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ABSTRACT In this review we examine recent theoretical investigations on 2D and 3D hybrid 

perovskites (HOP) that combine classical solid-state physics concepts and density functional 

theory (DFT) simulations as a tool for studying their optoelectronic properties. Such an approach 

allows one to define a new class of semiconductors, where the pseudocubic high temperature 

perovskite structure plays a central role. Bloch states and k.p Hamiltonians yield new insight into 

the influence of lattice distortions, including loss of inversion symmetry, as well as spin-orbit 

coupling. Electronic band folding and degeneracy, effective masses and optical absorption are 

analyzed. Concepts of Bloch and envelope functions, as well as confinement potential are 

discussed in the context of layered HOP and 3D HOP heterostructures. Screening and dielectric 

confinements are important for room temperature optical properties of 3D and layered HOP, 

respectively. Non-radiative Auger effects are analyzed for the first time close to the electronic 

band gap of 3D hybrid perovskites. 

1. INTRODUCTION 

Most metal-halide Hybrid Organic Perovskites (HOP) have the general formulae (R-NH3)nMXm, 

where R is an organic group, X a halogen atom (X=I, Br, Cl) and M a metal atom (M=Pb, Sn, 

Ge). Control of the stoichiometry (n, m) affords crystal packing of various dimensionalities, 

ranging from three-dimensional (3D, n=1 and m=3) corner-shared perovskite lattices to 0D 

structures with isolated inorganic octahedra. In less than 30 years, the low-cost technologies and 

the easy synthesis of the layered HOP (m>3) raised up the interest in the field of optoelectronics 

and microelectronics.1-15 A scientific breakthrough for solar cells was achieved in the last three 

years with 3D HOP.16-54 In both cases, lead-halide based HOP are currently the most investigated, 

but substitution of the critical metals (Pb) has to be addressed because of environmental issues. 
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Indeed, tin-based layered HOP exhibit hole transport and natural doping, and were shown to be 

suitable for the demonstration of field effect transistor operation.10-12 First results on tin-based 

solar cells were recently obtained with 3D HOP.29,41,42  

The quantum and dielectric confinement expected in the 2D layered HOPs (n=2, m=4) prompted 

active research to develop optoelectronic devices with enhanced performances.11 Since 2009, 3D 

HOPs (n=1, m=3), with relatively small organic cations, have been suggested as a novel class of 

low-cost solution-processable materials for high efficiency hybrid photovoltaic cells. 

Tremendous progress has been made in a short period of time since 2012,21-35 leading to both 

meso-superstructured solar cells and solid thin-film planar heterojunctions with record solar-to-

electrical power conversion efficiencies. In 2013, NREL recognized the so-called ‘Perovskite 

Cells’ as a new and specific technology different from dye-sensitized solar cell (DSSC).36-46 

Recent theoretical works show that better understanding could benefit from tools and concepts 

developed both in the fields of organic optoelectronics and conventional semiconductors. 55-121 

Indeed, since the initial use of 3D HOP as the sensitizer in conventional DSSC, technological 

developments have simultaneously led to a gradual shift of fundamental issues from materials 

chemistry to solid-state physics. This can be envisioned as a change of paradigm.78 Further 

improvements should make the best profits from both fields. As quoted by H. Snaith in a 2013 

review: “Solar cells based on perovskite absorbers promise to break the prevailing paradigm by 

combining both ultimately low cost and high efficiency”.34 The efficiency of hybrid perovskites 

solar cells rose rapidly from 3.8% in 2009 and 6.5% in 2011 with DSSC-like technologies to 

about 10% in 2012 using new concepts. These record values steeply increased to about 15% in 

2013 thanks to new deposition techniques.22,23,27,28 At the end of 2014, optimized conversion 

efficiency amounts to 19.3%39 and then 20% in the last (2014) NREL efficiency chart.122 A quick 
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insight into the possible applications of hybrid perovskites for solar cells can be gained from a 

couple of recent review papers.33-38 Besides, the feasibility of light emitting diodes or lasers with 

3D HOP were recently investigated by several research groups.47-50  

Clearly, understanding physical properties of operational HOPs and design of novel devices with 

improved performances may greatly benefit from theoretical work. Prior to 2013, most 

theoretical studies either focused on layered HOP,55,57,61 purely inorganic 3D perovskites,56,60,62-65 

and 3D HOP,55,56,58,59 but, in the latter case, missing inherent physical properties such as effect of 

spin-orbit coupling. In 2013,66-72 a few papers have appeared on 3D HOP in relation with the 

breakthrough in the field of photovoltaics, followed by a large number of papers in 2014: a near-

exhaustive list is given in the reference section.73-121  Currently, most of the theoretical work 

relies on the use of Density Functional Theory (DFT) based simulations. They have proved their 

effectiveness to analyze qualitatively band gaps, effective masses or optical absorption of 2D and 

3D materials. It is however difficult to make theoretical predictions or relevant comparisons with 

physical parameters derived from experiments, especially for structures suited from a device 

perspective such as HOP heterostructures. In the case of conventional semiconductors materials 

and heterostructures (e.g. silicon and III-V semiconductors), knowledge often profit most from 

semi-empirical approaches based on basic solid-state physics concepts and symmetry 

considerations.61,62,66,74,75,123 In such a case, DFT including many-body corrections affords a tool to 

assess the validity of the semi-empirical approach. However, comparison is limited to particular 

situations (e.g. small heterostructures) that remain computationally feasible.  

This paper aims to review our recent work on HOP that is essentially based on concepts and 

tools already well deployed in the fields of optoelectronics and conventional semiconductors. 

But, from the introduction we would like to emphasis major contributions from several other 
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research groups, who were very active from the start in 2013,66-70 and in early 2014.94-100 Close 

attention will be paid on solid-state physics concepts in the context of HOP. The validity and 

limitations of mainstream approaches developed for conventional semiconductors will be 

discussed. Properties that make HOP a new and distinct class of semiconductors will also be 

emphasized.  

The paper is organized as follows. First and foremost, to ensure easier understanding of 

underlying concepts discussed in the first two sections, effect of spin orbit coupling (SOC) will 

be temporary left aside. But readers must keep in mind that SOC is essential to capture the main 

physics in this class of hybrid materials. In Section 2 we introduce the pseudocubic phase as a 

reference for the investigation of 3D HOP, introduce the corresponding k.p Hamiltonian and list 

the major differences between conventional and HOP semiconductors. Section 3 is devoted to 

clarify and distinguish the impact of Brillouin Zone (BZ) folding and lattice strain. Next, 

importance of SOC will be considered in Section 4 and discussed both for 3D and 2D HOP. In 

these first four sections, particular attention will be paid to symmetry and how these effects can 

be accounted for within the k.p method. Section 5 summarizes available information on possible 

loss of inversion symmetry in crystal structures, and addresses its interplay with SOC that 

suggests potential applications in spintronics. Sections 6 and 7 deal with quantum confinement 

and band alignment in layered and 3D HOP, respectively. The nature of photoexcited species 

(excitons versus free carriers) is analyzed in Section 8 with a special focus on dielectric 

screening and confinement. Section 9 presents a discussion on the importance of Auger effects, 

including comparison with III-V semiconductors. Finally, main conclusions are drawn in Section 

10. 

 

J. Phys. Chem. C, 2015, 119 (19), pp 10161–10177  DOI: 10.1021/acs.jpcc.5b00695 
 



 9 

2. THE PSEUDOCUBIC PEROVSKITE STRUCTURE AS A REFERENCE FOR 3D HOP 

Bulk structures of well-known conventional semiconductors adopt either diamond cubic (Fd3m, 

space group no 227) and zinc-blende (F43m, no 216) (Si, Ge, C, GaAs, InP, CdSe …) unit cells, 

or hexagonal graphite (P63/mmc, no 194) and würtzite (P63mc, no 186) (C, GaN, ZnO, CdSe, 

ZnS...) lattices. For zinc-blende and würtzite structures, many of the structural properties are 

similar to that of diamond and graphite, but loss of inversion symmetry has a subtle impact on 

the optoelectronic and piezoelectric properties of the crystal.  

Let’s start with GaAs, which is a reference among conventional cubic semiconductors for 

optoelectronic applications that exhibits both good optical and transport properties. As stated in 

the introduction we remind the reader that, for simplicity, in this and the next sections SOC will 

be disregarded. The density of states (DOS) of cubic GaAs computed within the GGA 

(Generalized Gradient Approximation) with the SIESTA code is reported in Figure 1a. It  shows 

that both valence (VB) and conduction bands (CB) are associated to hybridized atomic s- and p-

orbitals of Ga and As atoms. In order to take advantage of translational symmetry, it is useful to 

describe the energy eigenfunctions in a bulk crystal as Bloch waves: 

 ( ) ( )ruer kn
rki

kn

!!
!

!!
!

,
.

, =ψ  ,      (1) 

where 𝑛 is the band index, 𝒓 the position vector, 𝒌 the wavevector inside the BZ and 𝑢!,𝒌(𝒓) the 

periodic part of the eigenfunction. The corresponding energy dispersion curves are represented 

within the BZ (Figure 1b). A plane wave representation of the Bloch waves would be possible, 

but Wannier functions based on local atomic orbitals are a good alternative to provide an 

intuitive avenue of chemical bonding in solids starting from DFT or tight binding results. Triply 

degenerated electronic states form the valence band maximum (VBM) at the center of the BZ, Γ 

(Figure 1b). The non-degenerate conduction band minimum (CBM) of GaAs also shows up at Γ 
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and leads to a direct electronic band gap that, at room temperature, is almost the same as that of 

CH3NH3PbI3 (1.5 eV),33 the prototype 3D HOP for solar cells.  

 

Figure 1. (a) Density of states (DOS) and (b) electronic band dispersion diagram of GaAs in the 
zinc-blende structure. The energy at the top of the valence band (VB) at Γ point is set to 0 eV. 
The DOS close to the band gap is mostly associated to hybridized s and p states of the Ga and As 
atoms. The conduction bands (CB) and VB are represented respectively as red and blue lines in 
the band dispersion diagram (b). The computation is performed within the GGA with the 
SIESTA code. Spin-orbit coupling (SOC) is not considered.  

However the situation is more complicated in 3D HOP than in semiconductors like GaAs, due to 

orientational disorder of the organic cation. Electronic properties of the cubic phase of the 

prototype HOP CH3NH3PbI3 are best captured taking its all-inorganic analog, CsPbI3. In fact,  

many effects, such as strain, phase transitions, relativistic effects, local distortions due to the 

organic cations, loss of inversion symmetry, etc, can be considered as perturbations to a certain 

extent (vide infra). Figure 2a represents a real space 3D view of the Pm3m reference cubic 

crystal structure of metal-halide perovskites of general formulae AMX3 where A=Cs, CH3NH3
+, 

M=Pb, Sn and X=I, Br, Cl. The reciprocal space 3D view (Figure 2b) shows the first BZ of the 

Pm3m space group, with some points of high symmetry. The electronic band structure of the 

cubic (Pm3m, no 221) phase of CH3NH3PbI3 is shown on Figure 2c. An upward energy shift of 

0.3eV has been applied to match the experimental bandgap value at R. The CH3NH3
+ cation is 

located at the center of the cube with an averaged position. It has been replaced by a Cs+ cation 

J. Phys. Chem. C, 2015, 119 (19), pp 10161–10177  DOI: 10.1021/acs.jpcc.5b00695 
 



 11 

for the computation of the band structure. The electronic structure of the reference cubic phase of 

CH3NH3PbI3 reveals two main differences when compared with GaAs (Figure 1):66 

- Direct band gap located at the high symmetry point R instead of  Γ; 

- Inverted band structure: the triply degenerate electronic state is located at CBM instead of 

VBM. 

-  

 
Figure 2. (a) Real space 3D view of the Pm3m reference cubic crystal structure of metal-
halide hybrid perovskites of general formulae AMX3 where A=Cs, CH3NH3

+, M=Pb, Sn and 
X=I, Br, Cl. In hybrid perovskites, the CH3NH3

+ cation is located at the center of the cube 
with an averaged position sketched by the red ball. (b) Reciprocal space 3D view showing 
the first BZ of the Pm3m space group. Points of high symmetry in the cubic BZ are indicated 
by conventional letters: Γ denotes the origin of the BZ; X is the center of a square face at the 
BZ boundary, M is a center of a cube edge; and R are vertices of the cube. (c) Electronic 
band structure for the high temperature cubic Pm3m phase of CH3NH3PbI3 without SOC at 
the LDA (Local Density Approximation) level of theory. An upward energy shift of 0.3eV 
has been applied to match the experimental bandgap value at R. Irreducible representations 
obtained from a Pm3m simple group analysis, are given at R and M points for the electronic 
states close to the band gap. Vertical arrows show various possible optical transitions close to 
the band gap energy. Optical transitions along the line between the M and R points generate 
carriers that easily relax toward the R point. Reprinted with permission from ref 75. 
Copyright 2014 American Chemical Society. 

The dispersion curves close to the critical point R of the BZ can be analysed within a multiband 

effective mass model (k.p method)74 as a function of the k-vector, which represents the 
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difference with the wavevector at R point kR. The corresponding k-dependent Hamiltonian for 

the triply degenerate CBM deduced from a symmetry analysis reads:66,74,75  
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for the simple group T1u vectorial irreducible representation (IR) of the CBM at R. L, M and N 

are parameters that can be extracted either from experiment or DFT calculations. The basis 

Bloch functions at R for this IR are associated to px, py, pz atomic orbitals of Pb and can thus be 

labeled ZYX ,,  by analogy to the Bloch functions at VBM in diamond and zinc-blende 

lattices. In the Pm3m cubic structure at R, VBM corresponds to the totally symmetric A1g IR of 

the simple group. The basis Bloch function for this IR is associated to px, py, pz orbitals of iodine 

and the s orbital of lead and can thus be labeled S  by analogy to the Bloch functions at the 

CBM in zinc-blende lattices with direct band gap.123 

The symmetry analysis of the electronic states at R and M points allows identifying the optically 

allowed transitions. The strength of the optical transitions can be evaluated from energy 

parameters for the optical matrix elements, obtained for each pair of [CB,VB] states from the 

expression: . In the case of the fundamental optical transition they can be related 

to the Kane energy, which is commonly used in semiconductor physics.123 For CH3NH3PbI3, 

they amount to 40 and 120 eV for the fundamental transitions at R and M, respectively,75 but 

next sections will show that strength of optical absorption crucially depends on other effects, in 

particular SOC that modifies both band degeneracies and effective masses.  

3. BRILLOUIN ZONE FOLDING FROM THE PSEUDO-CUBIC PHASE IN 3D HOP 

EVIDENCING EFFECT OF LATTICE STRAIN  

22
VBCB

e
i

m
ψψ ∇− !
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At high temperature, experimental crystal structures of HOP do not reveal strictly ordered and 

symmetric phases as a consequence of molecular symmetry of the organic cations that do not fit 

the site symmetry of the lattice. For 3D HOP, the reference high temperature phase is the cubic 

phase of CsPbI3 (Z=1). In fact, for CH3NH3PbX3 a similar pseudo-cubic Pm3m phase is observed 

by diffraction measurements at high temperature, but the positions of all the atoms in the organic 

molecules are dynamically averaged and occupy the same special Wickoff position at the center 

of the cubic cell. A first ad-hoc attempt is to completely locate the organic cation within the 

cubic cell. However, this procedure leads to an artificial reduction of the space group symmetry 

and corresponds to strong long range dipole-dipole interactions in the lattice, which are not 

expected to play a role in the static limit. Indeed, the high symmetry of the Pm3m phase is 

related to a dynamical disorder.  A more practical way to make a rigorous theoretical description 

including all the atoms in an ordered lattice, is to consider the low temperature orthorhombic 

phases (Pnma, no 62) of CH3NH3PbX3 3D HOP compounds (Z=4 for X=I or Br and Z=8 for 

X=Cl). The electronic band gap remains direct but shows up at Γ and the number of bands is 

multiplied by a factor of 4 or 8 with respect to the cubic case. At a first sight, the electronic band 

structure of the Pnma phase of CH3NH3PbI3 (Figure 3a) appears very different from that of the 

reference cubic phase (Figure 3c). In order to properly understand the connection between the 

two diagrams, it is necessary to treat both phases on an equal footing. When replacing the 

organic cations by cesium atoms located at nitrogen positions, the electronic band diagram close 

to the band gap of HOP remains unchanged.61,66,73 This remarkable property is due to the fact that 

the CBM and VBM electronic states are mostly associated to atomic orbitals of the inorganic 

octahedra and that the Cs+ cations correctly mimic the ionic interactions. This computational 

trick cannot be used to predict the structural properties of CH3NH3PbX3, which depend on other 
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interactions not accounted for by this substitution. Nevertheless, the electronic band diagram of 

the pseudo-cubic Pm3m phase of CH3NH3PbX3 can be conveniently studied by putting a cesium 

atom at the center of the cell (average position of the N atom in the Pm3m lattice) and using the 

experimental 

lattice 

constants.   

 

 

Figure 3. Band folding from the pseudo-cubic phase to the low temperature phases of 
CH3NH3PbI3. (a-c) Electronic band dispersion diagram for the Pm3m cubic phase of 
CH3NH3PbI3: (c) in its BZ, (b) folded back to the BZ of the Pnma orthorhombic phase, and (a) 
for the real Pnma orthorhombic phase of CH3NH3PbI3. (d) Electronic band dispersion diagram 
for the Pm3m cubic phase folded back to the BZ of the I4/mcm tetragonal phase and (e) for the 
real I4/mcm tetragonal phase. The computation is performed at the LDA level of theory and SOC 
is not considered.  

Next, the effect of the high to low temperature (Pm3m/Pnma) cell transformation in CH3NH3PbI3 

can be explored by considering a ( ba
!!

+ , c!2 , ba
!!

− ) supercell of the cubic lattice while keeping 

the atoms at the special positions of the Pm3m phase (Figure 3b, folded-cubic band structure). 

As the cell size is increased by a factor of 4 (Z=4), it leads to a reduction of the BZ volume by a 
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factor of 4. The electronic states close to the electronic band gap are folded from R of the cubic 

phase BZ to Γ of the orthorhombic supercell BZ. This band folding effect clarifies the seeming 

complexity of the band diagram in the low temperature Pnma phase (Figure 3a). In addition, 

electronic states from M of the Pm3m BZ are also folded back to Γ and mixed with R-states at 

the Γ point of the low temperature Pnma BZ. This procedure reveals that, besides electronic band 

folding effect, the most important transformation of the diagram is due to atomic 

displacements.66 The increase of the electronic band gap is thus clearly induced by lattice 

distortions that are mainly related to tilts of the inorganic octahedra and space group symmetry 

reduction.83 Lattice transformations simultaneously lift the CBM degeneracy (Figure 3a). This is 

consistent with the group-subgroup relationship between the cubic Pm3m phase and the 

orthorhombic Pnma phase. Similarly, effects of band folding can be analyzed for the phase 

transition between the cubic Pm3m phase and, the tetragonal I4/mcm (Figure 3c-e). Here again, 

lattice distortions induced by octahedral tilt leads only to a partial lifting of the CBM degeneracy 

and are consistent with the space group symmetry reduction.74  

More generally, the influence of strain (εij tensor) and degeneracy lifting can be understood and 

treated empirically within the ZYX ,,  basis of the simple group T1u vectorial IR of the cubic 

CBM at R,74 by adding the following strain perturbation Hamiltonian to the multiband effective 

mass (k.p) Hamiltonian (equation 1):   

 

Hε =

lεxx +m εyy +εzz( ) nεxy nεxz
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where εij components of the lattice strain tensors are used and l, m and n parameters are 

deformation potentials that can be derived from experimental data or DFT results.  

4. IMPORTANCE OF SPIN ORBIT COUPLING IN 3D AND LAYERED HOP 

A giant SOC operates on the CB, which dominates the band gap of lead-based HOP, both for the 

high (Figure 4) and low temperature phases.66,74 About three times smaller for CH3NH3SnX3 than 

for CH3NH3PbX3, it remains sizeable in tin-based perovskites and the following conclusions 

apply both to lead and tin HOP.74 Recent analysis of tri-chlorides, CH3NH3MCl3 (M= Pb, Sn, 

Ge), show that SOC splittings are consistent with metal atomic energy level tables with an 

increase down group-14 of the periodic table.77 Moreover, SOC interactions stemming from 

halogens are shown to be sizable, especially for iodine-based perovskites, consistently with 

atomic data and computed atomic charges from the Atom In Molecules (AIM) quantum theory.77  
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Figure 4. Electronic band structure for the high temperature cubic Pm3m phase of CH3NH3PbI3 
with SOC at the LDA level of theory. An upward energy shift of 1.4eV has been applied to 
match the experimental bandgap value at R. Irreducible representations obtained from a Pm3m 
double group analysis, are given at R and M points for the electronic states close to the band gap. 
Vertical arrows show various possible optical transitions close to the band gap energy. Optical 
transitions along the line between the M and R points generate carriers that easily relax toward 
the R point. Reprinted with permission from ref 75. Copyright 2014 American Chemical Society. 

In order to account for spin effect and lattice symmetry, a double space group description is 

needed.75 The starting point is the  basis of the simple group T1u vectorial IR of the 

cubic CBM at R and corresponding energy . At R, the spinor state basis at CBM converts 

into  ↓↓↓↑↑↑ ZYXZYX ,,,,,  and SOC leads to an energy splitting SOΔ . CBM 

becomes a two-fold degenerate spin-orbit split-off (SO) state whose energy reads

320
)( SOCBMSO EE Δ−= . The remaining four-fold degenerate CB states undergo an upward 

energy shift: 30
SOCBMEE Δ+= . 

In other words, the simple group T1u vectorial representation of the CBM at R is split in a doubly 

degenerated E1/2u (SO states) and a fourfold degenerated F3/2u state as illustrated in Figure 4. The 

ground state isotropic optical transition is thus predicted at R between doubly degenerated E1/2g 

VBM and E1/2u CBM states.  At R, a series of other transitions are optically allowed, the lowest in 

energy corresponding to two secondary transitions F3/2g → E1/2u and E1/2g → F3/2u (Figure 4). 

The transition between the doubly degenerated E1/2g VB and E1/2u CB states at M is also optically 

allowed and polarized with transverse isotropy. A total isotropic activity is found for the 

transition at the M point in the pseudo-cubic phase by considering that the star of the kM point 

contains three arms.75 Inclusion of SOC leads to a dramatic reduction of oscillator strengths that 

decreases to 17 eV for the fundamental transition at R.75 In terms of Kane energy, it drops to ca 6 

eV which is about four times smaller than that of GaAs, thus evidencing an additional difference 

between HOP and conventional semiconductors.  

ZYX ,,
0
CBME
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Figure 5. Electronic band structure of CH3NH3PbI3 (MAPbI3) in the low temperature 
orthorhombic Pnma phase (a) without and (b) with SOC at the GGA level of theory with the 
ABINIT code. The energy levels are referenced to the valence band maximum. (c) Overview of 
the crystal structure. Reprinted with permission from ref 66. Copyright 2013 American Chemical 
Society. 

Impact of SOC can be further analyzed by comparing the electronic structures of pseudocubic 

Pm3m, orthorhombic (Figure 5) and tetragonal phases of CH3NH3PbI3.74 These dispersion 

diagrams can be empirically rationalized by considering the spinor state basis and adding a 

perturbation Hamiltonian accounting for SOC to the k.p multiband Hamiltonian of the CBM 

close to the critical point R of the cubic BZ (equation 1) and the perturbative strain Hamiltonian 

(equation 2). Noteworthy, the lattice distortion at the cubic-tetragonal phase transition combined 

with SOC leads to a complete splitting of the vectorial representation, whereas only a partial 

splitting is predicted when the SOC is neglected (Figure 3e).74 Indeed for such a tetragonal lattice 

distortion, the three eigenvalues of the total Hamiltonian including all effects are doubly 

degenerated and can be analytically calculated at the critical point of the BZ (R-point in the cubic 

phase):  

E0 = ECB
0 + l +m( )εxx +mεzz +ΔSO 3

E± = E0 −
δE +ΔSO

2
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δE −ΔSO 3
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#
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with . The effect of strain is systematically smaller than that induced 

by SOC in lead halide compounds. If SOC is neglected (ΔSO=0 in equation 3), one of the CBM 

eigenvalues remains doubly degenerated (Figure 3e).  

The most important effect of SOC is the reduction of the DOS in the conduction band by a factor 

of 3 as compared to DOS calculated without SOC.74,75 This DOS reduction has a deep impact on 

both transport and optical properties, which leads to a net reduction of the optical absorption by 

the same amount. However, since both valence and conduction bands are now associated with 

two dispersion parabola with almost the same effective masses (i.e. band curvatures), 89,92 well-

balanced carrier transport is obtained for both electrons and holes. Moreover, the optical 

absorption is related to the joint density of states close to the critical R-point, and thus to reduced 

mass µ. This quantity is smaller in GaAs than in 3D HOP, because the mass of the hole and of 

the electron, are respectively larger and smaller. This important property directly connected to 

SOC adequately compensates the smaller Kane energy (oscillator strength) of 3D HOP.75  

When including SOC, the calculated band-gaps of 3D HOP appear substantially under-estimated. 

This is a well-known limitation of DFT that can be corrected by including many-body effects 

using GW self-energy corrections for the band gap66 and the Bethe−Salpeter equation for the 

exciton.74 Accurate GW self-energy corrections have been reported by several research 

groups.80,92,108 These affords more accurate effective masses of the carrier both for conventional 

semiconductors and HOP.  

( )( )zzxxmlE εεδ −−=
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Figure 6. (left) Electronic band structure of the layered HOP ([pFC6H5C2H4NH3]2PbI4), (a) 
without and (b) with SOC at the GGA level of theory with the ABINIT code.61 Energy levels are 
referenced to the valence band maximum. (right) General schematic representations of a layered 
HOP electronic band diagram without and with SOC (ΔSO). Δcr represents the anisotropy of the 
crystal field. This panel includes the a) real and b) imaginary parts of the complex spinorial 
components of the first and second CBM states with spin up component on top of the spin down 
component. Reprinted with permission from ref 61. Copyright 2012 American Physical Society. 

Similar effects are predicted for layered HOP with the important difference that the CBM 

without SOC is only twice degenerated.61 SOC leads to a non-degenerate state at the CBM, and 

band dispersion at both CBM and VBM correspond to parabola (Figure 6) in a favorable 

configuration for optical activity. The study of the monocrystalline [pFC6H5C2H4NH3]2PbI4 as a 

model for layered HOP demonstrates that the optical process is governed by three active Bloch 

states at the Γ point of the reduced BZ (two Bloch states for the CBM and one for the VBM) 

with a reverse ordering compared to anisotropically bonded semiconductors. Giant spin-orbit 

coupling effects (Figure 6d) and optical activities can be subsequently inferred from symmetry 

analysis. Transverse electric (TE) optical activity has indeed been predicted theoretically,61 in 

good agreement with previous experimental results.1 TE optical activity indicates that the light is 

absorbed at the band gap energy only for an  electrical polarization parallel to the layer.   

5. LOSS OF INVERSION SYMMETRY AND INTERPLAY WITH SOC IN HOP 
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The room (high)-temperature crystal structure of 3D HOP remains under debate. For long time it 

was assumed that it is a Pm3m pseudo-cubic phase, with dynamical disorder of the organic 

cations CH3NH3
+.124 Recent single crystal X-ray diffraction experiments, performed on 

CH3NH3MI3 close to room temperature, support a non-centrosymmetric tetragonal space group 

(P4mm, no 99).29 These compounds exhibit a phase transition to a tetragonal non-

centrosymmetric and centered I4cm phase (no 108), 29 instead of the previously reported 

symmetric I4mcm phase (no 140).124 This phase transition is associated to a group-subgroup 

relationship between P4mm and I4cm, similar to the previously proposed Pm3m-I4/mcm phase 

sequence analyzed for CH3NH3PbI3 and CH3NH3PbBr3.124  For CH3NH3PbI3, this transition 

occurs above room temperature (Tc = 333 K).   

 
Figure 7. (a) Band structure of the I4cm phase of CH3NH3SnI3 at the LDA level of theory with 

SOC and zoom close to the critical Γ point, (b) for CH3NH3PbI3 and (c) for CH3NH3SnI3 showing 

the Rashba-Dresselhaus-like spinor splitting due to the loss of inversion symmetry. Reprinted 

with permission from ref 74. Copyright 2014 John Wiley and Sons. 

The loss of the inversion symmetry combined with SOC is known to induce a splitting of the 

spinor bands away from the critical point Γ of the BZ in zinc-blende and würtzite structures.125 It 

was shown, that even a small symmetry breaking might lead to a strong spinor splitting in 3D 
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HOP, since the SOC effect is giant by comparison to conventional semiconductors.74  Indeed, the 

electronic band diagram of the P4mm phase of both CH3NH3MI3 HOPs close to the critical point  

A (corresponding to R of the ideal cubic phase) exhibits a splitting of the spinor bands, even 

though the deviation from the centrosymmetric Pm3m phase is small.74 This effect is more 

important for the tetragonal I4cm CH3NH3PbI3 and CH3NH3SnI3 3D HOP (Figure 7).74 The bands 

are folded from A to Γ. This result was confirmed and analyzed, using different DFT approaches 

and subsequent many-body corrections.83,92,114 This effect still deserves some experimental 

investigation, and various names were used for the interplay between SOC and loss of inversion 

symmetry in 3D HOP: “band splitting”,74  Rashba/Dresselhaus,83 Dresselhaus,83 Rashba.114 

Besides, we underline that most works on the low temperature phase of CH3NH3PbI3 use a 

refined centrosymmetric orthorhombic Pnma structure. However, the structure of the low 

temperature-phase of CH3NH3MI3 is still debated: alternative monoclinic, triclinic or non-

centrosymmetric Pna21 (no 33) orthorhombic space groups have been suggested, which might 

also lead to spinor band splitting away from critical points of the BZ.  

6. QUANTUM CONFINEMENT AND BAND ALIGNEMENT IN LAYERED HYBRID 

PEROVSKITES 

Most available theoretical studies of layered HOP either give a general description of the 

electronic band structure, mostly using DFT,55,57,61 or focus on the excitonic coupling using 

effective mass parameters for the carrier dispersion and abrupt dielectric confinement 

schemes.126,127 HOP are very large systems for DFT simulations, and may not be readily 

simulated due to computational resources limitations. A fruitful schematic representation was 

proposed earlier for the layered HOP, introducing the quantum well (QW) concept.11 This 
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qualitative picture is based on the observation that these HOP are built from semiconducting 

inorganic sheets alternating with organic layers having much wider band gaps. It has led a 

qualitative picture of a type-I QW-like heterostructure but without quantitative evaluation of the 

quantum confinement effect. 

 

Figure 8. (a) Schematic representation of the CB and VB band alignment considering the 
(C10H21NH3)2PbI4 layered HOP (A/B) as a composite structure made of A and B modeled by 
(Na)2PbI4 and C10H21CH3, respectively. (b) Computed potential profiles for the real layered 
material (A/B, straight line) and A (dashed line) and B (dotted line) bulk-like materials. Band 
alignment and match of potential profiles of A/B are obtained thanks to downward shifts of the 
data computed for A and B amounting to 1.1 and 0.04 eV, respectively. Alignment of Pb 5d 
orbitals between A/B and A also require a 1.1 eV shift. Computations were performed at the 
GGA level of theory with the SIESTA code. Reprinted with permission from ref 128. Copyright 
2014 John Wiley and Sons. 

However, quantitative description of layered HOP faces a special problem.128 In fact, defining the 

A/B heterostructure (the layered HOP) is straightforward, but the A and B bulk partners are not 

easily defined. A reverse situation applies in heterostructures grown from conventional 

semiconductors, since in this case the A and B bulk partners are usually well-defined, whereas 

the A/B heterostructure (a QW for example) deserves experimental or theoretical investigations 
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to capture accurately effects of strain or interfaces.123 At a first glance, A and B of layered HOP 

may be roughly defined as the inorganic and organic layers, respectively. It is however not 

conceptually possible to identify the A and B bulk partners with the inorganic PbI4
2- layer and the 

sheet of organic cations, respectively, because the Coulomb interactions have a large impact on 

the electronic structure of the hybrid material, especially for electronic states located close to the 

electronic band gap.  

A description of the whole layered HOP structure as a composite material in a slightly different 

way leads to a rigorous composite approach to compute the valence band-lineup of layered 

HOP.128 It is illustrated for (C10H21NH3)2PbI4 in Figure 8. Structure A corresponds to an inorganic 

PbI4
2- perovskite layer with additional Na cations. The latter are located at the position of the 

nitrogen atom of each organic cation, so as to mimic the strong Coulomb interactions close to the 

inorganic layer. This procedure is similar to the one described in section 3 for 3D HOP.  

Structure B is made from organic neutral molecules, namely C10H21CH3, where nitrogen has been 

replaced by a carbon atom, thus ensuring electroneutrality and avoiding electron double 

counting. This analysis shows that layered HOP can be considered as composite materials with 

very weak interactions between the inorganic layers, with a reconstruction of the whole Hartree 

potential profile by pieces. This procedure also affords the complete conduction and valence 

band alignments of A and B “bulk like” materials with respect to each other and leads to a 

confinement potential both for holes and electrons in the inorganic layer. Interestingly, alignment 

of the Pb 5d orbitals of both structures is obtained by applying the very same offsets. In fact, Pb 

5d orbitals are low lying orbitals virtually unaffected by chemical substitution in such HOP and 

have already been suggested to offer an electronic marker to deduce absolute VB energies.66 It 

gives a first quantitative basis to the schematic picture initially proposed by Mitzi and 
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coworkers.11 It should be noted that this quantitative approach for layered HOP can be extended 

to other classes of 2D functional materials.128 

It is quite tempting to apply effective mass models based on an ultrathin quantum well with finite 

confinement barriers for carriers, in order to predict quantum confinement effects in layered 

HOP.129 In fact, these empirical models predict superlattice (SL) effects that are not observed 

experimentally or in DFT simulations.61,128 A first fundamental limitation of such approaches is 

that the computed energies of the confined charge carriers lie in a range where strong non-

parabolicity occurs.128 Indeed, the commonly used reference bulk material, namely 

(CH3NH3)PbI3, taken for the inorganic QW129 is inappropriate.128 An even more important 

limitation is that the effective mass model for conventional semiconductor heterostructures is 

linked with a definition of envelope functions to describe the electronic eigenfunctions of the 

whole heterostructure:  

𝜓 𝒓 = 𝐹! 𝒓  𝑈!(! 𝒓),           (4) 

where 𝐹!(𝒓) are expected to be slowly varying functions and 𝑈!(𝒓) are periodic and rapidly 

oscillating  functions. In order to further simplify the theoretical approach, the envelope function 

approximation (EFA) is usually implemented in these heterostructures. This approximation relies 

on the assumption that many conventional bulk semiconductors are similar in their chemical 

nature, and that the Bloch functions of the bulk materials at high symmetry points of the BZ 

differ only slightly. At the Γ point, it corresponds to the following approximation: 

𝑈!(𝒓) ≈ 𝑈!,𝟎! (𝒓)  ≈ 𝑈!,𝟎! (𝒓)        (5) 

If this condition is verified, boundary conditions related to the A/B heterostructure, namely 

𝜓 𝒓  total wavefunction matching and current conservation, are reduced to the envelope 
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functions only. For a simple effective mass model in a A/B 2D structure perpendicular to the 𝑧 

axis having its interface at 𝑧 = 𝑧!: 

𝐹!! 𝑧! = 𝐹!!(𝑧!)            (6) 

!
!!

!!!!(!)
!" !!!!

= !
!!

!!!!(!)
!" !!!!

    

The condition on the Bloch functions of A and B partners (equation 5) is obviously not fulfilled 

in layered hybrid perovskites. The confinement potentials are correctly defined but cannot be 

combined with effective mass modeling to predict quantum confinement effects.128 Thus, DFT 

remains the best tool to explore theoretically electronic properties of layered HOP.61  

7. QUANTUM CONFINEMENT AND BAND ALIGNMENT IN 3D HYBRID 

PEROVSKITE HETEROSTRUCTURES 

Heterostructures built from 3D HOP have not yet been explored experimentally, but may afford 

interesting possibilities for bang gap engineering and tuning of the optical and transport 

properties.  The electronic band dispersion diagrams of two short SL of 

CH3NH3PbI3/CH3NH3PbBr3 are compared in Figure 9. The stacking axis for the two SL 

correspond to the long axis (b) of pure CH3NH3PbI3 and CH3NH3PbBr3 in their low temperature 

Pnma orthorhombic phases. The electronic dispersions of the two SL along the Γ-Y direction are 

more flat than for pure compounds, indicative of quantum confinement. Thus, the CH3NH3PbI3 

domain of a CH3NH3PbI3/CH3NH3PbBr3 SL can be considered as a QW.  

This finding is consistent with the CB and VB confinement potentials reported recently in this 

system (0.09 eV in the CB and 0.26 eV in the VB).93 However, the electronic dispersions along 

the Γ-Y direction are not completely flat (Figure 9) like in a 2D layered HOP (Figure 6). This is 

a clear indication that the wavefunctions both in CB and VB are coupled from CH3NH3PbI3 QW 
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to CH3NH3PbI3 QW (so-called SL effect), and are delocalized across the CH3NH3PbBr3 barrier. 

This is confirmed when plotting along the SL axis, the electronic density of the VBM of the short 

SL (SL2) containing two CH3NH3PbI3 cells and one CH3NH3PbBr3 cell (Figure 10). The 

electronic density is maximum in the CH3NH3PbI3 QW, but non-zero in the CH3NH3PbBr3 

barrier.  

 
Figure 9. Electronic band dispersion diagrams of (a) a short SL (SL1) containing one 
CH3NH3PbI3 cell and one CH3NH3PbBr3 cell, and (b) a second short SL (SL2) containing two 
CH3NH3PbI3 cells and one CH3NH3PbBr3 cell. The diagrams are computed at the DFT level with 
a GGA exchange-correlation functional. SOC is not considered. 

Moreover, one may notice that the electronic density variation is based on the same repeated 

pattern close to lead atoms (Figure 10a). This pattern is characteristic of the VBM Bloch 

functions of both CH3NH3PbI3 and CH3NH3PbBr3 3D bulk HOP.66 The 𝑈!(𝒓) ≈ 𝑈!,𝟎! (𝒓)  ≈

𝑈!,𝟎! (𝒓) condition (equation 5) is thus fulfilled with A=CH3NH3PbI3 and B=CH3NH3PbBr3. We 

may thus infer that the EFA is justified for an heterostructure built from 3D HOP. We must point 

out that computation of the electronic properties, including quantum confinement and electronic 

band gap opening, are only qualitatively computed at the DFT level, since the effective masses at 

CBM and VBM are not well predicted at this level of theory. Figure 10c is a representation of 

the CBM and VBM energies computed for a single CH3NH3PbI3/CH3NH3PbBr3 QW within the 

EFA as a function of the QW thickness. The effective masses were taken from ref. 92 (DFT 
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including GW corrections) and the quantum confinement potentials from ref. 93. The quantum 

confinement effect is expected to show off mostly for CH3NH3PbI3 QW thicknesses below 4nm, 

where the correction to the band gap is larger than 0.1eV. This is consistent with the fact that the 

DFT computation for SL2 (Figure 9b) is different from that of bulk CH3NH3PbI3 (Figure 5a).  

 
Figure 10. (a) Representation of the electronic density for the VBM of the short superlattice SL2 
containing two CH3NH3PbI3 cells and one CH3NH3PbBr3 cell (Figure 9). (b) Overview of the 
atomic structure. The diagrams are computed at the DFT level with a GGA exchange-correlation 
functional. SOC is not considered. (c)   Electron (CBM) and hole (VBM) ground state energies 
as a function of QW thickness computed with effective masses and confinement potentials. 

8. EXCITONIC PROPERTIES OF 3D AND LAYERED HYBRID PEROVSKITES 

Excitonic effects in 3D HOP can be accounted for using the Bethe-Salpeter Equation (BSE) 

starting from the monoelectronic states calculated at the DFT level. When taking the high 

temperature cubic phases of CH3NH3PbI3 and CH3NH3PbCl3 enhancement of absorption at the 

bandgap was clearly evidenced in the first BSE simulations reported in the literature (Figure 

11).74 In the perturbative BSE/DFT approach, screening of the electron-hole interaction due to 

atomic motion75 is however not taken into account. Thus it is more suited to the low temperature 

phases where these motions are frozen. Such calculations are computationally more demanding 

and only resonant states may be addressed accurately.117 This means that at higher temperature 

experimental results on the exciton cannot be fully understood from BSE /DFT calculations, if 

atomic motions are important.  
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Figure 11.  Comparison of the dielectric constant variation of CH3NH3PbI3 in the cubic phase 
with (dotted line, BSE calculation) and without (straight line, RPA calculation) the excitonic 
interaction. Onsets of optical transitions at R and M points are indicated. Reprinted with 
permission from ref 74. Copyright 2014 John Wiley and Sons. 

Given the large carrier mobilities reported for 3D HOP at room temperature, it prompts the 

question of the nature of photoexcited species: are they free charges or excitons? If excitons, 

what role do they play in transport properties?75 Importance and origin of exciton screening can 

be gauged from experimental absorption spectra of CH3NH3PbI3 recorded two decades ago by 

Ishihara et al (Figure 12).4,75  These data are consistent with an exciton quenching between 159K 

and 212K, in relation with the structural transition at Tc = 162K. The exciton quenching includes 

both exciton screening and gap-switching (ill-named exciton-switching), that also appears in 2D 

hybrids. A convenient way to simulate exciton screening is to consider a two-particle wave 

function ( )he rr ,ψ , where er ( hr ) is the electron (hole) position. The effective mass approximation 

works well close to the bandgap in 3D HOP both for electrons and holes, thanks to the giant 

SOC in the CB leading to a non-degenerate band instead of a triply degenerate one obtained 

without SOC. For a Wannier exciton, the two-particle Hamiltonian including electrostatic 

interaction and effective mass approximation for electrons and holes reads:  

heeff
rh

h
re

e
g rr

e
mm

EH
−

−Δ−Δ−=
πε422

222 !!  
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gE  is the bandgap energy, effε the effective dielectric constant and em ( hm ) the electron (hole) 

effective mass. Introducing the center-of-mass coordinate 
he

hhee

mm
rmrm

R
+

+
=  and the difference 

coordinate he rrr −= , the general solution becomes of separable form, ( ) ( )r
V
err

RiK

he ϕψ
.

, = , 

where ( )rϕ  is the wave function for the relative motion. The corresponding Hamiltonian reads: 

r
eEH
eff

rgr πεµ 42

22

−Δ−=
!

  

The reduced mass is defined by . For the relative electron-hole motion, the 

Hamiltonian has two types of solutions: bound pair states and a continuum of pair states having 

energies larger than the bandgap energy. The optical absorption reads:  

       

is a reduced energy, a broadening factor that depends on the temperature and 

 the absorption enhancement factor of the continuum of pair states. 

 
Figure 12. Optical absorption spectra of CH3NH3PbI3 highlighting exciton screening. 
Experimental data taken from Ref. 4 recorded at 159 K (black line) and 212 K (blue line) and 
computed spectra for bound and continuum pair states, considering two-particle wave function 
and effective mass equations for electron and hole . The effect of dielectric screening is shown 
for εeff =11 (red dash line) and 20 (green dot line) and leads to a good fit of the experimental 
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spectra below (159K) and above Tc (212K), respectively. Reprinted with permission from ref 75. 
Copyright 2014 American Chemical Society. 

In the limit of free carriers or a totally screened interaction, the first sum (bound exciton pair 

states) disappears in the optical absorption expression and ( )ES ~  reduces to 1. Simulated optical 

absorption spectra using this expression are compared to experimental data in Figure 12 

considering different dielectric constants to highlight screening effects. Experimental absorption 

spectra above Tc are well reproduced with a larger effective dielectric constant than below Tc. It 

yields a reduction of the 1S exciton binding energy for all the spectra above Tc, from ca 15 to 

5meV.75 The value of the exciton binding energy being smaller than kT (~26meV) at room 

temperature, we may infer that most electron-hole pairs are ionized yielding free carriers. This 

also leads to ca 80meV shift of the electronic bandgap at Tc.  For CH3NH3PbX3, we thus 

concluded that the exciton resonance below Tc is related to a Wannier like exciton already 

partially screened by polar modes, that becomes completely screened above Tc, yielding almost 

free carriers when the orientational motions of the cations are collectively activated by a 

structural phase transition. It shall be pointed that recent experimental results,53 similar to the one 

reported in Figure 12 and carefully measured up to the room temperature, were discussed on the 

basis of a commonly accepted larger exciton binding energy (~37-50 meV) reported earlier at 

helium temperature.4,130 In order to overcome this apparent paradox, a complete experimental 

study was performed on a single crystal from helium temperature up to the room temperature 

(Figure 13, left part).131  In the [25-75K] temperature range, multiple exciton lines were indeed 

observed. The helium temperature exciton line was attributed to a bound exciton with a long 

lifetime, possibly arising from a strong coupling with the organic cations.     

The Wannier exciton screening phenomenon was connected with a renormalization of the 

dielectric constant at high temperature above Tc (Figure 13, right part).75  The high frequency 
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dielectric constant ε∞ is equal to about 6.5 for CH3NH3PbI3, it has a smooth variation (~30) as a 

function of the temperature in the medium frequency range (~90GHz). 124 The difference 

between these two values can be associated to the contributions of polar optical phonons by 

comparison to purely inorganic 3D perovskites.75 The low frequency value (~1KHz) undergoes a 

steep increase above the critical temperature Tc,
132  and amounts to about 60 at room temperature. 

This is attributed to the thermal activation of the collective tumblings of methyl ammonium 

cations.75 More recently, a giant dielectric constant phenomenon was shown in these materials 

consisting on a low frequency dielectric constant in the dark of the order 1000.133 With 

illumination under 1 sun, an additional factor of 1000 was measured.  This effect was attributed 

to very slowly moving photoinduced carriers assisted by molecular rotations.  

 
a)                          b)                                                                 c) 

Figure 13. (Left) Temperature dependent PL of CH3NH3PbI3 single crystal. (a) Contour plot of 
PL spectra of CH3NH3PbI3 single crystal at different temperatures under weak excitation density 
(0.42 µJ/cm2) and (b) PL spectra at different temperatures. Reprinted with permission from ref 
131. Copyright 2015 John Wiley and Sons. (Right, c) Schematic drawing of the dielectric 
constant as a function of frequency displaying respective contributions of CH3NH3

+ rotations and 
perovskite’s vibrational phonons. Frequency dependence of the dielectric constant of 
CH3NH3PbX3 as derived from available experimental data. The high frequency response is 
related to vibrational polar phonons stemming from modes of the perovskite lattice (right-hand 
side). The low frequency region (left-hand side) shows significant differences for the low (LT, 
red dash line) and room (RT, black line) temperature phases. The static dielectric constant (εS) 
increase at RT is primarily attributed to rotational motion of CH3NH3

+ cations. Reprinted with 
permission from ref 75. Copyright 2014 American Chemical Society. 
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For layered HOP, resonance energies of Wannier-series excitons have been measured and 

empirically predicted up to the 4s state.134 Figure 14-a shows the low temperature absorption 

spectrum of the layered HOP (C6H5C2H4–NH3)2PbI4 (PEPI) layer. The peak located at about 

2.35-2.40eV correspond to the exitonic resonance, and the band to band absorption edge is 

located at about 2.60eV. The exciton binding energy is thus very large on the order of 200-

250meV.  For that reason, clear exciton signatures can be observed at room temperature by 

photoluminescence or absorption on the same compound (Figure 14-b).135 This behavior is 

clearly different from the one of 3D HOP (Figures 12 and 13).  

In 2D HOP, the enhanced exciton binding is related to dielectric confinement and image-charge 

effects, where the dielectric mismatch between both the inorganic and the organic layers is the 

most important parameter.126,127 The 2D Wannier exciton model leads to a consistent picture 

where the in-plane exciton Bohr radius exceeds by far the thickness of the inorganic layer where 

it is confined. It allows a consistent theoretical analysis of the influence of halogen alloying on 

the excitonic properties of layered HOP exactly like in Ga1-xAlxAs, Cd1-xHgxTe conventional 

semiconductor pseudobinary alloys.79 Figure 14-b shows the room temperature optical tunability 

and inhomogeneous broadening of  C6H5C2H4–NH3)2PbI4(1-x)Br4x (PEPI/PEPB) alloys. 

 
Figure 14. (a) Absorbance spectrum of a 50 nm thick (C6H5C2H4–NH3)2PbI4 (PEPI) layer 
deposited by spin-coating on a glass substrate at T=10K. The peak located at about 2.35-2.40eV 
correspond to the exitonic resonance, and the band to band absorption edge is located at about 
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2.60eV. (b) Room temperature (RT) optical absorbance spectra of (C6H5C2H4–NH3)2PbI4(1-x)Br4x 
(PEPI/PEPB) alloys. Reprinted with permission from ref 79. Copyright 2014 American 
Chemical Society. 

Until recently, empirical modeling of dielectric confinement in layered HOP relied on crude 

models with ad-hoc abrupt interfaces. Recently, we have introduced the basic concepts needed to 

model dielectric confinement beyond an abrupt interface, based on the atomic structure of the 

interface.136 It solves the well-known problem of self-energy divergence at abrupt dielectric 

interfaces and was first implemented for CdSe colloidal nanoscale platelets.136 This method 

allows to bridge the gap between empirical and DFT approaches used to investigate hybrid nano-

objects with 2D electronic properties.137 It may also contribute to further unravel electronic and 

dielectric properties of HOP, especially of layered structures such as (R-NH3)2MX4 and 

nanocrystals or slabs of (R-NH3)MX3.  

9. AUGER EFFECTS IN 3D HYBRID PEROVSKITES 

Next, in order to gauge the importance of third-order non-radiative Auger effects on the 

recombination in hybrid perovskites, let us recall a few basic properties of these effects in the 

case of free carriers for III-V semiconductors (Fig. 15a). An electron in the CB may recombine 

with a heavy hole (HH) in the VB, either by transferring energy and momenta to an electronic 

transition in the CB (CCCH or CHCC process) or to a hole jumping from the HH band to the 

spin-orbit split-off (SO) band (CHHS or CHSH process). Among the numerous other possible 

processes, a third process (CHLH or CHHL) not represented here is usually considered in 

addition. This is weaker than the CHHS process, except when the spin-orbit splitting energy is 

larger than the band gap value. A complete computation involves repeated summations over the 

particle momenta and a careful description of the electronic band structure since electronic states 

J. Phys. Chem. C, 2015, 119 (19), pp 10161–10177  DOI: 10.1021/acs.jpcc.5b00695 
 



 35 

away from the band gap are involved. The dependence on the electronic band gap, effective 

masses and carrier densities can be estimated using parabolic approximations for the electronic 

dispersions:138-140 
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The Auger effect decreases exponentially as the band gap increases in III-V semiconductors. 

Moreover, the CHHS process prevails in most cases, when the SOC is of the same order as the 

band gap value. However, in n-type III-V semiconductors, the CCCH process is dominant 

through the pn2  term. For large band gap materials like GaAs, where Auger processes are very 

weak, phonon-assisted Auger processes (not described here) give the most important 

contribution.139   

 
Figure 15. Dominant Auger processes in (a) III-V semiconductors and (b) hybrid perovskites. 
(a) HH, LH and SO correspond to heavy hole, light hole and hole spin-orbit split-off states of the 
VB in III-V semiconductors. (b) HE, LE and SO correspond to heavy electron, light electron and 
electron spin-orbit split-off states of the CB in hybrid perovskites. 
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The electronic band structure of hybrid perovskites (Fig. 15b) has two important differences with 

respect to that of III-V semiconductors: 1) the band structure has a reverse band ordering, with 

SOC in the CB, and 2) the SOC energy is much larger than that found in III-V semiconductors. 

Using the method developed for III-V semiconductors, we obtain the dependence on the 

electronic band gap, effective masses and carrier densities for the main two processes: 
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An electron in the split-off state (S) of CB may recombine with a hole (V) in the VB, either by 

transferring energy and momenta to an electronic transition in the split-off state of the CB (SSSV 

process) or to a hole in the valence band  (SVVV process). Using effective masses of 0.12 and 

0.15 for the split-off CB and for the VB respectively, we deduce that the SVVV process slightly 

dominates over the SSSV process, especially when considering the natural p-doping of hybrid 

perovskites. However, in HOP the overall effect is expected to be small like in large band gap 

III-V semiconductors (GaAs,InP,…). A process involving SOC, and heavy electrons (HE) or 

light electrons (LE) in the CB (HSSV or LSSV processes), requires a more detailed analysis, 

since HE and LE electronic states, lying at high energy in the CB, are hybridized with molecular 

states.66   

Besides, one may also expect that some of the carriers generated by the secondary optical 

transitions at R may be trapped in the F3/2u (CB) and F3/2g (VB) states (Figure 4). Further 
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relaxation F3/2g → E1/2g (holes) and F3/2u → E1/2u (electrons) may occur by optical phonon assisted 

relaxations, provided that the energy conservation rule is fulfilled. Such a “phonon bottleneck” is 

well-known in the case of carrier injection in semiconductor quantum dots. However, in quantum 

dots, carrier assisted (Auger relaxation) is the dominant effect in the high injection regime, 

yielding very fast carrier relaxation. A similar hot hole cooling (intraband process) from F3/2g to 

E1/2g is consistent with the relaxation after optical excitation reported for CH3NH3PbI3.28 

10. COMPUTATIONAL METHODS 

Some calculations were performed using the DFT implementation available in the ABINIT 

package,141 with the LDA or the GGA PBE gradient correction for exchange-correlation142 and 

relativistic, norm-conserving, separable, dual-space Gaussian type pseudopotentials of 

Goedecker, Teter, and Hutter for all atoms.143 The SIESTA code was used for the other 

simulations at the DFT-GGA level,144 calculations being performed with and without SOC.145 

11. CONCLUSIONS AND PERSPECTIVES 

In summary, this paper reviews some of the recent theoretical investigations that have 

contributed to gain better physical understanding of 2D and 3D HOP materials. It turns out that 

solid-state physics concepts are adapted to this “new” class of semiconductors, and prove to 

provide valuable tools when combined with DFT simulations of the optoelectronic properties. 

The pseudocubic perovskite structure plays a central role in this approach, allowing to define 

reference Bloch states and k.p Hamiltonians close to the electronic band gap. Lattice distortions, 

including loss of inversion symmetry, as well as spin-orbit coupling have a strong impact on the 

electronic band structure, in particular regarding folding, degeneracy, effective masses and 

optical absorption. A careful examination of the concepts of Bloch function and envelope 
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function is particularly helpful to understand the difference between layered HOP, and 

heterostructures made of 3D HOP. Carrier confinement potentials can be defined in both cases. 

Many-body interactions are discussed starting with excitonic interactions, where screening and 

dielectric confinements are of outmost importance for the optical properties at room temperature 

in 3D and layered HOP, respectively. The Wannier exciton picture holds for HOP in the medium 

to high temperature range (typically [100-300K]). The Wannier exciton wavefunction is mostly 

built from the Bloch wave electronic states located on the inorganic lattice. By contrast to 

layered HOP, the Wannier exciton in 3D HOP is strongly screened by collective molecular 

rotations as well as vibrations of the inorganic lattice. This mechanism, which leads to almost 

free carriers at room temperature, is essential to explain the good transport properties of these 

materials for photovoltaic applications. In the low temperature range, the interaction of the 

electron-hole pairs with neighboring molecules is expected to yield bound excitons with long 

lifetime in 3D HOP as shown by recent experimental studies.131 Further investigations are needed 

to explain the microscopic origin of this strong coupling mechanism, which might be connected 

to the giant dielectric constant observed in 3D HOP at low frequency and under 

illumination.133Theoretical studies on many-body effects in HOP are scarce due to the complexity 

of these materials. However, we have shown that semi-empirical approaches previously 

developed for conventional semiconductors may provide with new perspectives to analyze these 

effects. As an example, the detrimental non-radiative Auger effect close to the electronic band 

gap of 3D hybrid perovskites, is expected to have a moderate influence on the performances of 

optoelectronic devices. Finally, we hope to have convinced the reader that theoretical methods 

developed for both molecular materials and inorganic semiconductors may be efficiently 

combined to make further progress in the understanding of HOP. 
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