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In this paper we consider a problem of two bodies bonded through a thin adhesive layer (a third material) of thickness . Leting go to zero, one obtains a boundary value transmission problem set on a …xed domain. We then give new results for the study of this problem in the framework of Hölder spaces: an explicit representation of the solution and necessary and su¢ cient conditions at the interface for its optimal regularity are obtained using the semigroups theory and the interpolation spaces.

Introduction

Consider the boundary value and transmission second-order operational problem

(P ) 8 > > > > > > > < > > > > > > > : u 00 (x) + Au (x) = g (x) on ] 1; 0[ [ ]0; [ [ ] ; 1 + [ u ( 1) = f u 0 (1 + ) = f + u (0 ) = u (0 + ) + ; u = u + + p u 0 (0 ) = p 0 u 0 (0 + ) + a p 0 u 0 = p + u 0 + + b ; (1) 
set in some complex Banach space E; here A is a closed linear operator of domain D(A) E (not necessarily dense in E) which veri…es the Krein's ellipticity (see Section 3,[START_REF] Tanabe | Equations of Evolution, Monographs and Studies in Mathematics 6[END_REF], f , f + , , , a , b are given in E and satisfy some necessary and su¢ cient conditions which will be speci…ed later.

The second member g is such that 8 > < > :

g = g j [ 1;0] 2 C ([ 1; 0] ; E) g 0 = g j [0; ] 2 C ([0; ] ; E) g + = g j [ ;1+ ] 2 C ([ ; 1 + ] ; E) ;
(with 0 < < 1). It is not di¢ cult to prove that the holderianity of g , g 0 and g + imply the global holderianity of g on [ 1; 1 + ] if and only if g (0) = g 0 (0) and g 0 ( ) = g + ( ):

We do not assume these two conditions. Set u = u j] 1;0[ , u 0 = u j]0; [ , u + = u j] ;1+ [ , then problem (P ) writes

(P ) 8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > :
(EQS) 8 > < > :

u 00 (x) + Au (x) = g (x) on ] 1; 0[ u 0 00 (x) + Au 0 (x) = g 0 (x) on ]0; [ u + 00 (x) + Au + (x) = g + (x) on ] ; 1 + [ ;

(BC) u ( 1) = f u + 0 (1 + ) = f + ; (T C) 8 > > < > > :
u (0) = u 0 (0) + u 0 ( ) = u + ( ) + p u 0 (0) = p 0 u 0 0 (0) + a p 0 u 0 0 ( ) = p + u + 0 ( ) + b :

The numerical solution of this problem is usually very di¢ cult to compute. In fact, the small thickness of the thin layer generates di¢ culties in the meshing. As ! 0, the interval ]0; [ degenerates into the point f0g and we can no more have an equation on it. The interval ] ; + 1[ becomes ]0; 1[ : Therefore, the main question is: what will be the appropriate transmission conditions at the interface point f0g which describe correctly the e¤ect of the thin adhesive layer ]0; [ as ! 0?

We will answer formally to this question in the most interesting case, characterizing so the e¤ect of the small bond ]0; [ (as ! 0).

Let us begin by giving a formal derivation of the e¤ect of the small bond ]0; [ (as ! 0).

In order to deal with our problem (P ), we solve the scalar equation on the small intervall ]0; [ and write down relations between the Cauchy data u 0 (0); u 0 0 (0) and u 0 ( ); u 0 0 ( ) :

Then making use of the transmission condition at f0g and f g, we will deduce relations linking u (0); p u 0 (0) ; to u + ( ); p + u + 0 ( ) ; which allow us, as ! 0, to obtain the limiting transmission conditions at f0g. Therefore, we will see that the interesting limit problem writes in the form

(P 1A ) 8 > > > > < > > > > : (u ) 00 (x) + Au (x) = g (x) on ] 1; 0[ (w + ) 00 (x) + Aw + (x) = h + (x) on ]0; 1[ u ( 1) = f ; (w + ) 0 (1) = f + u (0) = w + (0) + ' p (u ) 0 (0) p + (w + ) 0 (0) = qAu (0) + ;
see the details in Subsection 2.1.

Our main results concerning problem (P 1A ) are summarized in the following Theorem.

Theorem 1 Let g 2 C ([ 1; 0] ; E), h + 2 C ([0; 1] ; E) with 0 < < 1 and f 2 D (A), f + 2 D (( A)
1=2 ), ' 2 D(A), 2 E. Assume [START_REF] Tanabe | Equations of Evolution, Monographs and Studies in Mathematics 6[END_REF]. Then problem (P 1A ) has a unique solution

u (x) :] 1; 0[! E w + (x) :]0; 1[! E such that 1. u 2 C([ 1; 0]; D(A))\C 2 ([ 1; 0]; E), w + 2 C([0; 1]; D(A))\C 2 ([0; 1]; E) if and only if 8 > > > < > > > : ( s) Af g ( 1) 2 D(A) ( A) 1=2 f + 2 D(A) ( s) qg (0) + 2 D(A) h + (0) g (0) + A' 2 D(A): 2. Au (:); u 00 2 C ([ 1; 0] ; E) ; Aw + (:); w 00 + 2 C ([0; 1] ; E) if and only if 8 > > < > > : ( r) Af g ( 1) 2 D A ( =2; +1) ( A) 1=2 f + 2 D A ( =2; +1) ( r) qg (0) + 2 D A ( =2; +1) h + (0) g (0) + A' 2 D A ( =2; +1) :
In this main result, note that ( s) and ( s) are respectively the necessary and su¢ cient compatibility conditions at the boundary and the necessary and su¢ cient compatibility conditions at the interface f0g to obtain a strict solution u = (u ; w + ). Similarly, ( r) and ( r) are those to obtain optimal regularities on u:

The de…nition and the properties of the interpolation space D A ( =2; +1) are given, for instance, in ( [START_REF] Grisvard | Spazi di Tracce e Applicazioni[END_REF])

Many authors have worked on analogous problems, see [START_REF] Krasucki | Analysis of Interfaces of Variable Sti¤ ness[END_REF], [START_REF] Krasucki | Yield Design of Bonded Joints[END_REF] and [START_REF] Geymonat | Mathematical Analysis of a Bonded Joint with a Soft Thin Adhesive[END_REF] in hilbertian spaces. In [START_REF] Belhamiti | Transmission Problems in a Thin Layer Set in the Framework of the Hölder Spaces, Resolution and Impedance[END_REF] and [START_REF] Dore | An Abstract Transmission Problem in a Thin Layer, I: Sharp Estimates[END_REF], a study is given for a similar problem respectively in the framework of Hölder spaces and L p -spaces. These two last studies have considered only two materials. In our work we will use some techniques of these approachs which are based on the theory of semigroups, the Dunford functional calculus and the interpolation spaces.

This paper is organized as follows.

In Section 2, one gives the formal calculus for the limiting transmission problem and a concrete problem which motivates our study. In section 3, we give the basic hypothesis and some technical lemmas useful to the study of our problem (P 1A ). Section 4 is devoted to the derivation of an explicit representation of the solution of (P 1A ). In Sections 5 and 6 we study the solution and give in addition necessary and su¢ cient compatibility conditions on the data in order to obtain the above Theorem. In a last Section 7, we go back to the main physical example given in Subsection 2.2 and apply our results in the case of the space E = C 0 ( ) of the -Hölder continuous functions vanishing on the boundary @ : 2 Formal derivation of the limiting e¤ect of the thin junction

Derivation of the transmission conditions

In order to have an idea at least formally of the limiting problem, let us …rst consider the case when operator A is replaced by a complex scalar z (with z 2 CnR + ) and for the simplicity

g j]0; [ = 0 = = a = b = 0:
De…ne functions w + and h + on the …xed intervall ]0; 1[ by

w + (x) = u + ( + x); h + (x) = g + ( + x):
For simplicity, we have supposed that these functions do not depend on . The equation on the intervall ]0; [ writes u 0 00 + zu 0 = 0;

which gives u 0 (x) = C 1 e p zx + C 2 e p z( x) ;
where C 1 and C 2 are constants to be …xed by the boundary conditions. We thus have 8 > > > < > > > :

u 0 (0) = C 1 + C 2 e p z u 0 ( ) = C 1 e p z + C 2 u 0 0 (0) = C 1 p z + C 2 p ze p z u 0 0 ( ) = C 1 p ze p z + p zC 2 :
Now, the transmission conditions 8 > > < > > : The limiting transmission conditions as ! 0, which are obtained from the analysis of (2) and (3) depend on the behavior of p , p 0 and p + with respect to . So we must assume some conditions on p , p 0 and p + . The most interesting case we will consider is the following p and p + are independent of and p 0 = q ;

u (0) = u 0 (0) u 0 ( ) = u + ( ) = w + (0) p u 0 (0) = p 0 u 0 0 (0) p 0 u 0 0 ( ) = p + u + 0 ( ) = p + (w + ) 0 (0) ; lead to 2e p z p zw + (0) (2) 
where q is a …xed positive number. This problem may model an electrostatic potential u in an heterogeneous material (see next subsection). The heterogeneity of the material is translated by the discontinuity of the conductivity coe¢ cient p. In this situation the small bond is highly conductive, implying thus the continuity of the potential through the sheet, but the normal component of the electric induction …eld is no longer continuous through the interface f0g, it has a jump proportional to the potential at f0g. In that case one has

1 e 2 p z 1 p 0 = 1 e 2 p z q ! 0 as ! 0, p 0 1 e 2 p z = q 1 e 2 p z ! 2q p z as ! 0,
and then the limiting transmission conditions are

w + (0) = u (0) p + (w + ) 0 (0) = q p z p zu (0) + p (u ) 0 (0);
and the limiting scalar problem becomes

(P 1z ) 8 > > > > < > > > > : (u ) 00 (x) + zu (x) = g (x) on ] 1; 0[ (w + ) 00 (x) + zw + (x) = h + (x) on ]0; 1[ u ( 1) = f ; (w + ) 0 (1) = f + u (0) = w + (0) p (u ) 0 (0) p + (w + ) 0 (0) = qzu (0): (5) 
Remark 2 Another interesting case is when p and p + are constant with respect to but p 0 = q. In that case the small bond is not su¢ ciently conductive, implying thus a jump of the potential at f0g, but the normal component of the electric induction …eld remains continuous through the interface f0g and it is proportional to the jump of the potential at f0g. In that case, one has

1 e 2 p z 1 p 0 = 1 e 2 p z 1 q ! 2 1 q p z a s ! 0 , p 0 1 e 2 p z = q 1 e 2 p z ! 0 as ! 0;
then the transmission conditions are

qw + (0) = qu (0) + p + (u ) 0 (0) p + (w + ) 0 (0) = p (u ) 0 (0);
and the limiting problem becomes

(P 2A ) 8 > > < > > : (u ) 00 (x) + Au (x) = g (x) on ] 1; 0[ (w + ) 00 (x) + Aw + (x) = h + (x) on ]0; 1[ u ( 1) = f ; (w + ) 0 (1) = f + ; p (u ) 0 (0) = q (u (0) w + (0)) = p + (w + ) 0 (0)):
In the general case where the data g j]0; [ , , , a and b are di¤erent from 0, one obtains the following relations between w + (0); (w + ) 0 (0) and When we assume (4), we obtain the following limiting scalar problem with non homogeneous transmission conditions

u (0); u 0 (0) 2e p z p zw + (0) (6) 
(P 1z ) 8 > > > > < > > > > : (u ) 00 (x) + zu (x) = g (x) on ] 1; 0[ (w + ) 00 (x) + zw + (x) = h + (x) on ]0; 1[ u ( 1) = f ; (w + ) 0 (1) = f + u (0) = w + (0) + ' p (u ) 0 (0) p + (w + ) 0 (0) = qzu (0) + : (8) 
where Therefore, in this work we will focus ourselves on the complete analysis of the following problem 

' = lim
(P 1A ) 8 > > > > < > > > > : (u ) 00 (x) + Au (x) = g (x) on ] 1; 0[ (w + ) 00 (x) + Aw + (x) = h + (x) on ]0; 1[ u ( 1) = f ; (w + ) 0 (1) = f + u (0) = w + (0) + ' p (u ) 0 (0) p + (w + ) 0 (0) = qAu (0) + : (9) 

Electrostatic potential in a heterogeneous cylinder

r: pru = pg in G u = 0 on ] 1; 1 + [ u = f on f 1g p @u @x = f + on f1 + g ; (10) 
models an electrostatic problem in G . The function u is the electrostatic potential, ru is the electric …eld and pru is the electric induction …eld. The heterogeneity of the material is translated by the discontinuity of the conductivity coe¢ cient p :

p = 8 < : p in ] 1; 0[ p 0 in ]0; [ p + in ] ; 1 + [ :
where p , p 0 and p + are positive constants. The function g is a given electric density, f is a …xed surface potential and f + a …xed surface induction. Set 8 > < > :

u = u j] 1;0[ ; g = g j] 1;0[ ; u 0 = u j]0; [ ; g 0 = g j]0; [ ; u + = u j] ;1+ [ , g + = g j] ;1+ [ ; then, the equation r: pru = pg in G ;
is equivalent to the following equations 8 > < > :

u = g in ] 1; 0[ u 0 = g 0 in ]0; [ u + = g + in ] ; 1 + [ ; (11) 
with the transmission conditions

8 > > > > > > > < > > > > > > > : u = u 0 on f0g u 0 = u + on f g p @u @x = p 0 @u 0 @x on f0g p 0 @u 0 @x = p + @u + @x on f g : (12) 
Let us de…ne the functions w + , h + on the …xed intervall ]0; 1[ by setting

w + (x; y) = u + ( + x; y); h + (x; y) = g + ( + x; y);
where we have assumed, for simplicity, that they do not depend on .

The approximations for u 0 (x; :) and @u 0 @x (x; :) as ! 0; give

u 0 ( ; y) ' u 0 (0; y) + @u 0 @x (0; y) + 2 2 @ 2 u 0 @x 2 (0; y) = u 0 (0; y) + @u 0 @x (0; y) 2 2
y u 0 + g 0 (0; y); @u 0 @x ( ; y) ' @u 0 @x (0; y) + @ 2 u 0 @x 2 (0; y) = @u 0 @x (0; y) y u 0 g 0 (0; y):

Using these relations with ( 11) and ( 12), we get the following problem set on the …xed domain (not depending on ):

(EQS) u = g in ] 1; 0[ w + = h + in ]0; 1[ ; (13) 
under the boundary conditions

(BC) 8 > > > < > > > : u = 0 on ] 1; 0[ w + = 0 on ]0; 1[ u = f on f 1g p + @w + @x = f + on f1g ; (14) 
and the following transmission conditions (depending on )

(T C) 8 > > <
> > :

w + = u + p p 0 @u @x 2 2 ( y u 0 g 0 ) on f0g p + @w + @x = p @u @x p 0 ( y u g 0 ) on f0g ;
which model the e¤ect of the thin cylinder ]0; [ on the other parts of the cylinder. The thin cylinder ]0; [ is modelled by the sheet f0g and its e¤ect is modelled through these transmission conditions.

There are two limiting cases of particular interest. The …rst case is

p 0 = q ;
(q is a positive constant) which is considered in this work assumes that the thin layer is highly conductive; as goes to 0, we obtain 8 <

:

w + = u on f0g p + @w + @x = p @u @x q ( y u + g 0 ) on f0g ; ( 15 
)
which corresponds to the fact that the potential is continuous through the sheet, but the normal component of the electric induction …eld has a jump proportional to the potential.

The second case is p 0 = q and corresponds to the fact that the thin layer is poorly conductive. We get, as goes to 0: 8 > < > :

w + = u + 1 q p @u @x on f0g p + @w + @x = p @u @x on f0g ;
here, the normal component of the electric induction is continuous through the sheet but the potential has a jump proportional to the normal componant of the electric induction …eld. Therefore, using the classical operational notations u (x)(y) := u (x; y); w + (x) (y) := w + (x; y); :::

the concrete problem ( 13)-( 14)- [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] writes exactly in the form (9) with = qg 0 and ' = 0 and

D (A) = v 2 W 2;p (0; 1) : v (0) = v (1) = 0 Av (y) = v 00 (y) :
in the case E = L p (0; 1), or

D (A) = v 2 C 2 [0; 1] : v (0) = v (1) = 0 Av (y) = v 00 (y) : in the case E = C [0; 1] : 3 

Hypotheses and technical lemmas

We assume in all this work the following ellipticity hypothesis: 8 < :

for any 2 ]0; [ (A) S [ f0g and 
9C > 0 : 8 2 S [ f0g ( I A) 1 L(X) 6 C 1 + j j ; ( 16 
)
where % (A) denotes the resolvent set of A and S = fz 2 Cn f0g : jarg zj < g :

This assumption implies that there exist a ball B (0; r 0 ), r 0 > 0, such that

% (A) B (0; r 0 ); (18) 
and the estimate in ( 16) is still true in S [ B (0; r 0 ). It is well known that the above assumption implies that the square root p A is well de…ned and B = p A generates an analytic semigroup

e B >0 ; (19) 
which is not necessarily continuous at 0. Let us recall the following important properties of B proved in [START_REF] Sinestrari | On the Abstract Cauchy Problem of Parabolic Type in Space of Continuous Functions[END_REF].

Lemma 3 Let 2 E and 2 C ([0; T ] ; E) with T > 0. Then 1. e B ! as ! 0 + i¤ 2 D(B) = D(A), (see [14], Proposition 1.2 ; p.20), 2. 7 ! e B 2 C ([0; T ] ; E) i¤ 2 D B ( ; +1) = D A ( =2; +1
), (see [START_REF] Sinestrari | On the Abstract Cauchy Problem of Parabolic Type in Space of Continuous Functions[END_REF], Proposition 1.12 ; p.29),

3. 7 ! R 0 Be ( t)B [ (t) ( )] dt 2 C ([0; T ] ; E) \ B (0; T ; D B ( ; +1)),
(see [START_REF] Sinestrari | On the Abstract Cauchy Problem of Parabolic Type in Space of Continuous Functions[END_REF], Theorem 4.5 ; p.53).

Let 2]0; =2[ and set S(r 0 ; ) = fz 2 Cn f0g : jzj > r 0 sin and jarg zj < g :

Note that for all w 2 S(r 0 ; ), one clearly has Re w > r 0 sin :

We will also use the following result proved in Proposition 4.10, p. 1880 in [START_REF] Dore | An Abstract Transmission Problem in a Thin Layer, I: Sharp Estimates[END_REF].

Lemma 4 For any w 2 S(r 0 ; ), one has 1. jarg (1 e w ) arg (1 + e w )j < ;

2. j1 + e w j > C = 1 e 2 tan > 0;

3. j1 e w j Re w 1 + Re w > r 0 sin 1 + r 0 sin = c 1 :

Now, consider the following space H 1 (S(r 0 ; )) = ff : f is an holomorphic and bounded function on S(r 0 ; )g , then, under our assumptions on A, if f 2 H 1 (S(r 0 ; )) is such that 1=f 2 H 1 (S(r 0 ; )) and (1=f )( B) 2 L(X), then f ( B) is invertible with a bounded inverse and

[f ( B)] 1 = (1=f )( B);
see, for instance [START_REF] Dore | H 1 Functional Calculus for Sectorial and Bisectorial Operators[END_REF] or [START_REF] Haase | The Functional Calculus for Sectorial Operators and Similarity Methods[END_REF], p. 45, Remark 2.5.1.

On the other hand we recall that operator I e 2B and I +e 2B are boundedly invertible; see for instance [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF], p. 60, Proposition 2.3.6.

Let us now apply this result to the following operator for w 2 S(r 0 ; ) with Re w x .

= I p q B 1 I e 2B 1 I + e 2B p + q B 1 I + e 2B 1 I
In the compact sector K x = fw 2 Cn f0g : r 0 sin 6 Re w 6 x and jarg(w)j 6 g ; there is at most a …nite number of roots of f (w) (not belonging to [0; x ]), (see the remark on Proposition 4.1 , p. 41 in [START_REF] Cartan | Théorie Elémentaire des Fonctions Analytiques d'une ou Plusieurs Variables Complexes[END_REF]); so there exists 2]0; ] such that f (w) does not vanish on r0; := fw 2 Cn f0g : r 0 sin 6 Re w 6 x and jarg(w)j 6 g :

From ( 21), we conclude that f (w) does not vanish on S(r 0 ; ). Hence f 2 H 1 (S(r 0 ; )), 1=f 2 H 1 (S(r 0 ; )) and consequently (1=f )( B) 2 L(X) and

= f ( B) = I p q B 1 I e 2B 1 I + e 2B p + q B 1 I + e 2B 1 I e 2B
is boundedly invertible.

4 Representation of the solution of (P 1A )

It is well known that, the solution of the second order following equation

u 00 (x) B 2 u(x) = g(x); x 2]a; b[ in E; writes u(x) = e (x a)B + e (b x)B + v (g) (x) with ; 2 E and v (g) (x) = 1 2 x Z a e (x t)B B 1 g (t) dt + 1 2 b Z x e (t x)B B 1 g (t) dt: Therefore u (x) = e xB + e (1+x)B + v (g ) (x) ; x 2] 1; 0[ w + (x) = e xB + + e (1 x)B + + v (h + ) (x) ; x 2]0; 1[ with ; ; + ; + 2 E and v (g ) (x) = 1 2 x Z 1 e (x t)B B 1 g (t) dt + 1 2 0 Z x e (t x)B B 1 g (t) dt; v (h + ) (x) = 1 2 x Z 0 e (x t)B B 1 h + (t) dt + 1 2 1 Z x e (t x)B B 1 h + (t) dt:
The boundary conditions

u ( 1) = e B + + v (g ) ( 1) = f w 0 + (1) = Be B + B + + v 0 (h + ) (1) = f + ; give = e B v (g ) ( 1) + f + = e B + + B 1 v 0 (h + ) (1) B 1 f + ; (23) 
and the transmission conditions

u (0) = w + (0) + ' p (u ) 0 (0) p + (w + ) 0 (0) = qAu (0) + ; give 8 > > > < > > > : + e B + e B + = ' v (g ) (0) + v (h + ) (0) p + e B p + + e B + + qB + e B = p B 1 v 0 (g ) (0) + p + B 1 v 0 (h + ) (0) qBv (g ) (0) + B 1 :
Using (23), one obtains the system

I e 2B

I + e 2B + = F p I + e 2B + qB I e 2B p + I e 2B + = G ;

(24)

where 8 > > > > > < > > > > > : F = ' e B f e B B 1 f + + e B v (g ) ( 1) v (g ) (0) + e B B 1 v 0 (h + ) (1) + v (h + ) (0) G = B 1 (p + qB) e B f + p + e B B 1 f + + (p + qB) e B v (g ) ( 1) p + e B B 1 v 0 (h + ) (1) p B 1 v 0 (g ) (0) + p + B 1 v 0 (h + ) (0) qBv (g ) (0) : (25) 
The abstract determinant of this system (acting on D(B)) is 

(B) ( 
1 p I + e 2B + qB I e 2B F I e 2B G +B 1 v 0 (h + ) (1) B 1 f + :
Therefore, the functions

u (x) = e xB + e (1+x)B + v (g ) (x) ; x 2] 1; 0[ w + (x) = e xB + + e (1 x)B + + v (h + ) (x) ; x 2]0; 1[; with v (g ) (x) = 1 2 x Z 1 e (x t)B B 1 g (t) dt + 1 2 0 Z x e (t x)B B 1 g (t) dt; and v (h + ) (x) = 1 2 x Z 0 e (x t)B B 1 h + (t) dt + 1 2 1 Z x e (t x)B B 1 h + (t) dt;
are completely determined.

5 Analysis of v (g ) et v (h + ) and their dérivatives

5.0.1 Analysis of v (g ) on ( 1; 0) One has v (g ) (x) = 1 2 x Z 1 e (x t)B B 1 [g (t) g (x)] dt + 1 2 0 Z x e (t x)B B 1 [g (t) g (x)] dt + 1 2 x Z 1 e (x t)B B 1 g (x) dt + 1 2 0 Z x e (t x)B B 1 g (x) dt = 1 2 x Z 1 e (x t)B B 1 [g (t) g (x)] dt + 1 2 0 Z x e (t x)B B 1 [g (t) g (x)] dt + 1 2 e (x+1)B B 2 g (x) + 1 2 e xB B 2 g (x) B 2 g (x) ; and v (g ) (x) = 1 2 x Z 1 e (x t)B B 1 [g (t) g (x)] dt + 1 2 0 Z x e (t x)B B 1 [g (t) g (x)] dt + 1 2 e (x+1)B B 2 [g (x) g ( 1)] + 1 2 e xB B 2 [g (x) g (0)] B 2 g (x) + 1 2 e (x+1)B B 2 g ( 1) + 1 2 e xB B 2 g (0) = v R (g ) (x) + v S; 1 (g ) (x) + v S;0 (g ) (x) ; where v S; 1 (g ) (x) = 1 2 e (x+1)B B 2 g ( 1) ; v S;0 (g ) (x) = 1 2 e xB B 2 g (0) : Due to Lemma 3, v R (g ) has the following maximal regularity properties ( v R (g ) 2 C([ 1; 0]; D B 2 ) B 2 v R (g ) 2 C ([ 1; 0]; E);
while for v S; 1 (g ) and v S;0 (g ) (x) we only have

( v S; 1 (g ) 2 C(] 1; 0] ; D B 2 ); B 2 v S; 1 (g ) 2 C (] 1; 0]; E) v S;0 (g ) 2 C([ 1; 0[; D B 2 ); B 2 v S;0 (g ) 2 C ([ 1; 0[; E):
The behaviour of B 2 v S; 1 (g ) (x) in the neighbourhood of 1 is that of

1 2 e (x+1)B g ( 1) ; (31) 
and the behaviour of B 2 v S;0 (g ) (x) in the neighbourhood of 0 is that of

1 2 e (x+1)B g (0) : (32) 
5.0.2 Analysis of v (h + ) on (0; 1)

Recall that v (h + ) (x) = 1 2 x Z 0 e (x t)B B 1 h + (t) dt + 1 2 1 Z x e (t x)B B 1 h + (t) dt;
which can be written as

v (h + ) (x) = 1 2 x Z 0 e (x t)B B 1 [h + (t) h + (x)] dt + 1 2 1 Z x e (t x)B B 1 [h + (t) h + (x)] dt + 1 2 e xB B 2 h + (x) + 1 2 e (1 x)B B 2 h + (x) B 2 h + (x) = 1 2 x Z 0 e (x t)B B 1 [h + (t) h + (x)] dt + 1 2 1 Z x e (t x)B B 1 [h + (t) h + (x)] dt B 2 h + (x) + 1 2 e xB B 2 [h + (x) h + (0)] + 1 2 e (1 x)B B 2 [h + (x) h + (1)] + 1 2 e xB B 2 h + (0) + 1 2 e (1 x)B B 2 h + (1) = v R (h + ) (x) + v S;0 (h + ) (x) + v S;1 (h + ) (x) with v S;0 (h + ) (x) = 1 2 e xB B 2 h + (0); v S;1 (h + ) (x) = 1 2 e (1 x)B B 2 h + (1): (33) 
Due to Lemma (3) v R;0 (h + ) has the following maximal regularity properties

( v R (h + ) 2 C([0; 1]; D B 2 ) B 2 v R (h + ) 2 C ([0; 1]; E);
while for v S;0 (h + ) and v S;1 (h + ) we only have

( v S;0 (h + ) 2 C(]0; 1]; D B 2 ); B 2 v S;0 (h + ) 2 C (]0; 1]; E) v S;1 (h + ) 2 C([0; 1[; D B 2 ); B 2 v S;1 (h + ) 2 C ([0; 1[; E): Remark 6
We have in view the study of the regularity of u on [ 1; 0] and

w + on [0; 1]. Since u (x) = e xB + e (1+x)B + v (g ) (x) ; x 2] 1; 0[ w + (x) = e xB + + e (1 x)B + + v (h + ) (x) ; x 2]0; 1[
the singular parts v S; 1 (g ) ; v S;0 (g ) ; v S;0 (h + ) and v S;1 (h + ) must be associated with the other singular parts of u and w + to …nd necessary and su¢ cient conditions on the data '; ; f ; f + ; g and h + in order to get optimal regularity for u on [ 1; 0] and w + on [0; 1].

Analysis of the derivatives

In order to study the regularity of the solution of our problem, we also need to analyze the behaviour of the derivative of v (g ) and v (h + ). We have, for all

x 2 ] 1; 0[ v 0 (g ) (x) = 1 2 x Z 1 e (x t)B g (t) dt 1 2 0 Z x e (t x)B g (t) dt + 1 2 B 1 g (x) 1 2 B 1 g (x) = 1 2 x Z 1 e (x t)B g (t) dt 1 2 0 Z x e (t x)B g (t) dt; then v 0 (g ) (0) = 1 2 0 Z 1 e tB g (t) dt = 1 2 0 Z 1 e tB [g (t) g (0)] dt + 1 2 0 Z 1 e tB g (0) dt = 1 2 B 1 g (0) + 1 2 0 Z 1 e tB [g (t) g (0)] dt = 1 2 B 1 g (0) + R (g ) (0) :
Similarly, for all x 2 ]0; 1[, one has

v 0 (h + ) (x) = 1 2 x Z 0 e (x t)B h + (t) dt 1 2 1 Z x e (t x)B h + (t) dt; then v 0 (h + ) (0) = 1 2 1 Z 0 e tB h + (t) dt = 1 2 B 1 h + (0) 1 2 1 Z 0 e tB [h + (t) h + (0)] dt = 1 2 B 1 h + (0) + S (h + ) (0) ; and v 0 (h + ) (1) = 1 2 B 1 h + (1) + 1 2 1 Z 0 e (1 t)B [h + (t) h + (1)] dt (34) = 1 2 B 1 h + (1) + S (h + ) (1) :
6 Study of the regularity of the solution of problem (P 1A )

6.1 Necessary conditions on the transmission data

Assume that u and w + are strict solutions, that is (u )

0 ( 1 ) = lim 0 ! 1 u ( 1 ) u ( 0 ) 1 0 2 D(A);
we also deduce that (u ) 00 ( 1 ) 2 D(A):

Similarly, for any 2 2 [0; 1], (w

+ ) 0 ( 2 ); (w + ) 00 ( 2 ) 2 D(A): It follows that (u ) 00 (0) = g (0) Au (0) 2 D(A); (w + ) 00 (0) = h + (0) Aw + (0) 2 D(A):
Using the …rst transmission condition

' = u (0) w + (0) 2 D(A); one has (u ) 00 (0) = g (0) Au (0) = g (0) A' Aw + (0)
= g (0) A' h + (0) + (w + ) 00 (0); from which we deduce the …rst following necessary compatibility condition h + (0) g (0) + A' = (w + ) 00 (0) (u ) 00 (0) 2 D(A):

The second transmission condition gives

p (u ) 0 (0) p + (w + ) 0 (0) = + qAu (0) = + q [Au (0) g (0)] + qg (0) 2 D(A)
which implies the second following necessary compatibility condition

p (u ) 0 (0) p + (w + ) 0 (0) q [Au (0) g (0)] (36) = + qg (0) 2 D(A):
The two conditions (35)-( 36) are equivalent to

+ qg (0) 2 D(A) + q [h + (0) + A'] 2 D(A);
due to the identity

h + (0) g (0) + A' = 1 q [ + qh + (0) + qA'] 1 q [ + qg (0)] 2 D(A):
In the case = 0 and ' = 0, the necessary conditions on the transmission data are g (0) 2 D(A); h + (0) 2 D(A): Then the behaviour of B 2 u (x) near 1 is the same as that of the function

e (1+x)B B 2 [ v (g ) ( 1) + f ] + B 2 v (g ) (x) : One has v (g ) ( 1) = 1 2 0 Z 1 e (t+1)B B 1 g ( 1) dt + 1 2 0 Z 1 e (t+1)B B 1 [g (t) g ( 1)] dt = 1 2 B 2 g ( 1) + R(g ) ( 1) 
;

and the term R(g ) ( 1) is regular since 

B 2 [R(g ) ( 1) 
[; E) i¤ g ( 1) + B 2 f 2 D(B 2 ) = D(B) B 2 u (:) 2 C ([ 1; 0[; E) i¤ g ( 1) + B 2 f 2 D B ( ; +1) :

Analysis of w + near 1

Let us assume the necessary condition f + 2 D (B). Recall that

w + (x) = e xB + + e (1 x)B + + v (h + ) (x) ; then the behaviour of B 2 w + (x) = B 2 h e xB + + e (1 x)B + + v (h + ) (x) i ;
near 1 is the same as that of

B 2 e (1 x)B + + v (h + ) (x) :
One has seen in ( 30), (34) that

+ = e B 1 p I + e 2B + qB I e 2B F + I e 2B G +B 1 v 0 (h + ) (1) B 1 f + ; with v 0 (h + ) (1) = 1 2 B 1 h + (1) + S (h + ) (1) : Since the behaviour of B 2 v (h + ) (x) near 1 is that of 1 2 e (1 x)B h + (1)
, as mentioned in (33), it follows that the behaviour of B 2 w + (x) near 1 is that of

e (1 x)B 1 2 h + (1) + Bf + + 1 2 e (1 x)B h + (1) = e (1 x)B Bf + :
Due to Lemma 3, B 2 w + (:) has the following maximal regularity near 1

( B 2 w + (:) 2 C(]0; 1]; E) i¤ f + 2 D (B) et Bf + 2 D (B) B 2 w + (:) 2 C (]0; 1]; E) i¤ Bf + 2 D B ( ; +1) :
6.4 Analysis of u at the interface 0

The behaviour of

B 2 u (x) = B 2 e xB + B 2 e (1+x)B + B 2 v (g ) (x) ;
near 0 is the same as that of

B 2 e xB + B 2 v (g ) (x) ;
and due to (32), it is the same as that

B 2 e xB + 1 2 e xB g (0) :
Now, in virtue of (27), one has as mentioned in the previous section, see (38). One then deduces that the behaviour of B 2 w + (x) near 0 is that of e xB qB 2 ' + qh + (0) :

= [ (B)] 1 p + I e 2B F I + e 2B G = [ (B)] 1 [p + F G ] e 2B [ (B)] 1 [p + F + G ] : Write (B) = p + I e
Then, using again [START_REF] Sinestrari | On the Abstract Cauchy Problem of Parabolic Type in Space of Continuous Functions[END_REF], the necessary and su¢ cient conditon to obtain the regularity of w + near 0 depends on the regularity of qB 2 ' + qh + (0) :

We conclude by the following Theorem . w + = u on f0g p @u @x p + @w + @x = q y u + qg 0 on f0g :

Here is a bounded domain of R n , n > 1; with a regular boundary :

In view to illustrate our abstract analysis, we are going, in this section, to explicit and interpret our impedance compatibility conditions Then A verifes ( 16) and D(A) coincides with the well known little Hölder continuous functions space h 0 ( ), see [START_REF] Campanato | Generation of Analytic Semigroups by Elliptic Operators of Second Order in Hölder Spaces[END_REF], p. 497. Let us point out that the boundary condition in space C 0 ( ) is essential. Otherwise the estimate in ( 16) is not veri…ed, see Example 3.1.33 given [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF], p. 110.

One also has 

  These two last relations link the Cauchy data w + (0); (w + ) 0 (0) (at the interface f0g) of the function w + (de…ned on [0; 1]) to the Cauchy data u (0); u 0 (0) (at the interface f0g) of the function u (de…ned on [ 1; 0]).

+

  g j]0; [ ; ; a ; b ; where ' g j]0; [ ; ;

  0; [ ; ; a ; b ; :

  Consider the cylinder G = ] 1; 1 + [ constituted by the junction of two homogeneous cylinders G = ] 1; 0[ and G + = ] ; 1 + [ bonded together by the thin cylinder G 0 = ]0; [ (here is a bounded domain of R n , n > 1; with a regular boundary ). Denote by (x; y) the generic variable in G . The transmission problem 8 > > > < > > > :

  26) = p + I e 2B I e 2B I + e 2B p I + e 2B + qB I e 2B = p + I e 2B 2 + p I + e 2B 2 qB I e 2B I + e 2B : One has (B) : D (B) ! E with (B) = p + I e 2B 2 p I + e 2B 2 + qB I e 2B I + e 2B = qB I e 2B I + e 2B I p q B 1 I e 2B 1 I + e 2B p + q B 1 I + e 2B 1 I e 2B : = qB I e 2B I + e 2B ; which is boundedly invertible by Lemma 4. It follows that = [ (B)] 1 p + I e 2B F I + e 2B G ; (27) + = [ (B)] 1 p I + e 2B + qB I e 2B F I e 2B G ; (28) and then = e B [ (B)] 1 p + I e 2B F I + e 2B G v (g ) ( 1) + f ; (29) + (30) = e B [ (B)]

u 2 C

 2 ([ 1; 0]; D(A))\C 2 ([ 1; 0]; E) and w + 2 C([0; 1]; D(A))\C 2 ([0; 1]; E); then ' = u (0) w + (0) 2 D(A); and for any 1 2 [ 1; 0]

6. 2

 2 Analysis of u (x) near 1 Assume the necessary condition f 2 D B 2 = D (A). Recall that u (x) = e xB + e (1+x)B + v (g ) (x) ; where, due to (23), one has = e B v (g ) ( 1) + f :

] 2 D

 2 B ( ; +1) ; see Lemma[START_REF] Cartan | Théorie Elémentaire des Fonctions Analytiques d'une ou Plusieurs Variables Complexes[END_REF]. Now from the study and the results on the behaviour of B 2 v (g ) (x) near 1, see (31), one concludes that the behaviour of B 2 u (x) near 1 is the same as that of e (1+x)B 1 2 g ( 1) + B 2 f + 1 2 e (x+1)B g ( 1) = e (1+x)B g ( 1) + B 2 f : Due to Lemma (3), B 2 u (:) has the following maximal regularity properties near 1 ( B 2 u (:) 2 C([ 1; 0

Theorem 8 2 .that 1 q qB 2 '

 822 Assume[START_REF] Tanabe | Equations of Evolution, Monographs and Studies in Mathematics 6[END_REF]. Let f + 2 D (( A) 1=2 ), ' 2 D(A) and 2 E and letg 2 C ([ 1; 0] ; E), h + 2 C ([0; 1] ; E) with 0 < < 1. Then 1. w + 2 C([0; 1]; D(A)) \ C 2 ([0; 1]; E) if and only if ( A) 1=2 f + 2 D(A) and qB 2 ' + qh + (0) 2 D(A); Aw + (:); (w + ) 00 2 C [0; 1] ; E) if and only if ( A) 1=2 f + 2 D A ( =2; +1) and qB 2 ' + qh + (0) 2 D A ( =2; +1) : By observing + qh + (0) 1 q [ + qg (0)] = h + (0) g (0) + A';one deduce the complete Theorem announced in the Introduction.7 Going back to the concrete exampleLet us go back to our concrete limiting problem(x;y) u = g in ] 1; 0[ (x;y) w + = h + in ]0; 1[ ; on ] 1; 0[ w + = 0 on ]0; 1[ u = f on f 1g u = f on f 1g

  qg (0) + 2 D(A) h + (0) g (0) + A' 2 D(A); qg (0) + 2 D A ( =2; +1) h + (0) g (0) + A' 2 D A ( =2; +1) ;in the case of the following vector valued Banach spaces C([ 1; 0]; C 0 ( )) and C([0; 1]; C 0 ( )); provided that g 2 C ([ 1; 0]; C 0 ( )) and h + 2 C([0; 1]; C 0 ( )) and all the compatibility boundary conditions are satis…ed. Consider the following operator de…ned in C 0 ( ) as ( D(A) = n v 2 C 2 ( ) : v; y v 2 C 0 ( ) o [Av] (y) = y v(y):

D(A) = D A ( 1 += v 2 Cv 2 C 2 n v 2

 12222 =2; +1) = v 2 C 2+ ( ) : v = y v = 0 on @ ; see[START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF], p. 110, Corollary 3.1.32 and Corollary 3.1.35. The interpolation D A (1+ =2; +1) is intended in the Banach space C 0 ( ). Therefore, in our subspace E = C 0 ( ) C 0 ( ); one hasD A ( =2; +1) = (D(A); C 0 ( )) 1 =2;+1 = (D(A); C 0 ( )) 1 =2;+1 2+ ( ) : v = v = 0 on @ ; C 0 ( ) 2+ ( ) : v = v = 0 on @ ], p. 31, Corollary 1.2.18. The conditions = qg 0 2 E, f 2 D (A) become ( qg 0 2 C 0 ( ) f C 2 ( ) : v; y v 2 C 0 ( ) o

  2B 2 + p I + e 2B 2 qB I e 2B I + e 2B (37) = p + I + p I qB + T ; D B 2 . Therefore, the behaviour of B 2 w + (x) near 0 is that ofB 2 e xB [ (B)]1 B 1 qB 2 ' + qh + (0) :

	where, clearly T is a very regularizing operator. Then, it su¢ ces to analyze
	B 2 e xB [ (B)]	1 (p + F		G ) +	1 2	B 2 (p + I + p I qB ) g (0) ;
	near 0: First, let us evaluate the term	
	(p + F	G ) +	1 2	B 2 (p	

+ I + p I qB ) g (0) ; where Q 2

by using the expressions in (24). One has

and

Then

Now, as ' 2 D B 2 and B 2 [(p + + p ) g (0) p + h + (0)] 2 D B 2 ; the behaviour of

The determinant

being invertible of inverse

(where 1 I + e 2B 1 I e 2B 1 is bounded and commutes with e xB ), one concludes that the behaviour of B 2 u (x) near 0 is that of

Then, due to [START_REF] Sinestrari | On the Abstract Cauchy Problem of Parabolic Type in Space of Continuous Functions[END_REF], the necessary and su¢ cient conditon to obtain the regularity of u near 0 depends of the regularity of the term

One gets the following Theorem.

We have used tha fact that

6.5 Study of w + at the interface 0

Recall that

where

(see ( 28)). Therefore, the behaviour of B 2 w + (x) near 0 is the same as that of

Now as (see (33)) the behaviour of B 2 v (h + ) (x) near 0 is that of 1 2 e xB h + (0) and (B) = p + I + p I qB + T ;

(see (??)), it su¢ ces to analyze the behaviour of

where as we have seen

+ S ; with regular terms R and S . Then

and Af g ( 1) ; qg (0) + ; qh + (0) + 2 D(A) signi…es 8 < :