Naoto Yoshida
email: naotoyoshida@pfsl.mech.tohoku.ac.jp

The Architecture of a Multilayer Perceptron for Actor-Critic Algorithm with Energy-based Policy

Learning and acting in a high dimensional stateaction space are one of the central problems in the reinforcement learning (RL) communities. The recent development of modelfree reinforcement learning algorithms based on an energybased model have been shown to be effective in such domains. However, since the previous algorithms used neural networks with stochastic hidden units, these algorithms required Monte Carlo sampling methods for the action selections. In this paper, we investigate actor-critic algorithms based on the energy-based model. And we especially use neural networks with deterministic hidden units as an actor. Introducing the deterministic hidden units, we show that the gradient of the objective function is proportional to the gradient of the energy function. Then, we show the relationships between the energy-based approach and the conventional policy gradient algorithms by introducing the specific energy function. We reveal that the specificity of the RL paradigm severely disturbs learning of an actor when we use a multilayer perceptron as the representation of the policy. We therefore introduce "twin net" architecture. Finally, we empirically show the effectiveness of this architecture in several discrete domains.

I. INTRODUCTION

Reinforcement learning (RL) is a paradigm of machine learning in which the artificial agents learn the optimal action sequences from interactions with the environments. One of the central problems in recent studies of RL is efficient learning in environments with a large state-action set. Actor-critic algorithms are model-free RL algorithms that explicitly separate the evaluation of current policy from the representation of the policy; hence, the policy in an infinitely large state-action set can be compactly represented by arbitrary smooth functions, such as multilayer perceptrons [START_REF] Witten | An adaptive optimal controller for discrete-time markov environments[END_REF][2] [START_REF] Grondman | A survey of actor-critic reinforcement learning: Standard and natural policy gradients[END_REF]. The conventional actor-critic algorithms treat the "1 of K" type actions in which the agent at each time step selects one action from K discrete actions, or continuous vector actions in which actions are represented by real valued vectors. However, there is an important class of representations for actions, which is represented by the K bits vector of the binary values. This type of action is challenging for RL algorithms because the size of the action set exponentially grows with the length of the vector. In this paper, we call this class of actions the K bits binary vector actions.

In recent studies on the online model-free RL algorithms, energy-based RL appeared to be a promising approach to tackle learning in a large state-action set, especially when the actions are represented by binary vector actions [START_REF] Sallans | Using free energies to represent q-values in a multiagent reinforcement learning task[END_REF][5] [START_REF] Ohtsuka | Goal-oriented representations of the external world: A free-energy-based approach[END_REF][7] [START_REF] Heess | Actor-critic reinforcement learning with energy-based policies[END_REF]. Energy-based RL algorithms represent a policy based on energy-based models [START_REF] Lecun | A tutorial on energy-based learning[END_REF]. In this approach the probability of the state-action pair is represented by the Boltzmann distribution and the energy function, and the policy is a conditional probability given the current state of the agent. Previous studies on energy-based RL utilized the framework of restricted Boltzmann machines (RBMs) [START_REF] Smolensky | Information processing in dynamical systems: Foundations of harmony theory[END_REF] [START_REF] Freund | Unsupervised learning of distributions of binary vectors using two layer networks[END_REF] [START_REF] Hinton | Training products of experts by minimizing contrastive divergence[END_REF] to represent the probability over the state-action pair. There are two approaches in the energy-based RL, one is the value-based approach in which the action-value function is approximated by the (free) energy function of the RBMs [START_REF] Sallans | Using free energies to represent q-values in a multiagent reinforcement learning task[END_REF] [START_REF]Reinforcement learning with factored states and actions[END_REF][6] [START_REF] Elfwing | Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces[END_REF], the other is the actor-critic approach in which the RBMs are used only for the policy and the value function is approximated by the other deterministic function [START_REF] Heess | Actor-critic reinforcement learning with energy-based policies[END_REF]. However, because the RBMs are stochastic neural networks, exact sampling of the action from the Boltzmann distribution is intractable except when considering a small action set. Therefore, the Monte Carlo sampling methods, such as Gibbs sampling, are used as an approximation.

In this paper, we investigate energy-based RL and suggest a new actor-critic algorithm. In our approach, we use deterministic neural networks, and the energy functions are also deterministic functions with respect to the state-action pairs. By introducing the specific energy function, we show that an exact sampling from the policy is tractable, even when we considering large action sets. We also show that the the gradient of the objective function, that is, the policy gradient, is proportional to the gradient of the energy function. Then, we reveal that the specificity of the learning framework of actor-critic algorithms can disturb the learning of the actor when we use multilayer perceptrons. In order to overcome this problem, we introduce a new architecture of multilayer perceptrons, an energy function, and a loss function for the actor-critic algorithm. Finally, we empirically show that the suggested algorithm successfully learns the good policies in several environments with discrete state-action sets.

II. BACKGROUNDS A. Policy Gradient

We assume that the RL agents act in an environment modeled by the Markov Decision Process (MDP). MDP is defined by 4 tuples S, A, P, R , where S is the state set and s ∈ S is the state, A is the action set and a ∈ A is the action. P is the transition rule in the MDP, which is defined by the conditional probability P (s |s, a) where s is the next state given a state s and an action a. R is the reward function r(s, a, s), which gives the temporal evaluation of the state-action pair. The agent takes an action at every time step from the stochastic policy π(a|s), which is the conditional probability over the action set a ∈ A given a state s.

The objective function of the RL algorithms is defined by

J(π) = E ∞ t=1 γ t-1 r t ,
where t denotes the time step, γ denotes the discount factor 0 ≤ γ < 1, r t = r(s t , a t , s t+1), and d π (s) denotes the discounted transition probability given the policy d π (s) = ∞ t=0 γ t P (s t = s|s 0 , π) [START_REF] Sutton | Policy gradient methods for reinforcement learning with function approximation[END_REF]. And E[•] is the expectation operator E[f (s, a)] = s d π (s) a π(a|s)f (s, a). The modelfree RL algorithms try to maximize this objective function J(π) from trials and errors, without explicitly modeling the environment.

Many RL algorithms introduce the value function V π (s) and the action-value function Q π (s, a) by

V π (s) = E π ∞ t=1 γ t-1 r t s 0 = s Q π (s, a) = E π ∞ t=1 γ t-1 r t s 0 = s, a 0 = a where E π [•]
is the expectation operator that denotes the expectation over the trajectories given a policy π [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. The value function and the action-value function have a relationship

V π (s) = a π(a|s)Q π (s, a).
If the policy π(a|s) is a smooth function π θ (a|s) with respect to the parameter θ, the objective function can be treated as the function of the parameter J(π θ) = J(θ). Then the gradient of J(θ) with respect to the parameters is given by

∇ θ J(θ) = s d π (s) a Q π (s, a)∇ θ π θ (s, a). (1
)
This relationship is called the policy gradient theorem [START_REF] Sutton | Policy gradient methods for reinforcement learning with function approximation[END_REF].

However, learning the parameters by directly applying the equation (1) is known to be slow because of the large variance of ∇ θ J(θ). Then, usually the baseline function F (s) is subtracted from Q π (s, a) as

∇ θ J(θ) = s d π (s) a Q π (s, a) -F (s) ∇ θ π θ (a|s).
Because a π θ (a|s) = 1 ⇔ a ∇ θ π θ (a|s) = 0, then a ∇ θ π θ (a|s)F (s) = 0. Therefore, the subtraction above doesn't change the direction of the gradient [START_REF] Williams | Simple statistical gradient-following algorithms for connectionist reinforcement learning[END_REF]. When we define the baseline F (s) = V π (s), the policy gradient is given by

∇ θ J(θ) = s d π (s) a Q π (s, a) -V π (s) ∇ θ π θ (a|s) = s d π (s) a A π (s, a)∇ θ π θ (a|s) (2) = E A π (s, a)∇ θ log π θ (a|s) , (3)
where A π (s, a) = Q π (s, a)-V π (s) is the advantage function.

The advantage function has the property a π(a|s)A π (s, a) = a π(a|s)Q π (s, a) -V π (s) = 0.

In the actor-critic architecture, we approximate the value function of the current policy by a parametric function V v (s) where v is the parameter of the function. Because the temporal difference (TD) error δ t = r t + γV π (s t+1) -V π (s t) is an unbiased estimate of the advantage function, one approximation of the advantage is calculated by using the approximated value function δt = r t + γV v (s t+1) -V v (s t) [START_REF] Bhatnagar | Natural actor-critic algorithms[END_REF] [START_REF] Van Hasselt | Reinforcement learning in continuous state and action spaces[END_REF]. Then the update of the parameter ∆θ is given by

∆θ t = α δt ∇ θ log π θ (a|s) (4
)
where α is the learning rate.

B. Energy-based Reinforcement Learning

In this paper, we call the approaches energy-based RL when the policy π θ is defined by some energy function E θ . The energy-based RL algorithms in previous studies used the energy function

E θ (s, a, h) = s W sh h + a W ah h + b s s + b a a + b h h,
where s, a, and h are the state, the action, and the hidden units represented by the stochastic binary vectors in the RBMs. W xy denotes the bidirectional connection between x and y. b x is the bias vector of x. And denotes a transpose of the matrix or vector. Then the parameter of the energy function θ is θ = {W sh , W ah , b s , b a }. In previous studies, we defined the joint probability by using the energy function and the Boltzmann distribution as P (s, a, h; θ) = e -βE θ (s,a,h) s ,a ,h e -βE θ (s ,a ,h) . Then the policy is represented by the conditional probability π θ (a|s) = P (a|s; θ) = e -βF θ (s,a) a e -βF θ (s,a) where F θ (s, a) denotes the free-energy F θ (s, a) = -1 β log h e -βE θ (s,a,h) . The energy-based RL was first developed by Sallans and Hinton [START_REF] Sallans | Using free energies to represent q-values in a multiagent reinforcement learning task[END_REF]. In their approach, the free-energy is used for the function approximation of the action-value function, while the parameter θ is updated by using standard TD-based reinforcement learning algorithms [START_REF] Sallans | Using free energies to represent q-values in a multiagent reinforcement learning task[END_REF] [5][6] [START_REF] Elfwing | Scaled free-energy based reinforcement learning for robust and efficient learning in high-dimensional state spaces[END_REF].

Actor-critic algorithms based on energy-based policies were suggested by Heess et al [START_REF] Heess | Actor-critic reinforcement learning with energy-based policies[END_REF]. In their approach, the actor is represented by the energy-based policy, while using a critic architecture based on the conventional TD learning with function approximation.

In previous approaches to energy-based RL, the stochastic hidden units h were introduced. Hence an exact sampling from an energy-based policy can easily become intractable if we assume a large action set, that is high dimensional actions. To overcome this intractability, previous approaches used (blocked) Gibbs sampling as an approximation of the action sampling in a large action set. However, if we use more complex energy models than RBMs, like the deep Boltzmann machines [START_REF] Salakhutdinov | Deep boltzmann machines[END_REF], the sampling actions from the models can be computationally expensive. Also, the use of (blocked) Gibbs sampling requires the iterative samplings and some additional experiences to obtain good performances.

III. ENERGY-BASED ACTOR-CRITIC

The previous approaches to the energy-based RL utilized the RBMs, hence they used stochastic hidden units h. Because the intractability of the exact sampling from the energy-based policy is mainly from these stochastic hidden units, we instead investigated the energy-based policy with deterministic hidden units. From this perspective, we derive the policy gradient based on the energy-based policy. Also, we show that the normalization terms of the learning can be naturally introduced into the policy gradient.

A. Actor-Critic Algorithm for Energy-based Policy

In our approach, we assume that the joint probability is given by

P (s, a; θ) = e -βE θ (s,a)
s ,a e -βE θ (s ,a) , where β denotes the inverse temperature 0 ≤ β and E θ (s, a) is the energy function parameterized by θ. Hence the policy is given by

π θ (a|s) = e -βE θ (s,a)
a ∈A e -βE θ (s,a) .

(

) 5
The policy gradient theorem has the following property with respect to the energy.

Theorem 3.1: If the policy of the agent is given by the energy-based policy as [START_REF]Reinforcement learning with factored states and actions[END_REF], the gradient of the objective function with respect to the parameter is given by

∇ θ J(θ) = -βE A π (s, a)∇ θ E θ (s, a) . (6)
Proof 3.1: We apply equality [START_REF]Reinforcement learning with factored states and actions[END_REF] to equation (3), then

∇ θ J(θ) = E A π (s, a)∇ θ log π θ (a|s) = E A π (s, a)∇ θ -βE θ (s, a) -log b e -βE θ (s,b) = E A π (s, a) ×β -∇ θ E θ (s, a) + b π θ (b|s)∇ θ E θ (s, b) = -βE A π (s, a)∇ θ E θ (s, a) +βE A π (s, a) b π θ (b|s)∇ θ E θ (s, b) = -βE A π (s, a)∇ θ E θ (s, a) .
The last equality is given by the equality

E A π (s, a) b π θ (b|s)∇ θ E θ (s, b) = s d π (s) b π θ (b|s)∇ θ E θ (s, b) a π θ (a|s)A π (s, a) = 0.
2 We can easily extend this proof for the energy-based policy with stochastic hidden units. From the above equality, if we update the critic V v (s) by using the standard TD algorithms, we may use the TD error δ t to calculate the update of the parameter ∆θ by

∆θ t = -αβδ t ∇ θ E θ (s, a), (7
)
where α is the learning rate.

Because the advantage function has a property a π θ (a|s)A π (s, a) = 0, we can add βE[A π (s, a)∇ θ L(s, θ)] = 0 to the right hand side of the equation (6) where L(s, θ) is the arbitrary smooth function with respect to θ. Then the policy gradient has a form

∇ θ J(θ) = -βE A π (s, a)∇ θ E θ (s, a) -L(s, θ) .
This equality suggest that the regularization term, which is often used in gradient-based optimization, can also be introduced into the policy gradient. And the original policy gradient given by the equation (3) is the special case that the normalization term is given by L

(s, θ) = -1 β log b exp(-βE θ (s, b)).

B. Definition of the Energy Functions

In this section, we introduce two energy functions, and the relationships between the energy-based RL and the conventional policy gradient algorithms are discussed.

When the environment is defined with discrete actions, such as 1 of K type discrete actions or the K bits binary action vectors, we can use the cross-entropy energy

E θ (s, a) = - K i=1 a i log µ i θ (s) + (1 -a i) log(1 -µ i θ (s)) , (8)
where x i is the i-th element of the vector x. µ θ (s) is the output vector of some deterministic function. In this paper, we assume that this function is represented by a multilayer perceptron with K output units, and that each element of µ θ (s) is in the range of 0 < µ i θ (s) < 1, which can be easily implemented in multilayer perceptrons by applying the logistic output units.

When we consider the 1 of K type discrete actions, we can explicitly calculate the equation (8) for each K action and take one of the K actions according to the Boltzmann distribution [START_REF]Reinforcement learning with factored states and actions[END_REF]. If we choose β = 1 and the sum of the output µ θ (s) is normalized to one, the energy-based update is equivalent to the conventional policy gradient algorithm for K discrete actions, which use µ θ (s) as the representation of the stochastic policies. This policy with the energy-based update (7) is equivalent to the classical actor-critic algorithm, in which the actor is trained through the backpropagation [START_REF] Barto | Neuronlike adaptive elements that can solve difficult learning control problems[END_REF] [START_REF] Anderson | Strategy learning with multilayer connectionist representations[END_REF].

When we consider the K bits binary vector actions, we substitute the equation (8) into the Boltzmann distribution [START_REF]Reinforcement learning with factored states and actions[END_REF]. Then we have

π θ (a|s) = e -βE θ (s,a) b e -βE θ (s,b) = e β i a i log µ i θ (s)+(1-a i) log(1-µ i θ (s)) b e β i bi log µ i θ (s)+(1-bi) log(1-µ i θ (s)) = i e β[a i log µ i θ (s)+(1-a i) log(1-µ i θ (s))] i bi∈{0,1} e β[b i log µ i θ (s)+(1-b i) log(1-µ i θ (s))] = i π(a i |s, θ),
where π(a i = 1|s, θ) is given by

π(a i = 1|s, θ) = e β log µ i θ (s) b i ∈{0,1} e β[bi log µ i θ (s)+(1-bi) log(1-µ i θ (s))] = µ i θ (s) β µ i θ (s) β + 1 -µ i θ (s) β .
Therefore, we can sample the action efficiently from the policy. Also, if we use β = 1 and define µ θ (s) by a multilayer perceptron, we obtain π θ (a|s) = µ θ (s). Again this case is identical to the conventional actor-critic algorithm applied to the policy with a multilayer perceptron with stochastic output units, as discussed in [START_REF] Heess | Actor-critic reinforcement learning with energy-based policies[END_REF]. Also, we can treat multi-agent settings, such as that there are N agents in the environment and the n-th agent takes the action a n from K n discrete actions. Because the energy can be decomposed as E θ (s, a) = N n=1 E n θ (s, a n), the whole policy is also decomposed as

π θ (a|s) = N n=1 π n θ (a n |s),
where π n θ (a n |s) is the sub-policy for the n-th agent given by

π n θ (a n |s) = e -βE n θ (s,an)
bn e -βE n θ (s,bn) .

If we treat the continuous vector actions, we can introduce the energy function

E θ (s, a) = 1 2 ||a -µ θ (s)|| 2 , (9)
where ||•|| 2 is the squared norm and µ θ (s) is the output vector of the some deterministic function. In this case, the Boltzmann distribution is obtained by

π θ (a|s) = e -βE θ (s,a) b e -βE θ (s,b) db = e -β 2 (a-µ θ (s)) (a-µ θ (s)) ∞ -∞ • • • ∞ -∞ e -β 2 (b-µ θ (s)) (b-µ θ (s)) db = N (µ θ (s), I/β).
Hence the policy is given as the Gaussian policy with the mean µ θ (s) and the covariance matrix I/β with the identity matrix I. This equation suggests that the energy-based RL with the squared norm energy function is identical to the policy gradient algorithm with respect to the Gaussian policy with mean parametrization.

In the following sections, we focus on the energy-based RL with the 1 of K type discrete actions and the K bits binary vector actions.

IV. ENERGY-BASED ARCHITECTURE OF MULTILAYER PERCEPTRON FOR RL DOMAIN

The direction of the update (7) is preserved even if we replace βδ t by sign(βδ t), where sign(•) is the sign function. Then, the update rule is given by

∆θ t = -α sign(βδ t)∇ θ E θ (s t , a t). (10)
This update rule suggests a very simple rule; if the current TD error is positive, decrease the energy with respect to the current state-action pair, otherwise increase the energy. This learning procedure, which decreases the energy of the desired input-output pair and increases the energy of the undesired input-output pair, can be seen as energy-based learning (EL) [START_REF] Lecun | A tutorial on energy-based learning[END_REF]. Because the energy function in the previous section can be seen as the conventional cost functions (and the regularization terms) with the teaching signal a t and the µ θ (s t), if we use the multilayer perceptron to represent µ θ (s t), the gradient of the energies are efficiently calculated through the standard backpropagation algorithm. While updating the actor by the backpropagation was suggested in the classical studies [START_REF] Barto | Neuronlike adaptive elements that can solve difficult learning control problems[END_REF][19] [START_REF] Williams | Simple statistical gradient-following algorithms for connectionist reinforcement learning[END_REF], we show in the following section that the learning of the actor with single fully-connected multilayer perceptrons can be very slow, even in simple classification tasks, with positive and the negative TD errors.

A. Problem of EL with Multilayer Perceptron in RL domain

One of the most prominent differences between supervised learning and RL, especially the learning of the actor in the actor-critic, is the quality of the training data set. That is, in supervised learning, the data set always gives the correct pairs of the inputs and the outputs. We will call this kind of data Fig. 1. Examples of correct data and incorrect data. Correct data are composed of an image and a corresponding number ("2" in this case) and sign(βδ) = 1. In the case of incorrect data, an image is also provided but the number is wrong (the right answer correspond to the image is "9" in this case, but "5" is provided in this data) and sign(βδ) = -1.

the clean data set. On the other hand, in RL, the agent often receives incorrect pairs that are unwanted. We will call such data that includes this kind of incorrect data the dirty data set.

Energy-based learning with dirty data can disturb the learning even in a simple classification task. Here, we show an example in which the actor (agent) with a 3-layer perceptron learns image classification with the MNIST handwritten digit database [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. The MNIST database consists of 60,000 training data set and 10,000 test data set, and the data are 28 × 28 gray scale images and their corresponding labels. In this example, we scaled all the pixels of the input images to real values in the range of [0, 1]. In order to mimic the condition of the RL, we artificially generated incorrect data, in which the input images and the given labels do not match. Examples of the correct data and the incorrect data are shown in Figure 1. Also, we attached correct-incorrect labels to the correct and incorrect data, which correspond to the sign of the TD errors in the context of For the correct data, we gave sign(βδ) = 1, and otherwise sign(βδ) = -1. We used the stochastic gradient descent with a constant step size parameter α = 0.1 to train all of the multilayer perceptrons in this task. At each time step, the agent receives correct data with a probability of 0.001, and otherwise receives a incorrect data.

We first trained the energy-based model, which uses a 3layer perceptron with 20 hidden units with logistic activation function and 10 output units with softmax activation function, to represent µ θ (s). In the test phase, the models were tested by using 100 random test images from the test data set, and the output of the model in the test was the lowest energy output given by an image, which is greedy action selection in terms of the RL context. The blue line in Figure 2 is the result of the simple energy-based learning explained above. And the broken line is the result of the same learning rule but the clean data set was used in the training, which was exactly the same with the supervised learning. The figure shows that the performance of the simple energy-based learning with the dirty data is almost at the chance level.

One approach to avoid this problem is to filter out the incorrect data and train the model only when the TD error is positive (sign(βδ) > 0). This approach was suggested by Hasselt et al. and it is named the actor-critic learning automaton (ACLA) for discrete actions, the continuous ACLA (CACLA) for continuous actions. These algorithms have empirically confirmed that (C)ACLA-type updates improve the learning speed in several RL domains [START_REF] Van Hasselt | Reinforcement learning in continuous action spaces[END_REF] [START_REF] Van Hasselt | Using continuous action spaces to solve discrete problems[END_REF]. The update rule of the CACLA is exactly the same with the equation [START_REF] Smolensky | Information processing in dynamical systems: Foundations of harmony theory[END_REF] except that the sign function is replaced by the Heaviside function h(•) 1 .

The CACLA-type updates were tested for the MNIST classification task, and the results are shown in Figure 2 as the green line. This figure shows that the CACLA-type update clearly outperforms the simple energy-based update.

B. Twin net: an Architecture of Energy-based Model for RL domain

Although the CACLA-type update rules simply discard the incorrect data with negative TD errors, it is natural to assume 1 The Heaviside function h(x) is given by that the incorrect data also included some useful information for learning the optimal policy. For example, if the agent receives negative rewards after almost all state transitions and the values at all states are initialized to zero, the actor receives mostly negative TD errors at the beginning of the learning, hence the agent is required to learn the policy by elimination. In this kind of environment, the actor learning with the CACLA-type update can be less sample-efficient because the data with the negative TD errors are all filtered out and the policy is not updated at most of the time steps.

h(x) = 1 (x > 0) 0 (x < 0) 0.5 (x = 0).
In order to remove this sample-inefficiency of the CACLAtype update, we explicitly separated the energy function by

E θ (s, a) = E θp (s, a) -E θn (s, a), (11)
where E θp (s, a) and E θn (s, a) are the energy functions parameterized by θ p and θ n . And we define that both E θp (s, a) and E θn (s, a) are given by the equation [START_REF] Smolensky | Information processing in dynamical systems: Foundations of harmony theory[END_REF], introducing the two deterministic functions, µ θp (s) and µ θn (s). By using this energy function, we introduce the loss function

L θ (s, a) = h(δ)E θp (s, a) + (1 -h(δ))E θn (s, a), (12)
and we train the actor by

∆θ = -α∇ θ L θ (s, a). (13
)
This update is a natural extension of the CACLA-type updates for learning with negative TD errors. The resultant policy with the energy function [START_REF] Freund | Unsupervised learning of distributions of binary vectors using two layer networks[END_REF] for 1 of K type actions is exactly same, and the policy for K bits binary vector actions is given by

π θ (a|s) = K i=1 π θ (a i |s), where π θ (a i = 1|s) = µ i θp (s) µ i θn (s) β µ i θp (s) µ i θn (s) β + 1-µ i θp (s) 1-µ i θn (s) β .
Because the suggested learning architecture requires two deterministic functions (multilayer perceptrons, in this paper) for representing µ p (s) and µ n (s), we would call this method "twin net" architecture in this paper (Figure 3).

We also tested this update rule in the MNIST classification task. In this task we used two multilayer perceptrons, one for µ p (s) and the other is for µ n (s). The results are shown as the red line in the Figure 2. The figure clearly shows that the twin net can utilize the incorrect data and outperform the CACLA-type update.

V. EXPERIMENT

We verified the twin net in the three domains (grid world, grid world with binary vector actions, and blocker task) and compared it with the conventional actor-critic method (Normal) and the actor-critic with CACLA-type update (CACLA).

A. Agents

In this experiment, we constructed the critic by TD learning with the linear function approximation. That is, the agent receives a feature vector φ(s) at state s, and the value function at s is approximated by the linear function V v (s) = v φ(s) where v is the parameter vector. The update of the parameter given the transition s t → s t+1 is

δ t = r t + γV vt (s t+1) -V vt (s t) v t+1 = v t + α c δ t ∇ v V v (s)| v=vt ,
where α c is the step size parameter of the critic. In the experiment, we initialized all elements of v by zero.

We used 3-layer perceptrons with 20 hidden units with sigmoid activation function, and we set φ(s) as the inputs for all the multilayer perceptrons used in the actor2 . In the grid world task (GW), we used the softmax output units. In the grid world with binary vector actions task (GWBV), we used the logistic output units. And in the blocker task, we used the agent-wise softmax output units (4 actions ×3 agents). The parameter of the multilayer perceptrons θ were initialized so that the parameters connected with the output units were all zero, and the parameters between the input units and the hidden units were sampled from a uniform distribution over [-1

Nin , 1 Nin], where N in is the number of the input units. For the twin net architecture, we updated the actor by the equation [START_REF] Sutton | Policy gradient methods for reinforcement learning with function approximation[END_REF]. And for comparisons, we updated the actor with the single multilayer perceptron with the rule

∆θ t = -αf (βδ t)∇ θ E θ (s, a).
If f (x) = x; we would call this update the Normal update. And if f (x) = h(x), we would call this update the CACLAtype update. We note that the Normal update was very slow in the GWBV task in the range of the step sizes for the actor explained below, then we used f (x) = sign(x) instead of f (x) = x in this task.

We used β = 1 and γ = 0.95 in all domains, therefore the Normal update was equivalent to the conventional actorcritic algorithm. For the critic, we used α c = 0.1 in the GW and GWBV. In the blocker task, we used α c = 0.02. For actor updates, we tested α from {1.0, 0.6, 0.3} × 10 -I where I = 1, 2, 3, 4, 5 and compared the best performance of each update rule. The actual learning rates compared in the figures are shown in the table I.

B. Environments

1) Grid World (GW): In this environment, the task is the shortest path problem from the start state to the goal state. We used the 47-states grid world suggested by Sutton, as shown in Figure 4(a). The feature vector φ(s) in the GW is the 48 bits binary feature; only one of the first 47 bits, which correspond to the current state s, takes one and zero for all other 46 bits. The value of the 48-th bit is always one. The agent has four actions for the 1-step moves toward north, west, south, east. The state transition occurs only when there is a next state in the direction of the taken action at the current state.

The training was done by the episodic rule; the agents start from the start state 'S' in the all episodes, and one episode ends when the agent enters the goal state 'G' or 800 time steps passed without reaching the goal. The agent receives a reward +1 when reaching the goal, otherwise the reward is always zero.

Figure 4(b) is the result showing the mean and standard deviation of 10 runs. The vertical axis represents the steps taken in the corresponding episodes, the horizontal axis represents the number of episodes. The broken line represents the performance of the optimal policy (14 steps). This result suggests that the twin net method (red line) learns faster than the other single net methods (blue line: Normal; green line: CACLA). And only the twin net could reach the optimal performance in this episode numbers.

2) Grid World with Binary Vector Actions (GWBV): In this environment, we consider the shortest path problem in the same grid with the previous GW. However, the actions are defined differently; the actions in this task are coded by binary vectors. And the reward is zero when the agent reaches the goal, otherwise the reward -1 is provided. The actions are represented by a 4 bits binary vector, which has 2 4 = 16 variations, and only four of sixteen actions can move the agent toward the four directions. The relationships are shown in the table II. The action 'Stay' does not cause any state transition in the environment, hence this environment is challenging because the agent needs to learn the "pattern" of the optimal action at each state. Figure 4(c) is the result showing the mean and standard deviation of 10 runs. Again the vertical axis represents the steps taken in the corresponding episodes, the horizontal axis represents the number of the episodes. The broken line represents the performance of the optimal policy (14 steps). Figure 4(c) clearly shows that only the suggested twin net method (red line) could learn the optimal policy in this experiment, while the other methods (blue line: Normal; green line: CACLA) maintain low quality policies.

3) Blocker Task: The blocker task is an multi-agent task suggested by Sallans and Hinton [START_REF] Sallans | Using free energies to represent q-values in a multiagent reinforcement learning task[END_REF]. This environment consists of a 4 × 7 grid, three agents, and two blockers. To obtain a positive reward, the agents need to cooperate in this environment. Each agent can move in four directions as the GW task, and the 'team' of agents obtain a +1 reward when one of the three agents enters the end-zone, otherwise the team receives a -1 reward. The feature vector φ(s) is given by the positions (grid cells) of each agent (28 bits × 3 agents), the eastern most position of each blocker (28 bits × 2 blockers) and a bias bit which is always one (1 bit).

The moves of the agents and blockers are ordered. The agent can move one of four directions if there is a next position and the next position is not filled by another agent or blocker, otherwise the agent stays at the same position. To enter the end-zone, one of the agents needs to pass through the grid cell between the blockers. The two blockers can move only east or west and block the agent. The west blocker is responsible for the 1-4 columns, and the east blocker is responsible for the 4-7 columns; the behavior of the blocker is pre-programmed to prevent the agents from entering the end-zone [START_REF] Sallans | Using free energies to represent q-values in a multiagent reinforcement learning task[END_REF] [START_REF] Heess | Actor-critic reinforcement learning with energy-based policies[END_REF]. The one time step ends after the transitions of three agents and the subsequent two blockers transitions. The agents start from the random positions of the bottom rows in Figure 5(a) but no agents ever overlaps. Each episode ends when one of the agents enters the end-zone (success) or 40 time steps have passed (failure). while the other methods still fail with some probability after the 1.0 × 10 5 time steps.

VI. CONCLUSION

In this paper, we introduced energy-based reinforcement learning with deterministic hidden units. We showed that the policy gradient is proportional to the gradient of the energy, and that the energy-based actor-critic algorithm with specific types of the energy functions and settings are identical to the conventional actor-critic algorithms. Additionally, using a simple experiment, we revealed that the learning in an actor can be slow in RL domains when we represent the policy by a multilayer perceptron. From this fact, we suggest the twin net architecture. We also suggest the energy-based learning procedure for this architecture. Finally, we empirically showed that the suggested architecture effectively worked in several RL domains.

Fig. 2 .

 2 Fig. 2. The difficulty in learning of an the actor using a multilayer perceptron and dirty data: The three curves in the figure represent the means and the standard deviations of the test errors over the 10 trials of the MNIST classification task, including 99.9% of the incorrect data with "correctincorrect" labels. The vertical axis is the mean test error rate, the horizontal axis is the number of the updates. The blue line is the energy-based updates. The green line is the the CACLA-type updates. The red line is the energybased updates with the twin net. The broken line represents the energybased updates without the incorrect data, which are the same with supervised learning.

Fig. 3 .

 3 Fig. 3. The architecture of the twin net (the parameters θ are omitted in this figure). The policy is represented by two energy functions, Ep is trained only when the TD errors are positive , and otherwise En is trained.

Figure 5 (Fig. 4 .Fig. 5 .

 545 Figure4(c) is the result showing the mean and standard deviation of 10 runs. Again the vertical axis represents the steps taken in the corresponding episodes, the horizontal axis represents the number of the episodes. The broken line represents the performance of the optimal policy (14 steps). Figure4(c) clearly shows that only the suggested twin net method (red line) could learn the optimal policy in this experiment, while the other methods (blue line: Normal; green line: CACLA) maintain low quality policies.3) Blocker Task: The blocker task is an multi-agent task suggested by Sallans and Hinton[START_REF] Sallans | Using free energies to represent q-values in a multiagent reinforcement learning task[END_REF]. This environment consists of a 4 × 7 grid, three agents, and two blockers. To obtain a positive reward, the agents need to cooperate in this environment. Each agent can move in four directions as the GW task, and the 'team' of agents obtain a +1 reward when one of the three agents enters the end-zone, otherwise the team receives a -1 reward. The feature vector φ(s) is given by the positions (grid cells) of each agent (28 bits × 3 agents), the eastern most position of each blocker (28 bits × 2 blockers) and a bias bit which is always one (1 bit).The moves of the agents and blockers are ordered. The agent can move one of four directions if there is a next position and the next position is not filled by another agent or blocker, otherwise the agent stays at the same position. To enter the end-zone, one of the agents needs to pass through the grid cell between the blockers. The two blockers can move only east or west and block the agent. The west blocker is responsible for the 1-4 columns, and the east blocker is responsible for the 4-7 columns; the behavior of the blocker is pre-programmed to prevent the agents from entering the end-zone[START_REF] Sallans | Using free energies to represent q-values in a multiagent reinforcement learning task[END_REF][START_REF] Heess | Actor-critic reinforcement learning with energy-based policies[END_REF]. The one time step ends after the transitions of three agents and the subsequent two blockers transitions. The agents start from the random positions of the bottom rows in Figure5(a) but no agents ever overlaps. Each episode ends when one of the agents enters the end-zone (success) or 40 time steps have passed (failure).Figure5(b) is the result of the experiment. The vertical axis represents the mean success rate of the last 1000 episodes. And the horizontal axis represents the time steps. This result shows that the twin-net learns the successful policy very quickly,

In the preliminary experiment, the numbers of hidden units for the Normal and CACLA-type updates were varied to 50 and 100. However, the performances did not change very much.

ACKNOWLEDGMENT

I would like to thank Makoto Otsuka for useful comments on this work.