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Monadic translation of classical sequent calculus

We study monadic translations of the call-by-name (cbn) and call-by-value (cbv) fragments of the classical sequent calculus λµμ due to Curien and Herbelin, and give modular and syntactic proofs of strong normalisation. The target of the translations is a new meta-language for classical logic, named monadic λµ. This language is a monadic reworking of Parigot's λµ-calculus, where the monadic binding is confined to commands, thus integrating the monad with the classical features. Also, its µ-reduction rule is replaced by a rule expressing the interaction between monadic binding and µ-abstraction. Our monadic translations produce very tight simulations of the respective fragments of λµμ within monadic λµ, with reduction steps of λµμ being translated in a 1-1 fashion, except for β steps, which require two steps. The monad of monadic λµ can be instantiated to the continuations monad so as to ensure strict simulation of monadic λµ within simply typed λ-calculus with β-and η-reduction. Through strict simulation, the strong normalisation of simply typed λ-calculus is inherited by monadic λµ, and then by cbn and cbv λµμ, thus reproving strong normalisation in an elementary syntactical way for these fragments of λµμ, and establishing it for our new calculus. These results extend to second-order logic, with polymorphic λ-calculus as the target, giving new strong normalisation results for classical second-order logic in sequent calculus style. CPS translations of cbn and cbv λµμ with the strict simulation property are obtained by composing our monadic translations with the continuations-monad instantiation. In an appendix to the paper, we investigate several refinements of the continuations-monad instantiation in order to obtain in a modular way improvements of the CPS translations enjoying extra properties like simulation by cbv β-reduction or reduction of administrative redexes at compile time.

Introduction

The λµμ calculus [START_REF] Curien | The duality of computation[END_REF] is a way to present classical sequent calculus in an operationalised form as an extension of λ-calculus. Such a calculus is a prototypical functional language with a control operator µ (introduced in [START_REF] Parigot | λµ-calculus: an algorithmic interpretation of classic natural deduction[END_REF]), but where no deterministic reduction strategy is singled out. It is thus important to consider confluent fragments (where all reduction sequences lead to the same result, if any). Non-confluence of λµμ is due to a single critical pair, which can be resolved in two ways, which determine the call-by-name (cbn) and call-by-value (cbv) fragments of λµμ [START_REF] Curien | The duality of computation[END_REF]. In addition, it is desirable that, within each fragment, all reduction sequences starting from typed expressions do indeed produce a result (that is, they end in a term that cannot be reduced any further). This is the strong normalisation property.

In this paper we study embeddings of the cbn and cbv fragments of λµμ into the simply typed λ-calculus. These embeddings are continuation-passing style (CPS) translations and, therefore, a kind of compilation. In addition, through these embeddings, we give a new proof of strong normalisation for the mentioned fragments of λµμ. In fact, the embeddings produce strict simulations, that is, each reduction step of the source calculus is mapped to one or more steps of the target calculus, so that strong normalisation in the source is reduced to strong normalisation in the target, where it holds and has been proved in many different ways.

The interest in this new proof lies not only in its elementary character, but also in its concepts. The CPS compilations that simulate the fragments of λµμ are factored into a monadic translation and a single instantiation mapping, the latter working for both cbn and cbv. The monadic translation is, as advocated in [START_REF] Moggi | Notions of computation and monads[END_REF], a semantical interpretation into a monadic meta-language, and this, in turn, is a typed calculus with a special type former M, which stands for a monad and is an ingredient in the categorical semantics originally put forward by Moggi. The monadic translation is thus parameterised by M. Here we will only consider the instantiation of M to the so-called continuations monad. This corresponds to interpreting M as double negation, which is a type transformation of simple types that determines a mapping from the meta-language to the simply typed λ-calculus.

The target of the monadic translation is a classical version of Moggi's meta-language, whose definition is a challenge and a major contribution of the present paper. This target is a reworking of Parigot's λµ-calculus, which we call monadic λµ-calculus, and denote by λµ M . It is not a routine amalgamation of λµ with the monadic meta-language. Monadic λµ extends the category of commands of λµ-calculus by a monadic bind construct. Covariables are restricted to 'monadic' types, that is, types of the form MA (otherwise some trivialisation happens -see Section 3.1). Unlike Parigot's calculus, there is no µreduction rule corresponding to implication elimination. Instead, the µ-rule now expresses the interaction between bind and µ-abstraction. Nonetheless, the intuitionistic restriction of λµ M corresponds to Moggi's monadic meta-language.

Unlike the original monadic meta-language [START_REF] Moggi | Notions of computation and monads[END_REF]), but in line with [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF] and [START_REF] Sabry | A reflection on call-by-value[END_REF], our classical meta-language is equipped with reduction rules. The cbn and cbv monadic translations produce strict simulations of the
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x n (after name) or v (after value) λµμ x cbx fragment of λµμ-calculus λµ M monadic λµ-calculus (.) x cbx monadic translation (.) • continuations-monad instantiation [.] x cbx CPS translation Fig. 1. Overview respective sources by these reduction rules. On the other hand, the instantiation from λµ M into the simply typed λ-calculus given by the continuations monad is also a strict simulation. In the target, besides the η-reduction rule, we just need Plotkin's cbv β-rule (β v ) for the cbv restriction, but the full β-rule for the full calculus. Therefore, both cbn and cbv λµμ are strongly normalising: this can be seen either by observing that λµ M has previously been proved to be strongly normalising through strict simulation in simply typed λ-calculus or by composing monadic translations with the instantiation mapping to form direct CPS compilations into λ-calculus with the strict simulation property. See Figure 1 for an overview of the systems and translations.

All the systems considered in this paper can be straightforwardly extended to cover second-order logic, and the simulation results can be extended correspondingly. This demonstrates that our technique uses minimal meta-theoretic strength, while it can establish strong normalisation in cases where no arithmetic proofs are possible. This is because we are content with a simulation result, thereby inheriting the strong normalisation property from second-order λ-calculus, which is widely known and has been established using a multitude of distinct proof strategies.

In an appendix to the paper, we describe some technical refinements to the CPS translations of cbn and cbv λµμ we have given. The questions of 'administrative reductions' and the indifference property [START_REF] Plotkin | Call-by-name, call-by-value and the λ-calculus[END_REF] are analysed. We propose two variants of our CPS translations: one that performs administrative reductions at compile time and another enjoying strict simulation by β v only. The main point is that the modular approach of having decomposition through λµ M is retained since the refinements are confined to the continuations-monad instantiation, and the refined CPS translations are obtained by composition.

Structure of the paper

Section 2 provides a brief summary of the relevant features of λµμ. Section 3 defines λµ M and shows the connection with Moggi's meta-language. Section 4 defines the monadic translations of cbn and cbv λµμ into λµ M and proves strict simulation. Section 5 defines the continuations-monad instantiation and concludes the proof of strong normalisation for cbn and cbv λµμ. Section 6 extends the results to systems with second-order universal quantification, and Section 7 discusses related and future work. Technical refinements concerning CPS translations are presented in Appendix A.

Notation

Simple types, ranged over by A, B, C, are generated from type variables X by arrow/implication, written A ⊃ B. Monads are denoted M.

Contexts Γ are finite sets of declarations (x : A) with x a variable, while co-contexts ∆ are finite sets of declarations (a : A), with a a co-variable. In both cases, there is the usual requirement of consistency, that is, the uniqueness of declaration of (co-)variables, which is implicitly enforced in the sense that, for example, when writing the enlarged context Γ, x : A, we assume that x is not declared in Γ. We write Γ, Γ ′ for the union of the contexts Γ and Γ ′ , again implicitly assuming that the declarations do not have any variables in common. If F is some type operation, its extension to contexts is

FΓ = {(x : FA)|(x : A) ∈ Γ} ,
and similarly for co-contexts ∆. An immediate benefit of this notation is its 'compositionality': if two operations on types, F and G, are considered, then F(GΓ) = (F • G)Γ, for F • G the composition of F and G. The same holds trivially for co-contexts ∆.

We use λ[R 1 . . .] to denote λ-calculus with reduction rules R 1 , . . . Thus, for clarity or emphasis, we may write λ[β] to denote ordinary λ-calculus using the usual β-reduction rule:

(β) (λx.t)s → [s/x]t .
Plotkin's cbv restriction

(β v ) (λx.t)V → [V /x]t
for V a value (that is, not an application) yields the corresponding cbv λ-calculus λ[β v ]. We sometimes need the even more restricted (β var ) (λx.t)y → [y/x]t for y / ∈ t (that is, y not free in t) .

The η-reduction rule is (η) λx.tx → t for x / ∈ t .

Throughout the paper, when reduction rules are given (the base reduction rules), → stands for the term closure of the base reduction rules, that is, reduction by → may happen by applying one of the base reduction rules at arbitrary depth in the expression, including under binders. When → (possibly with some decoration) stands for a reduction relation, → + denotes its transitive and → * its reflexive and transitive closure.

Background

In this section we recall Curien and Herbelin's λµμ-calculus [START_REF] Curien | The duality of computation[END_REF].

Γ, x : A ⊢ x : A|∆ Expressions are values, terms, evaluation contexts, co-terms and commands that are defined by the following grammar: Expressions are ranged over by T , T ′ . Variables (respectively, co-variables) are ranged over by v, w, x, y, z (respectively, a, b). We assume disjoint countably infinite supplies of variables, and they may also be denoted by using decorations of the base symbols (this will never be made explicit in the rest of the paper).

Γ|a : A ⊢ a : A, ∆ Γ, x : A ⊢ t : B|∆ Γ ⊢ λx.t : A ⊃ B|∆ Γ ⊢ u : A|∆ Γ|e : B ⊢ ∆ Γ|u :: e : A ⊃ B ⊢ ∆ c : (Γ ⊢ a : A, ∆) Γ ⊢ µa.c : A|∆ c : (Γ, x : A ⊢ ∆) Γ|μx.c : A ⊢ ∆ Γ ⊢ t : A|∆ Γ|e : A ⊢ ∆ t|e : (Γ ⊢ ∆) Fig. 2.
V ::= x | λx.
There is one kind of sequent per proper syntactic class (terms, co-terms and commands):

Γ ⊢ t : A|∆ Γ|e : A ⊢ ∆ c : (Γ ⊢ ∆)
where Γ and ∆ are contexts and co-contexts, respectively, as described by the notational conventions in the previous section. Typing rules are given in Figure 2. There are 6 substitution operations altogether:

[t/x]c [t/x]u [t/x]e [e/a]c [e/a]u [e/a]e ′ .
We consider the 5 reduction rules in Figure 3, where we reuse the name β of λ-calculus (rule names are considered relative to some term system). These are the reductions considered in [START_REF] Polonovski | Strong normalization of λµμ with explicit substitutions[END_REF], but the β-rule for the subtraction connective is not included. However, throughout the paper, we will only consider fragments where the critical pair rooted in µa.c|μx.c ′ between the rules σ and π is avoided. Following [START_REF] Curien | The duality of computation[END_REF], the π rule is replaced in the cbn fragment λµμ n of λµμ by its restriction to evaluation contexts:

(π n ) µa.c|E → [E/a]c .
This is equivalent to saying that σ has priority over π. (Note that this is not the cbn restriction λµμ T of [START_REF] Curien | The duality of computation[END_REF] with a proper sub-syntax.) Dually, in the cbv fragment λµμ v of λµμ, the σ rule is replaced by its restriction to values:

(σ v ) V |μx.c → [V /x]c
In this case, π has priority over σ. In both fragments, the only critical pairs are trivial ones involving η μ and η µ , hence λµμ n and λµμ v are confluent.

Monadic λµ-calculus

In this section we define the monadic λµ-calculus λµ M , which is a monadic reworking of Parigot's λµ-calculus. Its intuitionistic fragment is discussed in Section 3.2. Note that a bind, and one of its sub-expressions, is a command. Substitutions [s/x]t and [s/x]c are defined in the obvious way. The following derived syntactic classes will be useful:

(base contexts) L ::= a[ ] | bind([ ], x.c) (cbn contexts) C ::= L | bind(η[ ], x.c)
where [ ] represents the 'hole' of the context ‡ . If t is a term, C[t] denotes the command obtained by filling the hole in C with t, and is defined as at (respectively, bind(t, x.c)

or bind(ηt, x.c)) if C is a[ ] (respectively, bind([ ], x.c) or bind(η[ ],
x.c)). Note that every command c has the form L[t], and L and t are uniquely determined by c.

In the sequent calculus λµμ, we have substitution of co-terms for co-variables. We define, in the natural deduction system λµ M , substitution of cbn contexts for co-variables in terms of 'structural substitution'. Structural substitution [C/a]t and [C/a]c is defined Types of the form MA are called monadic types. The typing rules are given in Figure 4. There are two kinds of sequents: Γ ⊢ t : A|∆ and c : (Γ ⊢ ∆). In both cases, ∆ is a consistent set of declarations a : MA, and thus with monadic types. Apart from the last two rules, these are the rules for Parigot's λµ, but with the restriction of co-variables to monadic types † .

Γ, x : A ⊢ x : A|∆ Ax Γ, x : A ⊢ t : B|∆ Γ ⊢ λx.t : A ⊃ B|∆ Intro Γ ⊢ t : A ⊃ B|∆ Γ ⊢ u : A|∆ Γ ⊢ tu : B|∆ Elim Γ ⊢ t : MA|a : MA, ∆ at : (Γ ⊢ a : MA, ∆) P ass c : (Γ ⊢ a : MA, ∆) Γ ⊢ µa.c : MA|∆ Act Γ ⊢ s : A|∆ Γ ⊢ ηs : MA|∆ Unit Γ ⊢ r : MA|∆ c : (Γ, x : A ⊢ ∆) bind(r, x.c) : (Γ ⊢ ∆) Mult
The rule for η is just as expected for the unit of a monad, while the typing rule for bind, which is named after monad multiplication, should be contrasted with the usual rule in the framework of λ-calculus: for some a / ∈ r, t and even obtain the expected typing behaviour. For a more detailed analysis of the intuitionistic case, see Section 3.2.

Γ ⊢ r : MA Γ, x : A ⊢ t : MB Γ ⊢ bind(
The following typing rules for structural substitution are admissible where x / ∈ C:

Γ ⊢ t : B|∆, a : MA C[x] : (Γ, x : MA ⊢ ∆) Γ ⊢ [C/a]t : B|∆ c : (Γ ⊢ ∆, a : MA) C[x] : (Γ, x : MA ⊢ ∆) [C/a]c : (Γ ⊢ ∆) .
3.1.3. Reduction rules. The base reduction rules of λµ M are shown in Figure 5. Thus, as in the λµμ case, rule π causes substitution for co-variables, while σ causes substitution for variables.

Rule π uses the derived syntactic class of base contexts and is therefore a scheme that stands for the following two rules:

(π bind ) bind(µa.c, x.c ′ ) → [bind([ ], x.c ′ )/a]c (π covar ) b(µa.c) → [b/a]c .
Counting these two rules separately, we can see that three rules are inherited from ordinary λµ (β, 'renaming' π covar and η µ ), and one rule from the ordinary monadic meta-language (σ). But two rules are original: π bind and η bind . Rule π bind expresses the interaction of bind with µ-abstraction. Note that the left-hand side of π bind fits well with the restriction of co-variables to monadic type: if µa.c is well typed, then it is typed with a monadic type, which is required for the principal (first) argument of bind in order to type the whole expression.

A particular case of π bind is bind(bind(r, x.t), y.c) = bind(µa.bind(r, x.at), y.c) → bind(r, x.bind(t, y.c))

for a / ∈ r, t. This is an 'associativity' rule, and it is formally similar to the 'associativity' rule for bind found in the framework of λ-calculus, and recalled in Section 3.2 below.

Rule η bind will be needed for the simulation of λµμ v by the cbv monadic translation.

In the target of the monadic translations or in the source of some continuations-monad instantiations to be introduced below, the reduction rules of λµ M are used in a variety of restricted forms:

-There is the restriction of β to variable renaming:

(β var ) (λx.t)y → [y/x]t (y / ∈ t) .
-There are the cbv restrictions of the rules β, σ and η µ :

(β v ) (λx.t)V → [V /x]t (σ v ) bind(ηV , x.c) → [V /x]c (η µv ) µa.a(ηV ) → ηV (a / ∈ V ) .
-There are also cbn versions of the same rules, whose definition uses a λµ M -term N that is not an application:

(β n ) (λx.t)N → [N/x]t (σ n ) bind(ηN, x.c) → [N/x]c (η µn ) µa.aN → N (a / ∈ N) .
Note that the cbn versions properly contain the respective cbv versions. It is obvious that none of the seven restricted versions of the λµ M reduction rules are closed under term substitution, that is, we do not have

T → ρ T ′ implies [t/x]T → ρ [t/x]T ′
, where → ρ stands for any of the above restricted reductions. This is because variables, values and non-applications are evidently not closed under term substitution. However, all the rules of Figure 5 satisfy closure under term substitution, as well as a final restriction of σ that we will also consider:

(σ C ) bind(ηs, x.C[x]) → C[s] (x / ∈ C) .
It goes without saying that λµ M enjoys subject reduction: types of terms and commands are preserved under → (the term closure of the base reduction rules that should more precisely be called the 'closure under all expression constructors'). There are five critical pairs between the reduction rules, and it is not surprising that they all appear in connection with either the η µ or η bind rule. Two such pairs involve π covar and η µ (in one the root of the term is a π covar -redex and in the other the root of the term is a η µ -redex), but they are both trivial. The critical pair between π bind and η µ and the one between η bind and σ are also trivial. The remaining critical pair is between η bind and π bind : bind(µa.c, x.b(ηx)) reduces to both

(i) [bind([ ], x.b(ηx))/a]c (ii) b(µa.c),
but these terms both reduce to [b/a]c: (ii) by one π covar step and (i) with zero or more η bind steps (a result that can be proved together with its analogue for terms). Since all critical pairs are joinable, λµ M enjoys local confluence.

The intuitionistic subsystem and relation with Moggi's meta-language

We identify the intuitionistic fragment and an intuitionistic subsystem of monadic λµ, and show that the latter is essentially Moggi's meta-language, the only difference being in the reduction rule for the associativity of binds.

We start with two isomorphic presentations of the intuitionistic fragment. Let * be a fixed co-variable. The intuitionistic terms and commands are generated by the grammar (Terms) r, s, t, u

::= x | λx.t | tu | µ * .c| ηt (Commands) c ::= * t | bind(t, x.c) .
Terms have no free occurrences of co-variables and each command has exactly one free occurrence of * . Sequents are restricted to have exactly one formula on the right-hand side.

The typing and reduction rules of the intuitionistic fragment are the expected restrictions to the typing and reduction rules of λµ M , so we will not spell them out here. Instead, we will develop an isomorphic variant of the intuitionistic fragment, where * and the µ-binder are completely avoided and replaced by two coercion constructs: one from commands to terms and the other from terms to commands. The grammar of expressions becomes:

(Terms) r, s, t, u

::= x | λx.t | tu | {c}| ηt (Commands) c ::= ptq | bind(t, x.c) .
The two forms of judgment are Γ ⊢ t : A, and c : (Γ ⊢ MA). Note that these simplified judgment forms reflect both the restriction to only one formula on the right-hand sides and the complete absence of co-variables.

The typing rules P ass and Act are now

Γ ⊢ t : MA ptq : (Γ ⊢ MA) P ass c : (Γ ⊢ MA) Γ ⊢ {c} : MA Act.
We omit the other typing rules.

The β and σ reduction rules are the same as for λµ M , and the other rules are now

(π bind ) bind({c}, x.c ′ ) → (c@x.c ′ ) (π p.q ) p{c}q → c (η {.} ) {ptq} → t (η bind ) bind(t, x.pηxq) → ptq
where the operation @ is the isomorphic counterpart of the substitution of base contexts in the bind form for * , and is given by (bind(t, y.c ′ )@x.c) = bind(t, y.(c ′ @x.c)) (ptq@x.c) = bind(t, x.c) .

We will now consider a simplification of this isomorphic variant of the intuitionistic fragment of λµ M . We call it the intuitionistic subsystem of λµ M . If we do not write the coercions {.} and p.q in the isomorphic fragment, we can merge terms and commands into the grammar (Terms) r, s, t, u ::

= x | λx.t | tu | bind(t, x.u)| ηt ,
and have only the sequent form Γ ⊢ t : A. This causes rules P ass and Act to collapse, gives the usual rule for typing bind in the framework of λ-calculus (see Section 3.1) and leaves the other typing rules unchanged.

These terms and typing rules correspond to those of Moggi's monadic meta-language [START_REF] Moggi | Notions of computation and monads[END_REF]. With this term grammar, rules π p.q and η {.} become identities, just as in the case c = ptq of π bind , and we are left with the following rules:

(β) (λx.t)s → [s/x]t (σ) bind(ηs, x.t) → [s/x]t (π bind ) bind(bind(t, x.u), y.s) → bind(t, x.(u@y.s)) (η bind ) bind(t, x.ηx) → t
where @ is the same as for the isomorphic variant (recall that commands became terms):

(bind(t, y.s)@x.u) = bind(t, y.(s@x.u)) (t@x.u) = bind(t, x.u) otherwise .

The difference between these rules and the usual reduction rules for Moggi's monadic meta-language, as in [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF] and [START_REF] Sabry | A reflection on call-by-value[END_REF], is rule π bind . There the rule used is (assoc) bind(bind(t, x.u), y.s) → bind(t, x.bind(u, y.s)) .

But t → π bind u implies t → + assoc u since bind(u, y.s) → * assoc (u@y.s), so this intuitionistic subsystem of λµ M corresponds to Moggi's monadic meta-language with an eager version of assoc.

Monadic translation

In this section, we give two translations of λµμ into λµ M . The first, which is denoted by (.) n , allows us to simulate every reduction step of λµμ n by at least one reduction step of λµ M (thus, λµμ n is strictly simulated by λµ M ). The second, which is denoted by (.) v , gives strict simulation of λµμ v within λµ M . Hence, they are monadic cbn and cbv translations, respectively, of λµμ.

Call-by-name translation

In this section we define and study translation (.) n . To simplify the notation, we will omit the subscript n throughout this section, including for the auxiliary (.) † n notion. A type A of λµμ is translated to A of λµ M defined by recursion on A:

X = MX and A ⊃ B = M(A ⊃ B) .
We use A † to denote the type A without the outermost application of M, that is, we have Any term t of λµμ is translated into a term t of λµ M , any command c of λµμ into a command c and any co-term e of λµμ into a cbn context e of λµ M . This is done so that the typing rules in Figure 6 are admissible, where Γ and ∆ follow the notational conventions of Section 1 with type operation F := (.) (note that A is a monadic type, as required for co-contexts in λµ M ).

X † = X and (A ⊃ B) † = A ⊃ B , so A = MA † . Γ ⊢ t : A|∆ Γ ⊢ t : A|∆ c : (Γ ⊢ ∆) c : (Γ ⊢ ∆) Γ|e : A ⊢ ∆ e[y] : (Γ, y : A ⊢ ∆)
The definitions are given in Figure 7, where it is understood that f and z are fresh variable names (from now on we will assume that f also denotes a variable of λµ M ). We will use y to denote all variables from the source calculus λµμ (they will be translated into variables of type A for some A). Proving the admissibility of the rules of Figure 6 is routine: through e[t] = [t/y](e[y]) for y / ∈ e, we make use of the following admissible rule for term substitution in commands in λµ M :

c : (Γ, x : A ⊢ ∆) Γ ⊢ t : A|∆ [t/x]c : (Γ ⊢ ∆)
.

Note that E is a base context, which will be important for simulation of π. The σ-redex in u :: e is needed for the simulation of β, which is a rule that generates but does not execute a substitution.

We can immediately see that the free variables and the free co-variables agree between T and T for any expression T (the hole [ ] in e does not count as a variable). In general, t is a subterm of e[t] that does not occur below a binder. Proof.

(1) The proof is by induction on T .

(2) The proof is by induction on T :

-Case T = a: Theorem 4.2 (strict simulation).

(1

) If T → T ′ in λµμ n , then T → + T ′ in λµ M , where T , T ′ are either two terms or two commands. (2) If e → e ′ in λµμ n , then e[t] → + e ′ [t] in λµ M for any t ∈ λµμ.
For this simulation, we do not need rule η bind in λµ M . The rules β and η µ could have been restricted to the forms β var and η µn , respectively. Also, we do not need full σ, just the restrictions σ n and σ C .

Proof. For the proof, we will strengthen statement (2) so that e[u] → + e ′ [u] for any u ∈ λµ M . This is required because in the definition of u :: e, a term outside the range of ( .) is filled into the hole in e. Statement (1) and the strengthened (2) are proved by simultaneous induction on the appropriate T → T ′ . We will just show the base cases in detail; the term closure is then evident since t is a subterm of e[t]. To justify the restriction of η µ steps to their cbn form in the proof and the restriction to σ n steps for the simulation of σ, note that t is not an application for any t ∈ λµμ.

-Case β: λy.t|u :: e → u|μy. t|e :

LHS = bind(η(λy.t), f.bind(ηu, z.e[fz])) → σ v bind(ηu, z.e[(λy.t)z]) → β var bind(ηu, z.e[[z/y]t]) = bind(ηu, y.e[t]) = RHS. -Case σ: t|μy.c → [t/y]c: LHS = bind(ηt, y.c) → σ n [t/y]c * = [t/y]c = RHS,
where the marked equality comes from Lemma 4.1 (1) † .

-Case π n : µa.c|E → [E/a]c:

LHS = E[µa.c] → π [E/a]c * = [E/a]c = RHS,
where the marked equality comes from Lemma 4.1 (2). Recall that E is a base context; otherwise the π rule of λµ M would not have been applicable.

-Case η μ: μy. y|e → e, with y / ∈ e:

LHS[u] = bind(ηu, y.e[y]
)

→ σ C [u/y](e[y]) * = e[u] = RHS[u],
where the σ C step and the marked equality use the fact that y / ∈ e. -Case η µ : µa. t|a → t, with a / ∈ t: Hence, we also have a / ∈ t, so

LHS = µa.at → η µn t = RHS .
Remark 4.3. Note the structural 'tightness' of the simulation. Every reduction step of the form σ, π n , η µ or η μ in λµμ n corresponds to exactly one step in λµ M of the form σ n , π, η µn or σ C , respectively, and only the β steps of λµμ are decomposed into two steps of λµ M , and these are restricted to the σ v and β var forms † .

Remark 4.4. Strict simulation is satisfied because the monadic translation never erases subexpressions. More precisely, the translation satisfies the following Subexpression Property:

(i) for T ′ a term or command, if T ′ is a subexpression of T , then T ′ is a subexpression of T (and of T [t], for any t, when T is a co-term); (ii) if co-term e is a subexpression of T , then, for some t ′ , we have e[t ′ ] is a subexpression of T (and of T [t], for any t, when T is a co-term).

Call-by-value translation

In this section we define and study the translation (.) v . To simplify the notation, the subscript v will be omitted throughout this section. 

V = ηV † v † = v µa.c = µa.c (λv.t) † = λv.t a = a[ ] t|e = e[t]
Γ ⊢ t : A|∆ Γ † ⊢ t : A|∆ Γ ⊢ V : A|∆ Γ † ⊢ V † : A † |∆ c : (Γ ⊢ ∆) c : (Γ † ⊢ ∆) Γ|e : A ⊢ ∆ e[y] : (Γ † , y : A ⊢ ∆)
Fig. 9. Admissible typing rules for the monadic cbv translation of λµμ

The cbv translation of types is the same as the cbn translation, apart from implication:

(A ⊃ B) = M(A † ⊃ B) . So (A ⊃ B) † is defined as (A † ⊃ B).
The monadic cbv translation on expressions is defined in Figure 8 so that the typing rules in Figure 9 are admissible, where Γ † and ∆ again follow the notational pattern set up in Section 1.

Note that e is always a base context of λµ M , and that V † is a value. It can be seen that there are only minimal differences between the monadic translations for cbn (in the previous section) and cbv for the part that is not already dictated by the λ-calculus part within λµμ. That part, namely the rules for types, values and typing of terms uses the standard ones in monadic translations. The new elements are also, for the most part, treated in the same way: µ-abstraction is translated homomorphically; commands are translated by plugging the term translation into a context obtained from co-term translation; and the co-variables are translated in the most obvious way. The remaining clauses for u :: e and μ-abstraction are identical for both translations, except for the extra uses of the unit η of the monad, which is, however, not applied throughout, so the cbn translation of u :: e still remains a base context (this is clearly already dictated by typing considerations since the type translation leaves no room once values have been treated in the standard way).

We will use v to denote all variables from the source calculus λµμ (and they will be translated into variables of type A † for some A).

Lemma 4.5. The translation satisfies:

(1) [V /v]T = [V † /v]T . (2) [e/a]T = [e/a]T .
Proof. The proof is by induction on T .

Theorem 4.6 (strict simulation).

(1) If T → T ′ in λµμ v , then T → + T ′ in λµ M , where T , T ′ are either two terms or two commands.

(2) If e → e ′ in λµμ v , then e[t] → + e ′ [t] in λµ M for any t ∈ λµμ.

The reductions in λµ M only use β, σ and η µ in their restricted forms β var , σ v and η µv , respectively.

Proof. The proof is similar to the cbn case. Statement (2) is again strengthened, so that e[u] → + e ′ [u] for any u ∈ λµ M . Term closure is again obvious since t is a subterm of e[t], so we will just show the base cases:

-Case β: λv.t|u :: e → u|μv. t|e :

LHS = bind(η(λv.t), f.bind(u, w.e[fw])) → σ v bind(u, w.e[(λv.t)w]) → β var bind(u, w.e[[w/v]t]) = bind(u, v.e[t]) = RHS .
-Case π: µa.c|e → [e/a]c:

LHS = e[µa.c] → π [e/a]c = RHS ,
where the last equality comes from Lemma 4.5 (2).

-Case σ v : V |μv.c → [V /v]c: LHS = bind(ηV † , v.c) → σ v [V † /v]c = RHS ,
where the last equality comes from Lemma 4.5 (1).

-Case η µ : µa. t|a → t, with a ∈ t:

LHS = µa.at → η µ RHS .
We now argue that the restriction of η µ to η µv is sufficient in the target system. If t is a value V , then t = ηV † , and V † is again a value, so the displayed reduction is a η µv -reduction step. If t = µb.c, then the η µ -reduction µa. t|a → t is also a π-reduction (this is one of the two trivial critical pairs between η µ and π) and can be considered as such for the purpose of this proof.

-Case η μ: μv. v|e → e, with v ∈ e:

We have LHS[u] = bind (u, v.e[ηv]). If e is a co-variable a, we have bind(u, v.e[ηv]) = bind(u, v.a(ηv))

→ η bind au = RHS[u] .
Otherwise, e is of the form bind([], w.c), so we have bind(u, v.e[ηv]) = bind(u, v.bind(ηv, w.c))

→ σ v bind(u, w.c) = e[u] = RHS[u] .
Remark 4.7. Rule η bind is now required. As in the cbn case, the simulation is quite 'tight'. Every reduction step of the form σ v , π, η µ or η μ in λµμ v corresponds to exactly one step in λµ M of the form σ v , π, η µv or π, or η bind or σ v , respectively, and, again, only the β steps of λµμ are decomposed into two steps of λµ M with the restricted forms σ v and β var .

Remark 4.8. The cbv monadic translation satisfies the same Subexpression Property as the cbn translation.

Continuations-monad instantiation

The monad operation M of λµ M can be instantiated to be double negation, which yields the well-known continuations monad. This defines a translation into the λ-calculus with the strict simulation property. Given that the monadic translations of Section 4 also enjoy strict simulation, strong normalisation for cbn and cbv λµμ will follow. Composition of instantiation with the monadic translations will yield cbn and cbv CPS translations of λµμ, whose recursive definition is given at the end of the present section.

Instantiation and strong normalisation

We define a translation from λµ M into λ[βη] -see Section 1 for the meaning of this notation, and for the definition of simple types. We also write A ⊃ B for function types in λ[βη], and, as usual, write ¬A for A ⊃ ⊥ for some dedicated type variable ⊥ that will never be instantiated. Finally, recall that λ-calculus has the grammar t ::= x | λx.t | tu, and that its only typing rules are Ax, Intro and Elim from Figure 4, without the ∆ parts.

A translation of the terms and commands of λµ M into terms of λ-calculus necessarily has to associate both variables and co-variables of λµ M with variables of the λ-calculus. The obvious and usual choice for a variable x of λµ M is to associate it with the same variable in λ-calculus, thereby assuming that the variables of λµ M are included in the variable supply of the λ-calculus. For the co-variables, the traditional way would be to associate a 'fresh' variable k a of λ-calculus with every co-variable a. Given an expression T of λµ M , there would always be enough 'fresh' variables when defining the translation of T , but the k a notion rather suggests we should have one fixed association that works for all source expressions. We will adopt this uniform choice, but will go one step further and assume that the co-variables of λµ M (which are those of λµμ) are also included in the variable supply of the λ-calculus, so we can associate the co-variable a with the λ-calculus variable a. This assumption simplifies the notation: in particular, in the extension of type operations to co-contexts ∆ (see Section 1, where the extension works the same on Γ and ∆), and because k a is just a † . The translation of types is defined as follows:

x • = x (L[t]) • = L • [t • ] (λx.t) • = λx.t • (tu) • = t • u • (a[ ]) • = [ ]a (µa.c) • = λa.c • bind([ ], x.c) • = [ ](λx.c • ) (ηt) • = λk.kt •
X • = X (A ⊃ B) • = A • ⊃ B • (MA) • = ¬¬A • .
The translation of expressions is defined in Figure 10. Note the mapping of co-variables a in the source calculus λµ M into ordinary variables of λ-calculus, which is done silently in the cases for µa.c and a[ ]. All expressions (terms and commands) of λµ M are translated into λ-terms. The definition of c • is well formed since every command c can be uniquely presented as L[t].

We define L •-to be the argument to [ ] of the context L • , that is,

(a[ ]) •-= a bind([ ], x.c) •-= λx.c • , so L • = [ ]L •-and L •-is a value.
Consider the following operators:

Eta(t) = λk.kt Bind(t, x.u) = λk.t(λx.uk),
where λ denotes the static λ-abstraction in the two-level λ-calculus of [START_REF] Danvy | Representing control: a study of the CPS transformation[END_REF], that is, redexes of the form (λx.t)u are supposed to be reduced in the translation. Then the two monad-related clauses of the definition of (•) • can be turned Fig. 11. Admissible typing rules for continuations-monad instantiation into (ηt

Γ ⊢ t : A|∆ Γ • , ∆ •-⊢ t • : A • c : (Γ ⊢ ∆) Γ • , ∆ •-⊢ c • : ⊥ C[x] : (Γ, x : MA ⊢ ∆) Γ • , x : ¬¬A • , ∆ •-⊢ (C[x]) • : ⊥ x / ∈ C
) • = Eta(t • ) bind(t, x.L[u]) • = Bind(t • , x.u • )L •-.
We also define

bind(η[ ], x.c) • = Eta([ ])(λx.c • )
for use in cbn translations. This immediately implies

(C[t]) • = C • [t • ] (1)
for all cbn contexts C. This translation also satisfies a Subexpression Property: if T ′ is a subexpression of T , then the term T ′ • is a subterm of T • . The best way to see this in the case T = c is to unfold the two cases of the definition of (L[t]) • .

We can easily check that the rules in Figure 11 are admissible (the third rule is a special case of the second one, and is included for use in later proofs), where ∆ •-follows the usual pattern, with the type operation (.)

•-with (MB) •-:= ¬B • (2) 
(recall that a : A ∈ ∆ implies A = MB for some B, so the apparent partiality of this operation is no problem when forming ∆ •-). The minus sign is a warning that (MB) •- has a negation less than (MB) • . In addition, this notation is coherent with the notation L •-introduced above, in the sense that the following rule is admissible:

L[x] : (Γ, x : MA ⊢ ∆) Γ • , ∆ •-⊢ L •-: (MA) •-x / ∈ L .
So the type of L •-has one negation less than the type of the hole in L • .

We will now show that the instantiation is a strict simulation of λµ M in λ[βη].

Lemma 5.1. The translation satisfies:

(

1) ([u/x]T ) • = [u • /x]T • . (2) ([L/a]T ) • = [L •-/a]T • .
Proof.

(1) The proof is by induction on T .

(2) The proof is by induction on T . The case of T = at is the only non-trivial case and is proved as follows:

([L/a](at)) • = (L[[L/a]t]) • (by the definition of structural substitution) = ([L/a]t) • L •- (by the definition of (.) • and L • [u • ] = u • L •-) = [L •-/a]t • L •- (by the induction hypothesis) = [L •-/a](t • a)
(by the definition of substitution in the λ-calculus)

= [L •-/a](at) • .
(by the definition of (.) • )

Proposition 5.2 (instantiation).

(

) If T → T ′ in λµ M , then T • → + T ′ • in λ[βη]. 1 
(2) If the reduction rules η µ and η bind are omitted from the source, the η reduction rule can be omitted from the target. If the β and σ reduction rules in the source are restricted to the β v and σ v forms, respectively, then the β reduction rule in the target can be restricted to β v .

Proof.

(1) The proof is by induction on T → T ′ . We will just show the base cases since term closure is evident by the Subexpression Property:

-Case β: (λx.t)s → [s/x]t: LHS • = (λx.t • )s • → β [s • /x]t • = RHS • .
(by Lemma 5.1 (1))

-Case σ: bind(ηs, x.c) → [s/x]c:

LHS • = (λk.ks • )(λx.c • ) → β v (λx.c • )s • → β [s • /x]c • = RHS • .
(by Lemma 5.1 (1))

-Case π: L[µa.c] → [L/a]c: LHS • = (λa.c • )L •- → β v [L •-/a]c • = RHS • .
(by Lemma 5.1 (2))

-Case η µ : µa.at → t, with a ∈ t (hence a / ∈ t • ):

LHS • = λa.t • a → η t • = RHS • .
-Case η bind : bind(t, x.a(ηx)) → at:

LHS • = t • (λx.(λk.kx)a) → β var t • (λx.ax) → η t • a = RHS • .
(2) Since V • is always a value, the β steps in the cases β and σ of part (1) turn into β v steps for β v and σ v .

In Appendix A.3, we will see that we can obtain refined continuations-monad instantiations that only need λ[β v ] as target. They only work for subsystems of λµ M , which, however, cover the images of the monadic translations.

Corollary 5.3.

(1) Every typable expression of λµ M is strongly normalisable.

(2) The system λµ M is confluent for typable expressions.

Proof.

(1) The statement follows from the previous proposition, the strong normalisation of λ[βη] and the fact that typability is preserved by the instantiation, which is shown in Figure 11.

(2) The statement follows from the strong normalisability and local confluence of λµ M (using Newman's Lemma).

Corollary 5.4. The systems λµμ n and λµμ v are strongly normalising.

Proof. The statement follows from the previous corollary, together with the strict simulation results from Section 4 and the preservation of typability, which are shown in Figures 6 and9, respectively.

We have thus reproved in a completely syntactic way the strong normalisation of λµμ n and λµμ v from the strong normalisation of λ[βη].

CPS translations through the instantiation of monadic translations

Our proof of strong normalisation for λµμ n and λµμ v gives syntactic embeddings of these systems into λ[βη], which are obtained by composing the cbn and cbv monadic translation, respectively, with the continuations-monad instantiation. The result is continuationpassing style (CPS) transformations of λµμ n and λµμ v into λ[βη].

We already know that both CPS translations yield strict simulations since they are the composition of mappings with the strict simulation property. In the following we make this precise and obtain a direct inheritance of strong normalisation from the λ-calculus (rather than a two-step inheritance via λµ M as done before). Similarly, we already know that both CPS translations enjoy type soundness since they are the composition of typesound mappings. In the following, we will make the typing rules they obey explicit. Finally, we will discover the recursive structure of the CPS translations.

We define, for x ∈ {n, v}:

A * x := (A † x ) • (3) [A] x := (A x ) • (4) [A] - x := (A x ) •- (5) 
[T ] x := (T x )

• .

(6)

In the cbn case, the last equation is well defined because the definition of (.) • was extended to any cbn context C. For the cbn case, we set

[E] - n := (E n ) •-. (7) 
For the cbv case, we set

V * := (V † ) • (8) [e] - v := (e v ) •-. (9) 
Note that there is no index v in V † , and consequently none in V * either. This seems justified since there is simply no such concept in the cbn translations.

An easy calculation shows that [A] x = ¬¬A * x , so [A] - x = ¬A * x (again, the minus sign warns us that [A] -

x has one negation less than [A] x ). It is obvious that X * x = X.

Call-by-name CPS translation (λµμ n -→ λ[βη]

). The translations of types ( 3) and (4) in the cbn case satisfy

(A ⊃ B) * n = [A] n ⊃ [B] n .
Corollary 5.5 (typing). The typing rules of Figure 12 are admissible.

Proof. We 'compose' the rules in Figure 6 for (.) n with those in Figure 11 for (.) • . We will just show the typing rules for co-terms since the others are analogous but simpler:

Γ|e : A ⊢ ∆ e n [y] : (Γ n , y : A n ⊢ ∆ n ) (a) (Γ n ) • , y : ¬¬(A † n ) • , (∆ n ) •-⊢ (e n [y]) • : ⊥ (b) [Γ] n , y : [A] n , [∆] - n ⊢ [e] n [y] : ⊥ (c)
where the labelled steps are jusitified as follows:

(a) This follows from the third typing rule in Figure 6.

(b) This follows from the third typing rule in Figure 11 and A n = MA † n . (c) Using the compositionality of the extension of type operations to (co-)contexts (see Section 1), we get 4) and ( 5), respectively.

[Γ] n = (Γ n ) • and [∆] - n = (∆ n ) •-from (
Moreover,

¬¬(A † n ) • = (A n ) • = [A] n ,
using (4), and

(e n [y]) • = (e n ) • [y • ] = [e] n [y]
using (1) and ( 6).

Γ ⊢ t : A|∆ [Γ] n , [∆] - n ⊢ [t] n : [A] n Γ|e : A ⊢ ∆ [Γ] n , y : [A] n , [∆] - n ⊢ [e] n [y] : ⊥ c : (Γ ⊢ ∆) [Γ] n , [∆] - n ⊢ [c] n : ⊥ Fig.
12. Admissible typing rules for cbn CPS translation of λµμ (

[y] n = y [λy.t] n = Eta(λy. [t] n ) [µa.c] n = λa. [c] n [a] n = [ ]a [u :: e] n = [ ](λf.Eta( [u] n )(λz. [e] n [fz])) [μy.c] n = Eta([ ])(λy. [c] n ) [ t|e ] n = [e] n [ [t] n ]
) If T → T ′ in λµμ n , then [T ] n → + [T ′ ] n in λ[βη], 1 
where T , T ′ are either two terms or two commands.

(2) If e → e ′ in λµμ n , then [ t|e ] n → + [ t|e ′ ] n in λ[βη] for any t ∈ λµμ.
Proof. The method of the proof is to 'compose' strict simulation for (.) n (Theorem 4.2) with strict simulation for (.) • (Proposition 5.2). More precisely:

(1) Let T → T ′ . From Theorem 4.2, we get T n → + T ′ n in λµ M , and thus (T n )

• → + (T ′ n )

• in λ[βη], by Proposition 5.2. We now apply the definition of [T ] n in (6). ( 2) Let e → e ′ and t ∈ λµμ. Then t|e → t|e ′ , and we conclude by applying part (1).

Proposition 5.7 (recursive characterisation).

[T ] n satisfies the equations in Figure 13. Proof. To prove the statment, we take the recursive characterisation as the definition of [T ] n and then use simultaneous induction on t, c and e to prove:

(i) (t n ) • = [t] n . (ii) (c n ) • = [c] n . (iii) (e n ) • = [e] n .
The case c = t|e makes use of (

C[t]) • = C • [t • ].
We could use this recursive characterisation to give direct proofs of the typing rules and strict simulation for [.] n , but such proofs would not be as modular as the ones given above.

Remark 5.8. Given the recursive characterisation, statement (2) in Corollary 5.6 reads as follows: 14. Admissible typing rules for cbv CPS translation of λµμ 

If e → e ′ in λµμ n , then [e] n [ [t] n ] → + [e ′ ] n [ [t] n ] in λ[βη] for any t ∈ λµμ. Γ ⊢ t : A|∆ Γ * v , [∆] - v ⊢ [t] v : [A] v Γ ⊢ V : A|∆ Γ * v , [∆] - v ⊢ V * : A * v Γ|e : A ⊢ ∆ Γ * v , y : [A] v , [∆] - v ⊢ [e] v [y] : ⊥ c : (Γ ⊢ ∆) Γ * v , [∆] - v ⊢ [c] v : ⊥ Fig.
[V ] v = Eta(V * ) v * = v [µa.c] v = λa. [c] v (λv.t) * = λv. [t] v [a] v = [ ]a [ t|e ] v = [e] v [ [t] v ] [u :: e] v = [ ](λf. [u] v (λw. [e] v [fw])) [μv.c] v = [ ](λv. [c] v )

Call-by-value CPS translation (λµμ

v -→ λ[β v η]
). The translations of types ( 3) and (4) in the cbv case satisfy

(A ⊃ B) * v = A * v ⊃ [B] v .
Corollary 5.9 (typing). The typing rules in Figure 14 are admissible.

Proof. The proof is similar to the cbn case (Corollary 5.5). We 'compose' the rules in Figure 9 for (.) v with those in Figure 11 for (.) • , but this time we use the equations

Γ * v = (Γ † v ) • and [∆] - v = (∆ v )
•-, which follow from (3) and (5), respectively.

Corollary 5.10 (strict simulation).

(

) If T → T ′ in λµμ v , then [T ] v → + [T ′ ] v in λ[β v η], 1 
where T , T ′ are two terms or two commands.

(2) If e → e ′ in λµμ v , then [ t|e ] v → + [ t|e ′ ] v in λ[β v η] for any t ∈ λµμ.
Proof. The proof is similar to the cbn case (Corollary 5.6). We 'compose' strict simulation for (.) v (Theorem 4.6) with strict simulation for (.) • (Proposition 5.2). As observed in Theorem 4.6, (.) v only requires β var ⊂ β v and σ v from the target λµ M rather than β and σ. So, Proposition 5.2 (2) applies, and β v rather than β is sufficient in the λ-calculus.

Proposition 5.11 (recursive characterisation).

[T ] v satisfies the equations in Figure 15.

Proof. To prove the statment, we take the recursive characterisation as the definition of [T ] v and V * and then use simultaneous induction on V , t, c and e to prove:

(i) (V † ) • = V * . (ii) (t v ) • = [t] v . (iii) (c v ) • = [c] v . (iv) (e v ) • = [e] v .
Remark 5.12. Given the recursive characterisation, statement (2) in Corollary 5.10 reads as follows:

If e → e ′ in λµμ v , then [e] v [ [t] v ] → + [e ′ ] v [ [t] v ] in λ[β v η] for any t ∈ λµμ.
This statement can be generalised so that

[e] v [u] → + [e ′ ] v [u]
for arbitrary λ-terms u.

But the argument used in Remark 5.8 cannot be repeated with [.] 

v since v = [v] v
and rule β v is not closed under substitution. The generalisation requires a new induction; however, since we have already proved Corollary 5.10, it is enough to prove the generalised statement (2), together with the trivial statement for terms and commands saying that if T → T ′ , then true (this amounts to saying that we are only interested in the base reduction rules acting on co-terms -this is only η μ -and the clauses of the term closure that justify a reduction of co-terms). The inductive cases are routine (in the single case t :: e → t :: e ′ due to e → e ′ , we use the induction hypothesis, otherwise, we appeal to Corollary 5.10 (1)).

We will only treat the single base case of generalised statement (2):

-Case η μ: μv. v|e → e, with v / ∈ e:

Hence v / ∈ [e] - v , so [LHS] v [u] = u(λv. [v] v [e] - v ) → β v u(λv. [e] - v v) ( [e] - v is a value) → η u [e] - v = [RHS] v [u] .
Further analysis of the CPS translations can be found in the appendix.

Extension to second-order logic

All the systems considered in this paper can be straightforwardly extended to cover second-order logic, and the main simulation results can be extended correspondingly. These, in turn, produce new strong normalisation results for classical second-order logic in sequent calculus.

Extension of systems

In this section we present the systems λ2µμ, λ2µ M and λ2, which are our second-order versions of λµμ, λµ M and the λ-calculus, respectively. We will not be overly formal here and often only describe the new inductive clauses for some syntactic class. It should be understood that all notions in the rules (for example, the notion of type in the new grammar for terms and the notions of types and terms in the old and new typing rules) refer to the extended notions and thus that all former definitions (such as substitution and translation) and results are to be interpreted over these larger domains. This reinterpretation never adds new cases to the proofs just given by structural induction. However, the new grammatical elements have to be treated as such, but it will only be mentioned when this leads to non-trivial new cases.

The grammar of types is an extension of the grammar of the corresponding first-order system:

A, B ::= • • • | ∀X.A .
The type variable X is considered bound in ∀X.A. We can define type substitution [A/X]B in an obvious way, and we denote the result of capture-avoiding substitution of all free occurrences of type variable X in type B by type A. As an example in λµ M , we have

[A/X](MB) = M([A/X]B).
The grammar of expressions of λ2µμ is where type variable X is bound in the new term ΛX.t. We consider ΛX.t to be a value for any term t, following the call-by-value λµ-calculus of [START_REF] Fujita | Explicitly typed λµ-calculus for polymorphism and call-by-value[END_REF]. Note that, as discussed in [START_REF] Asada | Extensional universal types for call-by-value[END_REF] for example, regarding Λabstractions as values may be incompatible with the second-order η-rule, which is expressed as

V ::= x | λx.t | ΛX.
ΛX.tX → t (X ∈ t)
in natural-deduction style. However, we do not consider such an η-rule in the secondorder calculi discussed in this paper, and, as we will see, these calculi (or the cbn and cbv fragments in the case of λ2µμ) have good properties as reduction systems in terms of subject reduction, strong normalisation and confluence. Moreover, regarding Λabstractions as values preserves the duality between values and evaluation contexts, and leads us to a natural extension of the analysis for normal forms in the cbn and the cbv fragments of λµμ: also, any normal and typable command in the second-order extensions of the fragments of λµμ is either x|E or V |a , where normal forms are with respect to the rules of the respective first-order system extended by the β2 rule given below. The typing rules for the additional expressions correspond, respectively, to the rightand the left-introduction rules for the second-order quantifier:

Γ ⊢ t : B|∆ Γ ⊢ ΛX.t : ∀X.B|∆ RIntro2 Γ|e : [A/X]B ⊢ ∆ Γ|A :: e : ∀X.B ⊢ ∆ LIntro2
where X does not occur free in any of the types in Γ, ∆ in RIntro2. Note that, type B in LIntro2 is not determined from [A/X]B and A, so this introduces a further source of ambiguity of the type of a given term. However, we do not attach a type to variable x in λx.t in the extended system, as would be done in Church-style formulations of second-order λ-calculus. In this way, we obtain domain-free systems in the sense of [START_REF] Barthe | Domain-free pure type systems[END_REF], which is the style that was also adopted for the formulation of second-order λµ-calculus in [START_REF] Fujita | Explicitly typed λµ-calculus for polymorphism and call-by-value[END_REF] and [START_REF] Ikeda | Strong normalization proofs by CPS-translations[END_REF]. † In order to formulate the additional reduction rule, we have to assume a notion of type substitution in terms, [A/X]t, which will be defined simultaneously with [A/X]c and [A/X]e. As admissible typing rules, we get, for example,

Γ ⊢ t : B|∆ [A/X]Γ ⊢ [A/X]t : [A/X]B|[A/X]∆
with the intuitive reading of the substituted contexts (following the convention in Section 1).

The extra reduction rule for λ2µμ is (β2) ΛX.t|A :: e → [A/X]t|e .

The cbn and cbv fragments of λ2µμ are defined in the same way as for first-order λµμ, and are called λ2µμ n and λ2µμ v , respectively. Thanks to the proviso of rule RIntro2, subject reduction also holds for λ2µμ. Since λ2µμ n and λ2µμ v only have trivial critical pairs (no new critical pair arises with the extension to second order), these fragments are confluent. The monadic calculus λµ M is similarly extended as follows. The grammar of expressions of λ2µ M is:

V ::= x | λx.t | ΛX.t c ::= at | bind(t, x.c) r, s, t, u ::= V | tu | tA | µa.c | ηt ,
and the typing rules for the new terms ΛX.t and tA correspond to the introduction and the elimination rules, respectively, for the second-order quantifier:

Γ ⊢ t : B|∆ Γ ⊢ ΛX.t : ∀X.B|∆ Intro2 Γ ⊢ t : ∀X.B|∆ Γ ⊢ tA : [A/X]B|∆ Elim2 
provided X does not occur free in any of the types in Γ, ∆ in Intro2. ‡ The additional reduction rule for λ2µ M is the ordinary rule of polymorphic λ-calculus:

(β2) (ΛX.t)A → [A/X]t .
λ2µ M enjoys subject reduction in a similar way to λ2µμ. No new critical pair arises from the extension to the second order, so λ2µ M is also locally confluent.

We consider the second-order extension of λ-calculus in the domain-free style, which we will denote by λ2, as the target calculus of the continuations-monad instantiation.

This calculus was introduced in [START_REF] Barthe | Domain-free pure type systems[END_REF] in the framework of the domain-free pure type systems. The grammar of expressions is extended by ΛX.t and tA, for which we add the typing rules Intro2 and Elim2 without the ∆ parts. The additional reduction rule β2 is given in the same form as β2 for λµ M .

It is important to stress again that we do not consider the second-order η-rule for λ2: it is not reuqired for our simulation results, so we omit it. In the following, we will concentrate on λ2 [β, β2, η].

Although we are not aware of any existing strong normalisation result for λ2[β, β2, η], it does hold, and can be proved along the lines of [START_REF] Barthe | Domain-free pure type systems[END_REF] by inheriting strong normalisation from Church-style second-order λ-calculus with the first-order ηreduction rule. Proposition 6.1. λ2[β, β2, η] enjoys strong normalisation.

Proof. We consider the Church-style second-order λ-calculus with β, β2 and η (where we mean the Church-style versions of β and η with type superscripts at the variable bindings), the strong normalisation of which is already known † .

The erasure function (Geuvers 1993, Section 4.4.2) ⌈•⌉ from the Church-style calculus to the domain-free style calculus, that is, λ2, is defined by ⌈λx A .t⌉ = λx.⌈t⌉, and the other cases are homomorphic. We then prove the following by straightforward induction:

(i) For any domain-free term t that has a type A in context Γ, there exists a Church-style term t ′ such that t ′ has the type A in Γ and ⌈t ′ ⌉ = t. (ii) For any Church-style term t ′ and any s in domain-free style, if ⌈t ′ ⌉ → s holds in λ2[β, β2, η], then there exists a Church-style term s ′ such that t ′ → s ′ and ⌈s ′ ⌉ = s.

As a consequence of (i) and (ii), we can translate any potential infinite reduction sequence in λ2[β, β2, η] from a typable domain-free term into an infinite reduction sequence in the Church-style second-order λ-calculus starting from a typable term. Such a sequence is impossible, which gives us our result.

This completes the presentation of the second-order extensions of the systems in this paper. Note that, unlike the case for second-order λµ-calculus in [START_REF] Parigot | Proofs of strong normalisation for second order classical natural deduction[END_REF], nothing has been added on the classical side to accommodate the second order. † Unfortunately, we have been unable to find a canonical source to cite. The weak normalisation of a secondorder system was first established in [START_REF] Girard | Une extension de l'interprétation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types[END_REF], and strong normalisation is not, essentially, any harder (see [START_REF] Barthe | Weak normalization implies strong normalization in a class of non-dependent pure type systems[END_REF] for very general results on this issue). There are many different published proofs of strong normalisation for second-order systems with type annotations on all variable occurrences, and a proof for Church-style typing would only differ from them in inessential details. There are also different styles for the treatment of the η-reduction rule: one way is to note that there is an inductive characterisation of SN terms that is indifferent to η-reduction [START_REF] Matthes | Monotone fixed-point types and strong normalization[END_REF]; another is to postpone the η-reduction steps.

Extension of translations

We will now extend the monadic translations from λµμ into λµ M to monadic translations from λ2µμ into λ2µ M . For types, the definitions are as follows:

X n = MX (A ⊃ B) n = M(A n ⊃ B n ) ∀X.B n = M(∀X.B n ) X v = MX (A ⊃ B) v = M(A † v ⊃ B v ) ∀X.B v = M(∀X.B v ) .
A † x is again A x without the outermost application of M. As usual, the letter x ranges over the set {n, v}. In particular, (∀X.B) † x = ∀X.B x , and the cases for type variables and implication are unchanged. Thus, on the surface, the extension for the second-order universal quantifier is the same for cbn and cbv, but it still relies recursively on the different treatment of implication according to the two paradigms. On the surface, there is also no difference between the translations of expressions: we add

(ΛX.t) x = η(ΛX.t x ) (A :: e) x = bind([ ], z.e x [zA †
x ]) to the cbn translation given in Figure 7 and the cbv translation in Figure 8, respectively. In the cbv case, this agrees with the general rule V v = ηV † by setting (ΛX.t) † = ΛX.t v for the value ΛX.t, which seems to be the only reasonable definition.

We have the following properties of type substitutions -we could have stated them in Section 4, but they only become relevant now. Lemma 6.2.

The monadic translations satisfy:

(

1) ([A/X]B) x = [A † x /X]B x and ([A/X]B) † x = [A † x /X]B † x . (2) ([A/X]T ) x = [A † x /X]T x and ([A/X]V ) † = [A † v /X]V † .
Proof.

(1) The proof is by simultaneous induction on B.

(2) The proof is by simultaneous induction on T .

It is easy to establish that the admissible typing rules in Figures 6 and9, respectively, still hold for this extension. The key to verifying (A :: e) x is that zA †

x gets type ([A/X]B) x in a context with z : (∀X.B) †

x -recall that the hole in (A :: e) x is filled with a variable of type (∀X.B) x in both paradigms. Theorem 6.3 (strict simulation for second-order monadic translation). Let x ∈ {n, v}.

(1) If T → T ′ in λ2µμ x , then T x → + T ′ x in λ2µ M , where T , T ′ are either two terms or two commands. (2) If e → e ′ in λ2µμ x , then e x [t x ] → + e ′ x [t x ] in λ2µ M for any t ∈ λ2µμ.
The same restrictions on the rules in the target system as in Theorems 4.2 and 4.6 are sufficient.

Proof. The proof proceeds in the same way as the proofs of Theorems 4.2 and 4.6. We will only show the case for the new reduction rule. Note, however, that (A :: e) x is a base context, so the simulation of rule π is not hampered in the case of E = A :: e.

-Case β2:

Using Lemma 6.2 (2) (we omit the index x everywhere), we have:

ΛX.t|A :: e = bind(η(ΛX.t), z.e[zA † ])

→ σ v e[(ΛX.t)A † ] → β2 e[[A † /X]t] = [A/X]t|e .
We will now extend the continuations-monad instantiation and obtain the CPS translations by composing the continuations-monad instantiation.

The continuations-monad instantiation for types is extended to

X • = X (A ⊃ B) • = A • ⊃ B • (MA) • = ¬¬A • (∀X.A) • = ∀X.A • ,
and, for terms and commands, we add

(ΛX.t) • = ΛX.t • (tA) • = t • A •
to the translation given in Figure 10, that is, every second-order element is translated homomorphically.

Lemma 6.4. The continuations-monad instantiation satisfies:

(

1) ([A/X]B) • = [A • /X]B • , (2) ([A/X]T ) • = [A • /X]T • .
Proof. The proof is by induction on B and T , respectively.

Using this lemma, it is easy to check that the rules in Figure 11 are admissible, and the extended continuations-monad instantiation strictly preserves the reduction steps. Proposition 6.5.

(1) If T → T ′ in λ2µ M , then T • → + T ′ • in λ2[β, β2, η].
(2) The same variants as in Proposition 5.2 (2) again hold.

Proof.

(1) We will only prove the β2 case:

((ΛX.t)A) • = (ΛX.t • )A • → β2 [A • /X]t • = ([A/X]t) • .
(2) This part is proved in a similar way to Proposition 5.2 (2).

The part (1) of the above proposition, together with Proposition 6.1 and the preservation of typability shown in Figure 11, immediately gives the following corollary. Corollary 6.6. λ2µ M enjoys strong normalisation.

The strong normalisation of the cbn-and cbv-fragments of λ2µμ now follows.

Corollary 6.7. λ2µμ n and λ2µμ v are strongly normalising.

Proof. We use the previous corollary, together with Theorem 6.3 and the preservation of typability, which are shown in Figures 6 and9, respectively (and can be verified to hold even for the second-order extension).

Despite the little work invested in the second-order extension, we have obtained a strong result here. This is thanks to the CPS translation and its monadic generalisation, which is known to scale up well, while the negative translation is confined to first-order types/ formulas (see, for example, [START_REF] Parigot | Proofs of strong normalisation for second order classical natural deduction[END_REF]).

The CPS translations, which are obtained by composing the monadic translations and the continuations-monad instantiation in the form of equations ( 3), ( 4) and ( 6) satisfy the following additional recursive clauses (which could again be used to give a direct recursive definition of the CPS translations):

(∀X.A) * x = ∀X. [A] x [ΛX.t] x = Eta(ΛX. [t] x ) [A :: e] x = [ ](λz. [e] x [zA * x ]
) . These are common to both cbn and cbv, but refer to otherwise quite different translations of types and expressions.

Related and future work

In this paper we have proved the strong normalisation of the cbn and cbv fragments of λµμ through a syntactic embedding into the λ-calculus, which extends to the second order with domain-free polymorphic λ-calculus as target. The embeddings are CPS translations with the strict simulation property, which are obtained as the composition of a monadic translation into an intermediate monadic language and an instantiation of the formal monad of this language to the continuations monad. The intermediate language is itself new, and combines in a non-trivial way the syntax for classical logic in the style of λµ-calculus with the syntax for a monad as found in Moggi's monadic meta-language.

We will now show how this work relates to the existing literature and can be developed in the future. 7.1. Related work 7.1.1. Strong normalisation for λµμ. Strong normalisation for full λµμ has been shown directly in [START_REF] Polonovski | Strong normalization of λµμ with explicit substitutions[END_REF] using the reducibility candidates method, and in [START_REF] David | Arithmetical proofs of strong normalization results for symmetric λ-calculi[END_REF] using subtle proof structures that are complex although formalisable in arithmetic. Before that, [START_REF] Lengrand | Call-by-value, call-by-name, and strong normalization for the classical sequent calculus[END_REF] had also proved the strong normalisation of λµμ by using an embedding into the sequent calculus for classical logic of [START_REF] Urban | Classical Logic and Computation[END_REF], which was proved to be strongly normalising by the reducibility method. A more syntactic approach was followed in [START_REF] Rocheteau | λµ-calculus and duality: call-by-name and call-by-value[END_REF], where λµμ is mapped into λµ extended with some sort of contexts, and weak simulation is then proved. It is not clear from the proof provided in [START_REF] Rocheteau | λµ-calculus and duality: call-by-name and call-by-value[END_REF] whether strict simulation is actually achieved, and strong normalisation for this extension of λµ is not addressed.

Our proofs of strong normalisation are syntactic in nature, combinatorially simple and, although only applicable to the cbn and cbv fragments, they are conceptually related to questions of the semantics of programming languages. In addition, our results for the second-order extensions are new. The extensibility of our method to second order is in contrast with the direct arithmetical proof of [START_REF] David | Arithmetical proofs of strong normalization results for symmetric λ-calculi[END_REF], which is confined to the first-order fragment. In fact, we are not aware of any systems extending λµμ to second order, apart from the one considered in this paper.

7.1.2. Monadic translation. The technique of monadic translation to prove strong normalisation was applied first to the intuitionistic fragment of cbn λµμ (Espírito Santo et al. 2009b). Two sources for this technique are [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF], where the idea of factorising CPS translations into monadic translations and monad instantiations is found, and [START_REF] Sabry | A reflection on call-by-value[END_REF], where reduction steps (instead of equations) in the monadic meta-language are given central importance.

In Espírito Santo et al. (2009b), the intuitionistic fragment of cbn λµμ is the domain of a monadic translation into an intuitionistic monadic meta-language (resulting from the enrichment of Moggi's monadic meta-language with some permutative reduction rules), and that monadic translation is then composed with an instantiation to the identity monad. Simulation only works if an extra permutative reduction rule, usually named 'assoc', is added to the target (λ-calculus), and extension to second order looks problematic. Composition with an instantiation to the continuations monad produced a CPS translation, but no simulation.

The present paper greatly improves these results by: (i) treating classical logic, both the first-order and second-order systems, and both the cbn and the cbv paradigms; (ii) producing a much 'tighter' monadic translation (with non-β reduction steps translated in 1-1 fashion); (iii) producing strict simulation through CPS obtained by factorisation via a monadic language; (iv) offering the new monadic language required for this factorisation. 7.1.3. CPS translations with strict simulation. A key issue of strict simulation is that we not only have to consider the reduction steps at the root, but also those deeper within a term. This has sometimes been overlooked in the literature, as pointed out with some examples in [START_REF] Nakazawa | Strong normalization proof with CPS-translation for second order classical natural deduction[END_REF], and has led to 'incorrect proofs' of strong normalisation by CPS. A CGPS-translation (continuation-and-garbage-passing style translation) of λµ achieving strict simulation in λ[β] was developed in [START_REF] Ikeda | Strong normalization proofs by CPS-translations[END_REF]. This style of translation, which passes around both continuations and 'garbage' terms (so that all parts of the source term are kept), can be applied in various settings, and, in particular, extends to second-order λµ. It has not been successfully extended to λµμ so far, but a simplification of the technique (where only units of garbage are passed) delivered strong normalisation for the intuitionistic fragment of cbn λµμ [START_REF] Espírito Santo | Continuation-passing style and strong normalisation for intuitionistic sequent calculi[END_REF]Espírito Santo et al. 2009a). This result is extensible to second order (with simulation in domain-free polymorphic λ-calculus).

7.1.4. CPS translations for λµμ. CPS translations for the cbn and cbv fragments of λµμ, denoted by ( ) ⊲ and ( ) ⊳ , respectively, were given in [START_REF] Curien | The duality of computation[END_REF]. Both translations map into λ-calculus enriched with products. The cbn translation generalises a translation in [START_REF] Hofmann | Completeness of continuation models for lambda-mu-calculus[END_REF], and the cbv translation is a dualised version of the cbn translation. Although no precise statement of the preservation of reduction by the translations is made, the paper states that each translation 'validates' the respective evaluation discipline, which suggests that the translations map a reduction in λµμ into convertible terms in the target. In fact, one may verify that ( ) ⊳ does not simulate the β-rule for the subtraction connective, it only obtains convertible terms. By duality, the same happens with ( ) ⊲ with respect to the β-rule for implication.

In [START_REF] Herbelin | C'est maintenant qu'on calcule -au coeur de la dualité[END_REF], there is both a CPS translation ( ) n of the cbn fragment λµμ T and a CPS translation ( ) v of the cbv fragment λµμ Q . The λµμ T and λµμ Q fragments, which were introduced in [START_REF] Curien | The duality of computation[END_REF], are smaller than λµμ n and λµμ v , respectively. The smaller domains allow a slightly simplified definition of the CPS translations. These are obtained by extending the respective maps for the 'logic-free' fragment µμ, and weak simulation is then stated for this fragment (weak simulation means that each reduction step of the source is mapped into zero or more reduction steps in the target). Again, one can verify that β-reduction for implication is mapped to β-equality only, but this time for both the cbn and cbv translations.

CPS translations for both fragments of λµμ were also considered in Lengrand (2003) (see the erratum for the correct definition of the cbn translation). When compared with our CPS translations, the differences are (besides the fact that Lengrand does not consider the η µ and η μ rules): The development of the CPS translations in [START_REF] Lengrand | Call-by-value, call-by-name, and strong normalization for the classical sequent calculus[END_REF] was guided by semantic considerations, and the results showing the 'preservation of semantics' by the CPS translations state that when a term reduces to another, their images are β-convertible.

Having said this, we have been able to verify that Lengrand's cbv translation shares the simulation property of our Corollary 5.10, and the need for η-reduction in the target, while β-conversions cannot be avoided in the target of Lengrand's cbn translation. Summarising, we may say that rather than strict simulation, the existing literature on CPS translations for λµμ has had other preoccupations such as duality, simplicity and semantic considerations. Our CPS translations for λµμ with the strict simulation property turn out to be a contribution to the field, despite only being a by-product of our approach to strong normalisation.

Future work

The meta-language introduced in this paper has good meta-theoretic properties (subject reduction, confluence and strong normalisation), and smoothly extends Moggi's metalanguage. We think it deserves further study.

One direction is the investigation of subsystems. We are studying a subsystem of values and computations originating in the natural idea of restricting arrow types to the form A ⊃ MB (see, for example, [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF]). This may lead to new connections with polarised formulations of logic, into which embeddings of cbn and cbv calculi have been studied in [START_REF] Curien | The duality of computation under focus[END_REF]. Moreover, following [START_REF] Sabry | A reflection on call-by-value[END_REF] and [START_REF] Dyckhoff | Call-by-value λ-calculus and LJQ[END_REF], we have already found that the monadic cbv translation gives an equational correspondence between the system λµμ Q and a subsystem of λµ M . We would like to identify subsystems of λµμ for which our monadic translations and meta-language, even in the cbn case, can produce neater relationships, such as reflections.

The use of monadic meta-languages as generic frameworks for the study of CPS translations was started in [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF]. In that paper, the goal was to make a comprehensive and uniform analysis of existing translations of an intuitionistic source calculus. In the current paper, the monadic meta-language has provided a vehicle for discovering new translations -with a single crucial property (strict simulation) -of a classical source calculus. So there is plenty of room for using our classical meta-language in more comprehensive studies, along the lines of [START_REF] Hatcliff | A generic account of continuation-passing styles[END_REF], of CPS translations of λ-calculi with control operators. Although such studies are beyond the scope of the current paper, we give some supplementary analysis of our CPS translations in the appendix.

Based on past experience (Espírito Santo et al. 2009a), we believe there should be no major obstacle in extending the present work to higher-order classical logic. Clearly, positive connectives such as disjunction and the second-order existential quantifier, together with their usual permutative conversions, would also be worth considering.

None of the three mappings from λµ to λµμ given in [START_REF] Curien | The duality of computation[END_REF] enjoys strict simulation (see also the errata to [START_REF] Curien | The duality of computation[END_REF]). So strong normalisation for λµμ is not immediately inherited by λµ. On the other hand, the strong normalisation of λµ has been proved using the technique of CGPS translation [START_REF] Ikeda | Strong normalization proofs by CPS-translations[END_REF], though this technique has not yet been extended to λµμ. There is clearly still some room for greater systematisation of techniques for proving strong normalisation.

Appendix A. Monadic approach to refinement of CPS translations

In this appendix, we show how to use the decomposition of CPS translations via λµ M in order to obtain refined translations of λµμ n and λµμ v , accumulating the properties enjoyed so far with other desirable properties. The decomposition allows us to discover opportunities for improvement in the components of the CPS translation. The refinements we introduce are actually confined to the continuations-monad instantiation, so the monadic translations remain an invariant of the approach. The refined CPS translations are still obtained by composition, with properties still obtained by 'composition' of the properties of the components, as happened with the CPS translations studied above.

We analyse the CPS translations of Section 5.2, which we refer to as the main CPS translations. They are sound with respect to typing, decompose via λµ M , and, most importantly for our purposes, enjoy strict simulation. We give an analysis of other desirable properties: readiness (to reduce source redexes) and indifference (to evaluation order).

We will say that a redex in a λ-term in the range of a CPS translation of λµμ is a source redex if it corresponds to some redex in the source λµμ-term. A CPS translation has the readiness property (or is ready) if a λ-term in its range is always ready to reduce a source redex (if one such exists). CPS translations are not always ready in this sense since the translation itself may generate 'administrative' redexes [START_REF] Plotkin | Call-by-name, call-by-value and the λ-calculus[END_REF][START_REF] Danvy | Representing control: a study of the CPS transformation[END_REF], whose reduction is required prior to the reduction of source redexes. The well-known indifference property [START_REF] Plotkin | Call-by-name, call-by-value and the λ-calculus[END_REF]) in turn says, in particular, that the CPS translation achieves (strict) simulation with β v alone in the target.

We show that slight variations of the main CPS translations can achieve one of the extra properties we have mentioned on top of the properties already enjoyed by the main translations, but none of the variants achieves both extra properties, though a more extensive modification of the main translations, not pursued in this paper, might do so.

A first refinement defines the ready instantiation, where administrative redexes introduced by the main instantiation are reduced 'on the fly'. After composing the ready instantiation with the monadic translations, we obtain CPS translations enjoying the readiness property. However, the simulation by ready CPS still employs full β and η in the target.

Next we discuss the defects of the main and ready CPS translations in connection with the need for full βη-reduction in the target; and we introduce two refinements of the main continuations-monad instantiation, which are dedicated to cbn and cbv, respectively. Through composition with the respective monadic translations, new optimised CPS translations are obtained, which introduce even more administrative reductions than the main translations, but which enjoy strict simulation by β v only.

A.1. Ready CPS translations and administrative reductions

Strict simulation requires each reduction step in the source of the CPS translation to correspond to at least one reduction step in the target, but not conversely. It is easy to see that the main CPS translations of Section 5 do not map reduction steps in a 1-1 fashion, even though the monadic translations essentially do (see Remarks 4.3 and 4.7). As can be seen in the proof of Proposition 5.2, the main instantiation (.) • itself generates reductions of the form (admin) (λk.ku)K → Ku (k / ∈ u, K a value) .

This is a specific instance of β v , and the redex can also be written as Eta(u)K. Through composition with the monadic translations, these reduction steps become administrative reductions of the main CPS translations. For a variety of reasons, both theoretical and practical, it is desirable to reduce administrative redexes at compile time. This is achievable by several means, for instance by the introduction of the so-called colon-operation [START_REF] Plotkin | Call-by-name, call-by-value and the λ-calculus[END_REF], or by a classification of constructions in the generated code as static or dynamic [START_REF] Danvy | Representing control: a study of the CPS transformation[END_REF]). In the current paper, we achieve the same goal in a modular way, profiting from the decomposition of CPS translations via λµ M . Indeed, all we need to do in our case is to introduce a slight improvement in the definition of the continuations-monad instantiation.

We will now define the ready continuations-monad instantiation, denoted (.) • , by creating an exception in the clause for the instantiation of a command in the definition of Figure 10:

(L[t]) • = L • [t • ] if t = ηu (a(ηu)) • = au • bind(ηu, x.c) • = (λx.c • )u • (10)
The remaining clauses of (.) • are unchanged. It is then immediate that T • → * admin T • . We define L •-as the argument to the hole in L • (hence L • = [ ]L •-). Then, the last two equations of (10) can be written uniformly as

(L[ηu]) • = L •-u • . (11) 
We also define Proof.

(1) The proof is by induction on T . We will just show the cases where administrative steps are generated. These have the form T = L[t], with [u/x]t = ηr and t = ηs, whence t = x and u = ηr.

-Case c = ax, with u = ηr: (2) The proof is by induction on T . No administrative steps are generated because we cannot have [L/a]t = ηr if t = ηs.

[u • /x](ax) • = [u • /x](xa) = u • a →
In the following, we write t → = u to mean t → u or t = u, that is, → = is the reflexive closure of →. We will use the symbol ρ to denote reduction rules from now on -there is no risk of confusion since we do not consider ρ-reduction in this paper.

Proposition A.2 (ready instantiation). Let T → ρ T ′ in λµ M .

-If ρ ∈ {β, β v , β var }, then T • → ρ u → * admin T ′ • for some u.

-If ρ = η µ , then T • → = η u → * admin T ′ • for some u. -If ρ = σ, then T • → β u → * admin T ′ • for some u. -If ρ ∈ {σ v , π}, then T • → β v T ′ • . -If ρ = η bind , then T • → η T ′ • .
Proof. The proof is by induction on T → ρ T ′ . For the base cases, we follow the proof of Proposition 5.2, paying attention to the variants β v , β var and σ v , and using Lemma A.1 instead of Lemma 5.1. In the base case for β, the use of Lemma A.1 may generate administrative reductions. The base case for π is exactly as in Proposition 5.2. The remaining base cases are as follows:

-Case σ: bind(ηs, x.c) → [s/x]c:

LHS • = (λx.c • )s • → β [s • /x]c • → *
admin RHS • , where the administrative reductions come from Lemma A.1.

-Case σ v : bind(ηV , x.c) → [V /x]c:

LHS • = (λx.c • )V • → β v [V • /x]c • = RHS • ,
where the last equality is by Lemma A.1.

-Case η µ : µa.at → t, with a / ∈ t: If t = ηu, then one η step is generated, exactly as in Proposition 5.2. Otherwise:

LHS • = λa.au • = RHS • .
(Rule η µ may generate administrative steps, but only through one of the inductive cases below.) -Case η bind : bind(t, x.a(ηx)) → at:

If t = ηu, then All but one of the inductive cases is routine. Suppose L[t 1 ] → ρ L[t 2 ], with t 1 → ρ t 2 . If t 2 = ηu 2 , then t 1 = ηu 1 and we apply the induction hypothesis. If t 1 = ηu 1 and t 2 = ηu 2 , with u 1 → ρ u 2 , then we again apply the induction hypothesis. For ρ ∈ {σ, σ v , π, η bind } there are no more possibilities, and 1-1 simulation holds if ρ = σ. There is a third possibility, but only when ρ ∈ {β, β v , β var , η µ }: t 1 = ηu 1 and t 2 = ηu 2 . In this case 

LHS • = t • (λx.ax) → η t • a = RHS • .
(L[t 1 ]) • = L • [t 1 • ] (since t 1 = ηu 1 ) → * L • [( ηu 
we obtain new CPS translations (see Figure 16). In the cbn case, we set

([E]) - n := (E n ) •-. (15) 
In the cbv case, we also set †

V ⋆ := (V † )

• ([e]) - v := (e v ) •-. Nothing is changed at the level of typing with respect to the main CPS translations, so ([.]) n enjoys the typing rules of Figure 12, and ([.]) v enjoys the typing rules of Figure 14.

Suppose T → ρ T ′ in λµμ n or λµμ v . By composing the simulation properties of the monadic translations and the ready instantiation, it follows that there exists a reduction between the λ-terms ([T ]) x and ([T ′ ]) x , consisting of 0, 1 or 2 source reduction steps (the exact number depends on ρ), possibly followed by some administrative steps. So, in such

  t E ::= a | u :: e c ::= t|e t, u ::= V | µa.c e ::= E | μx.c .

3. 1 .

 1 The calculus 3.1.1. Expressions. Variables (respectively, co-variables) are ranged over by v, w, x, y, z (respectively, a, b) in the same way as for λµμ. Expressions are given by the following grammar † : (values) V ::= x | λx.t (terms) r, s, t, u ::= V | tu | µa.c | ηt (commands) c ::= at | bind(t, x.c) .

Fig. 4 .

 4 Fig. 4. Typing rules of λµ M

Fig. 6 .

 6 Fig. 6. Admissible typing rules for the monadic cbn translation of λµμ

Lemma 4. 1 .

 1 The translation satisfies:(1) [t/y]T = [t/y]T .(2) [e/a]T = [e/a]T .

  The second equation follows by definition of structural substitution on the context a[ ].

  Fig. 8. Monadic cbv translation of λµμ
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 10 Fig. 10. Continuations-monad instantiation
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 13 Fig. 13. Cbn CPS translation of λµμ
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 15 Fig. 15. Cbv CPS translation of λµμ

  t E ::= a | u :: e | A :: e c ::= t|e t, u ::= V | µa.c e ::= E | μx.c

  (i) Lengrand's cbv translation takes (A ⊃ B) * = ¬B * ⊃ ¬A * , whereas we have the intuitionistically equivalent (A ⊃ B) * = A * ⊃ ¬¬B * , where the double negation results directly from the instantiation to the continuations monad. (ii) Lengrand's cbn translation of commands reads as [ t|e ] = [e] [t] , which forces co-term translations to a have a type of the form ¬ [A] (compared with our [ t|e ] = [e] [ [t] ]).

  bind(η[ ], x.c) • = (λx.c • )[ ](12)so that the following holds:if C is not a base context or t = ηu, then (C[t]) • = C • [t • ]. (13)Lemma 5.1 has to be modified as follows.Lemma A.1. The translation satisfies:(1) [u • /x]T • → * admin ([u/x]T ) • , with equality holding if u = ηr. (2) ([L/a]T ) • = [L •-/a]T • .

-

  Case c = bind(x, y.c ′ ), with u = ηr:[u • /x]bind(x, y.c ′ ) • = [u • /x](x(λy.c ′ • )) = u • (λy.[u • /x]c ′ • ) → admin (λy.[u • /x]c ′ • )r • → * admin (λy.([u/x]c ′ ) • )r • (by the induction hypothesis) = bind(ηr, y.[u/x]c ′ ) • = ([u/x]bind(x, y.c ′ ))• .

Fig. 16 .

 16 Fig. 16. Ready instantiation and CPS translations

  2 ) • ] (by the induction hypothesis) (→ * in the form according to the induction hypothesis) = (λk.ku 2 • )L •- (by the definition of L •-and (.) • )→ admin L •-u 2 • = (L[ηu 2 ]) • .(by the definition of (.) • )Composing the monadic translations with the ready continuations-monad instantiation ([T ]) x := (T x )• ,

  r, x.t) : MB .

	(β)	(λx.t)s → [s/x]t
	(σ)	bind(ηs, x.c) → [s/x]c
	(π)	L[µa.c] → [L/a]c
	(η µ )	µa.at → t (a / ∈ t)
	(η bind )	bind(t, x.a(ηx)) → at
	Fig. 5. Reduction rules of λµ M	
	Instead of a term t of monadic type MB, we now have a command c where no type can
	be assigned. Still, we can recover binding for terms by setting
		bind(r, x.t) := µa.bind(r, x.at)

† In the notation of[START_REF] Moggi | Notions of computation and monads[END_REF], bind(t, x.c) and ηt are written let x = t in c and [t], respectively. ‡ The terminology 'cbn context' is related to the monadic translations to be introduced later in the paper. The form bind(η[ ], x.c) is used in the cbn translation only.

† If the restriction on the type of co-variables were not imposed, and accordingly the typing rules P ass and Act could act with any type instead of just monadic types, we could build the term µa.bind(t, x.ax) of type A from any term t of type MA. This would represent a trivialisation of the system as a monadic language. We are grateful to Dan Licata for pointing this out.

† In the intuitionistic case of EspíritoSanto et al. (2009b), the β-rule of the monadic calculus is involved in the simulation of every step, and the π steps in the source are decomposed into several reduction steps in the target.

† Viewed from the λ-calculus, there is no difference between these two variable supplies, which are guaranteed by our assumptions. For example, the letter x in rule β given in Section 1 still denotes any variable of λ-calculus, and we will not use a to denote an arbitrary variable of λ-calculus. If a appears in a translation, it stands for an arbitrary co-variable of λµ M or λµμ, and this co-variable is then also a variable of λ-calculus and can therefore appear in terms in the range of the translation.

† The following analysis can also be applied to Church-style systems by defining each translation of terms as a mapping from terms with their type derivations. On the other hand, Curry-style formulations do not appear to be suitable since there is some evidence that Curry-style cbv polymorphic calculi with control operators are unsound[START_REF] Harper | Polymorphic type assignment and CPS conversion[END_REF][START_REF] Fujita | Explicitly typed λµ-calculus for polymorphism and call-by-value[END_REF][START_REF] Summers | Soundness and principal contexts for a shallow polymorphic type system based on classical logic[END_REF]). ‡ The rules RIntro2 and Intro2 are superficially the same rule, but they range over different systems of types and terms.

† José Espírito Santo and Luís Pinto have been financed by FEDER funds through 'Programa Operacional Factores de Competitividade -COMPETE' and by Portuguese funds through FCT -'Fundac ¸ão para a Ciência e a Tecnologia', within the project PEst-C/MAT/UI0013/2011. ‡ Ralph Matthes thanks the Centro de Matem ática of Universidade do Minho for funding research visits to José Espírito Santo and Luís Pinto. § Koji Nakazawa has been supported by the Kyoto University Foundation for an extended research visit to Ralph Matthes.

a reduction, no administrative step comes before the reduction steps corresponding to the source reduction T → ρ T ′ . We will now make these remarks precise.

Definition A.3 (ready reduction). In the λ-calculus:

-Cbn case: Given s, s ′ λ-terms and ρ a reduction rule of λµμ n , we define s ρ ⇒ n s ′ by:

-If ρ = β, then s → β v r → β var r ′ → * admin s ′ for some λ-terms r, r ′ . -If ρ = η µ , then s → = η r → * admin s ′ for some λ-term r.

-If ρ ∈ {σ, η μ}, then s → β r → * admin s ′ for some λ-term r.

-Cbv case: Given s, s ′ λ-terms and ρ a reduction rule of λµμ v , we define s ρ ⇒ v s ′ by:

-If ρ = β, then s → β v r → β var r ′ → * admin s ′ for some λ-terms r, r ′ . -If ρ = η µ , then s → = β v η r → * admin s ′ for some λ-term r.

It may happen that no target step corresponds to a source η µ step. Accordingly, if ρ = η µ , the following result gives the readiness property in a slightly extended sense.

Corollary A.4 (strict simulation with the readiness property). Let x ∈ {n, v}. Then:

(1) If T → ρ T ′ in λµμ x , where T , T ′ are two terms or two commands, then

(2) If e → ρ e ′ in λµμ x and t ∈ λµμ, then

Proof. As in Corollaries 5.6 and 5.10, the proof is by 'composition' (but this time using Proposition A.2) of the simulation theorems of the monadic translations (Theorems 4.2 and 4.6), including Remarks 4.3 and 4.7.

We can now see that the recursive characterisation of ([.]) n differs from Figure 13 in the clauses for u :: e, μy.c and t|e .

Proposition A.5 (recursive characterisation). ([T ]

) n satisfies the equations in Figure 17 . Proof. We use the same induction as in the proof of Proposition 5.7. To prove the statement, we take the recursive characterisation in Figure 17 as the definition of ([T ]) n and define ([E]) - n as the argument to the hole in (

Then we use simultaneous induction on t, c, E and e to prove:

We will only show the cases that need to be updated:

-Case e = μy.c:

(by the definition of (. (by recursive definition)

-Case E = u :: e:

(by recursive definition)

-Case c = t|e : Suppose e = E and t = λy.u.

(by recursive definition)

)) otherwise Fig. 18. Ready cbv CPS translation of λµμ -Otherwise, e n is not a base context or t n = ηu: Then:

• (by the definition of (.

(by recursive definition)

The recursive characterisation of ([.]) v differs from Figure 15 in the clauses for u :: e and t|e .

Proposition A.6 (recursive characterisation). ([T ]

) v satisfies the equations in Figure 18.

Proof. We use the same induction as in proof of Proposition 5.11. To carry out the proof, we take the recursive characterisation in Figure 18 as the definition of ([T ]) v and V ⋆ and define ([e]) - v as the argument to the hole in (

We then use simultaneous induction on V , t, c and e to prove:

The cases that need to be updated are e = u :: e ′ and c = t|e . We will just show the latter:

(by recursive definition)

• (by the definition of (.

(by (10), as

(by recursive definition)

Remark A.7. Unlike what we did for the main CPS translations in Remarks 5.8 and 5.12, we are not going to generalise Corollary A.4 (2) because of the non-uniform translation of commands, which is made explicit in the recursive characterisations.

A.2. Defects of the resulting CPS translations

If a CPS translation is also viewed as a computational interpretation and not just as a device for proving strong normalisation, it is unfortunate to have η in the target system. Moreover, η-rules are problematic in theories of dependent types, to which we would eventually want to extend our results. These remarks apply to both the main translations of Section 5.2 and the ready translations of the previous section. We will just concentrate on the former now. Rule η is not just used in Proposition 5.2 (1), but is also needed for soundness of the main cbv CPS translation. As an example, consider c 1 := z|y :: μx. x|a → ημ z|y :: a =: c 2 .

The β-normal form of [c 1 ] v is zy(λx.ax), while the β-normal form of [c 2 ] v is zya. Hence, regardless of simulation, we do not even get β-equality.

The problem is even easier to see for the cbn translation: since [y] n = y is not a λ-abstraction, the step µa. y|a → η µ y needs η in the CPS translation target for soundness.

It is also disappointing for the cbn translation that full β is still needed after applying the CPS translation. This is in contrast with cbn CPS for simply typed lambda-calculus, which has been shown to yield terms whose evaluation is even indifferent to the cbn/cbv paradigms [START_REF] Plotkin | Call-by-name, call-by-value and the λ-calculus[END_REF].

Again, rule β, and not just β v , is not only used in Proposition 5.2 (1), but also needed to show the soundness of the cbn CPS translation: to see this, we can reuse the commands c 1 and c 2 of the earlier example, but calculate the β v -normal forms of their cbn CPS translations to get z(λf.(λx.xa)(fy)) and z(λf.fya), respectively -the problem here is that fy is not a value.

Still, as we are about to show, the composition of the monadic translations with dedicated refined continuations-monad instantiations for cbn and cbv yields CPS translations that provide strict simulation with only λ[β v ] as target. In this section we will give refinements of the main continuations-monad instantiation, and thus of the CPS translations -see the summary in Figure 19. The goal is to get rid of η-reduction and to restrict to cbv β-reduction in the CPS target (even for the cbn translation).

We will begin by refining the main continuations-monad instantiation by inserting η-expansions: ↑t := λx.tx , with x / ∈ t. In the cbv case, this is only done for the translation of co-variables, while in the cbn case, both the variables and the arguments of the unit η of the monad are expanded. Relative to the continuations-monad instantiation (.) • , we will change the translation at the level of expressions, with different refinements for cbn and cbv, which leads us to introduce the notations T ⋄ n and T ⋄ v . The translation is unchanged at the level of types, contexts and co-contexts, but for uniformity we introduce the notations A ⋄ n , Γ ⋄ n and ∆ ⋄- n , together with the cbv variants, even though

, and so on.

A.3.1. Cbn case. We will now define a refinement of the continuations-monad instantiation, denoted T ⋄ n . The only changes relative to the definition of T • in Figure 10 are in the case of a variable, which was x • = x, and is now defined by

x ⋄ n = ↑x , and the unit η of the monad, which was (ηt) • = Eta(t • ), and now becomes

The first redefinition will be used to get rid of η-reduction in the final target, while the second then allows us to restrict β-reduction in the target to β v .

Consequently, we redefine

for all cbn contexts C. We also define L ⋄- n as the unique term such that

n is a value, like L •-. Obviously, the redefinition invalidates the admissible typing rules of Figure 11 since x ⋄ n can only be typed by an implication, but A ⋄ n can be a type variable (when A = X). Similarly, the argument term t of ηt might be typed by a type variable, so the η-expansion of t ⋄ n would not be typable.

A very simple solution is a global exclusion of term typings with atomic types, that is, type variables. We will say that a sequent of λµ M is non-atomic if it is a sequent c : (Γ ⊢ ∆) whatsoever; or a sequent Γ ⊢ t : A|∆ with A a type that is not a type variable. We call the subsystem of the typing system for λµ M (Figure 4) that only operates with non-atomic sequents the non-atomic typing system. For emphasis, we write non-atomic sequents (and derivability in the non-atomic typing system) thus:

The typing rules of Figure 11 then hold for (.) ⋄ n , if the premisses are replaced by non-atomic derivability. On the other hand, the non-atomic system is sufficient for typing any expression in the range of the cbn monadic translation: this is easy to verify, in particular, by studying the types that the bound variables in the bind expressions receive, and also by verifying the type of the term fz that appears in the translation of u :: e. So no typing constraint will be observable after forming the CPS translation by composition (see Corollary A.10).

Lemma 5.1 has to be refined as follows.

Lemma A.8. The translation satisfies:

(

Proof.

(1) The proof is by induction on T . The case for T = x is the only non-trivial case, and its proof is as follows:

n is a λ-abstraction, since u is not an application. (2) The proof is by induction on T and is unchanged from the proof of Lemma 5.1. Proposition A.9 (optimised instantiation for cbn). If T → T ′ in λµ M , where we omit reduction rule η bind and restrict rules β and η µ to β n and η µn , respectively, and σ to the union of σ n and σ C , then

Proof. The proof is by induction on T → T ′ . Note that if s is not an application, then s ⋄ n is a λ-abstraction. We will now consider what the proofs of the base cases of Proposition 5.2 (1) yield in this situation:

By our restriction to β n , we know that s is not an application, so

(by Lemma A.8 (1))

Case σ: bind(ηs, x.c) → [s/x]c:

where the last two steps (marked (a) and (b)) are justified by cases, as follows:

-Subcase σ = σ n : Here s is not an application, so s ⋄ n is a λ-abstraction and ↑s ⋄ n → β var s ⋄ n , which justifies (a).

Step (b) is justified by Lemma A.8 (1) (which needs the assumption that s is not an application).

Here (a) and (b) contain exactly one reduction step each (recall that L ⋄- n is a value):

-Subcase σ = σ C and c = bind(ηx, y.c ′ ) (x ∈ c ′ ): Here, again, (a) and (b) contain exactly one reduction step each:

(by Lemma A.8 (2))

Case η µ : µa.at → t, with a ∈ t: By our restriction to η µn , we know that t ⋄ n is a λ-abstraction. So,

Note that we have omitted rule η bind .

We now define the cbn optimised CPS translation:

For an evaluation context E, we also put

In particular, [[E]] - n is a value (since any L ⋄- n is a value and E n is a base context). At the level of types, contexts and co-contexts, [[.]] n changes nothing relative to [.] n . Nevertheless, for uniformity, we introduce the notations

n , and so on.

Corollary A.10 (typing). The typing rules of Figure 12 are admissible for [[.]] n .

Proof. The proof method of Corollary 5.5 applies again. We 'compose' the rules in Figure 6 for (.) n with conclusions in the non-atomic system, with the rules in Figure 11, which hold for (.) ⋄ n provided the premisses are in the non-atomic system as well. We clearly need

n , which, as usual for these composition lemmas, are obtained by the observation in Section 1. As in Section 5.2, we will just show the typing rule for co-terms:

where the labelled steps are justified as follows:

(a) This follows from the third typing rule in Figure 6 with non-atomic conclusions.

(b) This follows from the third typing rule in Figure 11 with non-atomic premisses.

(c) This follows from

] n [↑y] using ( 16) and (17).

Finally, to get rid of the expansion ↑y, we invoke subject reduction for η-reduction in λ-calculus. (

where T , T ′ are either two terms or two commands.

Proof. As we did in the proof of Corollary 5.6, we 'compose' the simulation theorem of the cbn monadic translation (.) n (Theorem 4.2), but this time with Proposition A.9. Note the provisos in this proposition are met due to constraints noted in the extra statement of Theorem 4.2 and since β var ⊂ β n .

Since the optimised cbn CPS translation also preserves typability, we can infer the strong normalisation of λµμ n from the strong normalisation of λ[β v ].

Proposition A.12 (recursive characterisation). [[T ]

] n satisfies the equations in Figure 20.

Proof. The proof is similar to the proof of Proposition 5.7.

In particular, the proof of the previous proposition establishes the fact that [

n . This fact is used next.

Remark A.13. Given the recursive characterisation, statement (2) in Corollary A.11 reads as follows:

This statement can be generalised so that 

Otherwise, e = μz.c, so μy. y|e = μy. y|μz.c

→ σ v μy.[y/z]c = μz.c , so this case can be seen as an inductive case where

A.3.2. Cbv case. We will now refine the continuations-monad instantiation by keeping the definition of (.) • in Section 5 except for setting (a[ ]) ⋄ v = [ ](↑a) . Accordingly, (a[ ]) ⋄- v = ↑a and, since ↑a is a λ-abstraction, every L ⋄- v is now a λ-abstraction. Lemma 5.1 is modified as follows (the only change appears in part (2)).

Lemma A.14.

(1) The proof is by induction on T .

(2) The proof is by induction on T :

(by the induction hypothesis)

The final reduction step is a β var step since, as we noted earlier, L ⋄- v is a λabstraction.

Proposition A.15 (optimised instantiation for cbv). If T → T ′ in λµ M , where β, σ and η µ are restricted to β v , σ v and η µv , respectively, then

Proof. The proof is by induction on T → T ′ . We will just consider what the proofs of the base cases of Proposition 5.2 (1) yield in the present situation:

(by Lemma A.14 (1))

(by Lemma A.14 (1))

(by Lemma A.14 (2))

-Case η µv : µa.at → t with a ∈ t:

However, due to our extra restriction t = ηV , we can do without η-reduction:

In the final reduction we have used the fact that V ⋄ v is a value.

-Case η bind : bind(t, x.a(ηx)) → at:

We will now compose the cbv monadic translation with this new continuations-monad instantiation

to obtain the optimised cbv CPS translation. As usual, we also define

v is always a λ-abstraction. At the level of types, contexts and co-contexts, [[.]] v changes nothing relative to [.] v . Nevertheless, for uniformity, we introduce the notations [

, and so on. The rules in Figure 11 (with (.) • replaced by (.) ⋄ v ) remain admissible since variables a are assigned types of the form ¬A ⋄ v in all the contexts. Therefore, the rules in Figure 14 (with [.] v replaced by [[.]] v ) also still hold. Thus, the situation is more pleasant than for the cbn case. Proof. As we did in the proof of Corollary 5.10, we 'compose' the simulation theorem of the cbv monadic translation (.) v (Theorem 4.6), but this time with Proposition A.15. The restrictions of the rules of λµ M in this proposition are met in the target of (.) v (see the extra statement in Theorem 4.6 and recall that β var ⊂ β v ).

As in the cbn case, the optimised cbv CPS translation preserves typability, so we can infer strong normalisation of λµμ v from that of λ[β v ].

Proposition A.17 (recursive characterisation). The recursive characterisation of [[.]] v is obtained by changing the clause for co-variables in Figure 15 as follows:

Proof. We just adapt the case e = a in the induction we used to prove Proposition 5.11.

In particular, the proof of the previous proposition established that [[e