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Abstract. Hierarchies of partitions are widely used in the context of
image segmentation, but when it comes to multimodal images, the fusion
of multiple hierarchies remains a challenge. Recently, braids of partitions
have been proposed as a possible solution to this issue, but have never
been implemented in a practical case. In this paper, we propose a new
methodology to achieve multimodal segmentation based on this notion of
braids of partitions. We apply this new method in a practical example,
namely the segmentation of hyperspectral and LiDAR data. Obtained
results confirm the potential of the proposed method.
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tions, energy minimization

1 Introduction

Multimodality is nowadays increasingly used in signal and image processing. In
fact, multimodal data (i.e., data of a physical phenomenon collected from different
sensors/locations, each of these showing a particular aspect of this phenomenon)
allow to take advantage of both the correlation and complementarity between
each mode (i.e., data collected by one particular sensor) to better understand
the underlying physical phenomenon of the source. However, there is a good
number of challenges that still must be faced in order to fully exploit the nature
of multimodal data [8]. One talks in particular of multimodal images when
several images of the same scene have been acquired by different sensors. This
multimodality phenomenon occurs in several fields of image processing, such as
medical imaging [1] or remote sensing [3,4]. However, the design of adapted tools
to process multimodal images remains a challenge, notably due to the diverse
physical meanings and contents of images produced by all possible imaging
sensors. Image segmentation is a particular process that would surely benefit
from the development of such multimodal tools, since it aims at partitioning an
image into regions that “make sense” with respect to some underlying goal. The
segmentation of a multimodal image should benefit from the complementarity of
its modes to ensure a more accurate delineation of its regions, in particular when



those regions share similar features in one mode but not in the other ones.
Image segmentation constitutes an ill-posed problem since a given image can
often be properly segmented at various levels of detail, and the precise level to
choose depends on the underlying application (an optimal level might not exist).
A potential solution to this intrinsic multiscale nature issue is to use a hierarchy of
segmentations, which organizes in its structure all the potential scales of interest
in a nested way. The hierarchy can be built once for a given image regardless
of the application, and its level of exploration can then be tuned afterwards to
produce the desired segmentation [13]. In [5] for example, this tuning relies on
some energy minimization process over all the possible segmentations that can be
extracted from the hierarchy. The optimal scale thus depends on the definition
of the energy. However, handling the case of a multimodal image (and thus of
several hierarchies) still remains an open question. Recently, the concept of braids
of partitions has been introduced [6] as a potential tool to tackle this issue. We
define in this paper a strategy of energy minimization for segmenting hierarchies
of segmentations issued from different modalities, based on this concept of braids
of partitions.
In Section 2, we summarize the works of [5,7] and [6] about energy minimization
over hierarchies and braids of partitions, respectively. In Section 3, we introduce a
new methodology to achieve multimodal segmentation, based on energy minimiza-
tion over braids of partitions. Section 4 features the application of the proposed
methodology in a practical case, namely the joint segmentation of hyperspectral
and LiDAR data, and presents some results. Conclusion and future work are
drawn in Section 5.

2 Segmentation by Energy Minimization

We first define the notations used throughout the paper, before quickly recalling
the notions of energy minimization over hierarchies and braids. The words
segmentation and partition are used interchangeably in the following.

2.1 Definitions and Notations

Let I : E → V , E ⊆ Z2, V ⊆ Rn, be a generic image, of elements (pixels) xi ∈ E.
A partition of E, denoted π, is a collection of regions {Ri ⊆ E} (also called
classes) of E such that Ri ∩ Rj 6=i = ∅ and

⋃
iRi = E. The set of all possible

partitions of E is denoted ΠE . For any two partitions πi, πj ∈ ΠE , πi ≤ πj when
for each region Ri ∈ πi, there exists a region Rj ∈ πj such that Ri ⊆ Rj . πi is
said to refine πj in such case. ΠE is a complete lattice for the refinement ordering
≤. Minimizing some energy function over ΠE requires first the definition of a
regional energy, i.e., a function E that maps any region R ⊆ E to R+, and the
definition of some operator D (such as

∑
,
∏

or
∨

for instance) to express the
energy of a partition as a composition of the energies of its regions:

E(π = {Ri}) = D
Ri∈π

E(Ri). (1)
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Fig. 1: Example of hierarchy of partitions (binary partition tree [14]).

Well-known methods to perform image segmentation by energy minimization
non-exhaustively include the Mumford-Shah functional [10], graph cuts [2] or
Markov random fields [9]. However, finding the optimal partition that minimizes
a given energy remains a difficult task, mainly due to the huge cardinality of
ΠE (a 5× 5 image can be partitioned in more than 4.6× 1018 different ways).
Hierachies, by restraining the space of possible partitions, are an appealing tool
to minimize the energy on.

2.2 Minimization over a Hierarchy

A hierarchy of segmentations of E is a collection H = {R ⊆ E} such that ∅ /∈ H,
E ∈ H and ∀Ri,Rj ∈ H, Ri∩Rj ∈ {∅,Ri,Rj}. In other words, any two regions
belonging to a hierarchy are either disjoint or nested. The most common way
to obtain a hierarchical decomposition of an image is to start from an initial
partition π0 and to iteratively merge its regions until the whole image support is
reached [12,14], resulting in a sequence of partitions π0 ≤ π1 ≤ · · · ≤ πn = {E},
as displayed in Figure 1. Regions of π0 are called leaves, πn = {E} is called the
root of the hierarchy, and each non leaf node R contains a set of S(R) children
nodes. A cut of H is a partition π of E whose regions belong to H. The set of
all cuts of a hierarchy H built over the image I is denoted ΠE(H), and is a
sub-lattice of ΠE . H(R) denotes the sub-hierarchy of H rooted at R. Any cut of
the sub-hierarchy H(R) is called a partial partition of R following [11], and is
denoted π(R). The cut of H that is minimal (i.e., optimal) with respect to the
energy E is defined as:

π? = argmin
π∈ΠE(H)

E(π) (2)

Assumptions on E under which it is easy to retrieve the minimal cut π? have
been studied in [5] in the context of separable energies (i.e., E(π) =

∑
R∈π E(R))

and later generalized in [7] to wider classes of composition laws D, namely



E(π1(R)) ≤ E(π2(R)) =⇒ E(π1(R) t π(R0)) ≤ E(π2(R) t π(R0))

π1(R) π2(R)
π1(R) t π(R0) π2(R) t π(R0)

Fig. 2: Example of a h-increasing energy.

h-increasing energies. An energy E is said to be h-increasing when given any
two R,R0 ∈ H disjoint, given partial partitions π1(R), π2(R) and π(R0), then
E(π1(R)) ≤ E(π2(R))⇒ E(π1(R)tπ(R0)) ≤ E(π2(R)tπ(R0)), with t denoting
disjoint union (concatenation). An example of h-increasing energy is depicted in
Figure 2. In that case, it is possible to find the minimal cut of H by solving for
each node R the following dynamic program:

E?(R) = min

{
E(R), D

r∈S(R)
E(π?(r))

}
(3)

π?(R) =





{R} if E(R) ≤ D
r∈S(R)

E(π?(r))
⊔

r∈S(R)

π?(r) otherwise (4)

The optimal cut of R is given by comparing the energy of R and the energy of
the disjoint union of the optimal cuts of its children, and by picking the smallest
of the two. The optimal cut of the whole hierarchy is the one the root node, and
is reached by scanning all nodes in the hierarchy in one ascending pass [5].
Energies in the literature often depend in practice on a positive real-valued

parameter λ that acts as a trade-off between simplicity (i.e., favoring under-
segmentation) and a good data fitting of the segmentation (i.e., leading to
over-segmentation). These energies Eλ generate sequences of optimal cuts {π?λ} in
turn indexed by this parameter λ. The behavior of π?λ with respect to λ has been
studied in [7], which introduced in particular the property of scale-increasingness :
Eλ is scale-increasing if for any R ∈ H, any of its partial partition π(R), and any
0 ≤ λ1 ≤ λ2, Eλ1

(R) ≤ Eλ1
(π(R))⇒ Eλ2

(R) ≤ Eλ2
(π(R)).

In the case where the energy is h-increasing for any λ and scale-increasing with
respect to λ, the family {π?λ} of optimal cuts is hierarchically organized, that is

λ1 ≤ λ2 ⇒ π?λ1
≤ π?λ2

. (5)

In such case, it is possible to transform some hierarchy H into an optimal
version H?, composed of all the optimal cuts π?λ of H when λ spans R+. In
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Fig. 3: Illustration of a step of the dynamic program (7) applied to a braid
structure: one has to choose between {R},⊔π?(Ri) or any other πi(R) ∈ B. Note
however that R 6= E, otherwise B would not be a braid since π3(R)∨π4(R) = R.

practice, the energy Eλ is seen as a function of λ, and (3) is conducted over
the space of such functions. The output of the dynamic program is no longer
some optimal cut for a given value of λ, but some partition of R+ into intervals
[0, λ1[∪ [λ1, λ2[∪ · · ·∪ [λp,+∞[ where all λ values within a given interval [λi, λi+1[
are leading to the same optimal cut π?λi

. The reader is referred to [5] for more
practical implementation details.

2.3 Minimization over a Braid

Braids of partitions have been recently introduced in [6] as a potential tool to
combine multiple hierarchies and thus tackle segmentation of multimodal images,
but these have not been yet investigated in practice in multimodal data fusion.
Braids of partitions are defined as follows: a family of partitions B = {πi} is
called a braid whenever there exists some hierarchy Hm, called monitor hierarchy,
such that:

∀πi, πj ∈ B, πi ∨ πj 6=i ∈ ΠE(Hm)\{E} (6)

where πi ∨ πj denotes the refinement supremum, i.e. the smallest partition that
is refined by both πi and πj . In other words, a braid is a family of partitions such
that the refinement suprema of any pair of different partitions of the family are
hierarchically organized, even though the partitions composing the braid might
not be. For this reason, braids of partitions are more general than hierarchies of
partitions: while hierarchies are braids, the converse is not necessarily true. It is
also worth noting that the refinement supremum of any two partitions must differ
from the whole image {E} in (6). Otherwise, any family of arbitrary partitions
would form a braid with {E} as a supremum, thus loosing any interesting
structure. The optimal cut of a braid of partitions is reached by solving the



dynamic program (3) for every node R of the monitor hierarchy Hm, with a
slight modification:

E?(R) = min



E(R), D

r∈S(R)
E(π?(r)),

∧

πi(R)∈B
E(πi(R))



 (7)

In addition to comparing the node energy with respect to the optimal energy of
its children, one has also to consider all other partial partitions of R that can
be contained in the braid, since R represents the refinement supremum of some
regions in the braid, and not those regions themselves. The optimal cut of R is
then given by {R}, the disjoint union of the optimal cuts of its children or some
other partial partition of R contained in the braid, depending on which has the
lowest energy. A step of this dynamic program is illustrated by Figure 3. Notice
that the optimal cut of a braid B is obtained through an energy minimization
procedure conducted on its monitor hierarchy Hm. However, this optimal cut
may be composed of regions that are solely contained in the braid and therefore
not supported by nodes of the monitor hierarchy (it would be the case in the
example depicted by Figure 3 if π4(R) were for instance chosen to be the optimal
cut of R).

3 Proposed Methodology

3.1 Generation of a braid from multiple hierarchies

The refinement supremum of two cuts of a hierarchy remains a cut of this
hierarchy. For this reason, it is straightforward to compose a braid with cuts
coming from the same hierarchy since any family of such cuts is a braid. It
also implies in that case that the regions composing the corresponding monitor
hierarchy are a subset of the regions composing the initial hierarchy. However,
this guarantee is lost when one wants to compose a braid from cuts coming from
multiple hierarchies: all those cuts must be sufficiently related to ensure that all
their pairwise refinement suprema are hierarchically organized. As an example, let
B = {H1 = {π1

1 ≥ π2
1}, H2 = {π1

2 ≥ π2
2}} be some family of partitions composed

of two supposedly independent hierarchies H1 and H2, both composed of two
ordered cuts. B being a braid implies that all pairwise refinements suprema are
hierarchically organized. In particular, this must be true for π1

1 ∨ π2
1 = π1

1 and
π1
2 ∨ π2

2 = π1
2 , which were initally assumed to come from independent hierarchies.

Thus, the partitions composing B cannot be chosen arbitrarily. This leads us to
introduce the property of h-equivalence (h standing here for hierarchical): two

partitions πa and πb are said to be h-equivalent, and one notes πa
h' πb if and only

if ∀Ra ∈ πa, ∀Rb ∈ πb,Ra ∩ Rb ∈ {∅,Ra,Rb}. In other words, πa and πb may
not be globally comparable, but they are locally comparable (for instance, π1(R)
and π2(R) of Figure 3 are not globally comparable, but they locally are). In

particular, given a hierarchy H, ∀π1, π2 ∈ ΠE(H), π1
h' π2: all cuts of a hierarchy
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Fig. 4: a) Possible composition of a braid B with cuts from two hierarchies H1

and H2, b) cuts of the corresponding monitor hierarchy Hm, and c) workflow of
proposed multimodal segmentation methodology.

are h-equivalent.
h' is a tolerance relation: it is reflexive and symmetric, but not

transitive. Given some hierarchy H and a partition π∗ ∈ ΠE , we denote by H
h' π∗

the set of cuts of H that are h-equivalent to π∗. Obviously, H
h' π∗ ⊆ ΠE(H)

with equality if and only if π∗ ∈ ΠE(H). Provided some hierarchy H, some
h-increasing and scale-increasing energy Eλ and some partition π∗ ∈ ΠE , we also
define H ≤?E π∗ = {π ∈ ΠE(H?) s.t π ≤ π∗} as the set of optimal cuts of H with
respect to Eλ that are refinements of π∗. Following, it is possible to compose a
braid B with cuts extracted from two hierarchies H1 and H2 using these two

relations, as depicted in figure 4a: Given π1
1 ∈ ΠE(H1), take some π1

2 ∈ H2
h' π1

1 .
Then, π2

1 and π2
2 are taken in H1 ≤?E π1

2 and H2 ≤?E π1
1 , respectively. In practice,

we choose π1
2 =

∨{H2
h' π1

1\{E}}, π2
1 =

∨{H1 ≤?E π1
2} and π2

2 =
∨{H2 ≤?E π1

1}.
Under this configuration, it is guaranteed that B = {π1

1 , π
2
1 , π

1
2 , π

2
2} forms a braid

with monitor hierarchy Hm whose cuts πk,li,j = πki ∨ πlj are organized as displayed
by figure 4b. Other configurations for the composition of B may work as well.

3.2 Methodology

We now propose a methodology to perform multimodal image segmentation,
using the previously introduced concept of braids of partitions to fuse the output
of several hierarchies. The proposed method is illustrated by the workflow in



figure 4c, detailed step by step in the following. Let I = {I1, I2} be a multimodal
image, assumed to be composed of two modes I1 and I2 having the same spatial
support E, for a matter of clarity (the extension to a greater number of modes
follows the same scheme). First, two hierarchies H1 and H2 are built on I1
and I2, respectively. Two energies E1λ and E2λ are defined as piecewise constant
Mumford-Shah energies [10] whose goodness-of-fit (GOF) term acts with respect
to each mode I1 and I2, and whose regularization term is half the length of the
region perimeter:

E iλ(π) =
∑

R∈π

(
Ξi(R) +

λ

2
|∂R|

)
(8)

with Ξi(R) =
∑

x∈R ‖Ii(x)− µi(R)‖22 being the GOF term acting on mode Ii
and µi(R) is the mean value/vector in mode Ii of pixels belonging to region R.
Piecewise constant Mumford-Shah energies are a popular choice when it comes
to minimizing some energy function because of their ability to produce consistent
segmentations. However, other types of energies could be investigated as well,
depending on the underlying application. The only constraint here is that the
energies E1λ and E2λ must be h-increasing and scale-increasing. It is known to be
the case for Mumford-Shah energies [7]. Following, the two optimal hierarchies
H?

1 and H?
2 are generated from the optimal cuts of H1 and H2 with respect to E1λ

and E2λ. The braid B is composed as described previously in subsection 3.1 and
by figure 4a: a first partition π1?

1 is extracted from H?
1 , and is used to extract two

partitions π1?
2 and π2?

2 from H?
2 following the relations

h' and ≤?E , respectively. A
second partition π2?

1 is finally extracted from H?
1 using ≤?E and π1?

2 . Eventually, B
is composed of 4 partitions {π1?

1 , π
2?
1 , π

1?
2 , π

2?
2 } extracted from the two hierarchies

H?
1 and H?

2 , and the braid structure is guaranteed, allowing to construct the
monitor hierarchy Hm. A last energy term EBλ is defined, relying on both modes
of the multimodal image I:

EBλ (π) =
∑

R∈π

(
max

(
Ξ1(R)

Ξ1(I1)
,
Ξ2(R)

Ξ2(I2)

)
+
λ

2
|∂R|

)
(9)

The GOF term of each region R is now defined as the maximum with respect to
both modes of the normalized GOFs. The normalization allows both GOF terms
to be in the same dynamical range. EBλ is also a h-increasing and scale-increasing
energy. Its minimization over Hm and B following the dynamic program (7) gives
some optimal segmentation π?B of I, which should contain salient regions shared
by both modes as well as regions exclusively expressed by I1 and I2.

4 Results

4.1 Conducted Experiments

We apply the proposed methodology on the multimodal data set described in [4]
composed of a hypespectral (HS) image I1 of 144 spectral bands evenly spaced
between 380 nm and 1050 nm, and a LiDAR-derived digital surface model (DSM)
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Fig. 5: a) RGB composition of the hyperspectral image, b) corresponding LiDAR-
derived DSM, c) very-high resolution RGB image of the same site.

I2, with the same ground-sampling distance of 2.5 m. Data were acquired over the
University of Houston campus. The study site features an urban area with several
buildings of various heights and made of different materials, some parking lots,
tennis courts, roads and some portions of grass and trees. A RGB composition of
the hyperspectral image is displayed in figure 5a, and the corresponding LiDAR-
derived DSM is shown in figure 5b. It is also shown for visualization purpose a
very-high resolution RGB image of the scene in figure 5c3.
Hierarchies H1 and H2 are obtained by building two binary partition trees [14] on
I1 and I2 with standard parameters (mean spectrum and spectral angle for the
region model and merging criterion of the HS mode, mean value and Euclidean
distance for the DSM). Both hierarchies are built on the same inital partition
π0, obtained as the refinement infimum of two mean shift clustering procedures
conducted on the RGB composition of the HS and on the DSM. The braid B
is constructed following the procedure exposed in figure 4a: π1?

1 is the first cut
extracted from H?

1 and contains around 125 regions. It is used to extract π1?
2

and π2?
2 from H?

2 , which comprise 342 and 349 regions, respectively. Finally, π2?
1

is extracted from H?
1 using π1?

2 and contains 379 regions. The four partitions
composing B generate

(
4
2

)
= 6 cuts of the monitor hierarchy Hm, which is built

by re-organizing those cuts in a hierarchical manner. The leaf partition of Hm,
denoted πB0 , is obtained as

∧{πi ∨ πj 6=i, πi, πj ∈ B}. Finally, the minimization of
EBλ over Hm, following (7), is conducted with λ being empirically set to 5.10−5,
and produces an optimal segmentation π?B of the braid composed of 302 regions.
To evaluate the improvements brought by the braid structure, we propse to
extract from H?

1 and H?
2 the two optimal cuts π?1 and π?2 that have the same

(or a close) number of regions as π?B (in practice, π?1 and π?2 have 301 and 302
regions, respectively). This should allow a fair visual comparison since all three
partitions should feature regions of similar scales. In addition, we compute for the

3 https://goo.gl/maps/VVXE6



Table 1: Number of regions and average GOF of leaf partitions π0, π
B
0 and optimal

partitions π?1 , π
?
2 , π

?
B with respect to both modes I1 and I2.

π0 πB
0 π?

1 π?
2 π?

B

|π| 416 354 301 302 302

ε(π|I1) 13.2 16.6 16.0 57.2 19.8

ε(π|I2) 262.2 297.7 611.7 413.0 358.8

partitions π0, π
B
0 , π

?
1 , π

?
2 and π?B their average GOF with respect to both modes

I1 and I2 as follows:

ε(π|Ii) =
1

|E|
∑

R∈π
|R| ×Ξi(R) (10)

with |R| denoting the number of pixels in region R, and Ξi(R) is the Mumford-
Shah GOF term defined in equation (8).

4.2 Results

Table 1 presents the number of regions as well as the average GOF of leaf
partitions π0 and πB0 , and of optimal partitions π?1 , π

?
2 and π?B with respect to

both modes I1 and I2. Its analysis demonstrates the interest of the proposed
methodology using the braid structure. One can indeed remark, not surprinsigly,
that π?1 and π?2 score a low average GOF value with respect to their corresponding
mode, but a greater average GOF with respect to the complementary mode. On
the other hand, π?B outperforms π?1 with respect to I2 while scoring a similar
value for I1, and outperforms π?2 both with respect to I1 and I2. Thus, π?B better
fits both modes of the multimodal image at the same time. In addition, it contains
fewer regions than π0 and πB0 while not increasing the average GOF too much.
Therefore, π?B decreases over-segmentation compared to the two leaf partitions
while maintaining comparable GOF values. Figure 6 shows the optimal partitions
π?B, π?1 and π?2 superimposed over the RGB composition of the HS image (top
row, from figure 6a to 6c) and over the DSM image (bottom row, from figure 6d
to 6f). The qualitative analysis of figure 6 leads to similar conclusions : while π?1
tends to under-segment regions featuring the same spectral properties but not the
same elevation (typically, the buildings in the center of the scene), those regions
are correctly segmented in π?B . Similary, regions at the same elevation are often
under-segmented in π?2 even if they are made of different materials (parking lots,
roads and grass for instance) but correctly delineated in π?B . This demonstrates
how the construction of the braid and associated monitor hierarchy as well as
the following energy minimization were able to fuse the information contained in
both modes to produce a more accurate segmentation of the multimodal image.



(a) (b) (c)
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Fig. 6: Top row: optimal partitions a) π?B , b) π?1 (optimal with respect to the HS
image) and c) π?2 (optimal with respect to the DSM) superimposed over the HS
image. Bottom row: optimal partitions d) π?B , e) π?1 and f) π?2 superimposed over
the DSM image.

5 Conclusion

In conclusion, we presented in this article a new method to perform multimodal
segmentation, based on the hierarchical minimization of some energy function.
In particular, we used the recently introduced concept of braids of partitions and
associated monitor hierarchies and we adapted to them the dynamic program
procedure conducted to perform energy minimization over hierarchies. The
proposed framework was investigated over a multimodal image composed of a
hyperspectral and a LiDAR mode. Results demonstrated, quantitatively and
qualitatively, the ability of the proposed approach to produce a segmentation
that not only retains salient regions shared by both modes, but also regions
appearing in only one mode of the multimodal image.
Future work include a deeper investigation on the way to compose a braid with
cuts coming from several hierarchies, and a more thorough assessment analysis
of the improvements brought by the proposed methodology.
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