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Abstract—An image watermarking scheme that combines Hermite functions expansion and 

space/spatial-frequency analysis is proposed. In the first step, the Hermite functions expansion is 

employed to select busy regions for watermark embedding. In the second step, the space/spatial-

frequency representation and Hermite functions expansion are combined to design the 

imperceptible watermark, using the host local frequency content. The Hermite expansion has been 

done by using the fast Hermite projection method. Recursive realization of Hermite functions 

significantly speeds up the algorithms for regions selection and watermark design. The watermark 

detection is performed within the space/spatial-frequency domain. The detection performance is 

increased due to the high information redundancy in that domain in comparison with the space or 

frequency domains, respectively. The performance of the proposed procedure has been tested 

experimentally for different watermark strengths i.e. for different values of the Peak Signal to 
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Noise Ratio (PSNR). The proposed approach provides high detection performance even for high 

PSNR values. It offers a good compromise between detection performance (including the 

robustness to a wide variety of common attacks) and imperceptibility.  

Index Terms— Digital image watermarking, space/spatial-frequency image analysis, Hermite 

functions, Hermite expansion coefficients. 

I. INTRODUCTION 

The rapid development of digital technology brings a need to protect multimedia content from 

unauthorized usage. One of the common solutions is known as digital watermarking with 

applications ranging from digital rights management to integrity protection. It refers to specific 

information hiding based on embedding a secret signal into the multimedia data, under the 

constraints of imperceptibility, security and robustness to attacks [1]-[3]. The owner of the 

protected content should be able to detect the watermark in order to prove ownership. An 

efficient digital watermarking procedure provides a good compromise between the watermark 

invisibility (which will preserve the host signal quality) and its robustness against common 

attacks (aiming to make the watermark undetectable).  

Most of the existing image watermarking techniques can be categorized into spatial domain or 

transform domain algorithms [2]-[18]. Watermark embedding in transform domains, e.g. 

frequency domains (through the Discrete Cosine Transform (DCT), Discrete Fourier Transform 

(DFT), Discrete Wavelet Transform (DWT), etc.), generally increases the robustness to attacks 

[4]-[9] compared to the spatial domain. However, the frequency domain embedding usually 
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causes an uncontrolled spread of the watermark over a possibly large spatial region. It means that 

the watermark embedded in some components in one domain will be spread over all components 

in other domain. In this sense, special masking algorithms are required to preserve the watermark 

imperceptibility. In order to exploit the advantage of using both domains simultaneously, the 

joint space/spatial-frequency based watermarking has been considered [10]-[14]. The 

space/spatial-frequency analysis provides a local frequency content estimation and analysis for 

each individual image pixel. Hence, the watermark spatial location and its frequency 

characteristics are controlled simultaneously. Furthermore, the space/spatial-frequency based 

procedure provides a high robustness to attacks and good detection performance. For each pixel 

in the spatial domain, we produce a block of space/spatial-frequency coefficients whose size 

depends on the window used for the calculation of space/spatial-frequency representation. It 

means that the number of coefficients used in detection is significantly increased comparing to 

the number of watermarked pixels: for each pixel, we have approximately 200 space/spatial-

frequency coefficients for correlation (50% of the 20x20 blocks used in our case). Consequently, 

a successful detection in space/spatial-frequency domain usually requires smaller number of 

watermarked pixels than the procedures in DCT and DWT domain. 

This work represents a modified and improved version of the space/spatial-frequency based 

image watermarking procedure [14]. Prior to watermark embedding, a set of suitable pixels is 

determined. Generally, the imperceptibility-robustness compromise is significantly improved by 

embedding the watermark within the busy image regions. According to the masking effects of the 

human visual system (HVS), the busy or high contrast image areas can mask any distortion better 

than smooth areas, and thus, can support higher watermark signal without visibility problem 

[19]-[21]. The HVS frequency sensitivity and masking are closely related, such that both effects 
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suggest that we are less sensitive to noise in high frequencies producing the busy parts of the 

image [21],[22]. The similar design [14] uses the energy of local space/spatial-frequency content 

to determine the occupancy and busyness of the region. This requires exhaustive procedure for 

setting the thresholds, since the energy within the region is not exactly a natural and precise 

measure to characterize region busyness. Therefore, we propose a simple and efficient method to 

detect busy (high-variance) regions that is based on an incomplete Hermite functions expansion 

[26]. Each image region is firstly reconstructed by using a few low-order Hermite functions, and 

the mean square error (MSE) between the original and reconstructed region is used as a 

distinguishability criterion. The low-order functions are related to the low-frequency content, 

while the higher order functions have more high-frequency components [23], [24], [26],[28]. 

Hence, when using a few low-order functions for the reconstruction, the MSE for busy regions 

will be pretty high, since these regions are characterized by high-frequency content [25]. More 

details the regions have, more functions are required for proper reconstruction. 

The selected busy regions are used for watermark design and embedding. In order to identify 

space/spatial-frequency components that are, from the perceptual point of view, appropriate for 

watermark embedding, the Hermite projection method is applied in the space/spatial-frequency 

domain, as well. The most significant components (from the perceptual point of view) are 

omitted to avoid image quality degradation, and the watermark is designed according to the 

remaining components. The space/spatial-frequency content of the watermark changes for each 

selected pixel according to its local space/spatial-frequency content. This further means that the 

space/spatial-frequency content of the watermark is not uniform across the image, as it is the case 

in [14], where the watermark is fixed to the middle frequency ring. Comparing to [14], the 
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proposed pixels selection and watermark modeling techniques improves the quality of 

watermarked image, which has been measured by the local PSNR. 

The watermark detection is performed in the space/spatial-frequency domain, since it provides 

a large number of elements available for the correlation based detection. In this case, the 

information about watermark will be spread over a large number of coefficients in the 

space/spatial-frequency domain, even when a small number of pixels is used. In other words, the 

detection is flexible regarding the number of considered pixels, because even for a small number 

of pixels there is still large number of elements in correlation. The proposed procedure is tested 

on various images in the presence of different commonly used attacks.      

 The paper is organized as follows. The procedure for busy regions selection is given in Section 

II. The watermarking procedure that includes watermark design, embedding and detection is 

proposed in Section III. The efficiency of the proposed procedure is tested experimentally in 

Section IV, while the concluding remarks are given in Section V.         

II. SELECTION OF WATERMARKING REGIONS

A. Hermite Projection Method 

The Hermite projection method has been introduced in various image and speech processing 

applications [26]-[28]. The Hermite functions are used as the basis functions due to their 

favorable properties (orthogonality and good localization property [26], [29]), providing a unique 

representation of different signals. They provide better computational localization in both signal 

and transform domains in comparison with the trigonometric functions. Also, as it will be shown 

later, the coefficients of expansion are easily computed, especially having in mind the recursive 

procedure for Hermite functions calculation. Furthermore, by using the Hermite expansion, the 
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signal energy is approximated by the numerical integral of the Gauss-Hermite type and converges 

more rapidly than the rectangle rule involved in the DCT computation [27]. 

The Hermite functions have been defined as: 
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To speed up the calculation procedure, they can be defined recursively as follows [28]: 
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For the purpose of image analysis, the expansion into Hermite functions can be applied to image 

rows, columns or both. For the sake of simplicity, we consider the Hermite expansion of image 

rows (one row at a time). Therefore, an image is represented by using a given number K of 

Hermite functions as follows [28]:   

1
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p p
p
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=
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where I(x,y) denotes an image of size P×Q (or a given region), while cp are coefficients of 

Hermite expansion. Note that, prior to the Hermite expansion, removing the baseline from I(x,y) 

is required, since ( ) 0,p x xψ → →∞  for all p. The baseline is defined as:  

( , ) ( ,0)
( ) ( ,0)x

I x Q I x
B y I x y

Q

−
= + ⋅ . (4) 

A complete image reconstruction can be achieved when the number of Hermite functions is equal 

to P. However, it has been shown that the image can be successfully reconstructed even by using 
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a smaller number (K<P) of Hermite functions. Additional savings can be achieved by applying 

the Hermite projection method over both coordinates. The Hermite expansion coefficients can be 

calculated by using the Gauss-Hermite quadrature, as follows: 

2
1 1

( )1 ( ),
( ( ))

P p m
p y m

m P m
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c I x

P x

ψ

ψ= −

≈ ∑  (5) 

where mx  are zeros of the Hermite polynomials, while Iy(xm) is I(xm,y) for a fixed y. 

B. A procedure for busy regions selection based on the Hermite Projection Method 

Image analysis is usually based on texture feature extraction methods, and the most significant 

among them are the auto-correlation, edge frequency, primitive-length, Law’s method and co-

occurrence matrices [30],[31]. Each of these methods uses different features for texture 

classification, while their performance depends on the quality of feature and amount of training 

data. The standard texture classification methods are mainly based on matching algorithms with a 

predefined texture patterns, patches or primitives [30], [32]. The classification is then performed 

by determining the well-known co-occurrence matrices features [33] (directionality, coarseness, 

granularity, etc.), which are compared between the observed image regions and patterns. The first 

limitation that we face with in our application is that it is hard to define a pattern or patch for 

busy regions in natural images, due to their diversity. Furthermore, the statistical measures 

extracted from co-occurrence matrices need to be combined to provide regions classification, 

while the thresholds associated with each measure are not standardized and they are subject of 

exhaustive experimentation. 

In watermarking application we are interested in determining busy regions with large variations 

and without fine structures, or busy regions where different texture elements intersect. Moreover, 

we should also analyze the amount of variations within the region to decide whether it is suitable 
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for watermarking. If we consider histogram analysis to characterize the variations within the 

region, we lack the information about the spatial distribution of different values. When observing 

the histograms of different regions (as shown later in Section IV), we may say that the histogram 

does not provide such obvious classification features. Moreover, we would need to perform 

detailed histogram analysis and certainly to define a completely new procedure for region 

classification.               

The proposed approach provides a simple and reliable procedure that identifies the regions 

with fast variations and irregular structures, by using image independent threshold. The MSE 

between the original region and its reconstructed version provides a natural, simple and efficient 

measure of region complexity. More complex and disordered region produces higher MSE. 

Moreover, it has been shown that the gap between flat (flat and moderately flat) and busy (busy 

and moderately busy) regions is significant. It is important to note that the proposed classification 

method has not been used so far, although the Hermite projection method has been applied in 

texture classification, but with a full set of functions and combined with additional procedures. 

An image can be decomposed into a set of regions/blocks Ri(x,y) of size P×Q. Each region can 

be separately decomposed into Hermite functions. When the region is uniform/flat, it can be 

reconstructed by using much fewer functions than for the busy regions. Hence, when the same 

number of Hermite functions is used for all image regions, the mean square error between the 

original and reconstructed region will be smaller if the region is more uniform. This property can 

be used as a criterion for an efficient busy region selection. The mean square error between the 

original and reconstructed region is given by: 
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where K is the number of Hermite functions used for reconstruction. Generally, the region size is 

firstly chosen approximately to correspond to the size used in texture features characterization 

(e.g., between 15x15 and 30x30). Then, based on a number of experiments, the optimal 

performance of the proposed procedure is achieved by using the regions 20x20. The values of K

are determined experimentally by using a set of test images. Namely, for the observed 20x20 

regions we use a fixed number of five Hermite functions and coefficients, which is 25% of 

number of pixels per line. This value of K is enough to reconstruct flat regions with small error 

and insufficient to reconstruct busy regions. Apparently, when working with such regions the 

classification performance does not vary significantly for different images. 

The considered regions are classified as follows: 

{ ( , )} ( , )
{ ( , )} ( , )

i i

i i

MSE R x y R x y busy region
MSE R x y R x y flat region

>Ξ⇒ ∈
≤Ξ⇒ ∈

 (7) 

where Ξ  is some predetermined threshold value (which will be discussed in Section IV). 

Generally, the pixels from busy regions are more suitable for watermarking, since the changes in 

these regions are more difficult to perceive than in the flat regions. Consequently, watermark 

embedded in the busy regions can be stronger, and it is more likely to be robust to different 

attacks. In the proposed approach, for watermark embedding we use only the pixels from the 

busy regions.  

III. WATERMARKING PROCEDURE

 A block diagram of the proposed watermarking procedure is shown in Fig 1.a. The image is 

divided into regions processed by using the Hermite expansion method to select busy image 

regions. The selected regions are used as input to the space/spatial-frequency processing block 

together with the original image to perform watermark modeling and embedding. When choosing 
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the size of image regions, two important issues are considered: 1. small image regions are 

difficult for characterization in both spatial and frequency domain; 2. large regions can not be 

associated with local frequency content of pixels anymore. Hence, as discussed in the previous 

section, the optimal size is set to 20x20. 

The space/spatial-frequency processing block is shown in Fig 1.b. It is important to emphasize 

that the block scheme given in Fig. 1, includes two major steps from the calculation standpoint: 

1. Hermite expansion method, 2. space/spatial-frequency transform and its inverse. The fast 

Hermite projection method [26], suitable for hardware realization, has been used for Hermite 

expansion. Although, the Hermite functions can be calculated recursively, we can even store and 

load functions from registers since we use only a first few Hermite functions. Concerning the 

space/spatial-frequency transform and its inverse, it is important to emphasize that the real-time 

hardware implementation for space/spatial-frequency image analysis (including the space-

varying filtering) has been already done in [34],[35]. Additional operations required by the 

proposed procedure are image decomposition into 20x20 blocks and additive watermark 

embedding, with almost negligible computational complexity.   

A. Watermark design and embedding  

 After the pixels that belong to the busy image regions are selected, the watermark embedding 

procedure is performed in the space/spatial-frequency domain. As a suitable space/spatial-

frequency representation, the two-dimensional (2D) short-time Fourier transform (STFT) is 

considered. By using the 2D STFT, a region of pixels, captured by the window around the central 

one, will be mapped into the 2D frequency representation. Hence, to provide a certain model for 
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watermark characteristics, for each pixel we use a 2D representation of its local frequency 

content. The watermark embedding will be done in the space/spatial-frequency domain, as well.  

 The 2D form of the STFT for an image I(x,y) is defined as follows:  

2 /( , ) ( ) ( ) ,j k N
I

k

STFT n h k I n k e π ωω −= +∑

�� �

�

� �� � � �

 (8) 

where h is a sliding window (N×N). The following notation is used: 1 2( , )n n n=
�

, 

{ }1 2 1 2( , ) , [ / 2, / 2 1]k k k k k N N= ∈ − −
�

, 1 1 2 2( ) ( , )n k n k n k+ = + +
� �

, 1 1 2 2( )k k kω ω ω= +
���

. 

 The STFT is calculated for a region around each pixel that was previously selected for 

watermarking. Thus, the windowed part of signal, centered at the selected pixel, is transformed 

into the frequency domain. The local frequency content is further used to provide a suitable 

mask, which will shape the watermark, as it is described below. 
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Fig 1. a) Block scheme of the watermarking procedure, b) Space/spatial-frequency 

processing block 

 Firstly, we should select a suitable part of the space/spatial-frequency content. It is usually 

recommendable to avoid watermarking of the high energy and low-frequency content, since it 

may degrade image quality. In that sense, we should avoid the high-energy space/spatial-

frequency image content. For this purpose, the Hermite expansion is employed within the 

space/spatial-frequency domain. By using a small number Kq of Hermite functions, we may 

characterize the high energy spectral content. Then the remaining space/spatial-frequency content 

is obtained as follows:  



13

2
1 2 1 2

1
2

1 2 1 2 1 2
0

( , , , )

( , , , ) ( ),
Kq

I q q

q

STFTx n n

STFT n n c for fixed

ω ω

ω ω ψ ω ω

−

=

=

= − ∑
. (9) 

 After the high energy components are removed, the space/spatial-frequency content 

2
( , )STFTx n ω
� ��

 is used to create a space/spatial-frequency mask:   

2
1, ( , ) 0

( )
0, .

w

STFTx n
L

otherwise

ω
ω


>

=
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��

 (10) 

Then, the space/spatial-frequency characteristics of a watermark are modeled as follows: 

( , ) ( , ) ( , )m
w w wSTFT n L n STFT nω ω ω=

� �� � �� � ��

, (11) 

i.e.               ( , ) ( , )m
w ww L n STFT n

ω

ω ω=∑
��

� �� � ��

, 

where ( , )wSTFT n ω
� ��

 denotes the STFT of the starting watermark created as a 2D pseudo-random 

sequence. In this way, the watermark will be separately adapted to the space/spatial-frequency 

content of each image region. In other words, each region has its own support function which is 

used to distribute watermark over the region in accordance with region components. This 

watermark design procedure should result in better watermark imperceptibility.   
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Fig 2. a) An example of 2D space/spatial-frequency mask, b) watermark modelled using 

space/spatial-frequency mask  

An illustration of the space/spatial-frequency mask and the corresponding space/spatial-

frequency characteristics of the watermark are shown in Fig. 2, for one pixel from the busy image 

region (region with majority of busy pixels).  

 Additive watermark embedding procedure is performed in the space/spatial frequency domain, 

as follows: 

( , ) ( , ) ( , )m
Iw I wSTFT n STFT n STFT nω ω α ω= +

� �� � �� � ��

,  (12) 

where ISTFT  and IwSTFT are the STFT of the original and watermarked image, respectively and α

allows to tune the watermark strength. The value of α depends on the initial amplitude of 

pseudo-random sequence p. Since the amplitude of pseudo-random sequence influences the 

PSNR, alpha is set experimentally to achieve PSNR≈50 dB for a high quality of watermarked 

images.  

 Note that in order to retrieve the signal from its space/spatial-frequency representation, the 

concept of space-varying filtering is applied. This technique has been introduced for the purpose 

of space-varying filtering of 2D signals [36], [37]. The input of the space-varying filter is IwSTFT , 

while the support function is defined as: 

2
1 2

1 2
1, ( , ) 0( , ) .

0,
Iif STFT

L
otherwise

ω ωω ω
 >

= 


 (13) 

Finally, the watermarked image is obtained as follows: 
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( ) ( , ) ( , )w IwI n STFT n L n
ω

ω ω=∑
��
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. (14) 

B.  Watermark detection  

The watermark detection is performed, within the space/spatial-frequency domain, by using the 

space/spatial-frequency domain correlation as in [14]: 
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. (15) 

 Note that the two-dimensional space/spatial-frequency region is centered on each selected 

pixel. Instead of a single pixel in the spatial domain, we use a STFT matrix with a certain number 

of elements that depends on the window size. Then the actual number of components used in the 

detection is much larger, providing a significant detection improvement. However, note that 

( , )m
wSTFT n ω

� ��

 depends on the support function ( , )wL n ω
� ��

, which is specific for each pixel. Thus, in 

order to use (15), we would need to store the 2D watermark for each watermarked pixel. In other 

words, the 2D support function should be available for each pixel as side information. Hence, to 

provide a blind detection and to avoid large side information, which is usually undesirable in 

watermarking, we use the modified detector form that does not need any knowledge about the 2D 

support functions. The introduced modification does not affect significantly the detection results. 

Hence, the detector form includes only the STFT of the starting watermark, created as a 2D 

pseudo-random sequence, which is the same for all pixels: 

( , ) ( , )
wI w

n

Det STFT n STFT n
ω

ω ω∑ ∑
 

=  
 

� ��

� �� � ��

, 
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and does not require knowledge about the support function. The detection performance is tested 

by using the following measure of detection quality [38], [39]:

   
2 2

,
w wr w

w z

Det Det
MD

σ σ

−
=

+
 (16) 

where Det  and σ2  represent the mean value and the variance of the detector responses, w and z

indicate watermarks (right keys or trials) and wrong trials, respectively. The probability of error 

Perr can be easily calculated by using the measure MD (given by (16)), as follows: 

1
( ).

2 2
err

MD
P erfc=  (17) 

The normal distribution of detector’s responses is assumed.  Recall that the watermark is created 

from a pseudo-random sequence and for such watermarks the correlation based detector form can 

be safely assumed to be sufficiently independent [45]. According to the central limit theorem, if n

random variables distributed according to any probability density function (pdf) are combined, 

then their sum will have pdf which tends to a Gaussian for sufficiently large n [45], which is the 

case we have. Probability of detection is obtained as Pd=1-Perr. By increasing the value of 

measure MD the probability of detection error decreases.  

IV. EXPERIMENTAL RESULTS

The performance of the proposed procedure is tested experimentally using various standard 

test images, all of size 256x256. According to the practice in the literature (e.g., 

[4],[15],[47],[48]) we have tested the proposed procedure to a certain categories of test images. 

Since the watermarking procedure aims to protect natural images, we have selected some specific 

and commonly used examples (most of them are standard Matlab test images) such as portraits 

(e.g. Lena, Elaine, Barbara), Landscapes (e.g., Boat, Lake, Bridge, Autumn), images with plenty 
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of details or repeating shapes (e.g., Baboon, Tiger, Peppers, Pears), images with dominant 

brightness (F16). 

Numerous realizations with different watermarks (right keys) and wrong trials have been done. 

The STFT is calculated by using the regions of size 20×20. The pixels belonging to busy image 

regions are selected by using the proposed procedure based on the Hermite projection method. 

The regions classification is done by using parameter 40Ξ= . Note that the classification 

performance is not so sensitive to the selection of Ξ . Namely, the experiments have shown that 

the MSE (given by (6)) for flat and busy regions have significantly different values, and thus we 

can set parameter Ξ  easily and flexibly for all tested images. In Fig. 3 we illustrate four different 

types of regions classified according to the value of MSE:  

- Strictly flat regions have very low MSE (mostly <10), 

- Moderately flat regions may contain certain peripheral changes and thus slightly higher MSE,  

- Moderately busy regions contain quite noticeable dynamics (MSE>100),  

- Busy regions contain significant dynamics (MSE>200). 

Note that there is a large difference between the MSE of moderately flat and moderately busy 

regions, which facilitates setting of the threshold value  Ξ .  

Additionally, we may observe that it would be difficult to conclude anything about regions 

dynamics on the basis of their histograms, since they do not have any visible dominant 

characteristics for a certain region category (Fig. 3). 
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Fig. 3. a) flat regions, b) moderately flat, c) moderately busy, d) busy 
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Fig. 4. The pixels from the busy regions that are selected for watermarking 

The proposed method for pixel selection provides m candidates for watermark embedding, but 

the embedding procedure can be done in any set of n points, where n≤m. Hence, we may fix the 

number of watermarked pixels for both low and high resolution images. The selected pixels 

(black points) for some sample images are given in Fig 4. The watermark has been modeled 

according to (11) and embedded in the selected pixels within busy image regions.  

The watermarking procedure has been performed for a certain number of watermarks (right 

keys) and wrong trials (wrong keys). In Fig. 5, we present the values of measure MD obtained for 

40 right keys and 400 wrong trials. Note that the blind detection is used, i.e. the original image is 

not required in the detection process. The original and watermarked images Lena and Elaine are 

shown in Fig. 6. 
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Fig 5. An illustration of detector responses for 40 watermark (red) and 400 wrong trials 

(blue)

Fig. 6. Lena: a) original, b) watermarked; Elaine: c) original, d) watermarked 

Furthermore, the procedure is tested in the presence of various attacks with different strengths. 

The watermark embedding is done with a PSNR ranging in 47-50 dB. As an additional measure 

of image quality, we have calculated the Structural Similarity Measure (SSIM) [40], [41] 

between the original and watermarked images, and the achieved value for different test images is 
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≥0.99 (out of 1), which means almost negligible difference between the watermarked and 

original image.   

The procedure is tested under JPEG compression with various quality factors (lower quality 

factor (QF) corresponds to higher compression), impulse noise with different values of density 

parameter (0.0025, 0.005, 0.01, 0.05), Gaussian noise with different values of variance (0.001, 

0.005, 0.01, 0.02). For example, the robustness to Gaussian noise is achievable for variance up to 

0.02 (the reference value for noise variance is usually 0.01 [42]-[44]). Further increasing of 

variance introduces serious image quality degradations and makes an image unreadable and 

unusable. Furthermore, the robustness is tested in the presence of mixed Gaussian and impulse 

noise, median filtering, combined noise and filtering attacks, image darkening and lightening, 

cropping of rows and columns, image resizing with interpolation to the nearest neighbour, and a 

few combined attacks. 

 The proposed approach provides low probabilities of error for most of the tested attacks. On 

the other hand, it is worth to say that the proposed procedure preserves high image quality and 

provides high PSNR (approximately 50 dB), which is larger than in the other robust image 

watermarking algorithms [8], [9], [46],[47]. Nevertheless, the image quality will be compared 

later with the similar approach in terms of the local quality measure.   
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TABLE I. AVERAGE PROBABILITY OF DETECTION ERROR IN THE PRESENCE OF ATTACKS

Type of Attack 
PSNR 

Watermarked – 

Attacked 

MD Perr 

No attacks - 7.8 10-15

JPEG QF=80 34dB 7.4 10-14

JPEG QF=60 32dB 7 10-12

JPEG QF=40 29dB 5.8 10-9

JPEG QF=20 25dB 3.6 10-4

Impulse noise 0.0025 31dB 7 10-12

Impulse noise 0.005 28dB 6.2 10-10

Impulse noise 0.01 25dB 5.7 10-9

Impulse noise 0.05 18dB 2.5 10-3

Gaussian noise 0.001 30dB 6.3 10-10

Gaussian noise 0.005 23dB 5.5 10-8

Gaussian noise 0.01 20dB 4 10-5

Gaussian noise 0.02 17dB 2.6 10-3

Mixed Gaussian 0.005 and 
impulse noise 0.01 

24dB 4.7 10-6

Median filter (+impulse 
noise) 

25 dB 3.6 10-4

Darkening 40% 14 dB 7.6 10-14

Lightening 40% 15 dB 7.6 10-14

Crop (first 20 rows+first 20 
columns replaced by zeros) 

21dB 7.4 10-14

Scaling+interpolation 25dB 4 10-5

Combined attack: Gaussian 
noise and JPEG with QF=60 

24dB 3.5 10-4

Combined attack Gaussian 
noise and crop 

30dB 5.8 10-9

Combined attack Gaussian 
noise and image resize with 
interpolation 

24dB 3.2 10-4

   

Note that the proposed approach provides robustness to cropping of image rows and columns, 

as well as robustness to certain scaling (17%) and interpolation, with still low probability of 

error. However, the procedure is not robust to image rotation. This would require combination 

with certain templates that would be invariant to rotation.  
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TABLE II. COMPARISON WITH OTHER METHODS IN THE PRESENCE OF ATTACKS (IN TERMS OF 

PROBABILITY OF DETECTION ERROR) 

Type of Attack 
Proposed 

Method 

in SSF domain 

Previous 

Method 

in SSF 

domain 

Standard DCT 

procedure 

DWT domain 

procedure with 

GGF detector 

DWT domain 

procedure with 

Cauchy detector 

No attacks 10-15 10-15 10-8 10-7 10-9

JPEG QF=80 10-14 10-13 10-7 10-6 10-7

JPEG QF=60 10-12 10-12 10-5 10-6 10-6

JPEG QF=40 10-9 10-7 10-3 10-5 10-6

Impulse noise 0.01 10-9 10-10 10-6 10-6 10-6

Gaussian noise 0.003 10-9 10-10 10-6 10-6 10-5

Darkening 40% 10-14 10-14 10-7 10-6 10-7

Lightening 40% 10-14 10-14 10-7 10-5 10-6

A. Comparison results 

The proposed procedure is compared with the previous space/spatial-frequency (SSF) based 

approach given in [14], with the standard DCT based watermark embedding procedure, and 

DWT approaches based on the Generalized Gaussian and Cauchy pdf model. The results are 

reported in Table 2. The watermark is embedded with the same PSNR≈50dB in all cases. Some 

details for these procedures are given in the sequel.  

1) The method given in [14] assumes different region selection and watermark embedding 

regions compared to the proposed approach. The results are given in the Table 2 (3rd column). 

Although, some of the results achieved by the proposed method are quite similar to the results in 

[14], the proposed method is also robust to some geometric attacks unlike [14]. Additional 

advantages over the method [14] will be discussed in Section IV.B.  

2) The DCT based image watermarking procedure is considered as follows. According to 

[15],[16] all low-to-middle frequency DCT coefficients are used for watermarking (22050 
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coefficients for images of size 256×256, which is approximately four times the number of 

watermarked pixels in the case of the proposed procedure). The detection is performed by using 

the traditional correlation detector. The results are given in the Table 2, 4th column. 

3) Finally, we consider the standard DWT domain watermarking. The watermark detection in the 

DWT subbands is performed by using detectors based on the Generalized Gaussian or Cauchy 

pdf [17],[18], since in this case they provide better performance compared to the standard 

correlator. Namely, it is commonly assumed that the watermarked coefficients’ pdf may 

correspond either to Generalized Gaussian or Cauchy function, and thus detection is performed 

by using one of the mentioned models [17]. A number of 4000 DWT coefficients has been used. 

Further increasing of the coefficients number will not influence significantly the detection 

measure. The results are given in Table 2 (5th and 6th column). 

Note that the detection results achieved by the proposed procedure outperform the DCT and 

DWT based procedure. Furthermore, we provide a comparison with [14] in terms of the 

perceptual quality. 

B. Comparison with the previous space/spatial-frequency approach [14]:  

1) Improved imperceptibility: Comparing to the previous space/spatial-frequency based image 

watermarking, the proposed approach provides better watermark imperceptibility, measured by 

the local PSNR (LPSNR). The time-frequency mask obtained by using Hermite functions 

expansion allows us to create a watermark that fits well into the corresponding space/spatial-

frequency content of the local image region. In other words the watermark is better suited to the 
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host signal content than in the case when the constant middle frequency content defined by the 

circular ring: { }1 2 1 1 2 2( , ) : ,n
mD ω ω ρ ω ω ρ= < < is used, as in [14].  

 In order to prove the above considerations, we have calculated the local PSNR for each 

watermarked region, in the case of the proposed and the previous approach [14]. Note that this 

local metrics provides much reliable description of image quality than the global PSNR.  

For a fair comparison, in these experiments we have used the same watermark for both 

approaches, providing the same detection performances. Also, the same image regions have been 

used for watermarking. Then, the LPSNR is calculated and compared for watermarked image 

regions. The results have shown that the proposed approach provides higher local PSNR for 

approximately 90% of watermarked pixels/regions. In Table 3, we have illustrated the 

space/spatial-frequency content for a few randomly selected pixels. The values of LPSNR are 

reported as well, for the proposed approach and the approach in [14]. The pixels within 20×20 

region are used to obtain local space/spatial-frequency content of the central pixel (the 

surrounding pixels have similar space/spatial-frequency representation). Similar results are 

obtained for other pixels/regions. 

2) Robustness to Sensing: Unlike in [14], where the watermark is fixed to the middle frequency 

ring, in the proposed approach the space/spatial-frequency content of the watermark changes over 

different regions and adapts to the local space/spatial-frequency content of host region. It means 

that watermark estimation as an attempt to remove it (sensing attack), is practically impossible 

without knowing the parameters K and Kq in (6) and (9), which are used as security keys.  
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TABLE III. ILLUSTRATION OF SPACE/SPATIAL-FREQUENCY CONTENT AND LPSNR 

3) Robustness to some geometrical distortions: Although for the standard types of attacks (Table 

2), the proposed method provides similar results as in [14], it also provides certain robustness in 

the presence of geometrical attacks, such as image cropping and scaling with interpolation (the 

last two rows in Table 1), which is not achieved in the previous approach.  

4) Security: The watermark is shaped and added directly to the components in the space/spatial-

frequency domain, and thus, it is hard to remove it without the key (which is assumed to be 
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private). In other words, supposing that the image quality is important for the application, any 

attempt to remove the watermark will produce significant quality degradation. Furthermore, the 

method for pixel selection provides the candidates for watermark embedding that are equal from 

the perceptual point of view. Hence, generally, the watermark embedding can be done in any set 

of n points, where n<m (m is the number of candidates). These n pixels could be chosen by a 

random key, which provides the additional security of the procedure. 

CONCLUSION

An image watermarking procedure for ownership protection that combines space/spatial-

frequency analysis and Hermite projection method has been proposed. This approach offers 

several advantages regarding imperceptibility and robustness constraints, such as high global 

PSNR, higher local PSNR comparing to other space/spatial-frequency approaches and still low 

probability of error in the presence of attacks. Thus, it enhances the quality of watermarked 

image, providing better watermark imperceptibility. Each image region has its own space-spatial-

frequency support which defines the watermark characteristics within the region, but the 

watermark detection is blind and does not need the information about support function. 

Furthermore, although the Hermite expansion has been applied in both domains: spatial (for 

regions classification) and space/spatial-frequency domain (to create space/spatial-frequency 

mask), the complexity of the algorithm is not increased due to the existence of the fast Hermite 

projection method and fast recursive realization of Hermite functions. 
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