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†Centro de Matemática, Universidade do Minho, Portugal

Email: {jes,luis}@math.uminho.pt
‡I.R.I.T. (C.N.R.S. and University of Toulouse), France

Email: matthes@irit.fr
§Graduate School of Informatics, Kyoto University, Japan

Email: knak@kuis.kyoto-u.ac.jp

We study monadic translations of the call-by-name (cbn) and call-by-value (cbv) fragments

of the classical sequent calculus λµµ̃ due to Curien and Herbelin, and give modular and

syntactic proofs of strong normalisation. The target of the translations is a new

meta-language for classical logic, named monadic λµ. This language is a monadic reworking

of Parigot’s λµ-calculus, where the monadic binding is confined to commands, thus

integrating the monad with the classical features. Also, its µ-reduction rule is replaced by a

rule expressing the interaction between monadic binding and µ-abstraction.

Our monadic translations produce very tight simulations of the respective fragments of λµµ̃

within monadic λµ, with reduction steps of λµµ̃ being translated in a 1–1 fashion, except for

β steps, which require two steps. The monad of monadic λµ can be instantiated to the

continuations monad so as to ensure strict simulation of monadic λµ within simply typed

λ-calculus with β- and η-reduction. Through strict simulation, the strong normalisation of

simply typed λ-calculus is inherited by monadic λµ, and then by cbn and cbv λµµ̃, thus

reproving strong normalisation in an elementary syntactical way for these fragments of λµµ̃,

and establishing it for our new calculus. These results extend to second-order logic, with

polymorphic λ-calculus as the target, giving new strong normalisation results for classical

second-order logic in sequent calculus style.

CPS translations of cbn and cbv λµµ̃ with the strict simulation property are obtained by

composing our monadic translations with the continuations-monad instantiation. In an

appendix to the paper, we investigate several refinements of the continuations-monad

instantiation in order to obtain in a modular way improvements of the CPS translations

enjoying extra properties like simulation by cbv β-reduction or reduction of administrative

redexes at compile time.
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1. Introduction

The λµµ̃ calculus (Curien and Herbelin 2000) is a way to present classical sequent calculus

in an operationalised form as an extension of λ-calculus. Such a calculus is a prototypical

functional language with a control operator µ (introduced in Parigot (1992)), but where no

deterministic reduction strategy is singled out. It is thus important to consider confluent

fragments (where all reduction sequences lead to the same result, if any). Non-confluence of

λµµ̃ is due to a single critical pair, which can be resolved in two ways, which determine the

call-by-name (cbn) and call-by-value (cbv) fragments of λµµ̃ (Curien and Herbelin 2000).

In addition, it is desirable that, within each fragment, all reduction sequences starting

from typed expressions do indeed produce a result (that is, they end in a term that cannot

be reduced any further). This is the strong normalisation property.

In this paper we study embeddings of the cbn and cbv fragments of λµµ̃ into the simply

typed λ-calculus. These embeddings are continuation-passing style (CPS) translations and,

therefore, a kind of compilation. In addition, through these embeddings, we give a new

proof of strong normalisation for the mentioned fragments of λµµ̃. In fact, the embeddings

produce strict simulations, that is, each reduction step of the source calculus is mapped

to one or more steps of the target calculus, so that strong normalisation in the source

is reduced to strong normalisation in the target, where it holds and has been proved in

many different ways.

The interest in this new proof lies not only in its elementary character, but also in its

concepts. The CPS compilations that simulate the fragments of λµµ̃ are factored into a

monadic translation and a single instantiation mapping, the latter working for both cbn and

cbv. The monadic translation is, as advocated in Moggi (1991), a semantical interpretation

into a monadic meta-language, and this, in turn, is a typed calculus with a special type

former M, which stands for a monad and is an ingredient in the categorical semantics

originally put forward by Moggi. The monadic translation is thus parameterised by M.

Here we will only consider the instantiation of M to the so-called continuations monad.

This corresponds to interpreting M as double negation, which is a type transformation

of simple types that determines a mapping from the meta-language to the simply typed

λ-calculus.

The target of the monadic translation is a classical version of Moggi’s meta-language,

whose definition is a challenge and a major contribution of the present paper. This target

is a reworking of Parigot’s λµ-calculus, which we call monadic λµ-calculus, and denote by

λµM. It is not a routine amalgamation of λµ with the monadic meta-language. Monadic

λµ extends the category of commands of λµ-calculus by a monadic bind construct. Co-

variables are restricted to ‘monadic’ types, that is, types of the form MA (otherwise

some trivialisation happens – see Section 3.1). Unlike Parigot’s calculus, there is no µ-

reduction rule corresponding to implication elimination. Instead, the µ-rule now expresses

the interaction between bind and µ-abstraction. Nonetheless, the intuitionistic restriction

of λµM corresponds to Moggi’s monadic meta-language.

Unlike the original monadic meta-language (Moggi 1991), but in line with Hatcliff and

Danvy (1994) and Sabry and Wadler (1997), our classical meta-language is equipped with

reduction rules. The cbn and cbv monadic translations produce strict simulations of the
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Fig. 1. Overview

respective sources by these reduction rules. On the other hand, the instantiation from

λµM into the simply typed λ-calculus given by the continuations monad is also a strict

simulation. In the target, besides the η-reduction rule, we just need Plotkin’s cbv β-rule

(βv) for the cbv restriction, but the full β-rule for the full calculus. Therefore, both cbn

and cbv λµµ̃ are strongly normalising: this can be seen either by observing that λµM has

previously been proved to be strongly normalising through strict simulation in simply

typed λ-calculus or by composing monadic translations with the instantiation mapping

to form direct CPS compilations into λ-calculus with the strict simulation property. See

Figure 1 for an overview of the systems and translations.

All the systems considered in this paper can be straightforwardly extended to cover

second-order logic, and the simulation results can be extended correspondingly. This

demonstrates that our technique uses minimal meta-theoretic strength, while it can

establish strong normalisation in cases where no arithmetic proofs are possible. This is

because we are content with a simulation result, thereby inheriting the strong normalisation

property from second-order λ-calculus, which is widely known and has been established

using a multitude of distinct proof strategies.

In an appendix to the paper, we describe some technical refinements to the CPS

translations of cbn and cbv λµµ̃ we have given. The questions of ‘administrative reductions’

and the indifference property (Plotkin 1975) are analysed. We propose two variants of

our CPS translations: one that performs administrative reductions at compile time and

another enjoying strict simulation by βv only. The main point is that the modular approach

of having decomposition through λµM is retained since the refinements are confined to

the continuations-monad instantiation, and the refined CPS translations are obtained by

composition.

1.1. Structure of the paper

Section 2 provides a brief summary of the relevant features of λµµ̃. Section 3 defines λµM

and shows the connection with Moggi’s meta-language. Section 4 defines the monadic

translations of cbn and cbv λµµ̃ into λµM and proves strict simulation. Section 5 defines

the continuations-monad instantiation and concludes the proof of strong normalisation

for cbn and cbv λµµ̃. Section 6 extends the results to systems with second-order universal

quantification, and Section 7 discusses related and future work. Technical refinements

concerning CPS translations are presented in Appendix A.



1.2. Notation

Simple types, ranged over by A, B, C , are generated from type variables X by ar-

row/implication, written A ⊃ B. Monads are denoted M.

Contexts Γ are finite sets of declarations (x : A) with x a variable, while co-contexts

∆ are finite sets of declarations (a : A), with a a co-variable. In both cases, there is the

usual requirement of consistency, that is, the uniqueness of declaration of (co-)variables,

which is implicitly enforced in the sense that, for example, when writing the enlarged

context Γ, x : A, we assume that x is not declared in Γ. We write Γ,Γ′ for the union of

the contexts Γ and Γ′, again implicitly assuming that the declarations do not have any

variables in common. If F is some type operation, its extension to contexts is

FΓ = {(x : FA)|(x : A) ∈ Γ} ,

and similarly for co-contexts ∆. An immediate benefit of this notation is its ‘composition-

ality’: if two operations on types, F and G, are considered, then F(GΓ) = (F ◦ G)Γ, for

F ◦ G the composition of F and G. The same holds trivially for co-contexts ∆.

We use λ[R1 . . .] to denote λ-calculus with reduction rules R1, . . . Thus, for clarity or

emphasis, we may write λ[β] to denote ordinary λ-calculus using the usual β-reduction

rule:

(β) (λx.t)s → [s/x]t .

Plotkin’s cbv restriction

(βv) (λx.t)V → [V/x]t for V a value (that is, not an application)

yields the corresponding cbv λ-calculus λ[βv]. We sometimes need the even more restricted

(βvar) (λx.t)y → [y/x]t for y /∈ t (that is, y not free in t) .

The η-reduction rule is

(η) λx.tx → t for x /∈ t .

Throughout the paper, when reduction rules are given (the base reduction rules), →
stands for the term closure of the base reduction rules, that is, reduction by →
may happen by applying one of the base reduction rules at arbitrary depth in the

expression, including under binders. When → (possibly with some decoration) stands

for a reduction relation, →+ denotes its transitive and →∗ its reflexive and transitive

closure.

2. Background

In this section we recall Curien and Herbelin’s λµµ̃-calculus (Curien and Herbelin

2000).



Γ, x : A ⊢ x : A|∆ Γ|a : A ⊢ a : A,∆

Γ, x : A ⊢ t : B|∆

Γ ⊢ λx.t : A ⊃ B|∆

Γ ⊢ u : A|∆ Γ|e : B ⊢ ∆

Γ|u :: e : A ⊃ B ⊢ ∆

c : (Γ ⊢ a : A,∆)

Γ ⊢ µa.c : A|∆

c : (Γ, x : A ⊢ ∆)

Γ|µ̃x.c : A ⊢ ∆

Γ ⊢ t : A|∆ Γ|e : A ⊢ ∆

〈t|e〉 : (Γ ⊢ ∆)

Fig. 2. Typing rules of λµµ̃

(β) 〈λx.t|u :: e〉 → 〈u|µ̃x.〈t|e〉〉

(π) 〈µa.c|e〉 → [e/a]c

(σ) 〈t|µ̃x.c〉 → [t/x]c

(ηµ̃) µ̃x.〈x|e〉 → e, if x /∈ e

(ηµ) µa.〈t|a〉 → t, if a /∈ t

Fig. 3. Reduction rules of λµµ̃

Expressions are values, terms, evaluation contexts, co-terms and commands that are

defined by the following grammar:

V ::= x | λx.t E ::= a | u :: e c ::= 〈t|e〉
t, u ::= V | µa.c e ::= E | µ̃x.c .

Expressions are ranged over by T , T ′. Variables (respectively, co-variables) are ranged

over by v, w, x, y, z (respectively, a, b). We assume disjoint countably infinite supplies of

variables, and they may also be denoted by using decorations of the base symbols (this

will never be made explicit in the rest of the paper).

There is one kind of sequent per proper syntactic class (terms, co-terms and commands):

Γ ⊢ t : A|∆ Γ|e : A ⊢ ∆ c : (Γ ⊢ ∆)

where Γ and ∆ are contexts and co-contexts, respectively, as described by the notational

conventions in the previous section. Typing rules are given in Figure 2.

There are 6 substitution operations altogether:

[t/x]c [t/x]u [t/x]e [e/a]c [e/a]u [e/a]e′ .

We consider the 5 reduction rules in Figure 3, where we reuse the name β of λ-calculus (rule

names are considered relative to some term system). These are the reductions considered

in Polonovski (2004), but the β-rule for the subtraction connective is not included.

However, throughout the paper, we will only consider fragments where the critical

pair rooted in 〈µa.c|µ̃x.c′〉 between the rules σ and π is avoided. Following Curien and

Herbelin (2000), the π rule is replaced in the cbn fragment λµµ̃n of λµµ̃ by its restriction



to evaluation contexts:

(πn) 〈µa.c|E〉 → [E/a]c .

This is equivalent to saying that σ has priority over π. (Note that this is not the cbn

restriction λµµ̃T of Curien and Herbelin (2000) with a proper sub-syntax.)

Dually, in the cbv fragment λµµ̃v of λµµ̃, the σ rule is replaced by its restriction to

values:

(σv) 〈V |µ̃x.c〉 → [V/x]c

In this case, π has priority over σ. In both fragments, the only critical pairs are trivial

ones involving ηµ̃ and ηµ, hence λµµ̃n and λµµ̃v are confluent.

3. Monadic λµ-calculus

In this section we define the monadic λµ-calculus λµM, which is a monadic reworking of

Parigot’s λµ-calculus. Its intuitionistic fragment is discussed in Section 3.2.

3.1. The calculus

3.1.1. Expressions. Variables (respectively, co-variables) are ranged over by v, w, x, y, z

(respectively, a, b) in the same way as for λµµ̃. Expressions are given by the following

grammar†:

(values) V ::= x | λx.t
(terms) r, s, t, u ::= V | tu | µa.c | ηt

(commands) c ::= at | bind(t, x.c) .

Note that a bind, and one of its sub-expressions, is a command.

Substitutions [s/x]t and [s/x]c are defined in the obvious way. The following derived

syntactic classes will be useful:

(base contexts) L ::= a[ ] | bind([ ], x.c)

(cbn contexts) C ::= L | bind(η[ ], x.c)

where [ ] represents the ‘hole’ of the context‡. If t is a term, C[t] denotes the command

obtained by filling the hole in C with t, and is defined as at (respectively, bind(t, x.c)

or bind(ηt, x.c)) if C is a[ ] (respectively, bind([ ], x.c) or bind(η[ ], x.c)). Note that every

command c has the form L[t], and L and t are uniquely determined by c.

In the sequent calculus λµµ̃, we have substitution of co-terms for co-variables. We

define, in the natural deduction system λµM, substitution of cbn contexts for co-variables

in terms of ‘structural substitution’. Structural substitution [C/a]t and [C/a]c is defined

† In the notation of Moggi (1991), bind(t, x.c) and ηt are written let x = t in c and [t], respectively.
‡ The terminology ‘cbn context’ is related to the monadic translations to be introduced later in the paper. The

form bind(η[ ], x.c) is used in the cbn translation only.



Γ, x : A ⊢ x : A|∆
Ax

Γ, x : A ⊢ t : B|∆

Γ ⊢ λx.t : A ⊃ B|∆
Intro

Γ ⊢ t : A ⊃ B|∆ Γ ⊢ u : A|∆

Γ ⊢ tu : B|∆
Elim

Γ ⊢ t : MA|a : MA,∆

at : (Γ ⊢ a : MA,∆)
Pass

c : (Γ ⊢ a : MA,∆)

Γ ⊢ µa.c : MA|∆
Act

Γ ⊢ s : A|∆

Γ ⊢ ηs : MA|∆
Unit

Γ ⊢ r : MA|∆ c : (Γ, x : A ⊢ ∆)

bind(r, x.c) : (Γ ⊢ ∆)
Mult

Fig. 4. Typing rules of λµM

by replacing every binding-equivalent subexpression au of t or c, respectively, by C[u],

and this has to be done recursively. The most important case is

[C/a](at) = C
[

[C/a]t
]

.

All the other cases are homomorphic and therefore omitted. Note that [b[ ]/a]t = [b/a]t

and [b[ ]/a]c = [b/a]c, provided substitution of co-variables for co-variables is defined in

the obvious way.

It will be convenient to extend structural substitution of C for a to cbn contexts as

well, that is, to define the cbn context [C/a]C ′ in the obvious way. In particular,

[C/a](a[ ]) = C .

We also assume we have the corresponding definition for the cbn context [s/x]C .

3.1.2. Typing rules. Types are given by

A,B ::= X |A ⊃ B |MA .

Types of the form MA are called monadic types. The typing rules are given in Figure 4.

There are two kinds of sequents: Γ ⊢ t : A|∆ and c : (Γ ⊢ ∆). In both cases, ∆ is a

consistent set of declarations a : MA, and thus with monadic types. Apart from the last

two rules, these are the rules for Parigot’s λµ, but with the restriction of co-variables to

monadic types†.

The rule for η is just as expected for the unit of a monad, while the typing rule for bind,

which is named after monad multiplication, should be contrasted with the usual rule in

the framework of λ-calculus:

Γ ⊢ r : MA Γ, x : A ⊢ t : MB

Γ ⊢ bind(r, x.t) : MB
.

† If the restriction on the type of co-variables were not imposed, and accordingly the typing rules Pass and

Act could act with any type instead of just monadic types, we could build the term µa.bind(t, x.ax) of type A

from any term t of type MA. This would represent a trivialisation of the system as a monadic language. We

are grateful to Dan Licata for pointing this out.



(β) (λx.t)s → [s/x]t

(σ) bind(ηs, x.c) → [s/x]c

(π) L[µa.c] → [L/a]c

(ηµ) µa.at → t (a /∈ t)

(ηbind) bind(t, x.a(ηx)) → at

Fig. 5. Reduction rules of λµM

Instead of a term t of monadic type MB, we now have a command c where no type can

be assigned. Still, we can recover binding for terms by setting

bind(r, x.t) := µa.bind(r, x.at)

for some a /∈ r, t and even obtain the expected typing behaviour. For a more detailed

analysis of the intuitionistic case, see Section 3.2.

The following typing rules for structural substitution are admissible where x /∈ C:

Γ ⊢ t : B|∆, a : MA C[x] : (Γ, x : MA ⊢ ∆)

Γ ⊢ [C/a]t : B|∆

c : (Γ ⊢ ∆, a : MA) C[x] : (Γ, x : MA ⊢ ∆)

[C/a]c : (Γ ⊢ ∆)
.

3.1.3. Reduction rules. The base reduction rules of λµM are shown in Figure 5. Thus, as

in the λµµ̃ case, rule π causes substitution for co-variables, while σ causes substitution for

variables.

Rule π uses the derived syntactic class of base contexts and is therefore a scheme that

stands for the following two rules:

(πbind) bind(µa.c, x.c′) → [bind([ ], x.c′)/a]c

(πcovar) b(µa.c) → [b/a]c .

Counting these two rules separately, we can see that three rules are inherited from ordinary

λµ (β, ‘renaming’ πcovar and ηµ), and one rule from the ordinary monadic meta-language

(σ). But two rules are original: πbind and ηbind. Rule πbind expresses the interaction of bind

with µ-abstraction. Note that the left-hand side of πbind fits well with the restriction of

co-variables to monadic type: if µa.c is well typed, then it is typed with a monadic type,

which is required for the principal (first) argument of bind in order to type the whole

expression.

A particular case of πbind is

bind(bind(r, x.t), y.c) = bind(µa.bind(r, x.at), y.c) → bind(r, x.bind(t, y.c))

for a /∈ r, t. This is an ‘associativity’ rule, and it is formally similar to the ‘associativity’

rule for bind found in the framework of λ-calculus, and recalled in Section 3.2 below.

Rule ηbind will be needed for the simulation of λµµ̃v by the cbv monadic translation.



In the target of the monadic translations or in the source of some continuations-monad

instantiations to be introduced below, the reduction rules of λµM are used in a variety of

restricted forms:

— There is the restriction of β to variable renaming:

(βvar) (λx.t)y → [y/x]t (y /∈ t) .

— There are the cbv restrictions of the rules β, σ and ηµ:

(βv) (λx.t)V → [V/x]t

(σv) bind(ηV , x.c) → [V/x]c

(ηµv) µa.a(ηV ) → ηV (a /∈ V ) .

— There are also cbn versions of the same rules, whose definition uses a λµM-term N

that is not an application:

(βn) (λx.t)N → [N/x]t

(σn) bind(ηN, x.c) → [N/x]c

(ηµn) µa.aN → N (a /∈ N) .

Note that the cbn versions properly contain the respective cbv versions. It is obvious that

none of the seven restricted versions of the λµM reduction rules are closed under term

substitution, that is, we do not have T →ρ T ′ implies [t/x]T →ρ [t/x]T ′, where →ρ

stands for any of the above restricted reductions. This is because variables, values and

non-applications are evidently not closed under term substitution. However, all the rules

of Figure 5 satisfy closure under term substitution, as well as a final restriction of σ that

we will also consider:

(σC) bind(ηs, x.C[x]) → C[s] (x /∈ C) .

It goes without saying that λµM enjoys subject reduction: types of terms and commands

are preserved under → (the term closure of the base reduction rules that should more

precisely be called the ‘closure under all expression constructors’). There are five critical

pairs between the reduction rules, and it is not surprising that they all appear in connection

with either the ηµ or ηbind rule. Two such pairs involve πcovar and ηµ (in one the root of

the term is a πcovar-redex and in the other the root of the term is a ηµ-redex), but they

are both trivial. The critical pair between πbind and ηµ and the one between ηbind and σ

are also trivial. The remaining critical pair is between ηbind and πbind: bind(µa.c, x.b(ηx))

reduces to both

(i) [bind([ ], x.b(ηx))/a]c

(ii) b(µa.c),

but these terms both reduce to [b/a]c: (ii) by one πcovar step and (i) with zero or more

ηbind steps (a result that can be proved together with its analogue for terms). Since all

critical pairs are joinable, λµM enjoys local confluence.



3.2. The intuitionistic subsystem and relation with Moggi’s meta-language

We identify the intuitionistic fragment and an intuitionistic subsystem of monadic λµ, and

show that the latter is essentially Moggi’s meta-language, the only difference being in the

reduction rule for the associativity of binds.

We start with two isomorphic presentations of the intuitionistic fragment. Let ∗ be a

fixed co-variable. The intuitionistic terms and commands are generated by the grammar

(Terms) r, s, t, u ::= x | λx.t | tu | µ ∗ .c| ηt
(Commands) c ::= ∗t | bind(t, x.c) .

Terms have no free occurrences of co-variables and each command has exactly one free

occurrence of ∗. Sequents are restricted to have exactly one formula on the right-hand side.

The typing and reduction rules of the intuitionistic fragment are the expected restrictions

to the typing and reduction rules of λµM, so we will not spell them out here. Instead, we

will develop an isomorphic variant of the intuitionistic fragment, where ∗ and the µ-binder

are completely avoided and replaced by two coercion constructs: one from commands to

terms and the other from terms to commands. The grammar of expressions becomes:

(Terms) r, s, t, u ::= x | λx.t | tu | {c}| ηt
(Commands) c ::= ptq | bind(t, x.c) .

The two forms of judgment are Γ ⊢ t : A, and c : (Γ ⊢ MA). Note that these simplified

judgment forms reflect both the restriction to only one formula on the right-hand sides

and the complete absence of co-variables.

The typing rules Pass and Act are now

Γ ⊢ t : MA
ptq : (Γ ⊢ MA)

Pass
c : (Γ ⊢ MA)

Γ ⊢ {c} : MA
Act.

We omit the other typing rules.

The β and σ reduction rules are the same as for λµM, and the other rules are now

(πbind) bind({c}, x.c′) → (c@x.c′)

(πp.q) p{c}q → c

(η{.}) {ptq} → t

(ηbind) bind(t, x.pηxq) → ptq

where the operation @ is the isomorphic counterpart of the substitution of base contexts

in the bind form for ∗, and is given by

(bind(t, y.c′)@x.c) = bind(t, y.(c′@x.c))

(ptq@x.c) = bind(t, x.c) .

We will now consider a simplification of this isomorphic variant of the intuitionistic

fragment of λµM. We call it the intuitionistic subsystem of λµM. If we do not write the

coercions {.} and p.q in the isomorphic fragment, we can merge terms and commands into

the grammar

(Terms) r, s, t, u ::= x | λx.t | tu | bind(t, x.u)| ηt ,



and have only the sequent form Γ ⊢ t : A. This causes rules Pass and Act to collapse,

gives the usual rule for typing bind in the framework of λ-calculus (see Section 3.1) and

leaves the other typing rules unchanged.

These terms and typing rules correspond to those of Moggi’s monadic meta-language

(Moggi 1991). With this term grammar, rules πp.q and η{.} become identities, just as in the

case c = ptq of πbind, and we are left with the following rules:

(β) (λx.t)s → [s/x]t

(σ) bind(ηs, x.t) → [s/x]t

(πbind) bind(bind(t, x.u), y.s) → bind(t, x.(u@y.s))

(ηbind) bind(t, x.ηx) → t

where @ is the same as for the isomorphic variant (recall that commands became terms):

(bind(t, y.s)@x.u) = bind(t, y.(s@x.u))

(t@x.u) = bind(t, x.u) otherwise .

The difference between these rules and the usual reduction rules for Moggi’s monadic

meta-language, as in Hatcliff and Danvy (1994) and Sabry and Wadler (1997), is rule

πbind. There the rule used is

(assoc) bind(bind(t, x.u), y.s) → bind(t, x.bind(u, y.s)) .

But t →πbind
u implies t →+

assoc u since bind(u, y.s) →∗
assoc (u@y.s), so this intuitionistic

subsystem of λµM corresponds to Moggi’s monadic meta-language with an eager version

of assoc.

4. Monadic translation

In this section, we give two translations of λµµ̃ into λµM. The first, which is denoted by

(.)n, allows us to simulate every reduction step of λµµ̃n by at least one reduction step of

λµM (thus, λµµ̃n is strictly simulated by λµM). The second, which is denoted by (.)v, gives

strict simulation of λµµ̃v within λµM. Hence, they are monadic cbn and cbv translations,

respectively, of λµµ̃.

4.1. Call-by-name translation

In this section we define and study translation (.)n. To simplify the notation, we will omit

the subscript n throughout this section, including for the auxiliary (.)†
n notion.

A type A of λµµ̃ is translated to A of λµM defined by recursion on A:

X = MX and A ⊃ B = M(A ⊃ B) .

We use A† to denote the type A without the outermost application of M, that is, we have

X† = X and (A ⊃ B)† = A ⊃ B ,

so A = MA†.



Γ ⊢ t : A|∆

Γ ⊢ t : A|∆

c : (Γ ⊢ ∆)

c : (Γ ⊢ ∆)

Γ|e : A ⊢ ∆

e[y] : (Γ, y : A ⊢ ∆)

Fig. 6. Admissible typing rules for the monadic cbn translation of λµµ̃

y = y

λy.t = η(λy.t)

µa.c = µa.c

a = a[ ]

u :: e = bind([ ], f.bind(ηu, z.e[fz]))

µ̃y.c = bind(η[ ], y.c)

〈t|e〉 = e[t]

Fig. 7. Monadic cbn translation of λµµ̃

Any term t of λµµ̃ is translated into a term t of λµM, any command c of λµµ̃ into a

command c and any co-term e of λµµ̃ into a cbn context e of λµM. This is done so that the

typing rules in Figure 6 are admissible, where Γ and ∆ follow the notational conventions

of Section 1 with type operation F := (.) (note that A is a monadic type, as required for

co-contexts in λµM).

The definitions are given in Figure 7, where it is understood that f and z are fresh

variable names (from now on we will assume that f also denotes a variable of λµM). We

will use y to denote all variables from the source calculus λµµ̃ (they will be translated

into variables of type A for some A). Proving the admissibility of the rules of Figure 6 is

routine: through e[t] = [t/y](e[y]) for y /∈ e, we make use of the following admissible rule

for term substitution in commands in λµM:

c : (Γ, x : A ⊢ ∆) Γ ⊢ t : A|∆

[t/x]c : (Γ ⊢ ∆)
.

Note that E is a base context, which will be important for simulation of π. The σ-redex

in u :: e is needed for the simulation of β, which is a rule that generates but does not

execute a substitution.

We can immediately see that the free variables and the free co-variables agree between

T and T for any expression T (the hole [ ] in e does not count as a variable). In general,

t is a subterm of e[t] that does not occur below a binder.

Lemma 4.1. The translation satisfies:

(1) [t/y]T = [t/y]T .

(2) [e/a]T = [e/a]T .

Proof.

(1) The proof is by induction on T .

(2) The proof is by induction on T :



— Case T = a:

[e/a]a = e

= [e/a](a[ ])

= [e/a]a .

The second equation follows by definition of structural substitution on the

context a[ ].

Theorem 4.2 (strict simulation).

(1) If T → T ′ in λµµ̃n, then T →+ T ′ in λµM, where T , T ′ are either two terms or two

commands.

(2) If e → e′ in λµµ̃n, then e[t] →+ e′[t] in λµM for any t ∈ λµµ̃.

For this simulation, we do not need rule ηbind in λµM. The rules β and ηµ could have been

restricted to the forms βvar and ηµn, respectively. Also, we do not need full σ, just the

restrictions σn and σC.

Proof. For the proof, we will strengthen statement (2) so that e[u] →+ e′[u] for any

u ∈ λµM. This is required because in the definition of u :: e, a term outside the range

of (.) is filled into the hole in e. Statement (1) and the strengthened (2) are proved by

simultaneous induction on the appropriate T → T ′. We will just show the base cases in

detail; the term closure is then evident since t is a subterm of e[t]. To justify the restriction

of ηµ steps to their cbn form in the proof and the restriction to σn steps for the simulation

of σ, note that t is not an application for any t ∈ λµµ̃.

— Case β: 〈λy.t|u :: e〉 → 〈u|µ̃y.〈t|e〉〉:

LHS = bind(η(λy.t), f.bind(ηu, z.e[fz]))

→σv
bind(ηu, z.e[(λy.t)z])

→βvar
bind(ηu, z.e[[z/y]t])

= bind(ηu, y.e[t])

= RHS.

— Case σ: 〈t|µ̃y.c〉 → [t/y]c:

LHS = bind(ηt, y.c)

→σn
[t/y]c

∗
= [t/y]c

= RHS,

where the marked equality comes from Lemma 4.1 (1)†.

† Lemma 4.1 (1) refers to item (1) in the statement of Lemma 4.1 – this kind of cross-reference will be used

throughout the paper.



— Case πn: 〈µa.c|E〉 → [E/a]c:

LHS = E[µa.c]

→π [E/a]c
∗
= [E/a]c

= RHS,

where the marked equality comes from Lemma 4.1 (2). Recall that E is a base context;

otherwise the π rule of λµM would not have been applicable.

— Case ηµ̃: µ̃y.〈y|e〉 → e, with y /∈ e:

LHS[u] = bind(ηu, y.e[y])

→σC
[u/y](e[y])

∗
= e[u]

= RHS[u],

where the σC step and the marked equality use the fact that y /∈ e.

— Case ηµ: µa.〈t|a〉 → t, with a /∈ t:

Hence, we also have a /∈ t, so

LHS = µa.at

→ηµn
t

= RHS .

Remark 4.3. Note the structural ‘tightness’ of the simulation. Every reduction step of the

form σ, πn, ηµ or ηµ̃ in λµµ̃n corresponds to exactly one step in λµM of the form σn, π, ηµn

or σC, respectively, and only the β steps of λµµ̃ are decomposed into two steps of λµM,

and these are restricted to the σv and βvar forms†.

Remark 4.4. Strict simulation is satisfied because the monadic translation never erases

subexpressions. More precisely, the translation satisfies the following Subexpression Prop-

erty:

(i) for T ′ a term or command, if T ′ is a subexpression of T , then T ′ is a subexpression

of T (and of T [t], for any t, when T is a co-term);

(ii) if co-term e is a subexpression of T , then, for some t′, we have e[t′] is a subexpression

of T (and of T [t], for any t, when T is a co-term).

4.2. Call-by-value translation

In this section we define and study the translation (.)v. To simplify the notation, the

subscript v will be omitted throughout this section.

† In the intuitionistic case of Espı́rito Santo et al. (2009b), the β-rule of the monadic calculus is involved in

the simulation of every step, and the π steps in the source are decomposed into several reduction steps in the

target.



V = ηV † v† = v

µa.c = µa.c (λv.t)† = λv.t

a = a[ ] 〈t|e〉 = e[t]

u :: e = bind([ ], f.bind(u, w.e[fw]))

µ̃v.c = bind([ ], v.c)

Fig. 8. Monadic cbv translation of λµµ̃

Γ ⊢ t : A|∆

Γ† ⊢ t : A|∆

Γ ⊢ V : A|∆

Γ† ⊢ V † : A†|∆

c : (Γ ⊢ ∆)

c : (Γ† ⊢ ∆)

Γ|e : A ⊢ ∆

e[y] : (Γ†, y : A ⊢ ∆)

Fig. 9. Admissible typing rules for the monadic cbv translation of λµµ̃

The cbv translation of types is the same as the cbn translation, apart from implication:

(A ⊃ B) = M(A† ⊃ B) .

So (A ⊃ B)† is defined as (A† ⊃ B). The monadic cbv translation on expressions is defined

in Figure 8 so that the typing rules in Figure 9 are admissible, where Γ† and ∆ again

follow the notational pattern set up in Section 1.

Note that e is always a base context of λµM, and that V † is a value.

It can be seen that there are only minimal differences between the monadic translations

for cbn (in the previous section) and cbv for the part that is not already dictated by

the λ-calculus part within λµµ̃. That part, namely the rules for types, values and typing

of terms uses the standard ones in monadic translations. The new elements are also, for

the most part, treated in the same way: µ-abstraction is translated homomorphically;

commands are translated by plugging the term translation into a context obtained from

co-term translation; and the co-variables are translated in the most obvious way. The

remaining clauses for u :: e and µ̃-abstraction are identical for both translations, except

for the extra uses of the unit η of the monad, which is, however, not applied throughout,

so the cbn translation of u :: e still remains a base context (this is clearly already dictated

by typing considerations since the type translation leaves no room once values have been

treated in the standard way).

We will use v to denote all variables from the source calculus λµµ̃ (and they will be

translated into variables of type A† for some A).

Lemma 4.5. The translation satisfies:

(1) [V/v]T = [V †/v]T .

(2) [e/a]T = [e/a]T .

Proof. The proof is by induction on T .

Theorem 4.6 (strict simulation).

(1) If T → T ′ in λµµ̃v, then T →+ T ′ in λµM, where T , T ′ are either two terms or two

commands.



(2) If e → e′ in λµµ̃v, then e[t] →+ e′[t] in λµM for any t ∈ λµµ̃.

The reductions in λµM only use β, σ and ηµ in their restricted forms βvar, σv and ηµv,

respectively.

Proof. The proof is similar to the cbn case. Statement (2) is again strengthened, so that

e[u] →+ e′[u] for any u ∈ λµM. Term closure is again obvious since t is a subterm of e[t],

so we will just show the base cases:

— Case β: 〈λv.t|u :: e〉 → 〈u|µ̃v.〈t|e〉〉:

LHS = bind(η(λv.t), f.bind(u, w.e[fw]))

→σv
bind(u, w.e[(λv.t)w])

→βvar
bind(u, w.e[[w/v]t])

= bind(u, v.e[t])

= RHS .

— Case π: 〈µa.c|e〉 → [e/a]c:

LHS = e[µa.c]

→π [e/a]c

= RHS ,

where the last equality comes from Lemma 4.5 (2).

— Case σv: 〈V |µ̃v.c〉 → [V/v]c:

LHS = bind(ηV †, v.c)

→σv
[V †/v]c

= RHS ,

where the last equality comes from Lemma 4.5 (1).

— Case ηµ: µa.〈t|a〉 → t, with a 6∈ t:

LHS = µa.at

→ηµ RHS .

We now argue that the restriction of ηµ to ηµv is sufficient in the target system. If t

is a value V , then t = ηV †, and V † is again a value, so the displayed reduction is a

ηµv-reduction step. If t = µb.c, then the ηµ-reduction µa.〈t|a〉 → t is also a π-reduction

(this is one of the two trivial critical pairs between ηµ and π) and can be considered

as such for the purpose of this proof.

— Case ηµ̃: µ̃v.〈v|e〉 → e, with v 6∈ e:



We have LHS[u] = bind(u, v.e[ηv]). If e is a co-variable a, we have

bind(u, v.e[ηv]) = bind(u, v.a(ηv))

→ηbind
au

= RHS[u] .

Otherwise, e is of the form bind([], w.c), so we have

bind(u, v.e[ηv]) = bind(u, v.bind(ηv, w.c))

→σv
bind(u, w.c)

= e[u]

= RHS[u] .

Remark 4.7. Rule ηbind is now required. As in the cbn case, the simulation is quite ‘tight’.

Every reduction step of the form σv, π, ηµ or ηµ̃ in λµµ̃v corresponds to exactly one step

in λµM of the form σv, π, ηµv or π, or ηbind or σv, respectively, and, again, only the β steps

of λµµ̃ are decomposed into two steps of λµM with the restricted forms σv and βvar.

Remark 4.8. The cbv monadic translation satisfies the same Subexpression Property as

the cbn translation.

5. Continuations-monad instantiation

The monad operation M of λµM can be instantiated to be double negation, which yields

the well-known continuations monad. This defines a translation into the λ-calculus with

the strict simulation property. Given that the monadic translations of Section 4 also enjoy

strict simulation, strong normalisation for cbn and cbv λµµ̃ will follow. Composition of

instantiation with the monadic translations will yield cbn and cbv CPS translations of

λµµ̃, whose recursive definition is given at the end of the present section.

5.1. Instantiation and strong normalisation

We define a translation from λµM into λ[βη] – see Section 1 for the meaning of this

notation, and for the definition of simple types. We also write A ⊃ B for function types

in λ[βη], and, as usual, write ¬A for A ⊃ ⊥ for some dedicated type variable ⊥ that will

never be instantiated. Finally, recall that λ-calculus has the grammar t ::= x | λx.t | tu,
and that its only typing rules are Ax, Intro and Elim from Figure 4, without the ∆ parts.

A translation of the terms and commands of λµM into terms of λ-calculus necessarily

has to associate both variables and co-variables of λµM with variables of the λ-calculus.

The obvious and usual choice for a variable x of λµM is to associate it with the same

variable in λ-calculus, thereby assuming that the variables of λµM are included in the

variable supply of the λ-calculus. For the co-variables, the traditional way would be to

associate a ‘fresh’ variable ka of λ-calculus with every co-variable a. Given an expression

T of λµM, there would always be enough ‘fresh’ variables when defining the translation

of T , but the ka notion rather suggests we should have one fixed association that works



x• = x (L[t])• = L•[t•]

(λx.t)• = λx.t•

(tu)• = t•u• (a[ ])• = [ ]a

(µa.c)• = λa.c•
bind([ ], x.c)• = [ ](λx.c•)

(ηt)• = λk.kt•

Fig. 10. Continuations-monad instantiation

for all source expressions. We will adopt this uniform choice, but will go one step further

and assume that the co-variables of λµM (which are those of λµµ̃) are also included in the

variable supply of the λ-calculus, so we can associate the co-variable a with the λ-calculus

variable a. This assumption simplifies the notation: in particular, in the extension of type

operations to co-contexts ∆ (see Section 1, where the extension works the same on Γ and

∆), and because ka is just a†.

The translation of types is defined as follows:

X• = X (A ⊃ B)• = A• ⊃ B• (MA)• = ¬¬A• .

The translation of expressions is defined in Figure 10. Note the mapping of co-variables

a in the source calculus λµM into ordinary variables of λ-calculus, which is done silently

in the cases for µa.c and a[ ]. All expressions (terms and commands) of λµM are translated

into λ-terms. The definition of c• is well formed since every command c can be uniquely

presented as L[t].

We define L•− to be the argument to [ ] of the context L•, that is,

(a[ ])•− = a

bind([ ], x.c)•− = λx.c• ,

so L• = [ ]L•− and L•− is a value.

Consider the following operators:

Eta(t) = λk.kt

Bind(t, x.u) = λk.t(λx.uk),

where λ denotes the static λ-abstraction in the two-level λ-calculus of Danvy and

Filinski (1992), that is, redexes of the form (λx.t)u are supposed to be reduced in the

translation. Then the two monad-related clauses of the definition of (·)• can be turned

† Viewed from the λ-calculus, there is no difference between these two variable supplies, which are guaranteed

by our assumptions. For example, the letter x in rule β given in Section 1 still denotes any variable of

λ-calculus, and we will not use a to denote an arbitrary variable of λ-calculus. If a appears in a translation,

it stands for an arbitrary co-variable of λµM or λµµ̃, and this co-variable is then also a variable of λ-calculus

and can therefore appear in terms in the range of the translation.



Γ ⊢ t : A|∆

Γ•,∆•− ⊢ t• : A•

c : (Γ ⊢ ∆)

Γ•,∆•− ⊢ c• : ⊥

C[x] : (Γ, x : MA ⊢ ∆)

Γ•, x : ¬¬A•,∆•− ⊢ (C[x])• : ⊥
x /∈ C

Fig. 11. Admissible typing rules for continuations-monad instantiation

into

(ηt)• = Eta(t•)

bind(t, x.L[u])• = Bind(t•, x.u•)L•−.

We also define

bind(η[ ], x.c)• = Eta([ ])(λx.c•)

for use in cbn translations. This immediately implies

(C[t])• = C•[t•] (1)

for all cbn contexts C .

This translation also satisfies a Subexpression Property: if T ′ is a subexpression of T ,

then the term T ′• is a subterm of T •. The best way to see this in the case T = c is to

unfold the two cases of the definition of (L[t])•.

We can easily check that the rules in Figure 11 are admissible (the third rule is a special

case of the second one, and is included for use in later proofs), where ∆•− follows the

usual pattern, with the type operation (.)•− with

(MB)•− := ¬B• (2)

(recall that a : A ∈ ∆ implies A = MB for some B, so the apparent partiality of this

operation is no problem when forming ∆•−). The minus sign is a warning that (MB)•−

has a negation less than (MB)•. In addition, this notation is coherent with the notation

L•− introduced above, in the sense that the following rule is admissible:

L[x] : (Γ, x : MA ⊢ ∆)

Γ•,∆•− ⊢ L•− : (MA)•− x /∈ L .

So the type of L•− has one negation less than the type of the hole in L•.

We will now show that the instantiation is a strict simulation of λµM in λ[βη].

Lemma 5.1. The translation satisfies:

(1) ([u/x]T )• = [u•/x]T •.

(2) ([L/a]T )• = [L•−/a]T •.

Proof.

(1) The proof is by induction on T .



(2) The proof is by induction on T . The case of T = at is the only non-trivial case and

is proved as follows:

([L/a](at))• = (L[[L/a]t])• (by the definition of structural substitution)

= ([L/a]t)•
L•− (by the definition of (.)• and L•[u•] = u•L•−)

= [L•−/a]t•L•− (by the induction hypothesis)

= [L•−/a](t•a) (by the definition of substitution in the λ-calculus)

= [L•−/a](at)• . (by the definition of (.)•)

Proposition 5.2 (instantiation).

(1) If T → T ′ in λµM, then T • →+ T ′• in λ[βη].

(2) If the reduction rules ηµ and ηbind are omitted from the source, the η reduction rule

can be omitted from the target. If the β and σ reduction rules in the source are

restricted to the βv and σv forms, respectively, then the β reduction rule in the target

can be restricted to βv.

Proof.

(1) The proof is by induction on T → T ′. We will just show the base cases since term

closure is evident by the Subexpression Property:

— Case β: (λx.t)s → [s/x]t:

LHS• = (λx.t•)s•

→β [s•/x]t•

= RHS• . (by Lemma 5.1 (1))

— Case σ: bind(ηs, x.c) → [s/x]c:

LHS• = (λk.ks•)(λx.c•)

→βv
(λx.c•)s•

→β [s•/x]c•

= RHS• . (by Lemma 5.1 (1))

— Case π: L[µa.c] → [L/a]c:

LHS• = (λa.c•)L•−

→βv
[L•−/a]c•

= RHS• . (by Lemma 5.1 (2))

— Case ηµ: µa.at → t, with a 6∈ t (hence a /∈ t•):

LHS• = λa.t•a

→η t•

= RHS• .



— Case ηbind: bind(t, x.a(ηx)) → at:

LHS• = t•(λx.(λk.kx)a)

→βvar
t•(λx.ax)

→η t•a

= RHS• .

(2) Since V • is always a value, the β steps in the cases β and σ of part (1) turn into βv

steps for βv and σv.

In Appendix A.3, we will see that we can obtain refined continuations-monad instan-

tiations that only need λ[βv] as target. They only work for subsystems of λµM, which,

however, cover the images of the monadic translations.

Corollary 5.3.

(1) Every typable expression of λµM is strongly normalisable.

(2) The system λµM is confluent for typable expressions.

Proof.

(1) The statement follows from the previous proposition, the strong normalisation of

λ[βη] and the fact that typability is preserved by the instantiation, which is shown in

Figure 11.

(2) The statement follows from the strong normalisability and local confluence of λµM

(using Newman’s Lemma).

Corollary 5.4. The systems λµµ̃n and λµµ̃v are strongly normalising.

Proof. The statement follows from the previous corollary, together with the strict

simulation results from Section 4 and the preservation of typability, which are shown in

Figures 6 and 9, respectively.

We have thus reproved in a completely syntactic way the strong normalisation of λµµ̃n

and λµµ̃v from the strong normalisation of λ[βη].

5.2. CPS translations through the instantiation of monadic translations

Our proof of strong normalisation for λµµ̃n and λµµ̃v gives syntactic embeddings of these

systems into λ[βη], which are obtained by composing the cbn and cbv monadic translation,

respectively, with the continuations-monad instantiation. The result is continuation-

passing style (CPS) transformations of λµµ̃n and λµµ̃v into λ[βη].

We already know that both CPS translations yield strict simulations since they are the

composition of mappings with the strict simulation property. In the following we make

this precise and obtain a direct inheritance of strong normalisation from the λ-calculus

(rather than a two-step inheritance via λµM as done before). Similarly, we already know

that both CPS translations enjoy type soundness since they are the composition of type-

sound mappings. In the following, we will make the typing rules they obey explicit. Finally,

we will discover the recursive structure of the CPS translations.



We define, for x ∈ {n, v}:

A∗
x := (A†

x)
•

(3)

〈[A]〉x := (Ax)
•

(4)

〈[A]〉−
x := (Ax)

•−
(5)

〈[T ]〉x := (T x)
•
. (6)

In the cbn case, the last equation is well defined because the definition of (.)• was extended

to any cbn context C . For the cbn case, we set

〈[E]〉−
n := (En)

•−
. (7)

For the cbv case, we set

V ∗ := (V †)
•

(8)

〈[e]〉−
v := (ev)

•− . (9)

Note that there is no index v in V †, and consequently none in V ∗ either. This seems

justified since there is simply no such concept in the cbn translations.

An easy calculation shows that 〈[A]〉x = ¬¬A∗
x, so 〈[A]〉−

x = ¬A∗
x (again, the minus sign

warns us that 〈[A]〉−
x has one negation less than 〈[A]〉x). It is obvious that X∗

x = X.

5.2.1. Call-by-name CPS translation (λµµ̃n −→ λ[βη]). The translations of types (3) and

(4) in the cbn case satisfy

(A ⊃ B)∗
n = 〈[A]〉n ⊃ 〈[B]〉n .

Corollary 5.5 (typing). The typing rules of Figure 12 are admissible.

Proof. We ‘compose’ the rules in Figure 6 for (.)n with those in Figure 11 for (.)•. We

will just show the typing rules for co-terms since the others are analogous but simpler:

Γ|e : A ⊢ ∆

en[y] : (Γn, y : An ⊢ ∆n)
(a)

(Γn)
•
, y : ¬¬(A†

n)
•
, (∆n)

•−
⊢ (en[y])

• : ⊥
(b)

〈[Γ]〉n, y : 〈[A]〉n, 〈[∆]〉−
n ⊢ 〈[e]〉n[y] : ⊥

(c)

where the labelled steps are jusitified as follows:

(a) This follows from the third typing rule in Figure 6.

(b) This follows from the third typing rule in Figure 11 and An = MA
†
n.

(c) Using the compositionality of the extension of type operations to (co-)contexts (see

Section 1), we get 〈[Γ]〉n = (Γn)
•

and 〈[∆]〉−
n = (∆n)

•−
from (4) and (5), respectively.

Moreover,

¬¬(A†
n)

•
= (An)

•
= 〈[A]〉n,

using (4), and

(en[y])
• = (en)

•[y•] = 〈[e]〉n[y]

using (1) and (6).



Γ ⊢ t : A|∆

〈[Γ]〉n, 〈[∆]〉−
n

⊢ 〈[t]〉n : 〈[A]〉n

Γ|e : A ⊢ ∆

〈[Γ]〉n, y : 〈[A]〉n, 〈[∆]〉−
n

⊢ 〈[e]〉n[y] : ⊥

c : (Γ ⊢ ∆)

〈[Γ]〉n, 〈[∆]〉−
n

⊢ 〈[c]〉n : ⊥

Fig. 12. Admissible typing rules for cbn CPS translation of λµµ̃

〈[y]〉n = y

〈[λy.t]〉n = Eta(λy.〈[t]〉n)

〈[µa.c]〉n = λa.〈[c]〉n

〈[a]〉n = [ ]a

〈[u :: e]〉n = [ ](λf.Eta(〈[u]〉n)(λz.〈[e]〉n[fz]))

〈[µ̃y.c]〉n = Eta([ ])(λy.〈[c]〉n)

〈[〈t|e〉]〉n = 〈[e]〉n[ 〈[t]〉n ]

Fig. 13. Cbn CPS translation of λµµ̃

Corollary 5.6 (strict simulation).

(1) If T → T ′ in λµµ̃n, then 〈[T ]〉n →+ 〈[T ′]〉n in λ[βη], where T , T ′ are either two terms

or two commands.

(2) If e → e′ in λµµ̃n, then 〈[〈t|e〉]〉n →+ 〈[〈t|e′〉]〉n in λ[βη] for any t ∈ λµµ̃.

Proof. The method of the proof is to ‘compose’ strict simulation for (.)n (Theorem 4.2)

with strict simulation for (.)• (Proposition 5.2). More precisely:

(1) Let T → T ′. From Theorem 4.2, we get T n →+ T ′
n in λµM, and thus (T n)

•
→+ (T ′

n)
•

in λ[βη], by Proposition 5.2. We now apply the definition of 〈[T ]〉n in (6).

(2) Let e → e′ and t ∈ λµµ̃. Then 〈t|e〉 → 〈t|e′〉, and we conclude by applying part (1).

Proposition 5.7 (recursive characterisation). 〈[T ]〉n satisfies the equations in Figure 13.

Proof. To prove the statment, we take the recursive characterisation as the definition

of 〈[T ]〉n and then use simultaneous induction on t, c and e to prove:

(i) (tn)
•

= 〈[t]〉n.

(ii) (cn)
• = 〈[c]〉n.

(iii) (en)
• = 〈[e]〉n.

The case c = 〈t|e〉 makes use of (C[t])• = C•[t•].

We could use this recursive characterisation to give direct proofs of the typing rules

and strict simulation for 〈[.]〉n, but such proofs would not be as modular as the ones given

above.

Remark 5.8. Given the recursive characterisation, statement (2) in Corollary 5.6 reads as

follows:

If e → e′ in λµµ̃n, then 〈[e]〉n[〈[t]〉n] →+ 〈[e′]〉n[〈[t]〉n] in λ[βη] for any t ∈ λµµ̃.



Γ ⊢ t : A|∆

Γ∗
v
, 〈[∆]〉−

v
⊢ 〈[t]〉v : 〈[A]〉v

Γ ⊢ V : A|∆

Γ∗
v
, 〈[∆]〉−

v
⊢ V ∗ : A∗

v

Γ|e : A ⊢ ∆

Γ∗
v
, y : 〈[A]〉v, 〈[∆]〉−

v
⊢ 〈[e]〉v[y] : ⊥

c : (Γ ⊢ ∆)

Γ∗
v
, 〈[∆]〉−

v
⊢ 〈[c]〉v : ⊥

Fig. 14. Admissible typing rules for cbv CPS translation of λµµ̃

〈[V ]〉v = Eta(V ∗) v∗ = v

〈[µa.c]〉v = λa.〈[c]〉v (λv.t)∗ = λv.〈[t]〉v

〈[a]〉v = [ ]a 〈[〈t|e〉]〉v = 〈[e]〉v[ 〈[t]〉v ]

〈[u :: e]〉v = [ ](λf.〈[u]〉v(λw.〈[e]〉v[fw]))

〈[µ̃v.c]〉v = [ ](λv.〈[c]〉v)

Fig. 15. Cbv CPS translation of λµµ̃

This statement can be easily generalised so that 〈[e]〉n[u] →+ 〈[e′]〉n[u] holds for any λ-term

u. The case u = y is a particular case of the statement already proved, since y = 〈[y]〉n.

The case where u is an arbitrary λ-term then follows from this particular case, since

〈[e]〉n[u] = [u/y](〈[e]〉n[y]) if y is fresh, and since the reduction rules of λ[βη] are closed

under substitution.

5.2.2. Call-by-value CPS translation (λµµ̃v −→ λ[βvη]). The translations of types (3) and

(4) in the cbv case satisfy

(A ⊃ B)∗
v = A∗

v ⊃ 〈[B]〉v .

Corollary 5.9 (typing). The typing rules in Figure 14 are admissible.

Proof. The proof is similar to the cbn case (Corollary 5.5). We ‘compose’ the rules

in Figure 9 for (.)v with those in Figure 11 for (.)•, but this time we use the equations

Γ∗
v = (Γ†

v)
•

and 〈[∆]〉−
v = (∆v)

•−
, which follow from (3) and (5), respectively.

Corollary 5.10 (strict simulation).

(1) If T → T ′ in λµµ̃v, then 〈[T ]〉v →+ 〈[T ′]〉v in λ[βvη], where T , T ′ are two terms or

two commands.

(2) If e → e′ in λµµ̃v, then 〈[〈t|e〉]〉v →+ 〈[〈t|e′〉]〉v in λ[βvη] for any t ∈ λµµ̃.

Proof. The proof is similar to the cbn case (Corollary 5.6). We ‘compose’ strict

simulation for (.)v (Theorem 4.6) with strict simulation for (.)• (Proposition 5.2). As

observed in Theorem 4.6, (.)v only requires βvar ⊂ βv and σv from the target λµM rather

than β and σ. So, Proposition 5.2 (2) applies, and βv rather than β is sufficient in the

λ-calculus.

Proposition 5.11 (recursive characterisation). 〈[T ]〉v satisfies the equations in Figure 15.

Proof. To prove the statment, we take the recursive characterisation as the definition

of 〈[T ]〉v and V ∗ and then use simultaneous induction on V , t, c and e to prove:



(i) (V †)
•

= V ∗.

(ii) (tv)
•

= 〈[t]〉v.

(iii) (cv)
• = 〈[c]〉v.

(iv) (ev)
• = 〈[e]〉v.

Remark 5.12. Given the recursive characterisation, statement (2) in Corollary 5.10 reads

as follows:

If e → e′ in λµµ̃v, then 〈[e]〉v[〈[t]〉v] →+ 〈[e′]〉v[〈[t]〉v] in λ[βvη] for any t ∈ λµµ̃.

This statement can be generalised so that 〈[e]〉v[u] →+ 〈[e′]〉v[u] for arbitrary λ-terms u.

But the argument used in Remark 5.8 cannot be repeated with 〈[.]〉v since v 6= 〈[v]〉v

and rule βv is not closed under substitution. The generalisation requires a new induction;

however, since we have already proved Corollary 5.10, it is enough to prove the generalised

statement (2), together with the trivial statement for terms and commands saying that

if T → T ′, then true (this amounts to saying that we are only interested in the base

reduction rules acting on co-terms – this is only ηµ̃ – and the clauses of the term closure

that justify a reduction of co-terms). The inductive cases are routine (in the single case

t :: e → t :: e′ due to e → e′, we use the induction hypothesis, otherwise, we appeal to

Corollary 5.10 (1)).

We will only treat the single base case of generalised statement (2):

— Case ηµ̃: µ̃v.〈v|e〉 → e, with v /∈ e:

Hence v /∈ 〈[e]〉−
v , so

〈[LHS]〉v[u] = u(λv.〈[v]〉v 〈[e]〉−
v )

→βv
u(λv.〈[e]〉−

v v) (〈[e]〉−
v is a value)

→η u〈[e]〉−
v = 〈[RHS]〉v[u] .

Further analysis of the CPS translations can be found in the appendix.

6. Extension to second-order logic

All the systems considered in this paper can be straightforwardly extended to cover

second-order logic, and the main simulation results can be extended correspondingly.

These, in turn, produce new strong normalisation results for classical second-order logic

in sequent calculus.

6.1. Extension of systems

In this section we present the systems λ2µµ̃, λ2µM and λ2, which are our second-order

versions of λµµ̃, λµM and the λ-calculus, respectively. We will not be overly formal

here and often only describe the new inductive clauses for some syntactic class. It

should be understood that all notions in the rules (for example, the notion of type in

the new grammar for terms and the notions of types and terms in the old and new

typing rules) refer to the extended notions and thus that all former definitions (such as



substitution and translation) and results are to be interpreted over these larger domains.

This reinterpretation never adds new cases to the proofs just given by structural induction.

However, the new grammatical elements have to be treated as such, but it will only be

mentioned when this leads to non-trivial new cases.

The grammar of types is an extension of the grammar of the corresponding first-order

system:

A,B ::= · · · | ∀X.A .

The type variable X is considered bound in ∀X.A. We can define type substitution [A/X]B

in an obvious way, and we denote the result of capture-avoiding substitution of all free

occurrences of type variable X in type B by type A. As an example in λµM, we have

[A/X](MB) = M([A/X]B).

The grammar of expressions of λ2µµ̃ is

V ::= x | λx.t | ΛX.t E ::= a | u :: e |A :: e c ::= 〈t|e〉
t, u ::= V | µa.c e ::= E | µ̃x.c

where type variable X is bound in the new term ΛX.t.

We consider ΛX.t to be a value for any term t, following the call-by-value λµ-calculus

of Fujita (1999). Note that, as discussed in Asada (2008) for example, regarding Λ-

abstractions as values may be incompatible with the second-order η-rule, which is

expressed as

ΛX.tX → t (X 6∈ t)

in natural-deduction style. However, we do not consider such an η-rule in the second-

order calculi discussed in this paper, and, as we will see, these calculi (or the cbn

and cbv fragments in the case of λ2µµ̃) have good properties as reduction systems in

terms of subject reduction, strong normalisation and confluence. Moreover, regarding Λ-

abstractions as values preserves the duality between values and evaluation contexts, and

leads us to a natural extension of the analysis for normal forms in the cbn and the cbv

fragments of λµµ̃: also, any normal and typable command in the second-order extensions

of the fragments of λµµ̃ is either 〈x|E〉 or 〈V |a〉, where normal forms are with respect to

the rules of the respective first-order system extended by the β2 rule given below.

The typing rules for the additional expressions correspond, respectively, to the right-

and the left-introduction rules for the second-order quantifier:

Γ ⊢ t : B|∆

Γ ⊢ ΛX.t : ∀X.B|∆
RIntro2

Γ|e : [A/X]B ⊢ ∆

Γ|A :: e : ∀X.B ⊢ ∆
LIntro2

where X does not occur free in any of the types in Γ,∆ in RIntro2. Note that, type B

in LIntro2 is not determined from [A/X]B and A, so this introduces a further source

of ambiguity of the type of a given term. However, we do not attach a type to variable

x in λx.t in the extended system, as would be done in Church-style formulations of

second-order λ-calculus. In this way, we obtain domain-free systems in the sense of Barthe



and Sørensen (2000), which is the style that was also adopted for the formulation of

second-order λµ-calculus in Fujita (1999) and Ikeda and Nakazawa (2006).†

In order to formulate the additional reduction rule, we have to assume a notion of

type substitution in terms, [A/X]t, which will be defined simultaneously with [A/X]c and

[A/X]e. As admissible typing rules, we get, for example,

Γ ⊢ t : B|∆

[A/X]Γ ⊢ [A/X]t : [A/X]B|[A/X]∆

with the intuitive reading of the substituted contexts (following the convention in

Section 1).

The extra reduction rule for λ2µµ̃ is

(β2) 〈ΛX.t|A :: e〉 → 〈[A/X]t|e〉 .

The cbn and cbv fragments of λ2µµ̃ are defined in the same way as for first-order λµµ̃, and

are called λ2µµ̃n and λ2µµ̃v, respectively. Thanks to the proviso of rule RIntro2, subject

reduction also holds for λ2µµ̃. Since λ2µµ̃n and λ2µµ̃v only have trivial critical pairs (no

new critical pair arises with the extension to second order), these fragments are confluent.

The monadic calculus λµM is similarly extended as follows. The grammar of expressions

of λ2µM is:

V ::= x | λx.t | ΛX.t c ::= at | bind(t, x.c)

r, s, t, u ::= V | tu | tA | µa.c | ηt ,

and the typing rules for the new terms ΛX.t and tA correspond to the introduction and

the elimination rules, respectively, for the second-order quantifier:

Γ ⊢ t : B|∆

Γ ⊢ ΛX.t : ∀X.B|∆
Intro2

Γ ⊢ t : ∀X.B|∆

Γ ⊢ tA : [A/X]B|∆
Elim2

provided X does not occur free in any of the types in Γ,∆ in Intro2.‡

The additional reduction rule for λ2µM is the ordinary rule of polymorphic λ-calculus:

(β2) (ΛX.t)A → [A/X]t .

λ2µM enjoys subject reduction in a similar way to λ2µµ̃. No new critical pair arises from

the extension to the second order, so λ2µM is also locally confluent.

We consider the second-order extension of λ-calculus in the domain-free style, which

we will denote by λ2, as the target calculus of the continuations-monad instantiation.

† The following analysis can also be applied to Church-style systems by defining each translation of terms as a

mapping from terms with their type derivations. On the other hand, Curry-style formulations do not appear

to be suitable since there is some evidence that Curry-style cbv polymorphic calculi with control operators

are unsound (Harper and Lillibridge 1993; Fujita 1999; Summers 2011).
‡ The rules RIntro2 and Intro2 are superficially the same rule, but they range over different systems of types

and terms.



This calculus was introduced in Barthe and Sørensen (2000) in the framework of the

domain-free pure type systems. The grammar of expressions is extended by ΛX.t and tA,

for which we add the typing rules Intro2 and Elim2 without the ∆ parts. The additional

reduction rule β2 is given in the same form as β2 for λµM.

It is important to stress again that we do not consider the second-order η-rule for

λ2: it is not reuqired for our simulation results, so we omit it. In the following, we will

concentrate on λ2[β, β2, η].

Although we are not aware of any existing strong normalisation result for λ2[β, β2, η], it

does hold, and can be proved along the lines of Barthe and Sørensen (2000) by inheriting

strong normalisation from Church-style second-order λ-calculus with the first-order η-

reduction rule.

Proposition 6.1. λ2[β, β2, η] enjoys strong normalisation.

Proof. We consider the Church-style second-order λ-calculus with β, β2 and η (where

we mean the Church-style versions of β and η with type superscripts at the variable

bindings), the strong normalisation of which is already known†.

The erasure function (Geuvers 1993, Section 4.4.2) ⌈·⌉ from the Church-style calculus

to the domain-free style calculus, that is, λ2, is defined by ⌈λxA.t⌉ = λx.⌈t⌉, and the other

cases are homomorphic. We then prove the following by straightforward induction:

(i) For any domain-free term t that has a type A in context Γ, there exists a Church-style

term t′ such that t′ has the type A in Γ and ⌈t′⌉ = t.

(ii) For any Church-style term t′ and any s in domain-free style, if ⌈t′⌉ → s holds in

λ2[β, β2, η], then there exists a Church-style term s′ such that t′ → s′ and ⌈s′⌉ = s.

As a consequence of (i) and (ii), we can translate any potential infinite reduction sequence

in λ2[β, β2, η] from a typable domain-free term into an infinite reduction sequence in the

Church-style second-order λ-calculus starting from a typable term. Such a sequence is

impossible, which gives us our result.

This completes the presentation of the second-order extensions of the systems in this

paper. Note that, unlike the case for second-order λµ-calculus in Parigot (1997), nothing

has been added on the classical side to accommodate the second order.

† Unfortunately, we have been unable to find a canonical source to cite. The weak normalisation of a second-

order system was first established in Girard (1971), and strong normalisation is not, essentially, any harder

(see Barthe et al. (2001) for very general results on this issue). There are many different published proofs of

strong normalisation for second-order systems with type annotations on all variable occurrences, and a proof

for Church-style typing would only differ from them in inessential details. There are also different styles for

the treatment of the η-reduction rule: one way is to note that there is an inductive characterisation of SN

terms that is indifferent to η-reduction (Matthes 1999); another is to postpone the η-reduction steps.



6.2. Extension of translations

We will now extend the monadic translations from λµµ̃ into λµM to monadic translations

from λ2µµ̃ into λ2µM. For types, the definitions are as follows:

Xn = MX (A ⊃ B)n = M(An ⊃ Bn) ∀X.Bn = M(∀X.Bn)

Xv = MX (A ⊃ B)v = M(A†
v ⊃ Bv) ∀X.Bv = M(∀X.Bv) .

A
†
x is again Ax without the outermost application of M. As usual, the letter x ranges

over the set {n, v}. In particular, (∀X.B)†
x = ∀X.Bx, and the cases for type variables

and implication are unchanged. Thus, on the surface, the extension for the second-order

universal quantifier is the same for cbn and cbv, but it still relies recursively on the

different treatment of implication according to the two paradigms. On the surface, there

is also no difference between the translations of expressions: we add

(ΛX.t)x = η(ΛX.tx)

(A :: e)x = bind([ ], z.ex[zA
†
x])

to the cbn translation given in Figure 7 and the cbv translation in Figure 8, respectively.

In the cbv case, this agrees with the general rule V v = ηV † by setting (ΛX.t)† = ΛX.tv
for the value ΛX.t, which seems to be the only reasonable definition.

We have the following properties of type substitutions – we could have stated them in

Section 4, but they only become relevant now.

Lemma 6.2.

The monadic translations satisfy:

(1) ([A/X]B)
x

= [A†
x/X]Bx and ([A/X]B)†

x
= [A†

x/X]B†
x .

(2) ([A/X]T )
x

= [A†
x/X]T x and ([A/X]V )† = [A†

v/X]V †.

Proof.

(1) The proof is by simultaneous induction on B.

(2) The proof is by simultaneous induction on T .

It is easy to establish that the admissible typing rules in Figures 6 and 9, respectively,

still hold for this extension. The key to verifying (A :: e)x is that zA†
x gets type ([A/X]B)

x

in a context with z : (∀X.B)†
x – recall that the hole in (A :: e)x is filled with a variable of

type (∀X.B)x in both paradigms.

Theorem 6.3 (strict simulation for second-order monadic translation). Let x ∈ {n, v}.

(1) If T → T ′ in λ2µµ̃x, then T x →+ T ′
x in λ2µM, where T , T ′ are either two terms or

two commands.

(2) If e → e′ in λ2µµ̃x, then ex[tx] →+ e′
x[tx] in λ2µM for any t ∈ λ2µµ̃.

The same restrictions on the rules in the target system as in Theorems 4.2 and 4.6 are

sufficient.

Proof. The proof proceeds in the same way as the proofs of Theorems 4.2 and 4.6. We

will only show the case for the new reduction rule. Note, however, that (A :: e)x is a base

context, so the simulation of rule π is not hampered in the case of E = A :: e.



— Case β2:

Using Lemma 6.2 (2) (we omit the index x everywhere), we have:

〈ΛX.t|A :: e〉 = bind(η(ΛX.t), z.e[zA†])

→σv
e[(ΛX.t)A†]

→β2 e[[A†/X]t]

= 〈[A/X]t|e〉 .

We will now extend the continuations-monad instantiation and obtain the CPS trans-

lations by composing the continuations-monad instantiation.

The continuations-monad instantiation for types is extended to

X• = X (A ⊃ B)• = A• ⊃ B• (MA)• = ¬¬A• (∀X.A)• = ∀X.A•,

and, for terms and commands, we add

(ΛX.t)• = ΛX.t• (tA)• = t•A•

to the translation given in Figure 10, that is, every second-order element is translated

homomorphically.

Lemma 6.4. The continuations-monad instantiation satisfies:

(1) ([A/X]B)• = [A•/X]B•,

(2) ([A/X]T )• = [A•/X]T •.

Proof. The proof is by induction on B and T , respectively.

Using this lemma, it is easy to check that the rules in Figure 11 are admissible, and the

extended continuations-monad instantiation strictly preserves the reduction steps.

Proposition 6.5.

(1) If T → T ′ in λ2µM, then T • →+ T ′• in λ2[β, β2, η].

(2) The same variants as in Proposition 5.2 (2) again hold.

Proof.

(1) We will only prove the β2 case:

((ΛX.t)A)• = (ΛX.t•)A•

→β2 [A•/X]t•

= ([A/X]t)•
.

(2) This part is proved in a similar way to Proposition 5.2 (2).

The part (1) of the above proposition, together with Proposition 6.1 and the preservation

of typability shown in Figure 11, immediately gives the following corollary.

Corollary 6.6. λ2µM enjoys strong normalisation.

The strong normalisation of the cbn- and cbv-fragments of λ2µµ̃ now follows.



Corollary 6.7. λ2µµ̃n and λ2µµ̃v are strongly normalising.

Proof. We use the previous corollary, together with Theorem 6.3 and the preservation

of typability, which are shown in Figures 6 and 9, respectively (and can be verified to

hold even for the second-order extension).

Despite the little work invested in the second-order extension, we have obtained a strong

result here. This is thanks to the CPS translation and its monadic generalisation, which

is known to scale up well, while the negative translation is confined to first-order types/

formulas (see, for example, Parigot (1997)).

The CPS translations, which are obtained by composing the monadic translations and

the continuations-monad instantiation in the form of equations (3), (4) and (6) satisfy the

following additional recursive clauses (which could again be used to give a direct recursive

definition of the CPS translations):

(∀X.A)∗
x = ∀X.〈[A]〉x

〈[ΛX.t]〉x = Eta(ΛX.〈[t]〉x)

〈[A :: e]〉x = [ ](λz.〈[e]〉x[zA
∗
x]) .

These are common to both cbn and cbv, but refer to otherwise quite different translations

of types and expressions.

7. Related and future work

In this paper we have proved the strong normalisation of the cbn and cbv fragments of

λµµ̃ through a syntactic embedding into the λ-calculus, which extends to the second order

with domain-free polymorphic λ-calculus as target. The embeddings are CPS translations

with the strict simulation property, which are obtained as the composition of a monadic

translation into an intermediate monadic language and an instantiation of the formal

monad of this language to the continuations monad. The intermediate language is itself

new, and combines in a non-trivial way the syntax for classical logic in the style of

λµ-calculus with the syntax for a monad as found in Moggi’s monadic meta-language.

We will now show how this work relates to the existing literature and can be developed

in the future.

7.1. Related work

7.1.1. Strong normalisation for λµµ̃. Strong normalisation for full λµµ̃ has been shown

directly in Polonovski (2004) using the reducibility candidates method, and in David

and Nour (2007) using subtle proof structures that are complex although formalisable

in arithmetic. Before that, Lengrand (2003) had also proved the strong normalisation of

λµµ̃ by using an embedding into the sequent calculus for classical logic of Urban (2000),

which was proved to be strongly normalising by the reducibility method. A more syntactic

approach was followed in Rocheteau (2005), where λµµ̃ is mapped into λµ extended with

some sort of contexts, and weak simulation is then proved. It is not clear from the proof



provided in Rocheteau (2005) whether strict simulation is actually achieved, and strong

normalisation for this extension of λµ is not addressed.

Our proofs of strong normalisation are syntactic in nature, combinatorially simple and,

although only applicable to the cbn and cbv fragments, they are conceptually related to

questions of the semantics of programming languages. In addition, our results for the

second-order extensions are new. The extensibility of our method to second order is in

contrast with the direct arithmetical proof of David and Nour (2007), which is confined

to the first-order fragment. In fact, we are not aware of any systems extending λµµ̃ to

second order, apart from the one considered in this paper.

7.1.2. Monadic translation. The technique of monadic translation to prove strong nor-

malisation was applied first to the intuitionistic fragment of cbn λµµ̃ (Espı́rito Santo

et al. 2009b). Two sources for this technique are Hatcliff and Danvy (1994), where the

idea of factorising CPS translations into monadic translations and monad instantiations

is found, and Sabry and Wadler (1997), where reduction steps (instead of equations) in

the monadic meta-language are given central importance.

In Espı́rito Santo et al. (2009b), the intuitionistic fragment of cbn λµµ̃ is the domain

of a monadic translation into an intuitionistic monadic meta-language (resulting from

the enrichment of Moggi’s monadic meta-language with some permutative reduction

rules), and that monadic translation is then composed with an instantiation to the

identity monad. Simulation only works if an extra permutative reduction rule, usually

named ‘assoc’, is added to the target (λ-calculus), and extension to second order looks

problematic. Composition with an instantiation to the continuations monad produced a

CPS translation, but no simulation.

The present paper greatly improves these results by:

(i) treating classical logic, both the first-order and second-order systems, and both the

cbn and the cbv paradigms;

(ii) producing a much ‘tighter’ monadic translation (with non-β reduction steps translated

in 1–1 fashion);

(iii) producing strict simulation through CPS obtained by factorisation via a monadic

language;

(iv) offering the new monadic language required for this factorisation.

7.1.3. CPS translations with strict simulation. A key issue of strict simulation is that

we not only have to consider the reduction steps at the root, but also those deeper

within a term. This has sometimes been overlooked in the literature, as pointed out

with some examples in Nakazawa and Tatsuta (2003), and has led to ‘incorrect proofs’

of strong normalisation by CPS. A CGPS-translation (continuation-and-garbage-passing

style translation) of λµ achieving strict simulation in λ[β] was developed in Ikeda and

Nakazawa (2006). This style of translation, which passes around both continuations and

‘garbage’ terms (so that all parts of the source term are kept), can be applied in various

settings, and, in particular, extends to second-order λµ. It has not been successfully

extended to λµµ̃ so far, but a simplification of the technique (where only units of garbage

are passed) delivered strong normalisation for the intuitionistic fragment of cbn λµµ̃



(Espı́rito Santo et al. 2007; Espı́rito Santo et al. 2009a). This result is extensible to second

order (with simulation in domain-free polymorphic λ-calculus).

7.1.4. CPS translations for λµµ̃. CPS translations for the cbn and cbv fragments of λµµ̃,

denoted by ( )⊲ and ( )⊳, respectively, were given in Curien and Herbelin (2000). Both

translations map into λ-calculus enriched with products. The cbn translation generalises a

translation in Hofmann and Streicher (2002), and the cbv translation is a dualised version

of the cbn translation. Although no precise statement of the preservation of reduction by

the translations is made, the paper states that each translation ‘validates’ the respective

evaluation discipline, which suggests that the translations map a reduction in λµµ̃ into

convertible terms in the target. In fact, one may verify that ( )⊳ does not simulate the

β-rule for the subtraction connective, it only obtains convertible terms. By duality, the

same happens with ( )⊲ with respect to the β-rule for implication.

In Herbelin (2005), there is both a CPS translation ( )n of the cbn fragment λµµ̃T and a

CPS translation ( )v of the cbv fragment λµµ̃Q. The λµµ̃T and λµµ̃Q fragments, which were

introduced in Curien and Herbelin (2000), are smaller than λµµ̃n and λµµ̃v, respectively.

The smaller domains allow a slightly simplified definition of the CPS translations. These

are obtained by extending the respective maps for the ‘logic-free’ fragment µµ̃, and weak

simulation is then stated for this fragment (weak simulation means that each reduction

step of the source is mapped into zero or more reduction steps in the target). Again, one

can verify that β-reduction for implication is mapped to β-equality only, but this time for

both the cbn and cbv translations.

CPS translations for both fragments of λµµ̃ were also considered in Lengrand (2003)

(see the erratum for the correct definition of the cbn translation). When compared with

our CPS translations, the differences are (besides the fact that Lengrand does not consider

the ηµ and ηµ̃ rules):

(i) Lengrand’s cbv translation takes (A ⊃ B)∗ = ¬B∗ ⊃ ¬A∗, whereas we have the

intuitionistically equivalent (A ⊃ B)∗ = A∗ ⊃ ¬¬B∗, where the double negation results

directly from the instantiation to the continuations monad.

(ii) Lengrand’s cbn translation of commands reads as 〈[〈t|e〉]〉 = 〈[e]〉〈[t]〉, which forces

co-term translations to a have a type of the form ¬〈[A]〉 (compared with our 〈[〈t|e〉]〉 =

〈[e]〉[〈[t]〉]).

The development of the CPS translations in Lengrand (2003) was guided by semantic

considerations, and the results showing the ‘preservation of semantics’ by the CPS

translations state that when a term reduces to another, their images are β-convertible.

Having said this, we have been able to verify that Lengrand’s cbv translation shares the

simulation property of our Corollary 5.10, and the need for η-reduction in the target,

while β-conversions cannot be avoided in the target of Lengrand’s cbn translation.

Summarising, we may say that rather than strict simulation, the existing literature on

CPS translations for λµµ̃ has had other preoccupations such as duality, simplicity and

semantic considerations. Our CPS translations for λµµ̃ with the strict simulation property

turn out to be a contribution to the field, despite only being a by-product of our approach

to strong normalisation.



7.2. Future work

The meta-language introduced in this paper has good meta-theoretic properties (subject

reduction, confluence and strong normalisation), and smoothly extends Moggi’s meta-

language. We think it deserves further study.

One direction is the investigation of subsystems. We are studying a subsystem of values

and computations originating in the natural idea of restricting arrow types to the form

A ⊃ MB (see, for example, Hatcliff and Danvy (1994)). This may lead to new connections

with polarised formulations of logic, into which embeddings of cbn and cbv calculi

have been studied in Curien and Munch-Maccagnoni (2010). Moreover, following Sabry

and Wadler (1997) and Dyckhoff and Lengrand (2007), we have already found that the

monadic cbv translation gives an equational correspondence between the system λµµ̃Q and

a subsystem of λµM. We would like to identify subsystems of λµµ̃ for which our monadic

translations and meta-language, even in the cbn case, can produce neater relationships,

such as reflections.

The use of monadic meta-languages as generic frameworks for the study of CPS

translations was started in Hatcliff and Danvy (1994). In that paper, the goal was to

make a comprehensive and uniform analysis of existing translations of an intuitionistic

source calculus. In the current paper, the monadic meta-language has provided a vehicle

for discovering new translations – with a single crucial property (strict simulation) – of a

classical source calculus. So there is plenty of room for using our classical meta-language

in more comprehensive studies, along the lines of Hatcliff and Danvy (1994), of CPS

translations of λ-calculi with control operators. Although such studies are beyond the

scope of the current paper, we give some supplementary analysis of our CPS translations

in the appendix.

Based on past experience (Espı́rito Santo et al. 2009a), we believe there should be no

major obstacle in extending the present work to higher-order classical logic. Clearly,

positive connectives such as disjunction and the second-order existential quantifier,

together with their usual permutative conversions, would also be worth considering.

None of the three mappings from λµ to λµµ̃ given in Curien and Herbelin (2000)

enjoys strict simulation (see also the errata to Curien and Herbelin (2000)). So strong

normalisation for λµµ̃ is not immediately inherited by λµ. On the other hand, the strong

normalisation of λµ has been proved using the technique of CGPS translation (Ikeda and

Nakazawa 2006), though this technique has not yet been extended to λµµ̃. There is clearly

still some room for greater systematisation of techniques for proving strong normalisation.

Appendix A. Monadic approach to refinement of CPS translations

In this appendix, we show how to use the decomposition of CPS translations via λµM

in order to obtain refined translations of λµµ̃n and λµµ̃v, accumulating the properties

enjoyed so far with other desirable properties. The decomposition allows us to discover

opportunities for improvement in the components of the CPS translation. The refinements

we introduce are actually confined to the continuations-monad instantiation, so the

monadic translations remain an invariant of the approach. The refined CPS translations



are still obtained by composition, with properties still obtained by ‘composition’ of the

properties of the components, as happened with the CPS translations studied above.

We analyse the CPS translations of Section 5.2, which we refer to as the main CPS

translations. They are sound with respect to typing, decompose via λµM, and, most

importantly for our purposes, enjoy strict simulation. We give an analysis of other

desirable properties: readiness (to reduce source redexes) and indifference (to evaluation

order).

We will say that a redex in a λ-term in the range of a CPS translation of λµµ̃ is a

source redex if it corresponds to some redex in the source λµµ̃-term. A CPS translation

has the readiness property (or is ready) if a λ-term in its range is always ready to reduce

a source redex (if one such exists). CPS translations are not always ready in this sense

since the translation itself may generate ‘administrative’ redexes (Plotkin 1975; Danvy

and Filinski 1992), whose reduction is required prior to the reduction of source redexes.

The well-known indifference property (Plotkin 1975) in turn says, in particular, that the

CPS translation achieves (strict) simulation with βv alone in the target.

We show that slight variations of the main CPS translations can achieve one of

the extra properties we have mentioned on top of the properties already enjoyed by

the main translations, but none of the variants achieves both extra properties, though a

more extensive modification of the main translations, not pursued in this paper, might

do so.

A first refinement defines the ready instantiation, where administrative redexes intro-

duced by the main instantiation are reduced ‘on the fly’. After composing the ready

instantiation with the monadic translations, we obtain CPS translations enjoying the

readiness property. However, the simulation by ready CPS still employs full β and η in

the target.

Next we discuss the defects of the main and ready CPS translations in connection

with the need for full βη-reduction in the target; and we introduce two refinements

of the main continuations-monad instantiation, which are dedicated to cbn and cbv,

respectively. Through composition with the respective monadic translations, new optimised

CPS translations are obtained, which introduce even more administrative reductions than

the main translations, but which enjoy strict simulation by βv only.

A.1. Ready CPS translations and administrative reductions

Strict simulation requires each reduction step in the source of the CPS translation to

correspond to at least one reduction step in the target, but not conversely. It is easy to see

that the main CPS translations of Section 5 do not map reduction steps in a 1–1 fashion,

even though the monadic translations essentially do (see Remarks 4.3 and 4.7). As can be

seen in the proof of Proposition 5.2, the main instantiation (.)• itself generates reductions

of the form

(admin) (λk.ku)K → Ku (k /∈ u, K a value) .

This is a specific instance of βv, and the redex can also be written as Eta(u)K . Through



composition with the monadic translations, these reduction steps become administrative

reductions of the main CPS translations.

For a variety of reasons, both theoretical and practical, it is desirable to reduce

administrative redexes at compile time. This is achievable by several means, for instance

by the introduction of the so-called colon-operation (Plotkin 1975), or by a classification

of constructions in the generated code as static or dynamic (Danvy and Filinski 1992).

In the current paper, we achieve the same goal in a modular way, profiting from the

decomposition of CPS translations via λµM. Indeed, all we need to do in our case is to

introduce a slight improvement in the definition of the continuations-monad instantiation.

We will now define the ready continuations-monad instantiation, denoted (.)◦, by

creating an exception in the clause for the instantiation of a command in the definition

of Figure 10:

(L[t])◦ = L◦[t◦] if t 6= ηu

(a(ηu))◦ = au◦

bind(ηu, x.c)◦ = (λx.c◦)u◦

(10)

The remaining clauses of (.)• are unchanged. It is then immediate that T • →∗
admin

T ◦.

We define L◦− as the argument to the hole in L◦ (hence L◦ = [ ]L◦−). Then, the last

two equations of (10) can be written uniformly as

(L[ηu])◦ = L◦−u◦ . (11)

We also define

bind(η[ ], x.c)◦ = (λx.c◦)[ ] (12)

so that the following holds:

if C is not a base context or t 6= ηu, then (C[t])◦ = C◦[t◦]. (13)

Lemma 5.1 has to be modified as follows.

Lemma A.1. The translation satisfies:

(1) [u◦/x]T ◦ →∗
admin

([u/x]T )◦, with equality holding if u 6= ηr.

(2) ([L/a]T )◦ = [L◦−/a]T ◦.

Proof.

(1) The proof is by induction on T . We will just show the cases where administrative

steps are generated. These have the form T = L[t], with [u/x]t = ηr and t 6= ηs,

whence t = x and u = ηr.

— Case c = ax, with u = ηr:

[u◦/x](ax)◦ = [u◦/x](xa)

= u◦a

→admin ar◦

= (a(ηr))◦

= ([u/x](ax))◦
.



— Case c = bind(x, y.c′), with u = ηr:

[u◦/x]bind(x, y.c′)
◦

= [u◦/x](x(λy.c′◦))

= u◦(λy.[u◦/x]c′◦)

→admin (λy.[u◦/x]c′◦)r◦

→∗
admin (λy.([u/x]c′)

◦
)r◦ (by the induction hypothesis)

= bind(ηr, y.[u/x]c′)
◦

= ([u/x]bind(x, y.c′))
◦
.

(2) The proof is by induction on T . No administrative steps are generated because we

cannot have [L/a]t = ηr if t 6= ηs.

In the following, we write t →= u to mean t → u or t = u, that is, →= is the reflexive

closure of →. We will use the symbol ρ to denote reduction rules from now on – there is

no risk of confusion since we do not consider ρ-reduction in this paper.

Proposition A.2 (ready instantiation). Let T →ρ T ′ in λµM.

— If ρ ∈ {β, βv, βvar}, then T ◦ →ρ u →∗
admin

T ′◦ for some u.

— If ρ = ηµ, then T ◦ →=
η u →∗

admin
T ′◦ for some u.

— If ρ = σ, then T ◦ →β u →∗
admin

T ′◦ for some u.

— If ρ ∈ {σv, π}, then T ◦ →βv
T ′◦.

— If ρ = ηbind, then T ◦ →η T
′◦.

Proof. The proof is by induction on T →ρ T ′. For the base cases, we follow the

proof of Proposition 5.2, paying attention to the variants βv, βvar and σv, and using

Lemma A.1 instead of Lemma 5.1. In the base case for β, the use of Lemma A.1 may

generate administrative reductions. The base case for π is exactly as in Proposition 5.2.

The remaining base cases are as follows:

— Case σ: bind(ηs, x.c) → [s/x]c:

LHS◦ = (λx.c◦)s◦ →β [s◦/x]c◦ →∗
admin RHS◦ ,

where the administrative reductions come from Lemma A.1.

— Case σv: bind(ηV , x.c) → [V/x]c:

LHS◦ = (λx.c◦)V ◦ →βv
[V ◦/x]c◦ = RHS◦ ,

where the last equality is by Lemma A.1.

— Case ηµ: µa.at → t, with a /∈ t:

If t 6= ηu, then one η step is generated, exactly as in Proposition 5.2. Otherwise:

LHS◦ = λa.au◦ = RHS◦ .

(Rule ηµ may generate administrative steps, but only through one of the inductive

cases below.)

— Case ηbind: bind(t, x.a(ηx)) → at:

If t 6= ηu, then

LHS◦ = t◦(λx.ax) →η t
◦a = RHS◦ .



λµµ̃x

(.)x
//

([.])x

==

λµM

(.)◦
// λ[βη]

Fig. 16. Ready instantiation and CPS translations

Otherwise,

LHS◦ = (λx.ax)u◦ →η au
◦ = RHS◦ .

All but one of the inductive cases is routine. Suppose L[t1] →ρ L[t2], with t1 →ρ t2. If

t2 6= ηu2, then t1 6= ηu1 and we apply the induction hypothesis. If t1 = ηu1 and t2 = ηu2,

with u1 →ρ u2, then we again apply the induction hypothesis. For ρ ∈ {σ, σv, π, ηbind}
there are no more possibilities, and 1–1 simulation holds if ρ 6= σ. There is a third

possibility, but only when ρ ∈ {β, βv, βvar, ηµ}: t1 6= ηu1 and t2 = ηu2. In this case

(L[t1])
◦ = L◦[t1

◦] (since t1 6= ηu1)

→∗ L◦[(ηu2)
◦] (by the induction hypothesis)

(→∗ in the form according to the induction hypothesis)

= (λk.ku2
◦)L◦− (by the definition of L◦− and (.)◦)

→admin L◦−u2
◦

= (L[ηu2])
◦ . (by the definition of (.)◦)

Composing the monadic translations with the ready continuations-monad instantiation

([T ])x := (T x)
◦
, (14)

we obtain new CPS translations (see Figure 16). In the cbn case, we set

([E])−
n := (En)

◦−
. (15)

In the cbv case, we also set†

V ⋆ := (V †)
◦

([e])−
v := (ev)

◦− .

Nothing is changed at the level of typing with respect to the main CPS translations, so

([.])n enjoys the typing rules of Figure 12, and ([.])v enjoys the typing rules of Figure 14.

Suppose T →ρ T ′ in λµµ̃n or λµµ̃v. By composing the simulation properties of the

monadic translations and the ready instantiation, it follows that there exists a reduction

between the λ-terms ([T ])x and ([T ′])x, consisting of 0, 1 or 2 source reduction steps (the

exact number depends on ρ), possibly followed by some administrative steps. So, in such

† Recall that V ∗ := (V †)
•
. Typographically, V ∗ (with the multiplication symbol as superscript) may be hard to

distinguish from the V ⋆ introduced here, but since these symbols appear in different sections, there should

be no risk of confusion.



a reduction, no administrative step comes before the reduction steps corresponding to the

source reduction T →ρ T ′. We will now make these remarks precise.

Definition A.3 (ready reduction). In the λ-calculus:

— Cbn case:

Given s, s′ λ-terms and ρ a reduction rule of λµµ̃n, we define s
ρ

⇒n s′ by:

– If ρ = β, then s →βv
r →βvar

r′ →∗
admin

s′ for some λ-terms r, r′.

– If ρ = ηµ, then s →=
η r →∗

admin
s′ for some λ-term r.

– If ρ ∈ {σ, ηµ̃}, then s →β r →∗
admin

s′ for some λ-term r.

– If ρ = πn, then s →βv
s′.

— Cbv case:

Given s, s′ λ-terms and ρ a reduction rule of λµµ̃v, we define s
ρ

⇒v s
′ by:

– If ρ = β, then s →βv
r →βvar

r′ →∗
admin

s′ for some λ-terms r, r′.

– If ρ = ηµ, then s →=
βvη

r →∗
admin

s′ for some λ-term r.

– If ρ ∈ {σv, π}, then s →βv
s′.

– If ρ = ηµ̃, then s →βvη s
′.

It may happen that no target step corresponds to a source ηµ step. Accordingly, if

ρ = ηµ, the following result gives the readiness property in a slightly extended sense.

Corollary A.4 (strict simulation with the readiness property). Let x ∈ {n, v}. Then:

(1) If T →ρ T ′ in λµµ̃x, where T , T ′ are two terms or two commands, then

([T ])x
ρ

⇒x ([T ′])x.

(2) If e →ρ e′ in λµµ̃x and t ∈ λµµ̃, then

([〈t|e〉])
x

ρ
⇒x ([〈t|e′〉])

x
.

Proof. As in Corollaries 5.6 and 5.10, the proof is by ‘composition’ (but this time using

Proposition A.2) of the simulation theorems of the monadic translations (Theorems 4.2

and 4.6), including Remarks 4.3 and 4.7.

We can now see that the recursive characterisation of ([.])n differs from Figure 13 in the

clauses for u :: e, µ̃y.c and 〈t|e〉.

Proposition A.5 (recursive characterisation). ([T ])n satisfies the equations in Figure 17 .



([y])n = y

([λy.t])n = Eta(λy.([t])n)

([µa.c])n = λa.([c])n

([a])n = [ ]a

([u :: e])n = [ ](λf.(λz.([e])n[fz])([u])n)

([µ̃y.c])n = (λy.([c])n)[ ]

([〈t|e〉])
n

=

{

([E])−
n
(λy.([u])n) if e = E and t = λy.u

([e])n[([t])n] otherwise

Fig. 17. Ready cbn CPS translation of λµµ̃

Proof. We use the same induction as in the proof of Proposition 5.7. To prove the

statement, we take the recursive characterisation in Figure 17 as the definition of ([T ])n
and define ([E])−

n as the argument to the hole in ([E])n (hence ([E])n = [ ]([E])−
n ). Then we

use simultaneous induction on t, c, E and e to prove:

(i) (tn)
◦

= ([t])n.

(ii) (cn)
◦ = ([c])n.

(iii) (En)
◦−

= ([E])−
n .

(iv) (en)
◦ = ([e])n.

We will only show the cases that need to be updated:

— Case e = µ̃y.c:

((µ̃y.c)n)
◦

= bind(η[ ], y.cn)
◦ (by the definition of (.)n)

= (λy.(cn)
◦)[ ] (by (12))

= (λy.([c])n)[ ] (by the induction hypothesis)

= ([µ̃y.c])n . (by recursive definition)

— Case E = u :: e:

((u :: e)n)
◦−

= bind([ ], f.bind(ηun, z.en[fz]))
◦− (by the definition of (.)n)

= λf.bind(ηun, z.en[fz])
◦ (by the definition of (.)◦−)

= λf.(λz.(en)
◦[fz])un

◦ (by the definition of (.)◦)

= λf.(λz.([e])n[fz])([u])n (by the induction hypothesis)

= ([E])−
n . (by recursive definition)

— Case c = 〈t|e〉:
Suppose e = E and t = λy.u.

(〈λy.u|E〉
n
)
◦

= (En[η(λy.un)])
◦

(by the definition of (.)n)

= (En)
◦−

(λy.(un)
◦)) (by (11))

= ([E])−
n (λy.([u])n)) (by the induction hypothesis)

= ([〈λy.u|E〉])
n
. (by recursive definition)



([V ])v = Eta(V ⋆) v⋆ = v

([µa.c])v = λa.([c])v (λv.t)⋆ = λv.([t])v

([〈t|e〉])
v

=

{

([e])−
v
(V ⋆) if t = V

([e])v[([t])v] otherwise

([a])v = [ ]a

([µ̃v.c])v = [ ](λv.([c])v)

([u :: e])v =

{

[ ](λf.(λw.([e])v[fw])V ⋆) if u = V

[ ](λf.([u])v(λw.([e])v[fw])) otherwise

Fig. 18. Ready cbv CPS translation of λµµ̃

— Otherwise, en is not a base context or tn 6= ηu:

Then:

(〈t|e〉
n
)
◦

= (en[tn])
◦

(by the definition of (.)n)

= (en)
◦[(tn)

◦
] (by (13))

= ([e])n[([t])n] (by the induction hypothesis)

= ([〈t|e〉])
n
. (by recursive definition)

The recursive characterisation of ([.])v differs from Figure 15 in the clauses for u :: e

and 〈t|e〉.

Proposition A.6 (recursive characterisation). ([T ])v satisfies the equations in Figure 18.

Proof. We use the same induction as in proof of Proposition 5.11. To carry out the

proof, we take the recursive characterisation in Figure 18 as the definition of ([T ])v and

V ⋆ and define ([e])−
v as the argument to the hole in ([e])v (hence ([e])v = [ ]([e])−

v ). We then

use simultaneous induction on V , t, c and e to prove:

(i) (V †)
◦

= V ⋆.

(ii) (tv)
◦

= ([t])v.

(iii) (cv)
◦ = ([c])v.

(iv) (ev)
◦− = ([e])−

v and (ev)
◦ = ([e])v.

The cases that need to be updated are e = u :: e′ and c = 〈t|e〉. We will just show the

latter:

— Suppose t = V :

(〈V |e〉
v
)
◦

= (ev[ηV
†])

◦
(by the definition of (.)v)

= (ev)
◦−((V †)

◦
) (by (11))

= ([e])−
v (V ⋆) (by the induction hypothesis)

= ([〈V |e〉])
v
. (by recursive definition)

— Now let t 6= V :



(〈t|e〉
v
)
◦

= (ev[tv])
◦

(by the definition of (.)v)

= (ev)
◦[(tv)

◦
] (by (10), as tv 6= ηu)

= ([e])v[([t])v] (by the induction hypothesis)

= ([〈t|e〉])
v
. (by recursive definition)

Remark A.7. Unlike what we did for the main CPS translations in Remarks 5.8 and 5.12,

we are not going to generalise Corollary A.4 (2) because of the non-uniform translation

of commands, which is made explicit in the recursive characterisations.

A.2. Defects of the resulting CPS translations

If a CPS translation is also viewed as a computational interpretation and not just as a

device for proving strong normalisation, it is unfortunate to have η in the target system.

Moreover, η-rules are problematic in theories of dependent types, to which we would

eventually want to extend our results. These remarks apply to both the main translations

of Section 5.2 and the ready translations of the previous section. We will just concentrate

on the former now.

Rule η is not just used in Proposition 5.2 (1), but is also needed for soundness of the

main cbv CPS translation. As an example, consider

c1 := 〈z|y :: µ̃x.〈x|a〉〉 →ηµ̃ 〈z|y :: a〉 =: c2 .

The β-normal form of 〈[c1]〉v is zy(λx.ax), while the β-normal form of 〈[c2]〉v is zya. Hence,

regardless of simulation, we do not even get β-equality.

The problem is even easier to see for the cbn translation: since 〈[y]〉n = y is not a

λ-abstraction, the step µa.〈y|a〉 →ηµ y needs η in the CPS translation target for soundness.

It is also disappointing for the cbn translation that full β is still needed after applying

the CPS translation. This is in contrast with cbn CPS for simply typed lambda-calculus,

which has been shown to yield terms whose evaluation is even indifferent to the cbn/cbv

paradigms (Plotkin 1975).

Again, rule β, and not just βv, is not only used in Proposition 5.2 (1), but also needed to

show the soundness of the cbn CPS translation: to see this, we can reuse the commands

c1 and c2 of the earlier example, but calculate the βv-normal forms of their cbn CPS

translations to get z(λf.(λx.xa)(fy)) and z(λf.fya), respectively – the problem here is that

fy is not a value.

Still, as we are about to show, the composition of the monadic translations with dedic-

ated refined continuations-monad instantiations for cbn and cbv yields CPS translations

that provide strict simulation with only λ[βv] as target.



λµµ̃x

(.)x
//

[[.]]x

==

λµM

(.)⋄x
// λ[βv]

Fig. 19. Optimised instantiation and CPS translations

A.3. Optimised CPS translations and the indifference property

In this section we will give refinements of the main continuations-monad instantiation,

and thus of the CPS translations – see the summary in Figure 19. The goal is to get

rid of η-reduction and to restrict to cbv β-reduction in the CPS target (even for the cbn

translation).

We will begin by refining the main continuations-monad instantiation by inserting

η-expansions:

↑t := λx.tx ,

with x /∈ t. In the cbv case, this is only done for the translation of co-variables, while in the

cbn case, both the variables and the arguments of the unit η of the monad are expanded.

Relative to the continuations-monad instantiation (.)•, we will change the translation at

the level of expressions, with different refinements for cbn and cbv, which leads us to

introduce the notations T ⋄
n and T ⋄

v. The translation is unchanged at the level of types,

contexts and co-contexts, but for uniformity we introduce the notations A⋄
n, Γ⋄

n and ∆⋄−
n ,

together with the cbv variants, even though A⋄
n = A• = A⋄

v, and so on.

A.3.1. Cbn case. We will now define a refinement of the continuations-monad instanti-

ation, denoted T ⋄
n. The only changes relative to the definition of T • in Figure 10 are in

the case of a variable, which was x• = x, and is now defined by

x⋄
n = ↑x ,

and the unit η of the monad, which was (ηt)• = Eta(t•), and now becomes

(ηt)⋄
n = Eta(↑(t⋄n)) .

The first redefinition will be used to get rid of η-reduction in the final target, while the

second then allows us to restrict β-reduction in the target to βv.

Consequently, we redefine

(bind(η[ ], x.c))⋄
n = Eta(↑[ ])(λx.c⋄

n)

in order to maintain

(C[t])⋄
n = C⋄

n[t
⋄
n] (16)

for all cbn contexts C . We also define L⋄−
n as the unique term such that L⋄

n = [ ]L⋄−
n . The

term L⋄−
n is a value, like L•−.

Obviously, the redefinition invalidates the admissible typing rules of Figure 11 since

x⋄
n can only be typed by an implication, but A⋄

n can be a type variable (when A = X).

Similarly, the argument term t of ηt might be typed by a type variable, so the η-expansion

of t⋄n would not be typable.



A very simple solution is a global exclusion of term typings with atomic types, that is,

type variables. We will say that a sequent of λµM is non-atomic if it is a sequent c : (Γ ⊢ ∆)

whatsoever; or a sequent Γ ⊢ t : A|∆ with A a type that is not a type variable. We call

the subsystem of the typing system for λµM (Figure 4) that only operates with non-atomic

sequents the non-atomic typing system. For emphasis, we write non-atomic sequents (and

derivability in the non-atomic typing system) thus:

c : (Γ ⊢nat ∆) Γ ⊢nat t : A|∆ .

The typing rules of Figure 11 then hold for (.)⋄
n, if the premisses are replaced by

non-atomic derivability. On the other hand, the non-atomic system is sufficient for typing

any expression in the range of the cbn monadic translation: this is easy to verify, in

particular, by studying the types that the bound variables in the bind expressions receive,

and also by verifying the type of the term fz that appears in the translation of u :: e. So

no typing constraint will be observable after forming the CPS translation by composition

(see Corollary A.10).

Lemma 5.1 has to be refined as follows.

Lemma A.8. The translation satisfies:

(1) [u⋄
n/x]T ⋄

n →∗
βvar

([u/x]T )⋄
n

for any u that is not an application.

(2) ([L/a]T )⋄
n

= [L⋄−
n /a]T ⋄

n.

Proof.

(1) The proof is by induction on T . The case for T = x is the only non-trivial case, and

its proof is as follows:

[u⋄
n/x](↑x) = ↑u⋄

n

→βvar
u⋄

n

= ([u/x]x)⋄
n
,

where u⋄
n is a λ-abstraction, since u is not an application.

(2) The proof is by induction on T and is unchanged from the proof of Lemma 5.1.

Proposition A.9 (optimised instantiation for cbn). If T → T ′ in λµM, where we omit

reduction rule ηbind and restrict rules β and ηµ to βn and ηµn, respectively, and σ to the

union of σn and σC, then T ⋄
n →+ T ′⋄

n in λ[βv].

Proof. The proof is by induction on T → T ′. Note that if s is not an application,

then s⋄
n is a λ-abstraction. We will now consider what the proofs of the base cases of

Proposition 5.2 (1) yield in this situation:

— Case β: (λx.t)s → [s/x]t:

By our restriction to βn, we know that s is not an application, so

LHS⋄
n = (λx.t⋄n)s

⋄
n

→βv
[s⋄

n/x]t⋄n

→∗
βvar

RHS⋄
n . (by Lemma A.8 (1))



Case σ: bind(ηs, x.c) → [s/x]c:

LHS⋄
n = (λk.k(↑s⋄

n))(λx.c
⋄
n)

→βv
(λx.c⋄

n)(↑s
⋄
n)

→βv
[↑s⋄

n/x]c⋄
n

→∗
βvar

[s⋄
n/x]c⋄

n (a)

→∗
βv

RHS⋄
n , (b)

where the last two steps (marked (a) and (b)) are justified by cases, as follows:

– Subcase σ = σn:

Here s is not an application, so s⋄
n is a λ-abstraction and ↑s⋄

n →βvar
s⋄
n, which

justifies (a).

Step (b) is justified by Lemma A.8 (1) (which needs the assumption that s is not

an application).

– Subcase σ = σC and c = L[x] (x 6∈ L):

Here (a) and (b) contain exactly one reduction step each (recall that L⋄−
n is a

value):

[↑s⋄
n/x]c⋄

n = (↑(↑s⋄
n))L

⋄−
n

→βvar
(↑s⋄

n)L
⋄−
n (= [s⋄

n/x]c⋄
n)

→βv
s⋄
nL

⋄−
n

= L⋄
n[s

⋄
n]

= ([s/x]c)⋄
n
.

– Subcase σ = σC and c = bind(ηx, y.c′) (x 6∈ c′):

Here, again, (a) and (b) contain exactly one reduction step each:

[↑s⋄
n/x]c⋄

n = Eta(↑(↑(↑s⋄
n)))(λy.c

′⋄
n)

→βvar
Eta(↑(↑(s⋄

n)))(λy.c
′⋄
n) (= [s⋄

n/x]c⋄
n)

→βvar
Eta(↑s⋄

n)(λy.c
′⋄
n)

= bind(ηs, y.c′)
⋄
n

= ([s/x]c)⋄
n
.

Case π: L[µa.c] → [L/a]c:

LHS⋄
n = (λa.c⋄

n)L
⋄−
n

→βv
[L⋄−

n /a]c⋄
n

= RHS⋄
n . (by Lemma A.8 (2))



Case ηµ: µa.at → t, with a 6∈ t:

By our restriction to ηµn, we know that t⋄n is a λ-abstraction. So,

LHS⋄
n = λa.t⋄na →βvar

t⋄n = RHS⋄
n .

Note that we have omitted rule ηbind.

We now define the cbn optimised CPS translation:

[[T ]]n := (T n)
⋄
n . (17)

For an evaluation context E, we also put

[[E]]−
n := (En)

⋄−
n . (18)

In particular, [[E]]−
n is a value (since any L⋄−

n is a value and En is a base context).

At the level of types, contexts and co-contexts, [[.]]n changes nothing relative to 〈[.]〉n.

Nevertheless, for uniformity, we introduce the notations [[A]]n, [[Γ]]n, [[∆]]−
n , and so on.

Corollary A.10 (typing). The typing rules of Figure 12 are admissible for [[.]]n.

Proof. The proof method of Corollary 5.5 applies again. We ‘compose’ the rules in

Figure 6 for (.)n with conclusions in the non-atomic system, with the rules in Figure 11,

which hold for (.)⋄
n provided the premisses are in the non-atomic system as well. We clearly

need

[[Γ]]n = (Γn)
⋄
n

[[∆]]−
n = (∆n)

⋄−
n ,

which, as usual for these composition lemmas, are obtained by the observation in Section 1.

As in Section 5.2, we will just show the typing rule for co-terms:

Γ|e : A ⊢ ∆

en[y] : (Γn, y : An ⊢nat ∆n)
(a)

(Γn)
⋄
n, y : ¬¬(A†

n)
⋄

n, (∆n)
⋄−
n ⊢ (en[y])

⋄
n : ⊥

(b)

[[Γ]]n, y : [[A]]n, [[∆]]−
n ⊢ [[e]]n[↑y] : ⊥

(c)

where the labelled steps are justified as follows:

(a) This follows from the third typing rule in Figure 6 with non-atomic conclusions.

(b) This follows from the third typing rule in Figure 11 with non-atomic premisses.

(c) This follows from

¬¬(A†
n)

⋄
n

= (An)
⋄
n = [[A]]n

and then

(en[y])
⋄
n = (en)

⋄
n[y

⋄
n] = [[e]]n[↑y]

using (16) and (17).

Finally, to get rid of the expansion ↑y, we invoke subject reduction for η-reduction in

λ-calculus.



[[y]]n = ↑y

[[λy.t]]n = Eta(↑(λy.[[t]]n))

[[µa.c]]n = λa.[[c]]n

[[a]]n = [ ]a

[[u :: e]]n = [ ](λf.Eta(↑[[u]]n)(λz.[[e]]n[(↑f)(↑z)]))

[[µ̃y.c]]n = Eta(↑[ ])(λy.[[c]]n)

[[〈t|e〉]]
n

= [[e]]n[ [[t]]n ]

Fig. 20. Optimised cbn CPS translation of λµµ̃

Corollary A.11 (strict simulation with the indifference property).

(1) If T → T ′ in λµµ̃n, then [[T ]]n →+ [[T ′]]n in λ[βv], where T , T ′ are either two terms

or two commands.

(2) If e → e′ in λµµ̃n, then [[〈t|e〉]]
n

→+ [[〈t|e′〉]]
n

in λ[βv] for any t ∈ λµµ̃.

Proof. As we did in the proof of Corollary 5.6, we ‘compose’ the simulation theorem of

the cbn monadic translation (.)n (Theorem 4.2), but this time with Proposition A.9. Note

the provisos in this proposition are met due to constraints noted in the extra statement

of Theorem 4.2 and since βvar ⊂ βn.

Since the optimised cbn CPS translation also preserves typability, we can infer the

strong normalisation of λµµ̃n from the strong normalisation of λ[βv].

Proposition A.12 (recursive characterisation). [[T ]]n satisfies the equations in Figure 20.

Proof. The proof is similar to the proof of Proposition 5.7.

In particular, the proof of the previous proposition establishes the fact that [[E]]−
n is the

term after the hole [ ] in [[E]]n. Hence [[E]]n[t] = t[[E]]−
n . This fact is used next.

Remark A.13. Given the recursive characterisation, statement (2) in Corollary A.11 reads

as follows:

If e → e′ in λµµ̃n, then [[e]]n[[[t]]n] →+ [[e′]]n[[[t]]n] in λ[βv] for any t ∈ λµµ̃.

This statement can be generalised so that [[e]]n[u] →+ [[e′]]n[u] in λ[βv] for any λ-term u.

As in Remark 5.12, this is proved by a new simultaneous induction, together with trivial

statements for terms and commands. The inductive cases are routine, so we will only

consider the single base case of statement (2), which is again µ̃y.〈y|e〉 → e, with y /∈ e.

Using the recursive characterisation,

[[LHS]]n[t] = Eta(↑t)(λy.[[e]]n[↑y]) .



If e is an evaluation context E, then [[e]]−
n is a value and [[e]]n[t] = t[[e]]−

n . Moreover,

Eta(↑t)(λy.[[e]]n[↑y]) →βv
(λy.[[e]]n[↑y])(↑t)

→βv
[[e]]n[↑(↑t)]

= (↑(↑t))[[e]]−
n

→βvar
(↑t)[[e]]−

n

→βv
t[[e]]−

n

= [[e]]n[t]

= [[RHS]]n[t] .

Otherwise, e = µ̃z.c, so

µ̃y.〈y|e〉 = µ̃y.〈y|µ̃z.c〉

→σv
µ̃y.[y/z]c

= µ̃z.c ,

so this case can be seen as an inductive case where

µ̃y.c0 →σv
µ̃y.c′

0,

with c0 →σv
c′
0.

A.3.2. Cbv case. We will now refine the continuations-monad instantiation by keeping

the definition of (.)• in Section 5 except for setting

(a[ ])⋄
v = [ ](↑a) .

Accordingly, (a[ ])⋄−
v = ↑a and, since ↑a is a λ-abstraction, every L⋄−

v is now a λ-abstraction.

Lemma 5.1 is modified as follows (the only change appears in part (2)).

Lemma A.14.

(1) ([u/x]T )⋄
v

= [u⋄
v/x]T ⋄

v.

(2) [L⋄−
v /a]T ⋄

v →∗
βvar

([L/a]T )⋄
v
.

Proof.

(1) The proof is by induction on T .

(2) The proof is by induction on T :

— Case at:
[L⋄−

v /a](at)⋄
v = [L⋄−

v /a](t⋄v(↑a))

= [L⋄−
v /a]t⋄v(↑L

⋄−
v )

→∗
βvar

([L/a]t)⋄
v
(↑L⋄−

v ) (by the induction hypothesis)

→βvar
([L/a]t)⋄

v
L⋄−

v

= (L[[L/a]t])⋄
v

= ([L/a](at))⋄
v
.



The final reduction step is a βvar step since, as we noted earlier, L⋄−
v is a λ-

abstraction.

Proposition A.15 (optimised instantiation for cbv). If T → T ′ in λµM, where β, σ and ηµ
are restricted to βv, σv and ηµv, respectively, then T ⋄

v →+ T ′⋄
v in λ[βv].

Proof. The proof is by induction on T → T ′. We will just consider what the proofs of

the base cases of Proposition 5.2 (1) yield in the present situation:

— Case βv: (λx.t)V → [V/x]t:

Note that V ⋄
v is a value. So,

LHS⋄
v = (λx.t⋄v)V

⋄
v

→βv
[V ⋄

v/x]t⋄v

= RHS⋄
v . (by Lemma A.14 (1))

— Case σv: bind(ηV , x.c) → [V/x]c:

Note again that V ⋄
v is a value. So,

LHS⋄
v = (λk.kV ⋄

v)(λx.c
⋄
v)

→βv
(λx.c⋄

v)V
⋄
v

→βv
[V ⋄

v/x]c⋄
v

= RHS⋄
v . (by Lemma A.14 (1))

— Case π: L[µa.c] → [L/a]c:

LHS⋄
v = (λa.c⋄

v)L
⋄−
v

→βv
[L⋄−

v /a]c⋄
v

→∗
βvar

RHS⋄
v . (by Lemma A.14 (2))

— Case ηµv: µa.at → t with a 6∈ t:

LHS⋄
v = λa.t⋄v(↑a)

→η ↑t⋄v

→η t⋄v

= RHS⋄
v .

However, due to our extra restriction t = ηV , we can do without η-reduction:

λa.t⋄v(↑a) = λa.(λk.kV ⋄
v)(↑a)

→βv
λa.(↑a)V ⋄

v

→βv
λa.aV ⋄

v

= RHS⋄
v .

In the final reduction we have used the fact that V ⋄
v is a value.



— Case ηbind: bind(t, x.a(ηx)) → at:

LHS⋄
v = t⋄v(λx.(λk.kx)(↑a))

→βv
t⋄v(λx.(↑a)x)

→βvar
t⋄v(↑a)

= RHS⋄
v .

We will now compose the cbv monadic translation with this new continuations-monad

instantiation

[[T ]]v := (T v)
⋄
v

to obtain the optimised cbv CPS translation. As usual, we also define

[[e]]−
v = (ev)

⋄−
v .

In particular, [[e]]−
v is always a λ-abstraction.

At the level of types, contexts and co-contexts, [[.]]v changes nothing relative to 〈[.]〉v.

Nevertheless, for uniformity, we introduce the notations [[A]]v, [[Γ]]v, [[∆]]−
v , and so on.

The rules in Figure 11 (with (.)• replaced by (.)⋄
v) remain admissible since variables a

are assigned types of the form ¬A⋄
v in all the contexts. Therefore, the rules in Figure 14

(with 〈[.]〉v replaced by [[.]]v) also still hold. Thus, the situation is more pleasant than for

the cbn case.

Corollary A.16 (strict simulation with the indifference property).

(1) If T → T ′ in λµµ̃v, then [[T ]]v →+ [[T ′]]v in λ[βv], where T , T ′ are either two terms

or two commands.

(2) If e → e′ in λµµ̃v, then [[〈t|e〉]]
v

→+ [[〈t|e′〉]]
v

in λ[βv] for any t ∈ λµµ̃.

Proof. As we did in the proof of Corollary 5.10, we ‘compose’ the simulation theorem

of the cbv monadic translation (.)v (Theorem 4.6), but this time with Proposition A.15.

The restrictions of the rules of λµM in this proposition are met in the target of (.)v (see

the extra statement in Theorem 4.6 and recall that βvar ⊂ βv).

As in the cbn case, the optimised cbv CPS translation preserves typability, so we can

infer strong normalisation of λµµ̃v from that of λ[βv].

Proposition A.17 (recursive characterisation). The recursive characterisation of [[.]]v is

obtained by changing the clause for co-variables in Figure 15 as follows:

[[a]]v = [ ](↑a) .

Proof. We just adapt the case e = a in the induction we used to prove Proposition 5.11.

In particular, the proof of the previous proposition established that [[e]]−
v is the term

after the hole in [[e]]v. Hence [[e]]v[t] = t[[e]]−
v , which we will use next. We will also use the

fact that [[e]]−
v is always a λ-abstraction, which fails for 〈[e]〉−

v if e is a co-variable.



Remark A.18. Given the recursive characterisation, statement (2) in Corollary A.16 reads

as follows:

If e → e′ in λµµ̃v, then [[e]]v[[[t]]v] →+ [[e′]]v[[[t]]v] in λ[βv] for any t ∈ λµµ̃.

This statement can be generalised so that [[e]]v[u] →+ [[e′]]v[u] in λ[βv] for any λ-term u.

Again, only the case of base ηµ̃-reduction requires fresh verification. We have to show

[[µ̃x.〈x|e〉]]
v
[t] →+ [[e]]v[t]

in λ[βv] (for x 6∈ e), which we do as follows:

LHS = t(λx.[[x]]v [[e]]−
v )

→βv
t(λx.[[e]]−

v x) ([[e]]−
v is a value)

→βvar
t[[e]]−

v ([[e]]−
v is a λ-abstraction)

= RHS .
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