficient or even possible, we impose a
minimum number of detected areas. We divide the intensities of the input image into
three bins of equal size, and we force the detection step to find at least three regions in
each bin. If this condition is not satisfied, then the block width is reduced by two pixels
in each direction, until the number of detected regions is sufficient. This guarantees that
most images can be processed, and that the initial block size can be set to be large enough
to limit the error in Kendall’s test and in the computation of the statistics.

5.2. Selection of the maximum block size. The maximal block size can then be set
as the size that balances the compromise between the reliability of the detection and the
performance of the estimation. We have studied on a dataset of images corrupted by
Gaussian noise the evolution of the mean relative error as a function of the block width
W , where the block size N = W ×W , displayed on Figure 10. Since we cannot in this case
automatically reduce the block size in order to guarantee a minimum number of regions,
we impose as before a minimum of three detected regions in each bin by selecting the ones
that have the best Kendall score, even if the associated p-value is below the threshold.
Again, this was only done to determine offline on our dataset the maximum size window.
This guarantees a sufficient number of data for the estimation. However, if the block
size is too big the data might be irrelevant, meaning that the statistics would arise from
non-homogeneous areas. The optimum appears to be reached around W = 16 pixels.

5.3. Selection of the probability of detection. To set the optimum probability of
detection, rules by the threshold α, we have used the results obtained from Figure 8.
Indeed, the convex shape of the error curves shows two opposite influences. At low levels
of detection, the number of selected areas is small. False detections do not arise very likely,
but the NLF estimation is not finely estimated as the number of data is insufficient. When
the level of detection increases, the number of samples for the estimation increases, which
reduces the estimation error, but the number of false detections increases as well, leading
to the presence of outliers. The outliers are responsible for the increasing error at higher
levels of detection, and they also explain the superiority of the least absolute deviation
estimator over the least square estimator, at high levels of detection in particular. This
leads to a trade-off between detection and outliers, indicating that for a level of detection
≈ 60%, a relative error lower than 10% can be reached without prior knowledge of the noise
model. Accordingly, in all the following experiments, we chose the parameter PD = 0.6.

6. Experiments. In this section, we discuss and compare the efficiency of our
proposed approach in terms of NLF estimation errors and image denoising appli-
cations. For the sake of replicability, a Matlab implementation for the automatic
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Table 1
Estimation error under low Gaussian noise, with increasing variance. The estimators are MAD [15],

the Gaussian-Cauchy mixture model [2], the PCA method [12], the percentile method [11], Noise Clinic [13],
and our algorithm. In our method, we automatically adapt the block size to provide enough homogeneous
zones, so the average block size for each level is displayed.

σ = 1 σ = 2 σ = 5 σ = 10

MAD [15] 3.263 1.546 0.621 0.314
Gaussian-Cauchy [2] 55.767 11.281 1.619 0.4669

PCA [12] 0.376 0.163 0.136 0.235
Percentile [11] 0.421 0.181 0.077 0.0378

Noise Clinic [13] 0.856 0.3324 0.113 0.112
Proposed 2.028 0.640 0.134 0.047

(Average block size W ) (12) (14) (15) (16)

noise estimation and its application to image denoising is available for download at
https://github.com/csutour/RNLF.

We validate the proposed approach with respect to the state of the art algorithms
that perform noise estimation, in terms of efficiency, accuracy, and validation for other
processing tasks. Based on the database of 150 natural images, we generate a set of noisy
images, for different noise statistics (Gaussian, Poisson, Poisson-Gaussian, hybrid...) and
levels. To our knowledge, few state of the art methods can deal with such a general noise
model as the one we propose here, so we estimate the noise parameters with the different
estimators, according to the noise model involved and the properties of each estimator: the
mean absolute deviation (MAD) estimator [15], which is only suitable for the estimation
of Gaussian noise, the Gaussian-Cauchy mixture model [2] which is the most general
model, the PCA method [12], the percentile method [11], and Noise Clinic [13, 27], that
estimate frequency-dependent noise but that we use here for the estimation of affine noise,
the estimation based on the variance stabilization transform (VST) [36] that applies for
Poisson-Gaussian noise, and our algorithm that can estimate either a given model or a
general second order one.

6.1. Estimation of low Gaussian noise. A fine estimation of very low Gaussian noise
is hard to achieve. In our case, this is due to the difficulty of finding homogeneous areas.
Indeed, according to the characterization of homogeneous areas that we define in the
introduction, a region is homogeneous if its signal to noise ratio is weak. However, with
such low noise levels, the signal fluctuations cannot be assumed to be negligible compared
to the noise variations, so the detection is harder to achieve.

Table 1 gives the mean relative error when estimating very low Gaussian noise
(σ = 1, 2, 5, 10) with the different estimators adapted for Gaussian noise: MAD [15], the
Gaussian-Cauchy mixture model [2], the PCA method [12], the percentile method [11],
Noise Clinic [13], and our algorithm. It does indeed increase when the noise level gets too
small. In the proposed method, we automatically adapt the block size to provide enough
homogeneous zones, which is more difficult at smaller noise levels. Table 1 also displays in
the bottom line the average optimal block size, which has to be reduced under lower noise
levels.

6.2. Estimation of strong Poisson noise. Estimating pure Poisson noise can also be
challenging, due to the behavior of the noise, especially in the darkest areas when it can
appear as shot noise. Figure 11 illustrates the estimation of strong Poisson noise, with noise
parameter b = 1000 and initial PSNR≈2dB. The original and noisy images are displayed

https://github.com/csutour/RNLF
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Original Poisson noise, b = 1000, PSNR≈2dB

Poisson model Hybrid model
MRE = 0.0196 MRE = 0.0209

b̂ = 980 (â, b, c) = (0.13; 964.19; 309.09)
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Figure 11. Estimation of strong Poisson noise, with parameter b = 1000 and initial PSNR≈2dB.
The original and noisy images are displayed on the top line. On the bottom line, the noise parameter are
estimated first assuming a Poisson model (on the left), then with the general second order model (on the
right). In both cases, the relative error is below 5%, showing the reliability of the estimation.

Table 2
Estimation error under strong Poisson noise, with different powers. The estimators are MAD [15], the

Gaussian-Cauchy mixture model [2], the PCA method [12], the percentile method [11], Noise Clinic [13],
the VST based method [36], and our algorithm.

b = 60 b = 100 b = 200 b = 1000

Gaussian-Cauchy [2] 0.088 0.116 0.183 0.571
PCA [12] 0.681 0.788 0.933 1.000

Percentile [11] 0.279 0.371 0.477 0.834
Noise Clinic [13] 0.430 0.457 0.411 0.998

VST [36] 0.281 \ \ \
Proposed (Poisson) 0.053 0.053 0.072 0.238

Proposed (hybrid) 0.121 0.131 0.106 0.433

on the top line. On the bottom line, the noise parameter are estimated first assuming a
Poisson model (on the left), then with the general second order model (on the right). In
both cases, the relative error is below 5%, showing the reliability of the estimation.

Table 2 gives the mean relative error when estimating strong Poisson noise (b =
60, 100, 200, 1000) with the different estimators adapted for Poisson noise: the Gaussian-
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Cauchy mixture model [2], the PCA method [12], the percentile method [11], Noise Clinic
[13], the VST based method [36], which does not work for very high levels, and our algo-
rithm, which offers the most reliable estimation results.

6.3. Comparison on general noise models. Tables 3 to 6 illustrate the estimation
performance of the suitable estimators for commonly encountered noise models: Gaussian
3, Poisson-Gaussian 4, multiplicative gamma noise 5 and hybrid noise 6. The different
estimators that are used are the mean absolute deviation (MAD) estimator [15], which is
only suitable for the estimation of Gaussian noise, the Gaussian-Cauchy mixture model [2]
which is the most general model, the PCA method [12], the percentile method [11], and
Noise Clinic [13, 27], that can estimate frequency-dependent noise but are used here for the
estimation of affine noise, and the estimation based on the variance stabilizing transform
(VST) [36] that applies for Poisson-Gaussian noise. We compare these methods to our
propose algorithm that can estimate either a given model or a general second order one.
In each case, we can either estimate the suitable model with the involved parameters, e.g.
constant for Gaussian noise, affine for Poisson-Gaussian, etc, or estimate a second order
polynomial NLF, which corresponds to the ’hybrid’ case. Results show that the proposed
method offers an accurate noise level estimation. It is quite competitive for affine noise,
and it offers state of the art estimation results for second order noise models, in particular
multiplicative gamma noise.

6.4. Application to image denoising. Automatic noise estimation can be useful for
many applications that require the knowledge of the noise level, in particular image de-
noising. In order to illustrate the use of the proposed method, the estimated NLF is
re-injected for blind image denoising.

The non-local means algorithm (NL-means) [6] has been adapted in order to use only
the knowledge of the noise parameters (a, b, c) provided by the estimated NLF. The NL-
means algorithm is based on the natural redundancy of the image structures, not just
locally but in the whole image. While local filters average pixels that are spatially close
to each other, the NL-means algorithm compares patches, i.e., small windows extracted
around each pixel, in order to average pixels whose surroundings are similar. For each
pixel i ∈ Ω, the solution of the NL-means is

(6.1) uNL
i =

∑
j∈Ω wi,jgj∑
j∈Ω wi,j

,

where the weights wi,j ∈ [0, 1] are computed in order to select the pixels j whose sur-
rounding ρj ⊂ Ω is similar to the surrounding ρi ⊂ Ω of the central pixel i, for instance,
as proposed in [40] by

(6.2) wi,j = exp

(
−|d(gρi , gρj)−mρ

d|
sρd

)

where mρ
d = E[d(Gρi , Gρj )] and sρd =

√
Var[d(Gρi , Gρj )] are respectively the expectation

and the standard deviation of the dissimilarity d computed between two noisy patches of
size |ρ| following the same distribution.

In order to take into account the signal-dependence of the noise, we approximate the
noise to additive Gaussian noise with polynomial variance, and we adapt the dissimilarity
measure d as follows

(6.3) d(gρi, gρj ) =
1

|ρ|

|ρ|∑

k=1

(
gρik − g

ρj
k

)2

NLFθ(g
ρi
k ) + NLFθ(g

ρj
k )

.
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Table 3
Mean relative error (MRE) when estimating Gaussian noise with MAD [15], the Gaussian-Cauchy

mixture model [2], the PCA method [12], the percentile method [11], Noise Clinic [13, 27], and our algorithm
when estimating either a Gaussian model or a second order one, and PSNR achieved after denoising with
the NLF-means algorithm, using the estimated NLF parameters.

Estimator |â| |̂b| |c−ĉ|
c MRE PSNR

MAD [15] \ \ 0.08 0.081 26.33
Gaussian-Cauchy [2] \ 0.55 0.05 0.040 26.41

PCA [12] \ \ 0.51 0.513 24.12
Percentile [11] \ \ 0.11 0.105 25.69
Noise Clinic [13] \ \ 0.39 0.389 23.69

[27] (24.29)
Proposed, Gaussian \ \ 0.03 0.030 26.72

Proposed, hybrid 0.00 1.56 0.12 0.056 26.64

Table 4
Mean relative error (MRE) when estimating Poisson-Gaussian noise with the Gaussian-Cauchy mix-

ture model [2], the PCA method [12], the percentile method [11], Noise Clinic [13, 27], the VST based
method [36] and our algorithm when estimating either an affine model or a second order one, and PSNR
achieved after denoising with the NLF-means algorithm, using the estimated NLF parameters.

Estimator |â| |b−b̂|
b

|c−ĉ|
c MRE PSNR

Gaussian-Cauchy [2] \ 0.06 0.11 0.040 26.10
PCA [12] \ 0.54 2.71 0.88 23.67

Percentile [11] \ 0.28 0.44 0.12 26.36
Noise Clinic [13] \ 0.45 0.34 0.390 26.44

[28] (25.18)
VST [36] \ 0.07 0.15 0.034 26.23

Proposed, affine \ 0.11 0.25 0.055 26.07
Proposed, hybrid 0.01 0.13 0.26 0.054 26.02

Table 5
Mean relative error (MRE) when estimating multiplicative gamma noise with the Gaussian-Cauchy

mixture model [2] or and our algorithm, and PSNR achieved after denoising with the NLF-means algorithm,
using the estimated NLF parameters.

Estimator |a−â|
a |̂b| |ĉ| MRE PSNR

Gaussian-Cauchy [2] 0.80 2.01 120.62 10.521 17.70
Proposed, gamma 0.05 \ \ 0.046 25.69

Proposed, hybrid 0.06 1.14 8.02 0.086 25.14

Table 6
Mean relative error (MRE) when estimating hybrid second order noise with the Gaussian-Cauchy

mixture model [2] or and our algorithm, and PSNR achieved after denoising with the NLF-means algorithm,
using the estimated NLF parameters.

Estimator |a−â|
a

|b−b̂|
b

|c−ĉ|
c MRE PSNR

Gaussian-Cauchy [2] 0.27 2.53 0.60 0.070 27.81

Proposed 0.20 1.75 0.36 0.078 27.74
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Table 7
Mean PSNRs achieved after denoising a set of noisy images corrupted with hybrid noise, with the

standard NL-means assuming a Gaussian model, then with the NLF-means with the estimated NLF and
the true NLF.

Initial PSNR NL-means NLF-means NLF-means
(Gaussian) (estimated NLF) (true NLF)

19.52 26.26 28.85 28.96
18.87 25.88 28.48 28.58
18.04 26.24 27.93 28.09
17.51 25.86 27.73 27.87

a) Gaussian NL-means b) Estimated NLF-means c) True NLF-means
PSNR = 23.66 PSNR = 28.29 PSNR = 28.31

Figure 12. Denoising of a hybrid noise with true parameters (a, b, c) = (0.0312, 0.625, 100), initial
PSNR = 20.34dB. The noisy image is displayed on Fig. 5-a. a) Standard NL-means assuming and es-
timating Gaussian noise, b) NLF-means with the estimated NLF and c) NLF-means with the true NLF.

for which mρ
d = 1 and sρd =

√
2
|ρ| . These two quantities reflect the noise dependence to

the signal, and they reduce the sensitivity of the dissimilarity to the noise level and patch
size.

The application of the automatic noise estimation to image denoising shows both the
performance of the estimation and the necessity of the knowledge of the noise statistics to
perform image processing tasks. Table 7 displays the PSNRs achieved after blind denoising
using the NLF-means algorithm proposed above. The images have been corrupted with
hybrid noise with different levels. In the first column, the denoising results are obtained
using the standard NL-means algorithm (that assumes Gaussian noise). Only the noise
variance (i.e. the σ parameter) has been estimated, using the proposed estimation method
for a specific Gaussian model. Both the low PSNRs and the artifacts on Figure 9.a) show
that the denoising is quite inappropriate; hence the necessity to properly estimate the
noise parameters and/or model. The other two columns use the NLF-means algorithm. In
the second column, the NLF parameters have been estimated with our proposed method
while on the third column we have used to true parameters used to simulate the noise. The
superiority of these methods over the standard Gaussian NL-means shows the interest of
assuming a relevant noise model, while the feeble difference between the last two columns
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Table 8
Computational time (in seconds) for the estimation of the noise parameters on an image of size

540×720 corrupted with Gaussian noise with MAD [15], the Gaussian-Cauchy mixture model [2], the
PCA method [12], the percentile method [11], Noise Clinic [13, 27], the VST based method [36], and our
algorithm.

Estimator Time (s)

MAD [15] 0.58
Gaussian-Cauchy [2] 32

PCA [12] 1
Percentile [11] 0.5
Noise Clinic [13] 20

VST [36] 530
Proposed 1.4

illustrates the reliability of our estimation procedure for denoising purposes.

Figure 12 displays the result of such denoising on a natural image, corrupted with a
hybrid noise of parameters (a, b, c) = (0.0312, 0.625, 100), with an initial PSNR of about
20dB. On Figure 12-a, the standard NL-means have been used, assuming a Gaussian
distribution. The single noise parameter σ2 has been estimated and injected in the NL-
means algorithm. Since the noise model is inappropriate, the denoised image suffers from
artifacts on uniform areas and loss of details, on the hat for example. On Figure 12-b, the

NLF has been estimated using the proposed method then the estimated parameters ̂(a, b, c)
are used for the NLF-means algorithm, while on Figure 12-c the true NLF parameters have
been used. Both denoising results offer a satisfying result on which details are preserved,
showing that the NLF parameters offer a good model and that the estimation is accurate
enough to perform efficient denoising.

Besides, the estimations performed by each estimator in Tables 3 to 6 are re-injected in
the NLF-means algorithm to evaluate the noise estimation through the denoising perfor-
mance, using the PSNR computation. Results show once again that the proposed method
offers efficient denoising thanks to the accurate noise level estimation.

6.5. Computational time. We use a fast implementation [25] that computes Kendall’s
coefficient in O(N logN) for a block of size N , resulting in a global complexity in
O(N0 logN), for an image of size N0 divided into non-overlapping blocks of size N . For
an image of size N0 = 512 × 512 and blocks of size N = 16 × 16 = 256 pixels, the fast
implementation allows to compute Kendall’s coefficient for one direction in 0.12 seconds,
and the detection on the whole image as well as the computation of the noise statistics on
the selected homogeneous areas are performed in about 0.6 seconds.

Table 8 displays the computational time for the estimation of the noise parameters on
an image of size 540×720 corrupted with Gaussian noise with MAD [15], the Gaussian-
Cauchy mixture model [2], the PCA method [12], the percentile method [11], Noise Clinic
[13, 27], the VST based method [36], and our algorithm, which is quite competitive.

7. Discussion and conclusion. We have developed a fully automatic noise estima-
tion method that relies on the non-parametric detection of homogeneous blocks. These
blocks are selected by measuring Kendall’s τ coefficient between neighboring pixels, a
non-parametric test that requires few hypothesis on the distribution of the samples. In
other words, it means that our detector of homogeneous blocks has the exact same perfor-
mance without extra tuning for any kind of uncorrelated signal-dependent noise including
weak/strong Poisson noise, weak/strong Gaussian noise, multiplicative, Rician, hybrid,
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impulsive, or salt and pepper noise. More precisely, we have shown that the detection
errors are controlled with respect to the signal to noise ratio and the number of samples.
Next, the noise level function is assumed to follow a second order polynomial model, and is
estimated thanks to an estimation method of least absolute deviation. Results on synthetic
images show that the proposed method gives an accurate noise level estimation with few
assumptions. This NLF estimation can then be used for further image processing applica-
tions, for example image denoising, as demonstrated with the use of the NLF estimation
in the NL-means algorithm to perform adapted denoising.

Future work might lead to the study of a more general noise model, beyond second
order polynomial. First, it would be interesting to encompass spatially varying noise level
functions. Indeed, in many image devices the noise level varies with the distance to the
sensor for example. Another issue lies in spatially correlated noise. Spatial correlation
is not handled by our Kendall-based detection, yet it occurs in many natural image cor-
ruptions. Dealing with spatial correlation would extend the noise estimation to artifacts
detection, for example compression artifacts. Beyond noise estimation, it might in fact be
interesting to extend the proposed approach to other corruptions such as blur detection.

Appendix A. Proof of Theorem 3.8.
Proof. Theorem 3.8 gives the relationship between the level of detection α and the

probability of false alarm. In fact, the detection threshold α is actually chosen in order to
achieve the desired probability of false alarm associated to condition (C1). Indeed, using
the definition of the probability of false alarm and Corollary 3.7, we have:

lim
n→∞

P(|z(X,Y )| > α | H0) = lim
n→∞

P(z(X,Y ) > α | H0) + P(−z(X,Y ) < −α | H0)

= (1− φ (α)) + φ (−α) = 2 (1− φ (α)) .(A.1)

Now using the choice of α given by α = φ−1(1− PFA/2), we get:

(A.2) 2 (1− φ (α)) = 2
(
1− φ

(
φ−1(1− PFA/2)

))
= PFA.

Appendix B. Proof of Proposition 3.10.
We compute in the following proofs the expectation and variance of Kendall’s coeffi-

cient under the alternative hypothesis H1.

Under H1, due to the nature of Gaussian noise, ties are not an issue. We can use the
definition given in Def. 3.3 that does not take ties into account. Besides, to simplify the
notations, we drop the dependency on (X,Y ) in the notation of τ or z. We also drop the
conditional hypothesis in the expressions E[τ |H1] and Var[τ |H1], recalling that the results
we demonstrate hereafter apply for the H1 hypothesis.

Preliminary results. This section shows some basic properties that are useful for the
computation of the mean and variance of τ . Let ε be a random variable, with density ϕ.
Unless mentioned otherwise, no distribution is supposed for ε. We note εi, εj realizations
of the random variable ε, and φ the cumulative distributive function (cdf) of ε:

(B.1) φ(x) =

∫ x

−∞
ϕ(ε) dε

Proposition B.1. Let εi and εj be two independent realizations of ε. Then

(B.2) E[sign(εi − εj)] = 0.
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Proof. Using the definition of the expectation and the independence between the two
variables, we have:

E[sign(εi − εj)] =

∫∫

R2
sign(εi− εj)ϕ(εi)ϕ(εj) dεi dεj

=

∫

εi∈R

(∫ εi

εj=−∞
ϕ(εj) dεj −

∫ +∞

εj=εi

ϕ(εj) dεj

)
ϕ(εi) dεi

=

∫

εi∈R

(∫ εi

εj=−∞
ϕ(εj) dεj −

∫ +∞

εj=εi

ϕ(εj) dεj

)
ϕ(εi) dεi

=

∫

εi∈R
(φ(εi)− (1− φ(εi)))ϕ(εi) dεi

=

∫

εi∈R
(2φ(εi)− 1)ϕ(εi) dεi =

[
1

4
(2φ(εi)− 1)2

]+∞

−∞
=

1

4
− 1

4
= 0.

Proposition B.2. Let εi, εj and εk be independent realizations of ε.

(B.3) E[sign(εi − εj) sign(εi − εk)] =
1

3
.

Proof. Using once again the independence between the three variables and following
the same idea as for Prop. B.1, we have:

E[sign(εi − εj)sign(εi − εk)]

=

∫∫∫

R3
sign(εi− εj) sign(εi− εk)ϕ(εi)ϕ(εj)ϕ(εk) dεi dεj dεk

=

∫

εi∈R

(∫

εj∈R
sign(εi− εj)ϕ(εj) dεj

∫

εk∈R
sign(εi− εk)ϕ(εk) dεk

)
ϕ(εi) dεi

=

∫

εi∈R
(2φ(εi)− 1)2 ϕ(εi) dεi =

[
1

6
(2φ(εi)− 1)3

]+∞

−∞
=

1

6
+

1

6
=

1

3
.

Proposition B.3. Let εi and εj be two independent realizations of ε and a ∈ R.

(B.4) E[sign(εi − εj − a)] = 2

∫

R

φ(εi−a)ϕ(εi) dεi−1.

Besides, if ε follows a standard distribution N (0, σ2), then:

(B.5) E[sign(εi − εj − a)] = 2φ

( −a√
2σ

)
− 1 = 1− 2φ

(
a√
2σ

)
.

Proof. In the general case where no particular distribution is assumed for ε, we use
the same idea as for the previous propositions.

E[sign(εi − εj − a)] =

∫∫

R2
sign(εi− εj −a)ϕ(εi)ϕ(εj) dεi dεj
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=

∫

εi∈R

(∫ εi −a

εj=−∞
ϕ(εj) dεj −

∫ +∞

εj=εi −a
ϕ(εj) dεj

)
ϕ(εi) dεi

=

∫

R

(2φ(εi−a)− 1)ϕ(εi) dεi = 2

∫

R

φ(εi−a)ϕ(εi) dεi−1.

If ε ∼ N (0, σ2), then εi− εj = µij follows a Gaussian distribution N (0, 2σ2), with
density ϕ2σ2 , and

E[sign(εi − εj − a)] = E[sign(µij − a)] =

∫

R

sign(µ− a)ϕ2σ2(µ)dµ

=

∫

R

sign(
√
2σ2t− a)ϕ(t)dt, with t =

µ√
2σ2

= −
∫ a/

√
2σ2

t=−∞
ϕ(t)dt+

∫ +∞

t=a
√
2σ2

ϕ(t)dt

= 1− 2φ

(
a√
2σ

)
= 2φ

( −a√
2σ

)
− 1.

This last result is confirmed by the following proposition:
Proposition B.4. Let ε ∼ N (0, σ2) be a random Gaussian variable. For all a ∈ R, we

have:

(B.6)

∫

ε
φ(ε−a)ϕ(ε) dε = φ

( −a√
2σ

)
.

Proof. This proposition can be shown using the property of the error function (defined
in Theorem 3.8): for all a, b, c, d ∈ R,

(B.7) erf

(
b− ac√
1 + 2a2d2

)
=

∫

R

erf(ax+ b)√
2πd2

exp

(
−(x+ c)2

2d2

)
dx.

Proof. [Back to the proof of Prop. 3.10]
Based on Def. 3.3, and using the expression of X and Y defined in (3.9), we separate

the cases according to the location of the indexes in the step signal, and we have:

τ =
1

n(n− 1)

n∑

i=1

n∑

j=1

sign(Xi −Xj) sign(Yi − Yj)

=
1

n(n− 1)

[ ∑

i, j ≤ n/2
or i, j > n/2,
i 6= j

sign(εi− εj) sign(ηi − ηj)︸ ︷︷ ︸
(∗)

+
∑

i ≤ n/2,
j > n/2

sign(εi− εj −a) sign(ηi − ηj − a)︸ ︷︷ ︸
(∗∗)

+
∑

i > n/2,
j ≤ n/2

sign(εi− εj +a) sign(ηi − ηj + a)︸ ︷︷ ︸
(∗∗∗)

]
.

Each of the three sums can be evaluated separately using the propositions shown in
the first part.

(B.8) E[(∗)] = 0 using prop. B.1 and the independence of εi and εj .



28 C. SUTOUR, C.-A. DELEDALLE and J.-F. AUJOL

(B.9) E[(∗∗)] = E[sign(εi− εj −a)]× E[sign(ηi − ηj − a)] =

(
1− 2φ

(
a√
2σ

)
(a)

)2

,

using the independence between the two variables ε,η and Proposition B.3. The sum
involving (∗∗) occurs when i and j are in the two different halves of the set of samples, so
it contains n

2 × n
2 terms.

(B.10) E[(∗ ∗ ∗)] = E[sign(εi− εj +a)]× E[sign(ηi − ηj + a)] =

(
2φ

(
a√
2σ

)
(a)− 1

)2

,

using Prop. B.3 and the independence. As for (∗∗), (∗ ∗ ∗) occurs when i and j are in
different subsets so the sum contains n

2 × n
2 terms.

Hence, combining the three terms,
(B.11)

E[τ |H1] =
1

n(n− 1)

[
2×

(n
2

)2(
1− 2φ

(
a√
2σ

))2
]
=

n

2(n− 1)

(
1− 2φ

(
a√
2σ

))2

.

Appendix C. Proof of Proposition 3.11.
Proof. In order to assess the variance of τ under the hypothesisH1, we need to evaluate

E[τ2]. Using the definition of τ in Def. 3.3, we compute τ2 then distinguish the cases where
X and Y are independent or not. This consists in considering the cases when the indexes
can coincide or not.

τ2 =
1

n2(n− 1)2

[ n∑

i, j = 1
i 6= j

n∑

k, l = 1
k 6= l 6= i 6= j

sign(Xi −Xj) sign(Yi − Yj) sign(Xk −Xl) sign(Yk − Yl)︸ ︷︷ ︸
(∗)

+4
n∑

i, j = 1
i 6= j

n∑

k = 1
k 6= i, j

sign(Xi −Xj) sign(Yi − Yj) sign(Xi −Xk) sign(Yi − Yk)︸ ︷︷ ︸
(∗∗)

+2
n∑

i, j = 1
i 6= j

(sign(Xi −Xj) sign(Yi − Yj))
2

]

︸ ︷︷ ︸
=n(n−1)

.

Each of the three sums is then evaluated separately, taking into account the location
of the indexes in the step.

(∗) : k 6= l 6= i 6= j.

(∗) =
n∑

i, j = 1
i 6= j

n∑

k, l = 1
k 6= l 6= i 6= j

sign(Xi −Xj) sign(Yi − Yj) sign(Xk −Xl) sign(Yk − Yl)

=
n∑

i, j ≤ n/2
or i, j > n/2

[ n∑

k, l ≤ n/2
or k, l > n/2

sign(εi− εj) sign(ηi − ηj) sign(εk − εl) sign(ηk − ηl)︸ ︷︷ ︸
E=0
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+
n∑

k ≤ n/2
l > n/2

sign(εi− εj) sign(ηi − ηj) sign(εk − εl −a) sign(ηk − ηl − a)︸ ︷︷ ︸
E=0

+

n∑

k > n/2
l ≤ n/2

sign(εi− εj) sign(ηi − ηj) sign(εk − εl +a) sign(ηk − ηl + a)︸ ︷︷ ︸
E=0

]

+

n∑

i ≤ n/2
j > n/2

[ n∑

k, l ≤ n/2
or k, l > n/2

sign(εi− εj −a) sign(ηi − ηj − a) sign(εk − εl) sign(ηk − ηl)︸ ︷︷ ︸
E=0

+

n∑

k ≤ n/2
l > n/2

sign(εi− εj −a) sign(ηi − ηj − a) sign(εk − εl −a) sign(ηk − ηl − a)︸ ︷︷ ︸
(∗1)

+

n∑

k > n/2
l ≤ n/2

sign(εi− εj −a) sign(ηi − ηj − a) sign(εk − εl +a) sign(ηk − ηl + a)︸ ︷︷ ︸
(∗2)

]

+

n∑

i > n/2
j ≤ n/2

[ n∑

k, l ≤ n/2
or k, l > n/2

sign(εi− εj +a) sign(ηi − ηj + a) sign(εk − εl) sign(ηk − ηl)︸ ︷︷ ︸
E=0

+

n∑

k ≤ n/2
l > n/2

sign(εi− εj +a) sign(ηi − ηj + a) sign(εk − εl −a) sign(ηk − ηl − a)︸ ︷︷ ︸
(∗2)

+

n∑

k > n/2
l ≤ n/2

sign(εi− εj +a) sign(ηi − ηj + a) sign(εk − εl +a) sign(ηk − ηl + a)︸ ︷︷ ︸
(∗3)

]

Since k 6= l 6= i 6= j and using the independence, some of these expectations are null.
The other terms are evaluated using Prop. B.3 and the independence, and we have:

E[(∗1)] =
(
1− 2φ

(
a√
2σ

))4

,(C.1)

E[(∗2)] =
(
1− 2φ

(
a√
2σ

))4

,(C.2)

E[(∗3)] =
(
1− 2φ

(
a√
2σ

))4

.(C.3)

(∗1) and (∗3) come from sums where i, j and k, l are in the two distinct subsets, so each

term occurs
(
n
2

(
n
2 − 1

))2
times. (∗2) appears twice and it comes from sums where i, j and

k, l are in the two distinct subsets, so this term occurs 2×
(
n
2

(
n
2 − 1

))2
times. Adding up

the expectations,

(C.4) E[(∗)] = n2(n− 2)2

4

(
1− 2φ

(
a√
2σ

))4

.

(∗∗) : i 6= j 6= k. In a similar fashion, we distinguish different cases based on the loca-
tion of the indexes in the step signal, resulting in several sums that we evaluate separately.
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(∗∗) =
n∑

i, j = 1
i 6= j

n∑

k = 1
k 6= i, j

sign(Xi −Xj) sign(Yi − Yj) sign(Xi −Xk) sign(Yi − Yk)

=
∑

i,j≤n/2

∑

k≤n/2

sign(εi− εj) sign(εi− εk) sign(ηi − ηj) sign(ηi − ηk)︸ ︷︷ ︸
(∗1)

+
∑

i,j≤n/2

∑

k>n/2

sign(εi− εj) sign(εi− εk −a) sign(ηi − ηj) sign(ηi − ηk − a)︸ ︷︷ ︸
(∗2)

+
∑

i≤n/2

∑

j>n/2

∑

k≤n/2

sign(εi− εj −a) sign(εi− εk) sign(ηi − ηj − a) sign(ηi − ηk)︸ ︷︷ ︸
(∗2)

+
∑

i≤n/2

∑

j>n/2

∑

k>n/2

sign(εi− εj −a) sign(εi− εk −a) sign(ηi − ηj − a) sign(ηi − ηk − a)︸ ︷︷ ︸
(∗4)

+
∑

i>n/2

∑

j≤n/2

∑

k≤n/2

sign(εi− εj +a) sign(εi− εk +a) sign(ηi − ηj + a) sign(ηi − ηk + a)︸ ︷︷ ︸
(∗5)

+
∑

i>n/2

∑

j≤n/2

∑

k>n/2

sign(εi− εj +a) sign(εi− εk) sign(ηi − ηj + a) sign(ηi − ηk)︸ ︷︷ ︸
(∗3)

+
∑

i,j>n/2

∑

k≤n/2

sign(εi− εj) sign(εi− εk +a) sign(ηi − ηj) sign(ηi − ηk + a)︸ ︷︷ ︸
(∗3)

+
∑

i,j>n/2

∑

k>n/2

sign(εi− εj) sign(εi− εk) sign(ηi − ηj) sign(ηi − ηk)︸ ︷︷ ︸
(∗1)

.

E[(∗1)] = 1
9 using Prop. B.3, and the expression appears in two sums where i, j, k are

in the same subset, resulting in 2× n
2

(
n
2 − 1

) (
n
2 − 2

)
= n(n−2)(n−4)

4 terms.

(∗2) is the product of two independent terms, so we first evaluate

E[sign(εi− εj) · sign(εi− εk −a)]

=

∫∫∫

R3
sign(εi− εj) sign(εi− εk −a)ϕ(εi)ϕ(εj)ϕ(εk) dεi dεj dεk

=

∫

εi∈R

(∫

εj∈R
sign(εi− εj)ϕ(εj dεj

∫

εk∈R
sign(εi− εk −a)ϕ(εk) dεk

)
ϕ(εi) dεi

=

∫

R

(2φ(εi)− 1) (2φ(εi−a)− 1)ϕ(εi) dεi with Prop. B.3,

=

∫

R

2φ(εi−a) (2φ(εi)− 1)ϕ(εi) dεi

since

∫

R

(2φ(εi)− 1)ϕ(εi) dεi = 0 with Prop. B.1,

= 4

∫

R

φ(εi−a)φ(εi)ϕ(εi) dεi−2

∫

R

φ(εi−a)ϕ(εi) dεi .

︸ ︷︷ ︸
=φ

(
−a√
2σ

)
with Prop. B.4
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In order to evaluate the left integral, we use the fact that a > 0 and φ is a non-
decreasing function (begin a CDF), so φ(εi−a) ≤ φ(εi). This leads to

∫

εi

φ(εi−a)φ(εi)ϕ(εi) dεi ≤
∫

εi

φ(εi)
2ϕ(εi) dεi =

1

3
, so

E[sign(εi− εj) sign(εi− εk −a)] ≤ 4

3
− 2φ

( −a√
2σ

)

≤ 1

3
+ (1− 2φ

( −a√
2σ

)
) =

1

3
+ (2φ

(
a√
2σ

)
− 1).

With the product of the two terms,

(C.5) E[(∗2)] ≤
(
1

3
+ (2φ

(
a√
2σ

)
− 1)

)2

,

and the term (∗2) appears 2× n
2
n
2

(
n
2 − 1

)
= n2(n−2)

4 times.

(∗3) is also a product of two independent terms, so in a similar way we first evaluate

E[sign(εi− εj) · sign(εi− εk +a)]

=

∫∫∫

R3
sign(εi− εj) sign(εi− εk +a)ϕ(εi)ϕ(εj)ϕ(εk) dεi dεj dεk

=

∫

εi∈R

(∫

εj∈R
sign(εi− εj)ϕ(εj dεj

∫

εk∈R
sign(εi− εk +a)ϕ(εk) dεk

)
ϕ(εi) dεi

=

∫

R

(2φ(εi)− 1) (2φ(εi+a)− 1)ϕ(εi) dεi using Prop. B.3,

=

∫

R

2φ(εi+a) (2φ(εi)− 1)ϕ(εi) dεi

since

∫

R

(2φ(εi)− 1)ϕ(εi) dεi = 0 with Prop. B.1,

= 4

∫

R

φ(εi+a)φ(εi)ϕ(εi) dεi−2

∫

R

φ(εi+a)ϕ(εi) dεi .

To evaluate this integral, we use that φ(ε) ≤ 1 for all ε ∈ R:

E[sign(εi− εj) sign(εi− εk +a)] ≤ 4

∫

R

φ(εi+a)ϕ(εi) dεi−2

∫

R

φ(εi+a)ϕ(εi) dεi = 2φ

(
a√
2σ

)
.

With the products of the two terms, this leads to

(C.6) E[(∗3)] ≤ 4φ

(
a√
2σ

)2

,

and the expression (∗3) arises 2× n
2
n
2

(
n
2 − 1

)
= n2(n−2)

4 times.

(∗4) is handled in the same manner:

E[sign(εi− εj −a) · sign(εi− εk −a)]
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=

∫∫∫

R3
sign(εi− εj −a) sign(εi− εk −a)ϕ(εi)ϕ(εj)ϕ(εk) dεi dεj dεk

=

∫

εi∈R

(∫

εj∈R
sign(εi− εj −a)ϕ(εj dεj

∫

εk∈R
sign(εi− εk −a)ϕ(εk) dεk

)
ϕ(εi) dεi

=

∫

R

(2φ(εi−a)− 1)2 ϕ(εi) dεi using Prop. B.3,

= 4

∫

R

φ(εi−a)2ϕ(εi) dεi−4

∫

R

φ(εi−a)ϕ(εi) dεi
︸ ︷︷ ︸

=φ
(

−a√
2σ

)

+

∫

R

ϕ(εi) dεi
︸ ︷︷ ︸

=1

.

Using φ(εi−a) ≤ φ(εi),
∫
R
φ(εi−a)2ϕ(εi) dεi ≤

∫
R
φ(εi)

2ϕ(εi) dεi =
1
3 , so

E[sign(εi− εj −a) · sign(εi− εk −a)] ≤ 4

3
− 4φ

( −a√
2σ

)
+ 1

≤ 7

3
− 4φ

( −a√
2σ

)
=

1

3
+ 2(1− 2φ

( −a√
2σ

)
) =

1

3
+ 2(2φ

(
a√
2σ

)
− 1).

Taking into account the two multiplied terms, we have

(C.7) E[(∗4)] ≤
(
1

3
+ 2(2φ

(
a√
2σ

)
− 1)

)2

.

Expression (∗4) refers to a sum where j and k are in the same subset, so the number of

terms is n
2
n
2

(
n
2 − 1

)
= n2(n−2)

8 .

Finally, (∗5) is evaluated as follows:

E[sign(εi− εj +a) · sign(εi− εk +a)] =

∫

R

(2φ(εi+a)− 1)2 ϕ(εi) dεi

= 4

∫

R

φ(εi+a)2ϕ(εi) dεi−4

∫

R

φ(εi+a)ϕ(εi) dεi+

∫

R

ϕ(εi) dεi .

Since φ(ε) ≤ 1 for all ε ∈ R, φ(ε)2 ≤ φ(ε), and

E[ sign (εi− εj +a) · sign(εi− εk +a)]

≤ 4

∫

R

φ(εi+a)ϕ(εi) dεi−4

∫

R

φ(εi+a)ϕ(εi) dεi+

∫

R

ϕ(εi) dεi
︸ ︷︷ ︸

=1

≤ 1.

This leads to

(C.8) E[(∗5)] ≤ 1.

As for (∗4), the number of terms here is n
2
n
2

(
n
2 − 1

)
= n2(n−2)

8 .
Using the results computed for (∗1) → (∗5), the expectation of (∗∗) is bounded by:

E[(∗∗)] ≤ n(n− 2)(n− 4)

4× 9
+

n2(n− 2)

4

[(
1

3
+ (2φ

(
a√
2σ

)
− 1)

)2

+ 4φ

(
a√
2σ

)2

+
1

2

(
1

3
+ 2(2φ

(
a√
2σ

)
− 1)

)2

+
1

2

]
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≤ n(n− 2)(n− 4)

4× 9
+

n2(n− 2)

4

[
2

3
+

4

3
(2φ

(
a√
2σ

)
− 1) + 3

(
2φ

(
a√
2σ

)
− 1

)2

+ 4φ

(
a√
2σ

)2
]
.

Recalling the first result on (∗) and adding it to (∗∗), we have:

E[τ2|H1] ≤
1

n2(n− 1)2

[
n2(n− 2)2

4

(
1− 2φ

(
a√
2σ

))4

+
n(n− 2)(n− 4)

4× 9

+
n2(n− 2)

4

(
2

3
+

4

3
(2φ

(
a√
2σ

)
− 1) + 3

(
2φ

(
a√
2σ

)
− 1

)2

+ 4φ

(
a√
2σ

)2
)]

≤ 1

(n− 1)2

[
(n− 2)2

4

(
1− 2φ

(
a√
2σ

))4

+
(n− 2)(n− 4)

4× 9n

+
(n− 2)

4

(
2

3
+

4

3
(2φ

(
a√
2σ

)
− 1) + 3

(
2φ

(
a√
2σ

)
− 1

)2

+ 4φ

(
a√
2σ

)2
)]

.

In the end, we can derive a bound for the variance of τ under the hypothesis H1:

Var[τ |H1] = E[τ2|H1]− E[τ |H1]
2

≤ (n− 2)2

4(n− 1)2

(
1− 2φ

(
a√
2σ

))4

+
1

(n− 1)2

[
(n− 2)(n− 4)

4× 9n

+
(n− 2)

4

(
2

3
+

4

3
(2φ

(
a√
2σ

)
− 1) + 3

(
2φ

(
a√
2σ

)
− 1

)2

+ 4φ

(
a√
2σ

)2
)]

− n2

4(n− 1)2

(
1− 2φ

(
a√
2σ

))4

≤ 1

(1− n)

(
1− 2φ

(
a√
2σ

))4

+
1

(n− 1)2

[
(n− 2)(n− 4)

4× 9n

+
(n− 2)

4

(
2

3
+

4

3
(2φ

(
a√
2σ

)
(a)− 1) + 3

(
2φ

(
a√
2σ

)
− 1

)2

+ 4φ

(
a√
2σ

)2
)]

.

This bound effectively shows the decrease rate of τ as the number of samples n increases,
hence concluding the proof.

Appendix D. Proof of Corollary 3.12.
Corollary 3.12 uses the results on the expectation and variance of τ under H1 to

describe the behavior of the associated z-score.
Proof. Under the hypothesis H1, due to the nature of Gaussian noise, ties are not an

issue. Hence, z is defined as z = τ√
2(2n+5)
9n(n−1)

. According to Prop. 3.10 and 3.11 that rule the

expectation and variance of τ under H1, the corollary is then immediate.

Appendix E. Proof of Theorem 3.13.
Theorem 3.13 controls the probability of miss-detection, as defined in condition (C2).
Proof. Chebyshev’s inequality states that ifX is a random variable with finite expected

value µ and non-zero variance σ2, then

(E.1) ∀k > 0,Pr(|X − µ| ≥ k) ≤ σ2

k2
.
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Using this inequality for Kendall’s z-score, we have

(E.2) Pr(z(X,Y ) ≤ E[z(X,Y )|H1]− k) ≤ Pr(|z(X,Y )− µ| ≥ k) ≤ Var[z(X,Y )|H1]

k2
.

Then with α = E[z(X,Y )|H1]− k,

(E.3) P(z(X,Y ) < α | H1) ≤
Var(z(X,Y )|H1)

(E[z(X,Y )|H1]− α)2
.

The bound in O
(
1
n

)
is then ensured by Corr. 3.12.

Appendix F. Proof of Proposition 4.2.
Proposition 4.2 rules the estimation error between the estimator σ̂2 and the true value

σ2.
Proof.
Following Proposition 4.1, the estimator variance is

(F.1) Var(σ̂2) =
σ4

N

(
β2 −

N − 3

N − 1

)
,

where β2 = E

[(
X−µ
σ

)4]
= µ4

σ4 is the kurtosis of the noise distribution and N is the number

of pixels in an image block.
If the block size N is large enough, we can use the Law of large numbers to assume

that σ̂2 follows a standard distribution, i.e.:

(F.2) σ̂2 ∼ N (σ2,Var(σ̂2)) ⇔ σ̂2−σ2 ∼ N (0,Var(σ̂2))

Based on the properties that if X follows a normal distribution N (0, σ2), then the
central absolute moments are given by the following formula:

(F.3) E [|X|p] = σp
2

p

2Γ
(
p+1
2

)

√
π

.

We can then deduce the expected value and the variance of the estimation error.

E

[∣∣σ̂2−σ2
∣∣

σ2

]
=

√
Var(σ̂2)

σ2
×

√
2√
π
, and(F.4)

Var

(∣∣σ̂2−σ2
∣∣

σ2

)
= E

[∣∣σ̂2−σ2
∣∣2

σ4

]
− E

[∣∣σ̂2−σ2
∣∣

σ2

]2

=
Var(σ̂2)

σ4
− Var(σ̂2)

σ4
× 2

π
=

Var(σ̂2)

σ4
×
(
1− 2

π

)
.(F.5)

Injecting the variance of the estimator σ̂2 of Proposition 4.1, this concludes the proof.
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