
 

Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 12864

To link to  this  article :  DOI  :10.1007/s11787-013-0089-6
URL : http://dx.doi.org/10.1007/s11787-013-0089-6

To cite this version : Prade, Henri and Richard, Gilles From 
Analogical Proportion to Logical Proportions. (2013) Logica 
Universalis, vol. 7 (n° 4). pp. 441-505. ISSN 1661-8297  

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12864/
http://oatao.univ-toulouse.fr/12864/
http://dx.doi.org/10.1007/s11787-013-0089-6
mailto:staff-oatao@listes-diff.inp-toulouse.fr


From analogical proportion

to logical proportions

Henri Prade and Gilles Richard

Abstract. Given a 4-tuple of Boolean variables (a, b, c, d), logical proportions
are modeled by a pair of equivalences relating similarity indicators (a∧ b and

a ∧ b), or dissimilarity indicators (a ∧ b and a ∧ b) pertaining to the pair
(a, b), to the ones associated with the pair (c, d). There are 120 semantically
distinct logical proportions. One of them models the analogical proportion
which corresponds to a statement of the form “a is to b as c is to d”. The
paper inventories the whole set of logical proportions by dividing it into 5
subfamilies according to what they express, and then identifies the proportions
that satisfy noticeable properties such as full identity (the pair of equivalences
defining the proportion hold as true for the 4-tuple (a, a, a, a)), symmetry
(if the proportion holds for (a, b, c, d), it also holds for (c, d, a, b)), or code
independency (if the proportion holds for (a, b, c, d), it also holds for their

negations (a, b, c, d)). It appears that only 4 proportions (including analogical
proportion) are homogeneous in the sense that they use only one type of
indicator (either similarity or dissimilarity) in their definition. Due to their
specific patterns, they have a particular cognitive appeal, and as such are
studied in greater details. Finally, the paper provides a discussion of the other
existing works on analogical proportions.

Keywords. proportion, analogical proportion, propositional logic, similarity,
dissimilarity, conditional object, square of opposition, Blanché hexagon, Pi-
aget group.

1. Introduction

Proportions, understood as the identity of relations between two ordered pairs of
entities, say (A,B) and (C,D) play a crucial role in the way the human mind



perceives the world and tries to make sense of it. Thus, proportions involve four
terms, which may not be all distinct.

In mathematics, a proportion is a statement of equality between the result
of operations involving numerical quantities (i.e., A,B,C,D are numbers). The
geometric proportion amounts to state the equality of two ratios, i.e., A/B = C/D,
while the arithmetic proportion compares two pairs of numbers in terms of their
differences, i.e., A−B = C−D. In these equalities, which emphasize the symmetric
role of the pairs (A,B) and (C,D), geometric or arithmetic ratios have an implicit
comparative flavor, and the proportions express the invariance of the ratios. Note
that by cross-product for geometric proportion, or by addition for the arithmetic
one, the two proportions are respectively equivalent to AD = BC and to A+D =
B + C, which makes clear that B and C, or A and D, can be permuted without
changing the validity of the proportion. Moreover, mathematical proportions are
at the basis of reasoning procedures that enable us to “extrapolate” the fourth
value knowing three of the four quantities. Indeed, assuming that D is unknown,
one can deduce D = C × B/A in the first case, which corresponds to the well-
known “rule of three”, or D = C+(B−A) in the second case. Besides, continuous
proportions where B = C are directly related to the idea of averaging, since taking
B = C as the unknown respectively yields the geometric mean (AD)1/2 and the
arithmetic mean (A+D)/2.1 Thus, mathematical proportions have the following
distinctive features:

1. they involve 4 terms;
2. they satisfy an identity property, i.e., they trivially hold for (A,B) = (C,D);
3. they are symmetric;
4. central terms, or extreme terms, can be permuted;
5. 3 of the terms in a proportion uniquely determine the 4th one;
6. in a proportion, 2 terms are in mean positions with respect to the 2 others,

namely (B,C) w.r.t. (A,D) (as well as (A,D) w.r.t. (B,C), due to (3)).

Proportions have an important place in Ancient Greek mathematics, and play a
role in other areas as well (think for instance of the golden ratio obtained as the
solution ϕ = A/B of the geometric proportion (A + B)/A = A/B). Thus, in the
Book 5 about Justice of his Nicomachean Ethics, Aristotle makes explicit reference
to geometric proportions when discussing what is “fair”:

The just, then, is a species of the proportionate (proportion being
not a property only of the kind of number which consists of ab-
stract units, but of number in general). For proportion is equality

1A third type of proportion, called harmonic, combines geometric and arithmetic comparisons by

stating that A/D = (A−B)/(C −D). It is equivalent to 2AD = AC +BD, which expresses that

the double product of the extreme terms is the sum of the product of the odd rank terms and
of the product of the even rank terms. In this proportion, the pairs (A, B) and (C, D) no longer

play a symmetric role, as they do for the geometric and arithmetic proportions. When taking
B = C as the unknown number, one obtains the harmonic mean 2AD/(A + D). The arithmetic,
geometric and harmonic means are known as the Pythagorean means.



of ratios, and involves four terms at least. [· · · ] The ratio between
one pair is the same as that between the other pair; for there is
a similar distinction between the persons and between the things.
As the term A, then, is to B, so will C be to D, and therefore,
alternando, as A is to C, B will be to D. Therefore also the whole
[A+ C] is in the same ratio to the whole [B +D]; and this cou-
pling the distribution effects, and, if the terms are so combined,
effects justly. The conjunction, then, of the term A with C and of
B with D is what is just in distribution, and this species of the just
is intermediate, and the unjust is what violates the proportion; for
the proportional is intermediate, and the just is proportional.

(translation by W. D. Ross)

But Aristotle does not only make use of quantitative proportions. In many
places, he also considers comparative relations between 4 terms that form in mod-
ern words an analogical proportion, again expressing an identity of relation between
two ordered pairs. For instance, in the Book 1 (Part 17) of his Topics, when dis-
cussing the idea of “likeness”, he provides examples of such proportions between
things belonging to different genera:

[· · · ] As sight is in the eye, so is reason in the soul, and as is a
calm in the sea, so is windlessness in the air. Practice is more
especially needed in regard to terms that are far apart; for in the
case of the rest, we shall be more easily able to see in one glance
the points of likeness. We should also look at things which belong
to the same genus, to see if any identical attribute belongs to them
all, e.g. to a man and a horse and a dog; for in so far as they have
any identical attribute, in so far they are alike.

(translation by W. A. Pickard-Cambridge)

Another example by Aristotle can be found in his Prior Analytics:

For example let A be evil, B making war against neighbours, C
Athenians against Thebans, D Thebans against Phocians. If then
we wish to prove that to fight with the Thebans is an evil, we must
assume that to fight against neighbours is an evil. Evidence of
this is obtained from similar cases, e.g. that the war against the
Phocians was an evil to the Thebans. Since then to fight against
neighbours is an evil, and to fight against the Thebans is to fight
against neighbours, it is clear that to fight against the Thebans is
an evil. Now it is clear that B belongs to C and to D (for both are
cases of making war upon one’s neighbours) and that A belongs
to D (for the war against the Phocians did not turn out well for
the Thebans): but that A belongs to B will be proved through D.
Similarly if the belief in the relation of the middle term to the
extreme should be produced by several similar cases. Clearly then
to argue by example is neither like reasoning from part to whole,



nor like reasoning from whole to part, but rather reasoning from
part to part, when both particulars are subordinate to the same
term, and one of them is known.

(translation by A. J. Jenkinson)

Thus, due to their structural similarity with mathematical proportions, statements
of the form “A is to B as C is to D” have been called analogical proportions,
where A, B, C, D are no longer necessarily numbers, but may refer to situations
described through words, equations, pictures, ... and they can be used for the
so called “analogical reasoning”. Since Aristotle’s time, analogical reasoning has
received a lot of attention from researchers in many areas, and more particular from
scholars in philosophy, anthropology, cognitive psychology and linguistics (see, e.g.,
[17, 32, 47, 21, 28, 26, 27, 34, 25, 18, 46]), including artificial intelligence more
recently [31]. However, strangely enough, it seems that there has been no attempt
at providing some logical model of analogical proportions up to two noticeable
exceptions, which have been however fully ignored by the mainstream literature.

The first exception can be found in the Annex of a 1952 French book by
the psychologist Jean Piaget [57] (see also [58] pp. 35–37), where the following
definition of a so-called proportion logique is given: 4 propositions A, B, C, and D
make a logical proportion if the two following conditions hold A∧D = B ∧C and
A∨D = B ∨C. However, this logical proportion, which turns out, as we shall see,
to be one among the possible (equivalent) definitions of an analogical proportion,
usually denoted A : B :: C : D2, is introduced by Piaget without any reference to
analogy3.

The second exception is provided by Sheldon Klein [36, 37, 38], a computer
scientist with a strong background in anthropology and linguistics, who introduced
a so-called ATO operator (where ATO stands for “Appositional Transformation
Operator”). This Boolean operator, which is based on the logical equivalence con-
nective, amounts to compute the 4th argument of an analogical proportion between
Boolean vectors (describing the items in terms of binary features) by applying
D = C ≡ (A ≡ B) componentwise. Strictly speaking, this calculation does not
always fit with the correct definition of an analogical proportion, as we shall see.

In this paper we provide a systematic investigation of logical proportions
viewed in terms of 2 equivalences between conjunctions of pairs of atoms which
may be negated or not. The conjunction of two positive or two negative atoms,
by modeling their common truth or common falsity, expresses similarity, while
the conjunction of a positive atom and a negative atom expresses dissimilarity.

2The use of “::” for denoting the equality of ratios in (numerical) proportions (see [73] p. 394)

dates back to the 17th century mathematician William Oughtred [10], while “:” just denotes
ratios. Interestingly enough, this notation has been currently used for a longtime to denote
analogical proportions, although they are generally non numerical, while it is no longer in use
for numerical proportions.
3However, in a previous book [55] (pp. 97–99), Piaget informally investigates a similar idea, even
using an example of linguistic analogical proportion, still without explicitly mentioning analogy.



The analogical proportion then appears as a particular logical proportion, still
especially remarkable.

The paper is organized as follows. The next section 2 introduces a general
notion of logical proportions as pairs of logical equivalences linking 4 Boolean vari-
ables a, b, c, d combined two by two conjunctively, possibly in a negated form. It
also provides a typology of logical proportions into five classes. Section 3 studies
the semantics of logical proportions in terms of truth tables, and highlights the
fact that any logical proportion is true for 6 and only 6 valuations among 24 = 16
possible ones. Section 4 investigates meaningful properties of logical proportions,
such as identity, symmetry, permutability, code independency, transitivity, equa-
tion solvability by identifying the proportions that satisfy them among the 120
distinct logical proportions. Section 5 further studies the class of 4 homogeneous
logical proportions which includes analogical proportion, and analyzes them at the
light of the square of oppositions and other more general geometrical constructs.
Section 6 provides a structured overview of related works, first coming back on the
two early attempts by Piaget and Klein at providing a logical view of (ana)logical
proportions, before reviewing other logical and non logical approaches to analogical
reasoning.

2. Logical proportions

Before introducing the formal definitions, let us briefly clarify the notations used.

• When dealing with Boolean logic, a, b, . . . denote propositional variables (hav-
ing 0 or 1 as truth value), and we use the standard symbols ∧,∨ to build up
formulas (with parenthesis when needed). For the negation operator, instead
of using the standard ¬ symbol, we will use a to denote ¬a. This is done for
saving space when writing long formulas. As usual ⊤ (resp. ⊥) denotes the
always true (resp. false) proposition.

• 0 and 1 denote the Boolean truth values, and a valuation v is just a function
from the set of propositional variables to {0, 1}. As we generally consider only
4 variables a, b, c, d, it is sometimes convenient to refer to v by the 4-tuple
(v(a), v(b), v(c), v(d)).

• When we propose a new definition, we will use the symbol , meaning defini-
tional equality. For instance, F (a, b, c, d) , a ∨ b ∨ c ∨ d. The right hand side
of the equation is the definition of the left-hand side.

• When we consider syntactic identity, we use =Id: for instance a∧ b =Id a∧ b
but we do not have a ∧ b =Id b ∧ a.

• Finally, the symbol ≡ is reserved for the equivalence, i.e.

a→ b , a ∨ b

a ≡ b , a→ b ∧ b→ a



2.1. Similarity and dissimilarity indicators

Generally speaking, the comparison of two items A and B relies on the representa-
tion of these items. For instance, the items may be represented as a set of features
A and B. Then, one may define a similarity measure. This is the aim of the well-
known work of Amos Tversky [80], taking into account the common features, the
specificities of A w.r.t. B, and the specificities of B w.r.t. A, respectively modeled
by A ∩ B, A \ B, and B \ A. Here, we are not looking for any global measure
of similarity, we are rather interested in keeping track in what respect items are
similar and in what respect they are dissimilar using Boolean indicators. This is
why we adopt a logical setting: features are viewed as Boolean properties. Let P
be such a property, which can be seen as a predicate: P (A) may be true (in that
case ¬P (A) is false), or false. When comparing two items A and B w.r.t. such a
property P , it makes sense to consider A and B similar:

- when P (A) ∧ P (B) is true or

- when ¬P (A) ∧ ¬P (B) is true.

In the remaining cases:

- when ¬P (A) ∧ P (B) is true or

- when P (A) ∧ ¬P (B) is true,

we can consider A and B as dissimilar w.r.t. property P . Since P (A) and P (B) are
ground formulas, they can simply be considered as Boolean variables, and denoted
a and b by abstracting w.r.t. P . If the conjunction a ∧ b is true, the property is
satisfied by both items A and B, while the property is satisfied by neither A nor B
if a∧ b is true. The property is true for A only (resp. B only) if a∧ b (resp. a∧ b) is
true. This is why we call such a conjunction of Boolean literals an indicator, and
for a given pair of Boolean variables (a, b), we have exactly 4 distinct indicators:

• a ∧ b and a ∧ b that we call similarity indicators,
• a ∧ b and a ∧ b that we call dissimilarity indicators.

Let us observe that negating anyone of the two terms of a dissimilarity indicator
turns it into a similarity indicator, and conversely. Hence, negating the two terms
of an indicator yields an indicator of the same type. But negating an indicator does
not give an indicator. Besides, it is worth noting that the indicators we are going to
use are also those involved in Tversky’s similarity measure. Namely, his similarity
measure s(A,B) between two sets of features A and B is a combination F involving
the 3 components A ∩B,A \B and B \A, i.e. s(A,B) = F (A \B,B \A,A ∩B),
where \ denotes set difference.

2.2. Defining logical proportions

In a logical proportion, 4 items are involved: A, B, C, and D. Let a, b, c and
d the 4 Boolean variables corresponding to the same property. We have again 4
indicators per pair of Boolean variables, and a comparison of two pairs of items can
be only based on these indicators. The simplest way for expressing a comparison
is an equivalence between 2 indicators, like for instance a ∧ b ≡ c ∧ d.



A point has to be raised now: it seems natural that the informal idea of a
logical proportion should be independent of the way we encode items in terms of
the truth or the falsity of properties (just as a numerical proportion holds indepen-
dently of the base used for encoding numbers, or of the system of units representing
the quantities at hand). It means that the formula defining the proportion should
be valid when we switch 0 to 1 and 1 to 0. So let us consider a formula based on a
unique equivalence between indicators, denoted l1 ∧ l2 ≡ l3 ∧ l4, where the li’s are
literals. Let us now consider a valuation v such that v(l1) = v(l2) = v(l3) = 0 and
v(l4) = 1. Obviously this valuation makes the equivalence valid since v(l1 ∧ l2) =
v(l3 ∧ l4) = 0. But when we switch 0 to 1 and 1 to 0, it appears that the new
valuation v′ such that v′(l1) = v′(l2) = v′(l3) = 1 and v′(l4) = 0 does not validate
the equivalence anymore. Then one equivalence is not enough if we are interested
in “code-independency”. We have to consider at least 2 equivalences to capture
this behavior. For instance, (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d) clearly satisfies code
independency.

As a consequence, it is legitimate to consider conjunctions of 2 equivalences
between indicators, and such a conjunction will be called logical proportion [62, 64].
More formally, let us denote I(a,b) and I ′(a,b), (resp. I(c,d) and I ′(c,d)) 2 indicators

for (a, b) (resp. (c, d)). Note that I(a,b) (or I ′(a,b)) refers to one element in the set

{a∧b, a∧b, a∧b, a∧b}, and should not be considered as a functional symbol. Still,
we use this notation for the sake of readibility. Then

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of 2 distinct equiv-
alences between indicators of the form

I(a,b) ≡ I(c,d) ∧ I
′

(a,b) ≡ I ′(c,d)

An example of such proportion is ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)) where

• I(a,b) , a ∧ b, I(c,d) , c ∧ d,

• I ′(a,b) , a ∧ b, I ′(c,d) , c ∧ d.

Obviously, this formal definition goes beyond what may be expected from the
informal idea of “logical proportion”, since equivalences may be put between things
that are not homogeneous (i.e., mixing similarity and dissimilarity indicators in
various ways).

Let us first determine the number of logical proportions. Since we have to
choose 2 distinct indicators among 4 for a given pair of variables (a, b), we have
[42] = 6 candidate sets for (I(a,b), I

′

(a,b)). Building the pair of equivalences then leads

to 6 × 6 × 2 = 72 logical proportions. Indeed there are 6 × 6 candidate sets for
choosing a 4-tuple (I(a,b), I

′

(a,b), I(c,d), I
′

(c,d)), and there are 2 ways for combining

these indicators according to Definition 1. In this count, we have assumed that the
2 indicators that we choose for a pair are distinct, which is quite natural. It means
that we use exactly 4 distinct indicators to build up a proportion: 2 for (a, b) and
2 for (c, d). But if we accept that the same indicator appears twice, i.e., we use



only 3 indicators to build up a proportion (indeed using only 2 indicators would
not allow to build up two distinct equivalences). Then on top of the 72 previous
proportions, we have to add the 4 × 6 = 24 proportions that we can build using
only one indicator for (a, b) (and we have 4 choices), and 2 distinct ones for (c, d)
(for instance (a∧b ≡ c∧d)∧(a∧b ≡ c∧d) and similarly 24 when using one indicator
only for (c, d). So a total of 48 new proportions can be added. These proportions
that use 3 indicators only are called “degenerated logical proportions”[62]. This
leads to a total of 72 + 48 =120 logical proportions, included the degenerated
ones, which are potentially semantically distinct.

Clearly, thanks to the De Morgan’s laws, an equality a∧b = c∧d is equivalent
to a ∨ b = c ∨ d, without any use of a negation operator. Still, we stick for the
moment to the use of conjunctions and negations on each side of the equivalences,
which leaves the indicators explicit. The next subsection is devoted to a brief
typology of all these proportions.

2.3. Typology of logical proportions

Depending on the way the indicators are chosen, one may mix the similarity and
the dissimilarity indicators differently in the definition of a proportion. This leads
us to distinguish a specific subfamily of proportions, the so-called degenerated
proportions: those ones involving only 3 distinct indicators in their definition. For
instance (a∧ b ≡ c∧d)∧ (a∧ b ≡ c∧d) is such a proportion where I(c,d) =Id I

′

(c,d).

For the remaining proportions, it is required that all the indicators appearing
in the definition of the proportion are distinct. At this stage, it makes sense to
distinguish between two types of indicators: similarity indicators that are denoted
by S, and dissimilarity indicators that are denoted byD: e.g., D(a,b) ∈ {a∧b, a∧b}.
With this notation, among the non-degenerated proportions, we can identify 4
subfamilies that we describe below.

2.3.1. The 4 homogeneous proportions. For these proportions, we do not mix dif-
ferent types of indicators in the 2 equivalences. The homogeneous proportions are
of the form

S(a,b) ≡ S(c,d) ∧ S
′

(a,b) ≡ S′

(c,d)

or

D(a,b) ≡ D(c,d) ∧D
′

(a,b) ≡ D′

(c,d)

Thus, it appears that only 4 proportions among 120 are homogeneous. They are
(with names that will be explained later):

• analogy : A(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

• reverse analogy : R(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))



• paralogy : P (a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

• inverse paralogy : I(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

These 4 proportions are studied in details in Section 5. Analogy already ap-
peared under this form in [52]; paralogy and reverse analogy were first introduced
in [60], and inverse paralogy in [64]. While the analogical proportion (analogy,
for short) reads “a is to b as c is to d” and expresses that “a differs from b as c
differs from d, and conversely b differs from a as d differs from c”, reverse anal-
ogy expresses that “a differs from b as d differs from c, and conversely”, paralogy
expresses that “what a and b have in common, c and d have it also”4. Finally,
inverse paralogy expresses that “what a and b have in common, c and d miss it,
and conversely”. As can be seen, inverse paralogy expresses a form of antinomy
between pair (a, b) and pair (c, d). Note that we use two different words, “inverse”
and “reverse”, since the changes between analogy and reverse analogy on the one
hand, and paralogy and inverse paralogy on the other hand, are not of the same
nature. The meanings of the four above proportions is perhaps still more easy to
grasp when moving from Boolean variables, to situations described in terms of sets
of properties.

From now on, we denote analogy with A, paralogy with P , reverse analogy
with R, inverse analogy with I. When we need to denote any unspecified propor-
tion, we will use the letter T .

2.3.2. The 16 conditional proportions. Their expression is made of the conjunction
of an equivalence between similarity indicators and of an equivalence between
dissimilarity indicators. Thus, they are of the form

S(a,b) ≡ S(c,d) ∧D(a,b) ≡ D(c,d)

There are 16 conditional proportions (2× 2 choices per equivalence). They appear
in Table 9 in Annex A. An example is

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

Let us explain the term “conditional”. It comes from the fact that these
proportions express “equivalences” between conditional statements. Indeed, it has
been advocated in [19] that a rule “if a then b” can be seen as a three valued entity
that is called “conditional object” and denoted b|a [16]. This entity is:

• true if a∧ b is true. The elements making it true are the examples of the rule
“if a then b”,

• false if a ∧ b is true. The elements making it true are the counter-examples
of the rule “if a then b”,

4Although we have been using the term “paralogy” since we introduced this proportion in [60],

“parallelogy” could be a more accurate term for expressing a logic of parallelism between situa-
tions (a, b) and (c, d).



• undefined if a is true. The rule “if a then b” is then not applicable.

Thus, the above proportion ((a∧ b) ≡ (c∧ d))∧ ((a∧ b) ≡ (c∧ d)) may be denoted
b|a :: d|c combining the two conditional objects in the spirit of the usual notation
for analogical proportion. Indeed, it expresses a semantical equivalence between
the 2 rules “if a then b” and “if c then d” by stating that they have the same
examples, i.e. (a ∧ b) ≡ (c ∧ d)) and the same counter-examples (a ∧ b) ≡ (c ∧ d).

It is worth noticing that such proportions have equivalent forms, e.g.:

b|a :: d|c ≡ b|a :: d|c

which agrees with the above semantics and more generally with the idea of condi-
tioning. Indeed the examples “if a then b” are the counter-examples of “if a then
b”, and vice-versa. Due to this remark, it is enough to consider the equivalences
between one of the 4 conditional objects a|b, b|a, a|b, b|a, and the 4 other con-
ditional objects built with (c, d), yielding 4 × 4 proportions as expected. Besides,
8 conditional proportions have been already considered in [64], but not the 8 re-
maining ones, since they do not satisfy the “full identity” property, as we shall see
in the next section.

2.3.3. The 20 hybrid proportions. They are characterized by equivalences between
similarity and dissimilarity indicators in their definitions. They are of the form

S(a,b) ≡ D(c,d) ∧ S
′

(a,b) ≡ D′

(c,d)

or
D(a,b) ≡ S(c,d) ∧D

′

(a,b) ≡ S′

(c,d)

or
S(a,b) ≡ D(c,d) ∧D(a,b) ≡ S(c,d)

They appear in Table 10 in Annex A. There are 20 hybrid proportions: 2 of the
first kind, 2 of the second kind, 16 of the third kind since we have here 4 choices
for an equivalence S(a,b) ≡ D(c,d), and 4 choices for D(a,b) ≡ S(c,d).

If we remember that negating anyone of the two terms of a dissimilarity
indicator turns it into a similarity indicator, and conversely, we understand that
changing a into a (and a into a), or applying a similar transformation with respect
to b, c, or d, turns

- an hybrid proportion into an homogeneous or a conditional proportion;
- an homogeneous or a conditional proportion into an hybrid proportion.

This indicates the close relationship of hybrid proportions with homogeneous and
conditional proportions. More precisely,

- on the one hand there are 4 hybrid proportions such that replacing a with
a leads to the 4 homogeneous proportions A, R, P , I. They are obtained by the
two first kinds of patterns for building hybrid proportions. Moreover, we shall see
in the next section that they constitute with the 4 homogeneous proportions the
8 proportions that are the only ones satisfying “code independency” property.

- on the other hand, there are 16 remaining hybrid proportions, obtained by
the third kind of pattern for building them. They can be written as the equivalence



of 2 conditional objects, although they do not obey the conditional proportion
pattern. For instance, ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)) can be written
as a|b :: c|d. This proportion is indeed obtained from the conditional proportion
a|b :: c|d by changing a into a. Thus, these 16 new equivalences between conditional
objects are not of the form a|b :: c|d (or equivalently a|b :: c|d) produced by the
pattern of conditional proportions, but of a “mixed” form having an odd number
of negated terms.

2.3.4. The 32 semi-hybrid proportions. One half of their expressions involve indi-
cators of the same kind, while the other half requires equivalence between indica-
tors of opposite kinds. They are of the form

S(a,b) ≡ S(c,d) ∧ S
′

(a,b) ≡ D(c,d)

or
S(a,b) ≡ S(c,d) ∧D(a,b) ≡ S′

(c,d)

or
D(a,b) ≡ D(c,d) ∧ S(a,b) ≡ D′

(c,d)

or
D(a,b) ≡ D(c,d) ∧D

′

(a,b) ≡ S(c,d)

They are listed in Table 11 in Annex A. There are 32 semi-hybrid proportions (8 of
each kind: 4 choices for the first equivalence, times 2 choices for the element that
is not of the same type as the three others (D or S) in the second equivalence).
An example of semi-hybrid proportion is ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b ≡ (c ∧ d)).

Applying a change from a to a (and a to a), or applying a similar transforma-
tion with respect to b, c, or d, turns a semi-hybrid proportion into a semi-hybrid
proportion (since as already said, negating anyone of the two terms of a dissimi-
larity indicator turns it into a similarity indicator, and conversely). This contrasts
with the hybrid proportion class which is not closed under such a transformation.

2.3.5. The 48 degenerated proportions. In all the above categories, the 4 terms
related by equivalence symbols should be all distinct. In degenerated proportions,
there are only 3 different terms and it is simpler to come back to our initial
notation. With this notation, these proportions are of the form

I(a,b) ≡ I(c,d) ∧ I(a,b) ≡ I ′(c,d)

or
I(a,b) ≡ I(c,d) ∧ I

′

(a,b) ≡ I(c,d)

They are listed in Table 12 in Annex A. Their number is easy to compute: we
have to choose I(a,b) among 4 indicators and then to choose 2 distinct indicators
among 4 pertaining to (c, d): we then get 4 * 6 = 24 proportions of the first
form. The same reasoning with the second kind of expression leads to a total of
48 degenerated proportions. Note that the change from a to a (and a to a), or a
similar transformation with respect to b, c, or d, turns a degenerated proportion
into a degenerated proportion.



It can be seen that degenerated proportions always involve a mutual ex-
clusiveness condition between 2 positive or negative literals pertaining to either
the pair (a, b) or the pair (c, d). Indeed, if we consider the first form, we get
I(a,b) ≡ I(c,d) on the one hand, and I(c,d) ≡ I ′(c,d) on the other hand, i.e. an equiv-

alence between two syntactically distinct indicators pertaining to the same pair
(c, d). There are 6 cases only:

• (c ∧ d) ≡ (c ∧ d) iff c ≡ d
• (c ∧ d) ≡ (c ∧ d) iff c ≡ d
• (c ∧ d) ≡ (c ∧ d) iff c ≡ ⊥
• (c ∧ d) ≡ (c ∧ d) iff d ≡ ⊥
• (c ∧ d) ≡ (c ∧ d) iff c ≡ ⊥
• (c ∧ d) ≡ (c ∧ d) iff d ≡ ⊥

Thus, we also have I(a,b) ≡ ⊥ (since we have I(c,d) ≡ ⊥ and I ′(c,d) ≡ ⊥), which

expresses a mutual exclusiveness condition. Since we have 4 possible choices for
I(a,b), it yields 4 × 6 = 24 distinct proportions, and exchanging (a, b) with (c, d)
gives the 24 other degenerated proportions.

Thus, generally speaking, degenerated proportions correspond to a mutual
exclusiveness condition between component(s) or negation of component(s) of one
of the pairs (a, b) or (c, d), together with

- either an identity condition pertaining to the other pair,

- or a tautology condition on one of the literals of the other pair without any
constraint on the other literal.

2.4. Two other classes of interest: uniform and weakly uniform proportions

As recalled in the introduction, a numerical proportion states the equality of 2
ratios a

b = c
d , or of 2 differences a − b = c − d, comparing quantities of the same

types, namely ratios or differences. In no case, we mix them as, e.g., a
b = c× d or

a − b = c + d. In logical proportions the equality of quantities is converted into
equivalence. Then, if we want to completely fit with the spirit of numerical propor-
tions, we may insist on using the same indicators on each side of the equivalence
symbol. It means that when we have chosen 2 distinct indicators for the pair (a, b),
we should stick to the same indicators for the other pair (c, d). For instance, let us
assume that we choose (a ∧ b, a ∧ b) as indicators for the pair (a, b), then we have
to use the indicators (c ∧ d, c ∧ d) for the pair (c, d). Strictly speaking, we have
exactly 4 uniform equivalences:

• a ∧ b ≡ c ∧ d
• a ∧ b ≡ c ∧ d
• a ∧ b ≡ c ∧ d
• a ∧ b ≡ c ∧ d

Since we need 2 equivalences to build up a proportion, we get exactly [42] = 6
uniform proportions, thus built up with a pair of uniform equivalences. As can be
seen, A and P are uniform, but R and I are not uniform.



The 4 remaining uniform proportions are given below; note that they are
conditional proportions:

• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d); (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)
• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d); (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

Relaxing a little bit the constraint of uniformity by allowing us to switch
the indicators in the equivalences, we are led to 12 weakly uniform proportions:
we can exchange the right hand side of the equivalences, we get 6 × 2 = 12 such
proportions. R and I are weakly uniform. It has to be noticed that, since we cannot
build a weakly uniform proportion with only 3 distinct indicators, a degenerated
proportion cannot be weakly uniform. If we go one step further, we may decide
to consider proportions, not only satisfying the previous uniformity constraint,
but also where the equivalences use only one type of indicators (similarity or
dissimilarity). In that case, we have only 2 candidates set of indicators for the pair
(a, b), each candidate set for (a, b) leading to a unique candidate set for (c, d), then
to the 2 uniform proportions A and P . Allowing weak uniformity adds R and I to
this list and we are back to the “homogeneous” proportions.

3. Truth tables of logical proportions

Since a, b, c, d are Boolean variables, logical proportions can be considered as qua-
ternary Boolean formulas, whose semantics is given via their truth tables (which
then have 24 = 16 lines). We start by considering the case of the 4 homogeneous
proportions A,R, P, I defined in section 2.3.1, since it is the smallest family, and
it contains the “Analogy” proportion. Then, we shall establish two general results
pertaining to the truth tables of the whole class of logical proportions.

3.1. Homogeneous proportions truth tables

Starting from their Boolean expressions, it is an easy game to build up the truth
tables of proportions A,R, P, I: they are exhibited in Table 1, where only the
valuations leading to the truth value 1, are shown. This means that all the other
ones lead to the truth value 0. There is one fact immediately appearing: only 6
valuations among 16 in the tables lead to a truth value 1. We also observe that there
are only 8 distinct 4-tuples that appear in Table 1. This emphasizes their collective
coherence as the whole class of homogeneous proportions. Moreover, they go by
pairs where 0 and 1 are exchanged, thus pointing out their “code independency”.

It is interesting to take a closer look at the truth tables of the four homoge-
neous proportions. First, one can observe in Table 1, that 8 possible valuations for
(a, b, c, d) never appear among the patterns that make A, R, P , or I true: these
8 valuations are of the form x x x y, x x y x, x y x x, or y x x x with x 6= y
and (x, y) ∈ {0, 1}2. As can be seen, it corresponds to situations where a = b and
c 6= d, or a 6= b and c = d, i.e., similarity holds between the components of one of
the pairs, and dissimilarity holds in the other pair. Moreover, the truth table of
each of the four homogeneous proportions, is built in the same manner:



A R P I

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

Table 1.Truth tables: Analogy, Reverse analogy, Paralogy, Inverse paralogy

1. 2 lines of the table correspond to the characteristic pattern of the proportion;
namely the two lines where one of the two equivalences in its definition holds
true under the form 1 ≡ 1 (rather than 0 ≡ 0). Thus,

• A is characterized by the pattern x y x y (corresponding to valuations
1 0 1 0 and 0 1 0 1), i.e. we have the same difference between a and b
as between c and d;

• R is characterized by the pattern y x x y (corresponding to valuations
1 0 0 1 and 0 1 1 0), i.e. the differences between a and b and between c
and d are in opposite directions;

• P is characterized by the pattern x x x x (corresponding to valuations
1 1 1 1 and 0 0 0 0), i.e. what a and b have in common, c and d have it
also;

• I is characterized by the pattern x x y y (corresponding to valuations
1 1 0 0 and 0 0 1 1), i.e. what a and b have in common, c and d do not
have it, and conversely. Thus, the six lines of the truth table of A that
makes it true are induced by the characteristic patterns of A, P , and I5,
the six valuations that makes P true are induced by the characteristic
patterns of P , A, and R, and so on for R and I.

2. the 4 other lines of the truth table of an homogeneous proportion T are
generated by the characteristic patterns of the two other proportions that
are not opposed to T (in the sense that A and R are opposed, as well as P
and I). For these four lines, the proportion holds true since its expression
reduces to (0 ≡ 0) ∧ (0 ≡ 0).

As an illustration of analogy and other homogeneous proportions, let us consider
Figure 1 where a pair of items (A,B) is shown together with an incomplete pair
(C, ?). Each of the three pictures can be represented by a vector of Boolean vari-
ables acknowledging, in this order, the presence or not of outside squares, of outside
circles, of an inside circle (upper position), of an inside hexagon (lower position),
of hatching (upper position). Namely, A (the first picture) corresponds to (1, 0,
1, 0, 0), B (the second picture) to (1, 0, 0, 1, 1), C (the third picture) to (0, 1,

5The measure of analogical dissimilarity introduced in [50] is 0 for the valuations correspond-

ing to the characteristic patterns of A, P , and I, maximal for the valuations corresponding to

the characteristic patterns of R, and takes the same intermediary value for the 8 valuations
characterized by one of the patterns x x x y, x x y x, x y x x, or y x x x.



1, 0, 0). Then, one may wonder if we can associate a 4th item D (represented as
?) to the 3 previous ones, using analogy or another homogeneous proportion. The
situation can be thus summarized by the following table:

out.squ. out.cir. ins.cir. ins.hex. hatc.

A 1 0 1 0 0
B 1 0 0 1 1
C 0 1 1 0 0
D ? ? ? ? ?

Table 2. Boolean encoding of the illustrative example

Working feature by feature, this amounts to try to complete the 5 vectors (1,
1, 0, ?), (0, 0, 1, ?), (1, 0, 1, ?), (0, 1, 0, ?), and (0, 1, 0, ?) using the same
homogeneous proportion, if possible. It can be checked on Table 1 that there are
here two solutions, either using analogy, or inverse paralogy, yielding the unique
description of D as (0, 1, 0, 1, 1), i.e., an item with outside circles, with an
inside hexagon (lower position), and hatching (upper position). Note that if in the
description, we add features such that “the figure has two parts”, or “there is a
triangle”, we are also led to complete the following vectors (1, 1, 1, ?) or (0, 0, 0,
?) respectively, and then only analogy would work.

Figure 1. An illustration: Logical proportions at work

3.2. Characterization of the truth tables of logical proportions

The fact that the truth tables of the homogeneous proportions have only 6 lines
making the proportion valid is not proper to this family, but is shared by the
whole set of the 120 logical proportions. Indeed the following general result can be
proved:

Proposition 1. The truth table of a logical proportion has 6 and only 6 valuations
with truth value 1.



Proof (indication)6: In fact, a simple equivalence eq1 between indicators has exactly
10 lines leading to true. Since a logical proportion T is the conjunction eq1 ∧ eq2
of 2 equivalences between indicators, it appears from the previous property that
T has a maximum of 10 valid valuations and a minimum of 4 valid valuations.
Obviously, adding eq2 to eq1 may only reduce the number of valid valuations for
T . Starting from eq1 and reasoning on the number of literals where eq1 and eq2
differ, we show that we keep only 6 valid valuations for T ; see complete proof in
Annex B. �

It follows that the negation of a logical proportion is not a logical proportion
(since such a negation has 10 valuations leading to true in its table).

As previously explained, due to the symmetry of the ∧ operator, we have
120 proportions which are potentially semantically distinct. A question remains:
can we reduce this number of semantically distinct proportions? The answer is
negative, as now stated.

Proposition 2. The truth tables of the 120 proportions are all distinct.

Proof (indication): We shall show that, when 2 proportions T , eq1 ∧ eq2 and

T ′ , eq′1 ∧ eq
′

2 have the same truth table, they are syntactically identical (up to a
permutation of the 2 equalities) i.e. T =Id T

′. This is done by showing that in that
case, every literal occurring in one of them appears in the other one; see complete
proof in Annex B. �

It appears that despite their similar structure, logical proportions are seman-
tically distinct and then they cover distinct situations. This result may look all
the more amazing as logical proportions are quite rare. Indeed we know that we
have (166 ) = 16 × 15 × 14 × 13 × 12 × 11/6! = 5765760/720 = 8008 truth tables
with exactly 6 valuations leading to 1, while only 120 tables among them are the
truth table of a logical proportion.

4. Noticeable properties of subfamilies of logical proportions

Thinking of proportions, and more particularly of symbolic proportions, naturally
suggest properties of interest that might be expected, such as symmetry, or equa-
tion solving as already suggested in the introduction, or code independency also
discussed previously. As we shall see in subsection 4.9, these properties are in fact
the counterparts of properties satisfied by numerical proportions.

4.1. Full identity

Let us carry on the investigation of the truth tables in Table 1. A,R and P include
the valuations 1111 and 0000: a common property is then satisfied by these 3

6We only give in the main text the proofs that are short, or that may be useful for the general
understanding of the discussed matter. Otherwise they can be found in Annex B.



proportions which can be stated as a simple axiom T (a, a, a, a) (where T denotes
a proportion). This property means that when a, b, c, d have a common truth value,
then the proportion is satisfied whatever this truth value. We call this property
full identity. Obviously I does not satisfy this property because of the exchange
of the negation operator between pairs (a, b) and (c, d) in the definition. Still this
property can be considered as intuitively appealing, and it is interesting to identify
the proportions that satisfy it. The following result can be established:

Proposition 3. There are only 15 proportions satisfying full identity: 3 of them are
homogeneous (they are A, R, and P), 8 of them are conditional proportions and
the 4 remaining ones are degenerated. (these proportions are shown in Annex A
Table 13).

Proof : See Annex B. �

Then a new question arises: Are there proportions satisfying only “half” of the
full identity property, i.e., with truth value 1 for valuation 1111 and 0 for 0000, or
vice-versa? We have the following result:

Proposition 4. There are 30 proportions validated with 1111 but not with 0000.
Dually, there are also 30 proportions validated with 0000 but not with 1111.

Proof: See Annex B. �

Each of the above two categories satisfying “half of full identity” contains 4 hybrid
proportions, 12 semi-hybrid ones, and 14 degenerated ones. The four hybrid ones
satisfying 1111 are defined by

• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d), corresponding to conditional b|a :: c|d,
• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d), corresponding to conditional a|b :: c|d,
• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d), corresponding to conditional b|a :: d|c,
• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d), corresponding to conditional a|b :: d|c.

The four hybrid ones satisfying 0000 correspond to a|b :: c|d, b|a :: c|d, a|b :: d|c,
b|a :: d|c. As a consequence of the previous results, there are 45 (= 120−15−30−
30) proportions that are false for both valuations 1111 and 0000. They include 1
homogeneous proportion (the inverse paralogy), 8 conditional ones, 12 hybrid ones,
8 semi-hybrid ones and 16 degenerated ones. Among hybrid ones, let us mention
the presence of the proportions corresponding to analogy (or paralogy) where one
literal is negated, such as A(a, b, c, d) for instance.

4.2. Reflexivity, reverse reflexivity and sameness

It can be easily checked that A(a, b, a, b) holds (which means that the analogical
proportion satisfies “a is to b as a is to b”). We may refer to this property as
reflexivity of the proportion. Obviously, reflexivity entails full identity. There are



two other natural ways7 to strengthen full identity, namely, T (a, b, b, a) referred as
reverse reflexivity, and T (a, a, b, b) referred as sameness (meaning “a is to a as b
is to b” for an analogical proportion, for which A(a, a, b, b) holds).

We are thus led to look for the logical proportions T satisfying at least one of
the 3 properties: T (a, a, b, b), T (a, b, a, b), or T (a, b, b, a). Since, such a proportion
should obviously satisfy full identity, we have a maximum of 15 such proportions
for each of the 3 properties. In fact, it can be shown that:

Proposition 5.

• There is no proportion simultaneously satisfying the 3 properties.
• A is the only proportion to satisfy T (a, a, b, b) and T (a, b, a, b).
• R is the only proportion to satisfy T (a, a, b, b) and T (a, b, b, a).
• P is the only proportion to satisfy T (a, b, a, b) and T (a, b, b, a).
• 6 proportions satisfy T (a, b, a, b), including A and P but not R and I.
• 6 proportions satisfy T (a, b, b, a), including P and R but not A and I.
• 6 proportions satisfy T (a, a, b, b), including A and R but not P and I.

Proof: This is an easy proof for the first 4 statements since each property generates
a set of 4 valid valuations (and two of them yield 6 valid valuations). For instance,
having the simultaneous satisfaction of the 3 properties leads to a truth table
where the 8 valuations 0000, 1111, 1010, 0101, 0110, 1001, 0011, 1100 are valid:
then this cannot be the truth table of a logical proportion. Let us consider the
fifth statement. Given a logical proportion T (a, b, c, d) of the form (I1

(a,b) ≡ I2
(c,d))∧

(I3
(a,b) ≡ I4

(c,d)), reflexivity enforces the two equivalences I1
(a,b) ≡ I2

(a,b) and I3
(a,b) ≡

I4
(a,b). This tells us that the indicators I1 and I2 coincide, as well as I3 and I4.

Since we have four indicators, there are four such equivalences a ∧ b ≡ c ∧ d,
a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d. Since a logical proportion is defined
from two distinct, non-ordered equivalences, there are 4 × 3/2 = 6 proportions
satisfying T (a, b, a, b). They are given in Table 3 where we omit the ∧ symbol for
the benefit of more compact notations. We recognize the proportions A, P , and
the 4 conditional proportions b|a :: d|c, a|b :: c|d, a|b :: c|d, and b|a :: d|c. Similar
proofs can be made for the two last statements; see Annex B. �

ab ≡ cd ab ≡ cd (A) ab ≡ cd ab ≡ cd (P )

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

Table 3. The 6 proportions satisfying reflexivity

7 Strictly speaking, one might also wonder about other strengthening of full identity such as

T (a, a, a, b). It turns out that with an odd number of a (and b), there is no logical proportions
satisfying such property.



4.3. Symmetry

Observing Table 1, there is a common property clearly satisfied by P , A, R and
I, the so-called symmetry property which can be stated as (where T denotes a
proportion):

T (a, b, c, d) → T (c, d, a, b)

This property tells us that we can exchange the pair (a, b) with the pair (c, d) in
the logical proportion T . This is an expected property for analogical proportion
for instance, since if a is to b as c is to d holds, we want c is to d as a is to b
to hold as well. Nevertheless, symmetry is a quite rare property as stated in the
following result:

Proposition 6. There are only 12 proportions satisfying symmetry. Apart from
A,R, P, I (homogeneous proportions), there are 4 conditional proportions and 4
hybrid proportions satisfying symmetry. (These proportions are shown in Table 14
in Annex A)

Proof: See Annex B. �
Then it can be checked in Table 14 that the 6 uniform logical proportions are

symmetrical proportions. But the 6 other symmetrical proportions are not weakly
uniform.

This result points out that we have to be careful: despite the definitions of propor-
tions are based on equalities between 2 terms (involving negation and conjunction),
the symmetrical nature of an equality is not sufficient to ensure the symmetry of
all logical proportions. Only few of them satisfy the symmetry property (12 over
120), although it may be considered as being a desirable property for something
which is called ‘proportion’. Note that none of the semi-hybrid proportions and
none of the degenerated ones is symmetrical.

4.4. Central permutation and other permutations

As highlighted in the introduction, a well known property of mathematical propor-
tions, often called central permutation property, is the fact that we can exchange
the 2 central elements of such a proportion without changing its truth value. We
can check on the truth table that this property is still satisfied when dealing with
its logical counterpart, namely analogical proportion. The central permutation
property is formally expressed by:

T (a, b, c, d) → T (a, c, b, d)

We have the following result:

Proposition 7. There are exactly 16 proportions satisfying the central permutation
property. Only 2 homogeneous proportions A and I satisfy it.

Proof: See Annex B. �



We may also consider other permutations: since we have 4 variables, there are
exactly 6 ways to exchange 2 variables among 4. Notably, it can be checked that:

• A and I are the only homogeneous proportions to satisfy central and ex-
ternal permutations, namely, T (a, b, c, d) → T (a, c, b, d) and T (a, b, c, d) →
T (d, b, c, a);

• P and I are the only homogeneous proportions to satisfy the permutations
T (a, b, c, d) → T (b, a, c, d) and T (a, b, c, d) → T (a, b, d, c);

• R and I are the only homogeneous proportions to satisfy the permutations
T (a, b, c, d) → T (c, b, a, d) and T (a, b, c, d) → T (a, d, c, b).

Inverse paralogy is thus the unique homogeneous proportion to satisfy the 6
permutations. In fact, a stronger result holds concerning this logical proportion.

Proposition 8. Inverse paralogy is the unique logical proportion to satisfy the 6
permutations.

Proof: It is easy to check that these permutations induce a partition of the set of
valuations into 5 classes, each of them being closed for these 6 permutations:

• the class {0000} and the class {1111}
• the class {0111, 1011, 1101, 1110}
• the class {1000, 0100, 0010, 0001}
• the class {0101, 1100, 0011, 1010, 1001, 0110}

Taking into account that a logical proportion is true for only 6 valuations (Propo-
sition 1), we only have 3 options: a proportion valid for {0000}, {1111} and
{0111, 1011, 1101, 1110}, or for {0000}, {1111} and {1000, 0100, 0010, 0001}, or
for {0101, 1100, 0011, 1010, 1001, 0110}. It appears that the latter class is just the
truth table of inverse paralogy. Lemma 5 (see annex B) allows us to achieve the
proof since there is no logical proportion valid for the class {0111, 1011, 1101, 1110}
or for the class {1000, 0100, 0010, 0001}. �

The two following propositions lay bare the links between the different per-
mutations and the homogeneous proportions.

Proposition 9.

• A and I are the only logical proportions satisfying symmetry and being stable
for permutation p23, i.e. the permutation of the means. The same result holds
replacing p23 by p14 (permutation of extremes).

• P and I are the only logical proportions satisfying symmetry and being stable
for permutation p12. The same result holds replacing p12 by p34.

• There are 10 proportions including only 2 homogeneous8, namely R and I,
satisfying symmetry and being stable for permutation p24. The same result
holds replacing p13 by p24.

Proof: See Annex B. �

8We made a mistake in a previous paper [65], where we suggested that the 2 homogeneous R
and I were the only ones to satisfy this property.



We have the following result:

Proposition 10. A is the unique proportion satisfying T (a, b, a, b) and p23 (and
thus also T (a, a, b, b)). P is the unique proportion satisfying T (a, b, a, b) and p34
(and thus also T (a, b, b, a)). R is the unique proportion satisfying T (a, a, b, b) and
p24 (and thus also T (a, b, b, a)).

Proof: Let us consider the first statement for instance. T (a, b, a, b) implies that
T (0, 0, 0, 0), T (1, 1, 1, 1), T (1, 0, 1, 0) and T (0, 1, 0, 1) hold. Adding the fact that
T is stable for the permutation of the mean p23, we get that T (1, 1, 0, 0) and
(T (0, 0, 1, 1) hold as well, leading to the truth table of A.
A similar reasoning is still valid for P and R and achieves the proof. �

4.5. Code independency

We now consider an important property which has been already suggested and that
we call code independency: this property can be observed in Table 1. Indeed from
a semantical viewpoint, it may be meaningful for a proportion to be independent
from the coding convention (i.e., true represented by 1 and false by 0). That is
why if we switch the values 0 and 1 in the coding of a given valuation, the truth
value of the proportion should remain the same. This is formally expressed by the
code independency property:

T (a, b, c, d) → T (a, b, c, d)

Unfortunately, many logical proportions do not satisfy code independency, and we
have the following result:

Proposition 11. There are exactly 8 proportions satisfying the code independency
property: the 4 homogeneous proportions A,R, P, I, and 4 hybrid proportions.

Proof: See Annex B. �

We exhibit these 4 hybrid proportions in Table 4 (where we use the same con-
vention as in Table 3). It is remarkable that, apart from A,R, P, I which are the

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

Table 4. The 4 hybrid proportions satisfying code independency

homogeneous proportions, we get the hybrid proportions of Table 4 simply by
negating one of the 4 variables in the equivalences. For instance, the first hybrid
one corresponds to the definition of A(a, b, c, d), the second to R(a, b, c, d), the
third one to I(a, b, c, d), and the fourth one to P (a, b, c, d).
Moreover, the inspection of Table 4 reveals that none of these 4 hybrid propor-
tions are symmetrical. Then, this remark together with Proposition 11 lead to the
following remarkable proposition.



Proposition 12. There are exactly 4 proportions satisfying code independency and
symmetry. They are the 4 homogeneous proportions A,R, P, I

This result confirms the central role played by the proportions A, R, P and I as
the most important ones.

4.6. Transitivity

If we remember that analogical proportion describes an equality between ratios, it
is natural to expect a kind of transitivity property to hold for analogy A and more
generally for some other proportion T which could be stated as follows:

T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f)

It can be checked that the analogical proportion A, as well as the paralogical
proportion P , are transitive in that sense. The question is to find how many logical
proportions satisfy this property. We have the following result:

Proposition 13. There are 54 transitive proportions: 2 homogeneous A and P , 4
conditional proportions, namely (ab ≡ cd)∧ (ab ≡ cd); (ab ≡ cd)∧ (ab ≡ cd); (ab ≡
cd) ∧ (ab ≡ cd); (ab ≡ cd) ∧ (ab ≡ cd), and the 48 degenerated proportions.

Proof: See Annex B. �
The fact that the 48 degenerated proportions are transitive should not come

as a surprise, as it is a straightforward consequence of their syntactic pattern
structure involving only three indicators. The transitivity of the 4 conditional
proportions is due to the fact that they express equivalences between conditional
objects, namely b|a :: d|c, a|b :: c|d, a|b :: c|d, and b|a :: d|c.

Moreover, it is worth noticing that for logical proportions, reflexivity entails
both symmetry (as it can be checked from Table 3 and Table 14), and transitivity
(due to the above proposition). In other words, a reflexive logical proportion is an
equivalence relation.

Besides, having a closer look on the homogeneous proportions, we can easily
build Table 5 which gives what T (a, b, c, d)∧ T (c, d, e, f) entails for the 4 homoge-
neous proportions.

chaining result
A ∧A A
R ∧R A
P ∧ P P
I ∧ I P
A ∧R R
P ∧ I I

Table 5. Chaining properties for homogeneous proportions



4.7. Other interesting properties involving negation

It is quite tempting to consider a is to b as a is to b should hold or even a is to
a as b is to b just because of a formal symmetry. But, for instance, 0110 does not
validate the analogical proportion, which means that none of these two properties
is satisfied by the analogical proportion. Nevertheless, for a given proportion T , it
is worth to consider if T (a, b, a, b), T (a, a, b, b) or even T (a, b, b, a) holds.

• T (a, b, a, b) will be called semi-mirroring property and
• T (a, a, b, b) will be called negation-compatibility property.
• T (a, b, b, a) will be called exchange-mirroring property.

Proposition 14. A logical proportion satisfying 2 properties among semi-mirroring,
negation-compatibility and exchange-mirroring satisfies the remaining one, and
is unique. This is the inverse paralogy I.

Proof: Let us choose for instance semi-mirroring and negation-compatibility.
First of all, we can observe that, for a proportion T to satisfy semi-mirroring,
means the 4 valuations 1010,1001,0110,0101 are valid. For negation-compatibility
to be satisfied, the 4 valuations 1100,0011,1001,0110 should be valid. Then the
truth table of a proportion satisfying both properties should contains all these
valuations i.e. 1010,1001,0110,0101,1100,0011: this is the truth table of inverse
paralogy I. A similar reasoning applies for the remaining of the proposition. �

When we consider the 3 properties separately, we get the following result:

Proposition 15. Among the 120 logical proportions, only 6 (among which the homo-
geneous R and I) satisfy semi-mirroring, only 6 (among which the homogeneous
P and I) satisfy negation-compatibility, and only 6 (among which the homoge-
neous A and I) satisfy exchange-mirroring.

Proof: See Annex B. �

4.8. Equation solving

As said in the introduction, the idea of proportion is closely related to the idea of
extrapolation, i.e. to guess/compute a new value on the ground of existing values.
In other words, if for some reason, it is believed or known that a proportion holds
between 4 binary items, 3 of them being known, then one may try to infer the
value of the 4th one, at least in the case this extrapolation leads to a unique value.

For a proportion T , there are exactly 6 valuations v such that v(T (a, b, c, d)) =
1. In our context, the problem can be stated as follows. Given a logical proportion
T and a valuation v such that v(a), v(b), v(c) are known, does it exist a Boolean
value x such that v(T (a, b, c, d)) = 1 when v(d) = x, and in that case, is this value
unique?

We will refer to this problem as “the equation solving problem”, and for the
sake of simplicity, a propositional variable a is denoted as its truth value v(a),
and we use the equational notation T (a, b, c, x) = 1, where x ∈ {0, 1} is unknown.
First of all, it is easy to see that there are always cases where the equation has no



solution. Indeed, the triple a, b, c may take 23 = 8 values, while any proportion T
is true only for 6 distinct valuations, leaving at least 2 cases with no solution. For
instance, when we deal with analogy A, the equations A(1, 0, 0, x) and A(0, 1, 1, x)
have no solution.

We first focus on the 4 homogeneous logical proportions A,R, P, I that have
been previously highlighted. We have the following results

Proposition 16.

The analogical equation A(a, b, c, x) is solvable iff (a ≡ b) ∨ (a ≡ c) holds.

The reverse analogical equation R(a, b, c, x) is solvable iff (b ≡ a) ∨ (b ≡ c) holds.

The paralogical equation P (a, b, c, x) is solvable iff (c ≡ b) ∨ (c ≡ a) holds.

In each of the three above cases, when it exists, the unique solution is given by
x = c ≡ (a ≡ b), i.e. x = a ≡ b ≡ c.

The inverse paralogical equation I(a, b, c, x) is solvable iff (a 6≡ b) ∨ (b 6≡ c) holds.
In that case, the unique solution is x = c 6≡ (a 6≡ b).

Proof: By immediate investigation of the truth tables. �

As we can see, the first 3 homogeneous proportions A,R, P behave similarly.
Still, their conditions of equation solvability differ. Moreover, it can be checked
that at least 2 of these proportions are always simultaneously solvable. Besides,
when they are solvable, there is a common expression that yields the solution.
This suggests a close relationship between A, R, and P . This strong link between
these 3 homogeneous proportions will be made clear thanks to Proposition 21 in
the next section. This contrasts with proportion I which in some sense behaves in
an opposite manner. This will be also made clearer in the next section.

Generally speaking, it should be clear that the unicity of the solution of an
equation T (a, b, c, x) = 1 when it exists, is unique if and only if T is such that each
of the 6 lines of its truth table starts with a different triple of values for a, b, c. We
have the following result.

Proposition 17. There are 64 proportions for which the solution is always unique
when it exists, and 56 proportions for which the equation T (a, b, c, x) = 1 may have
2 solutions for some entries. These 56 proportions divide into 8 conditional ones,
8 hybrid ones, 8 semi-hybrid ones, and 32 degenerated ones.

Proof: see Annex B. �

As already said, homogeneous proportions A, R, P and I always lead to a
unique solution when it exists. Remarkably enough, this is also true for half of the
conditional ones (e.g., b|a :: c|d, which is true for 1100, 1010, 0111, 0101, 0011,
0001), and false for the other half (e.g. b|a :: d|c, which is true for 1111, 1010, 0101,
0100, 0001, 0000).

As we have seen, the 4 homogeneous proportions A,R, P, I not only enjoy
interesting properties but they are, in some sense, the easiest to interpret. This



is why we further investigate these proportions and their links in the following
section.

Table 6 summarizes the results obtained regarding the potential properties
of the logical proportions. In the table, we provide the number of proportions
satisfying the target property and due to their particular status, we specify which
are the homogeneous ones if any.

Property name Formal definition nb prop. Homoge.
full identity T (a, a, a, a) 15 A,R, P

1-full identity T (1, 1, 1, 1) ∧ ¬T (0, 0, 0, 0) 30 none
0-full identity T (0, 0, 0, 0) ∧ ¬T (1, 1, 1, 1) 30 none

reflexivity T (a, b, a, b) 6 A,P
reverse reflexivity T (a, b, b, a) 6 R,P

sameness T (a, a, b, b) 6 A,R
symmetry T (a, b, c, d) → T (c, d, a, b) 12 A,R, P, I

means permut. T (a, b, c, d) → T (a, c, b, d) 16 A, I
extremes permut. T (a, b, c, d) → T (d, b, c, a) 16 A, I

all permut. ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) 1 I
transitivity T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f) 54 A,P

code independ. T (a, b, c, d) → T (a, b, c, d) 8 A,R, P, I

semi-mirror. T (a, b, a, b) 6 R, I

exchange mirror. T (a, b, b, a) 6 A, I

negation compatib. T (a, a, b, b) 6 P, I

Table 6. Properties of logical proportions

As can be seen from Table 6, homogeneous proportions look especially in-
teresting, since they enjoy many properties. It is why the next main section is
devoted to a deeper investigation of these proportions. Before that, we close the
current section with a discussion that parallels logical proportions and numerical
proportions in terms of properties. Again, as we are going to see, homogeneous
proportions stand out.

4.9. To what extent logical proportions are proportions

Since numerical proportions are paradigmatic of the idea of a proportion, it is
worth understanding why the logical proportions discussed in this paper really
deserve the status of “proportion”. In the numerical case, due to the symmetry of
the = operator and to the properties of the multiplication (for geometric propor-
tions) or addition (for arithmetic proportions), these proportions both enjoy a set
of well known properties that we recall here in the case of geometric proportions
(a similar parallel could be made with arithmetic proportions, using opposites as
inverses).



1. When a
b = c

d holds, then c
d = a

b holds as well. Its counterpart for logical
proportions is formally expressed via the “symmetry property”, i.e.

T (a, b, c, d) → T (c, d, a, b)

2. There is a well-known property, pertaining to “the permutation of extremes
and means”, which in fact covers a pair of properties:

• means’s permutation: if a
b = c

d holds then a
c = b

d holds;

• extremes’s permutation: if a
b = c

d holds then d
b = c

a holds.

The counterpart of these two properties in the logical setting is expressed as

T (a, b, c, d) → T (a, c, b, d) for the means’s permutation

and

T (a, b, c, d) → T (d, b, c, a) for the extremes’s permutation

3. With geometric proportions, we also have a
b = c

d implies
1

a

1

b

=
1

c

1

d

. Consider-

ing the negation operator as the counterpart for logical proportions of the
inverse for geometrical proportion, the formal expression of the above prop-
erty writes:

T (a, b, c, d) → T (a, b, c, d)

i.e., what we have called “code independency”. Another reason to look for this
property is to note that a numerical proportion a

b = c
d holds independently of

the base used for encoding numbers. Therefore, it seems natural to expect the
logical proportions behavior to be independent of the way we encode items
in terms of the truth or the falsity of properties. For instance a∧ b represents
what is specific to a w.r.t. b, without any consideration about the way we
represent the truth and the falsity. As a consequence, the formula defining a
proportion should be valid when we switch 0 to 1 and 1 to 0 in the encoding
of a valuation. Which is, as above, exactly translated into

T (a, b, c, d) → T (a, b, c, d)

4. In the numerical case, a
b = c

d and c
d = e

f entails a
b = e

f . For a logical

proportion T , this formally translates into the transitivity property:

T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f)

5. Finally, when dealing with geometrical proportions, we have the following
trivial proportions:

• a
a = a

a whose Boolean counterpart is T (a, a, a, a) (full identity),
• a

b = a
b whose Boolean counterpart is T (a, b, a, b) (reflexivity),

• a
a = b

b whose Boolean counterpart is T (a, a, b, b) (sameness),

• a
b =

1

b

1

a

whose Boolean counterpart is T (a, b, b, a) (exchange-mirroring).



We have investigated in details the set of the 120 logical proportions to identify the
ones satisfying some of the properties above. It appears that only one logical pro-
portion satisfies all the above requirements, namely the analogical proportion A.
Regarding the other proportions, Table 6 highlights the fact that the homogeneous
proportions still behave quite similarly to numerical proportions.

5. Back to homogeneous proportions

Proposition 11 has made clear how remarkable are proportions A,R, P, I; see also
[65]. Indeed they are the only four logical proportions to enjoy two key properties:
symmetry (the ordering between pairs (a, b) and (c, d) does not matter in the
comparison), and code independency (the truth value of the proportion remains
unchanged with a positive or a negative encoding). In this section, we study the
links between A, R, P , and I, some additional properties, and we investigate the
structures of opposition inside these proportions.

Starting with a commonality / specificity analysis of a pair of objects, we
first retrieve the classical postulate-based view of analogical proportions, together
with two other related systems of postulates. It turns out that the logical propor-
tions A,R, P introduced in the previous sections are the only Boolean models (up
to logical equivalence) satisfying these respective systems. We close the subsec-
tion with a geometrical view of proportions A,R, P , which emphasizes their close
relationship.

We shall see in the rest of the section how I is related to these proportions
through another system of postulates involving negation.

5.1. Postulates for analogical proportion and two related proportions

In the following, we show by a simple analysis first suggested in [60] that an ana-
logical proportion-like statement a is to b as c is to d, should still hold when
permuting the central items b and c. Moreover, this analysis also reveals the exis-
tence of two other sister proportions. Note that in this subsection we continue to
use lowercase letters, a, b, c, d although it may refer to items described by vectors
of Boolean variables rather than to a unique Boolean variable.

An analogical statement a is to b as c is to d puts in parallel the pair (a, b),
and the pair (c, d). This leads to consider what is common to a and b (let us
denote it com(a, b)), and what is specific to a and not shared by b (we denote it
spec(a, b)). So com(a, b) can be seen as a set of binary features shared by a and
b, while spec(a, b) is a set of binary features possessed by a and not by b. Clearly,
com(a, b) and spec(a, b) are then disjoint subsets. Clearly com(a, b) = com(b, a)
and generally, spec(a, b) 6= spec(b, a). With this view, each item can be represented
through its comparison with another one. Thus,

• a is represented by the pair (com(a, b), spec(a, b)),
• b by the pair (com(a, b), spec(b, a)),
• c by the pair (com(c, d), spec(c, d)),



• d by the pair (com(c, d), spec(d, c)).

We notice that when going from a to b (resp. from c to d), spec(a, b) is
changed into spec(b, a) (resp. spec(c, d) is changed into spec(d, c)), while com(a, b)
and com(c, d) are the respective common parts of the pairs (a, b) and (c, d). An
analogical statement such as a is to b as c is to d amounts to compare the pairs
(a, b) and (c, d). This can be done in terms of what is common, or in terms of what
is specific. Namely, one may state that

• the way a and b differ is the same as the way c and d differ, namely

spec(a, b) = spec(c, d) and spec(b, a) = spec(d, c) (1)

• the way a and b differ is the same as the way d and c differ, namely

spec(a, b) = spec(d, c) and spec(b, a) = spec(c, d) (2)

• a and b are similar in the same as the way as c and d are similar, namely

com(a, b) = com(c, d) (3)

Note that the three options preserve symmetry : Comparing a, b and c, d, or com-
paring c, d and a, b are equivalent.

Let us consider first the statement (1). If we compare a represented as
(com(a, b), spec(a, b)) to c represented as (com(c, d), spec(c, d)), it appears due to
statement (1) that their common part com(a, c) includes spec(a, b) = spec(c, d),
while com(a, b) is changed into com(c, d) when going from a to c. Note that
com(a, b) and com(c, d) may have a non empty common part com(a, b, c, d). Thus,
in set terms, com(a, c) = spec(a, b) ∪ com(a, b, c, d) and spec(a, c) = com(a, b) \
com(a, b, c, d). We also have spec(c, a) = com(c, d) \ com(a, b, c, d). Similarly, when
comparing b and d, the common part is spec(b, a) ∪ com(a, b, c, d) = spec(d, c) ∪
com(a, b, c, d) due to (1) and com(a, b) is again changed into com(c, d) when
going from b to d (i.e. com(a, b) \ com(a, b, c, d) = spec(b, d), and com(c, d) \
com(a, b, c, d) = spec(d, b)). This amounts to write spec(a, c) = spec(b, d), and
spec(c, a) = spec(d, b). This is exactly statement (1) where b and c are exchanged.

Thus choosing (1), we have retrieved the central permutation postulate that
most authors (see, e.g., [17]) associate with analogical proportion (together with
the symmetry already mentioned). To avoid any confusion with the previous
Boolean model of the analogy proportion, we stick to the traditional notation
a : b :: c : d (as recalled in the introduction). This leads to the following postu-
lates:

• a : b :: a : b (and a : a :: b : b) hold (reflexivity).
• if a : b :: c : d holds then a : c :: b : d should hold (central permutation)
• if a : b :: c : d holds then c : d :: a : b should hold (symmetry).

Remember that the logical proportion A satisfies the three above postulates. Since,
as seen in the proof of Proposition 8, reflexivity and central permutation lead to
the truth table of the analogical proportion, analogical proportion is the unique
Boolean formula (up to equivalence) satisfying the three above postulates. Note
that symmetry applies here to the comparison between two pairs of items (a, b)



and (c, d), but not internally since a : b cannot be replaced with b : a. Indeed
a : b :: b : a cannot hold since spec(a, b) 6= spec(b, a) in general. Such a postulate
is more in the spirit of option (2) that we consider now.

Still focusing on specificities, we can consider a new proportion denoted with
“!” where a ! b :: c ! d holds as soon as spec(a, b) = spec(d, c) and spec(b, a) =
spec(c, d). It expresses the reverse analogy a is to b as d is to c, which obeys the
postulates (as can be checked):

• a ! b :: b ! a (and a ! a :: b ! b) should hold (reverse reflexivity)
• if a ! b :: c ! d holds then c ! b :: a ! d should hold (odd permutation)
• if a ! b :: c ! d holds then c ! d :: a ! b should hold (symmetry).

Except if a = b, a ! b :: a ! b does not hold in general. Having investigated all
the possibilities from the viewpoint of specificities, it seems natural to focus on
the shared properties, which leads to introduce a new kind of proportion denoted
with “;”. Then, we have no other choice than defining a ; b :: c ; d as com(a, b) =
com(c, d). We decide to call this new proportion paralogical proportion. It states
that what a and b have in common, c and d have it also. Obviously, this proportion
does not satisfy the permutation properties of its two sister relations, but rather:

• a ; b :: a ; b and a ; b :: b ; a always holds (bi-reflexivity)
• if a ; b :: c ; d holds b ; a :: c ; d should hold (even permutation)
• if a ; b :: c ; d holds then c ; d :: a ; b should hold (symmetry).

In summary, the 3 logical proportions A,R, P separately satisfy a set of 3
essential postulates, as seen above. These postulates, which are first order axioms,
can be considered as defining 3 types of relation that we called analogy, reverse
analogy and paralogy. It is has to be noticed that A,R, P are the unique Boolean
formulas (up to equivalence) satisfying their corresponding set of postulates.

It is quite clear that such relations can be defined on other domains than
the Boolean one considered in the previous sections. The link with logical pro-
portions is obvious: analogical (resp. reverse analogical, paralogical) proportion is
an analogy (resp. reverse analogy, paralogy) on the Boolean universe. In such a
general setting, it is worth noticing that full identity is easily deducible for all
relations obeying one of the three above sets of postulates, but this is not the case
for transitivity (see [61]). This simply means that the Boolean model of logical
proportions that we suggest in this paper is richer than a basic model based on
the postulates of analogy.

Starting from the postulates of analogy, it is a simple exercise to prove that
the following properties are satisfied by an analogy in general (and then, as a
particular case, by the analogical proportion A):

Proposition 18. a : b :: c : d→ a : c :: b : d
a : b :: c : d→ d : b :: c : a
a : b :: c : d→ d : c :: b : a
a : b :: c : d→ c : d :: a : b
a : b :: c : d→ b : d :: a : c



a b c d b a c d c b a d

a c b d b c a d c a b d
d b c a d a c b d b a c
d c b a d c a b d a b c
c d a b c d b a a d c b
b d a c a d b c b d c a
c a d b c b d a a c d b
b a d c a b d c b c d a

Table 7. Permutation classes of analogy

a : b :: c : d→ c : a :: d : b
a : b :: c : d→ b : a :: d : c

This means that if a : b :: c : d holds then a total of 8 permutations among
24 hold (including a : b :: c : d ) as analogies.
Let us now consider the 2 following permutations (a, b, d, c) and (a, d, c, b), which
do not belong to the previous set of permutations:

Proposition 19. For an analogy, we have:
a : b :: c : d 9 a : b :: d : c
a : b :: c : d 9 a : d :: c : b

Proof: A simple way to get it is to consider the Boolean model where the
valuation 0101 validates the left side of the first implication but not the right side.
The valuation 0011 does the same job for the second implication. �

As a consequence, among the 24 combinations of a, b, c, d, we then distinguish
3 classes of permutations related to analogy that we exhibit in Table 7, with
representative on top in bold font. If one element (x, y, z, t) of a class is such that
x : y :: z : t holds, then a similar analogy holds for each element in the whole class.
The previous proposition exhibits the fact that if we have an element of a class
being an analogy, there is no way to conclude for the 2 remaining classes.

The following proposition, easily deducible from the postulates, establishes a
strong link between analogy, reverse analogy and paralogy:

Proposition 20. a : b :: c : d ≡ a ! b :: d ! c and a : b :: c : d ≡ a ; d :: c ; b

Thanks to Proposition 20, we have that if a : b :: c : d holds, then b ! a :: c ! d
and c ; b :: a ; d hold. These expressions correspond to the three permutations
appearing in the first row of Table 7. But b ! c :: a ! d (corresponding to row
2 of column 2) does not hold: in that case, it is b ; c :: a ; d that holds. This
simply means that we cannot go from one column to the next one through a
simple operator in Table 7. The above proposition states the interplay between
the three sets of three postulates discussed above. Since A,R, P satisfy reflexivity,
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Figure 2. Three parallelograms

symmetry, and respectively central permutation (p23), odd permutation (p13), and
even permutation (p12), Proposition 20 can be restated in the Boolean model:

Proposition 21. A(a, b, c, d) ≡ R(a, b, d, c) and A(a, b, c, d) ≡ P (a, d, c, b)

Proposition 21 may be also directly derived from the definitions of propor-
tions A,R, P in terms of equivalence between indicators, where their syntactic
similarity reflects semantical links that are also visible on their truth tables.

To highlight the differences and the relations between the three proportions
A,R, P , we may also revisit the “parallelogram metaphor” often used when dis-
cussing analogical reasoning in a numerical setting [44, 4, 77], since the parallel
between the pairs (a, b) and (c, d) is reminiscent of the equality of two vectors.

It amounts, for instance, to consider a, b, c and d as elements of the real

plan R
2, and to interpret a : b :: c : d as

−→
ab =

−→
cd. This vectorial equality holds

because the coordinates of the 4 points a, b, c, d satisfy an arithmetic analogy:
∀i ∈ {1, 2}, ai − bi = ci − di. It simply means that the quadrilateral abcd is a
parallelogram.

In contrast with the Boolean case where an equation A(a, b, c, x) is not always
solvable (see Proposition 16), given 3 points a, b, c of the real plan R

2, one can
always find a point d such that abdc is a parallelogram (see Figure 2). In fact, from
3 non aligned points, one can build 3 distinct parallelograms; it is the geometrical
counterpart of the permutations linking the three proportions A,R, P via Propo-
sition 21. See Figure 2 where the index of d refers to the proportion that generates
it from (a, b, c). In Figure 2, we have used different types of lines (with different
width, dotted or not, arrows or not) to try to help visualizing the 3 parallelograms.

It is possible to complete the Figure 2 in the following way, in order to
introduce the inverse paralogy I. Since I can be related to A through the re-
lation I(a, b, c, d) = A(a, b, c, d), we introduce two points associated to b and
c, as the symmetric of b and c with respect to a. dI is then the symmetric
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Figure 3. Geometric view of the 4 homogeneous proportions

of dA. We thus obtain Figure 3, where many relations can be read such that
I(a, b, c, d) = A(a, b, c, d) (i.e., dI is obtained from a, b and c, as dA from a, b and
c), P (a, b, c, d) = R(a, b, c, d) (which acknowledges the symmetry of dP and dR

with respect to a), or A(b, c, a, d) = P (a, b, c, d) (i.e., dP is obtained by applying
to b, c and a the construction of dA from a, b and c), or A(c, a, b, d) = R(a, b, c, d)
(i.e., dP is obtained by applying to c, a, and b the construction of dA from a, b
and c), as well as the fact that A(b, c, c, b) holds.

5.2. Additional properties of homogeneous proportions

Let us come back to the Boolean setting, where the logical proportions live. We
now lay bare some remarkable properties of the proportions A,R, P, I. We first
provide some equivalent expressions for these proportions, before studying their
behavior with respect to conjunction, disjunction and negation, and investigating
the power of A as a functionally complete logical operator.

Using the link between proportions A and P expressed by Proposition 21
(and De Morgan laws), we come to a new characterization for analogical proportion
which involves the pair (a, d) of the extremes and the pair (b, c) of the means:

A(a, b, c, d) ≡ (a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c)

This property will be considered again when discussing the works of Piaget [57]
where this characterization is just taken as the definition of a logical proportion



(in Piaget’s sense). Similarly, using Proposition 21 again, one obtains equivalent
expressions for R or for P , namely:

R(a, b, c, d) ≡ (a ∧ c ≡ b ∧ d) ∧ (a ∨ c ≡ b ∨ d)

P (a, b, c, d) ≡ (a ∧ b ≡ c ∧ d) ∧ (a ∨ b ≡ c ∨ d)

The above characterizations of proportions A,R, P , involving only conjunc-
tion and disjunction (without negation) make the investigation of their behavior
w.r.t. these Boolean operators easier. We only consider the case of A below, for
which it is easy to establish the following proposition:

Proposition 22.

A(a ∨ b, a, b, a ∧ b) and A(a, a ∨ b, a ∧ b, b)

A(a, b, c, d) → A(a ∨ e, b ∨ e, c ∨ e, d ∨ e)

A(a, b, c, d) → A(a ∧ e, b ∧ e, c ∧ e, d ∧ e)

The two last statements express a form of compatibility of the analogical propor-
tion with respect to the disjunction or conjunction with a Boolean constant. The
first expression shows that any Boolean pair (a, b) is in analogy with its meet and
its join. Thanks to Proposition 21, counterparts of these properties can be estab-
lished for both R and P . Regarding the inverse paralogy I, this proportion is not
directly linked to the previous ones through a permutation. However, a link can
be established through the use of the negation operator.

The behavior of A,R, P, I proportions with respect to negation is summa-
rized in Table 8 which is easily derived from their definitions. The third row of
this table simply highlights the code independency property. In terms of negation,

Analogy Reverse analogy

A(a, b, b, a) R(a, b, a, b)

A(a, b, b, a) R(a, b, a, b)

A(a, b, c, d) → A(a, b, c, d) R(a, b, c, d) → R(a, b, c, d)

Paralogy Inverse paralogy

P (a, a, b, b) I(a, b, b, a), I(a, b, a, b), I(a, a, b, b)

P (a, a, b, b) I(a, b, b, a), I(a, b, a, b), I(a, a, b, b)

P (a, b, c, d) → P (a, b, c, d) I(a, b, c, d) → I(a, b, c, d)

Table 8. Behavior of A,R, P, I wrt negation

the link between A,R, P, I proportions is as follows:

Proposition 23. A(a, b, c, d) ≡ R(a, b, c, d),

A(a, b, c, d) ≡ P (a, b, c, d),

A(a, b, c, d) ≡ I(a, b, c, d)



Proof: This is an immediate consequence of our definitions: for instance, start-
ing from the definition of A(a, b, c, d), a∧b ≡ c∧d and a∧b ≡ c∧d, negating b and d
gives a∧b ≡ c∧d and a∧b ≡ c∧d, which is exactly the definition of P (a, b, c, d). �

It is remarkable that I cannot be linked to the other proportions without the
use of negation: this emphasizes the fact that, among the 4 homogeneous logical
proportions, I plays a particular role. In fact, a general inverse paralogy could also
be defined via a set of postulates. We have diverse options. For instance, using the
symbol ? to denote this proportion:

• ¬(a ? b :: a ? b) should hold (non reflexivity)9

• if a ? b :: c ? d holds then a ? c :: b ? d should hold (central permutation)
• if a ? b :: c ? d holds then c ? d :: a ? b should hold (symmetry).

or even

• ¬(a ? a :: b ? b) should hold (non sameness)
• if a ? b :: c ? d holds then b ? a :: c ? d should hold (even permutation)
• if a ? b :: c ? d holds then c ? d :: a ? b should hold (symmetry).

As a consequence, we have the following result:

Proposition 24. I is the unique Boolean formula (up to equivalence) satisfying
these 2 sets of postulates.

Proof: See Annex B. �

However, we may also notice that if we consider the following other set of postulates
for instance, which is the set of postulates related to Reverse Analogy R but
negating the first postulate:

• ¬(a ? b :: b ? a) should hold (non reverse reflexivity)
• if a ? b :: c ? d holds then c ? b :: a ? d should hold (odd permutation)
• if a ? b :: c ? d holds then c ? d :: a ? b should hold (symmetry),

I is not the unique proportion that satisfies this set of postulates in the Boolean
model. For instance, the conditional proportion a|b :: c|d satisfies the above pos-
tulates.

Another natural question is to wonder if each of the logical proportions A,R, P, I
is functionally complete. For instance, let us see if we recover all the Boolean
connectives by using the analogical proportion only. It is quite straightforward to
check the following equivalences:

• 1 ≡ A(1, 1, 1, 1), or more generally 1 ≡ A(a, a, a, a),
• 0 ≡ A(0, 0, 0, 1) or more generally 0 ≡ A(0, a, a, 1),
• a ≡ A(a, 1, 1, 1) and ¬a ≡ A(a, 0, 0, 0),
• a ∧ b ≡ A(1, a, b, 1) and ¬a ∧ ¬b ≡ A(0, a, b, 0),

9It has to be noticed that I, viewed as a binary relation between pairs is not irreflexive (S is
irreflexive iff ∀x,¬S(x, x)) in the classical sense, as 0101 and 1010 are valid valuations for I.



• a ∧ ¬b ≡ A(1, a, b, 0) and ¬a ∧ b ≡ A(0, a, b, 1),
• (a ≡ b) ≡ A(a, b, 1, 1),
• ¬(a ≡ b) ≡ A(a, 0, 1, b) (i.e., the exclusive or connective).

Due to the previous equivalences, it appears that the analogical proportion A,
considered as a quaternary connector, is functionally complete since we can express
negation and conjunction as a single analogical proportion. Similar results hold
for the 3 other homogeneous proportions; we have, e.g. ¬a ≡ I(a, 1, 1, 0) and
a ∧ b ≡ I(a, 0, 0, b) (since a ∧ b ≡ A(1, a, b, 1) ≡ A(a, 1, 1, b) ≡ I(a, 0, 0, b)).

Starting from A(a, a∨b, a∧b, b), using the permutation property of analogical
proportion, we also see that:

• a ≡ A(1, a ∨ b, a ∧ b, b) since A(1, a ∨ b, a ∧ b, b) only holds when a is true,
whatever the truth value of b. Similarly, b ≡ A(a, a ∨ b, a ∧ b, 1),

• a ∨ b ≡ A(a, 1, a ∧ b, b) (similar reasoning),
• a ∧ b ≡ A(a, a ∨ b, 1, b) (similar reasoning).

Nevertheless, the disjunction a∨ b cannot be defined via a unique analogical
proportion involving only a, b, 0 and 1. The reason is that a valuation σ validates a
proportion A(a, b, c, d) only when there is an even number of variables having the
truth value 1. But the 3 valuations leading (a, b) to (1, 1) or (1, 0) or (0, 1) validate
a∨b, which implies that we should have at least one valuation with an odd number
of 1 validating A(a, b, c, d) in order to have an equivalence. This reasoning applies
to all the other proportions R,P, I and shows that it is not possible to define the
∨ connective using only one of the homogeneous proportion among R,P or I.

5.3. Homogeneous proportions and Piaget’s group of transformations

In his studies about the principles of knowledge acquisition by a human being,
the psychologist Jean Piaget [56] investigated basic transformations of statements
which are at work in human language. He identified a group of 4 transforma-
tions, denoted I,N ,R, C which operate on Boolean logical formulas of the form
φ(p, q, r, . . .). They are defined in the following way:

• the identity I: I(φ(p, q, r, . . .)) = φ(p, q, r, . . .)
• the negation or inverse N : N (φ(p, q, r, . . .)) = ¬φ(p, q, r, . . .)
• the reciprocation R: R(φ(p, q, r, . . .)) = φ(¬p,¬q,¬r, . . .)
• the correlation C: C(φ(p, q, r, . . .)) = ¬φ(¬p,¬q,¬r, . . .)

Obviously, these transformations are not independent and we can note that I =
N ◦ R ◦ C, N = C ◦ R = R ◦ C... Basically {I,N ,R, C} is a commutative group
w.r.t. the composition of operators (denoted ◦).

Let us first notice that the code independency property directly involves Pi-
aget’s reciprocation, i.e., T (a, b, c, d) → R(T (a, b, c, d)). More importantly, homo-
geneous proportions behave nicely with respect to Piaget’s transformations. Indeed
the following easy result holds for the analogical proportion.

Proposition 25.

∀φ, ψ, A(I(φ), C(ψ),R(ψ),N (φ))



Proof: Indeed the truth value of I(φ) and N (φ) are opposite whatever φ, the
same is true with R(ψ) and C(ψ) whatever ψ. So this proportion necessarily obeys
one of the four valid analogical patterns 1100, 1010, 0011, 0101. �

Moreover, thanks to Propositions 21 (for R and P ) and 23 (for I), we can
recover similar properties for R,P, I, namely

∀φ, ψ, R(I(φ), C(ψ),N (φ),R(ψ)),

∀φ, ψ, P (I(φ),N (φ),R(ψ), C(ψ)),

∀φ, ψ, I(I(φ),R(ψ), C(ψ),N (φ)).

5.4. Structures of opposition among proportions A,R, P and I

The construction of the logical proportions rely on the interplay of two similarity
indicators and two dissimilarity indicators. When this interplay is “homogeneous”
with respect to the pairs of binary variables considered, we obtain the 4 homoge-
neous proportions, as explained in this paper. The fact that there are 4 indicators,
and then 4 homogeneous proportions, suggests to organize them into squares in
order to lay bare and visualize the forms of oppositions that exist between them.
In some sense, this fits with the tradition of Aristotelian logic where a so-called
square of opposition was introduced at the basis of syllogistic reasoning. The Aris-
totelian square involves four logically related statements exhibiting universal or
existential quantifications (“every x is p”, ”no x is p”, “some x is p”, “some x is
not p”), where two negations are at work. However, the structure of oppositions
in the square of indicators and in the square of homogeneous proportions differs
from the one existing in the Aristotelian square, as we shall see. In the second part
of this subsection, we shall use an hexagonal extension of the Aristotelian square
for some further analysis of the relations between logical operators related to the
ideas of similarity/dissimilarity and the analogical/paralogical proportions [67].

5.4.1. A square of opposition for similarity and dissimilarity.

As made clear in the previous sections, the formalization of the analogical pro-
portion and the other logical proportions leads to introduce the concept of in-
dicators. In logical terms, similarity corresponds to the indicators Sa,b , a ∧ b

and S′

a,b , a ∧ b, while dissimilarity corresponds to indicators Da,b , a ∧ b and

D′

a,b , a ∧ b. These four expressions can be easily arranged into an elementary

square of opposition, where one moves horizontally (resp. vertically) by negating
the first logical variable, i.e. a (resp. the second logical variable, i.e. b). The ex-
pressions that are related by diagonals are exchanged by negating each variable.
See Figure 4. Note that the 4 vertices of the square correspond here to mutually
exclusive situations, which is not the case in the Aristolelian square.
Following the same principle, the four homogeneous proportions can be organized
into a similar square. See Figure 5. Indeed, analogy A defined by (Da,b ≡ Dc,d) ∧
(D′

a,b ≡ D′

c,d), (corresponding to the logical expression (a∧b ≡ c∧d)∧(a∧b ≡ c∧d))
and paralogy P defined by (Sa,b ≡ Sc,d) ∧ (S′

a,b ≡ S′

c,d) (corresponding to the



Sa,b , a ∧ b D
′

a,b , a ∧ b

S
′

a,b , a ∧ bDa,b , a ∧ b

Figure 4. Square of indicators

logical expression (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)) are exchanged horizontally by
negating the second and the fourth (or the first and the third) logical variable.
Reverse analogy R defined by (Da,b ≡ D′

c,d) ∧ (D′

a,b ≡ Dc,d) (corresponding to

the logical expression (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)) and inverse paralogy I

defined by (Sa,b ≡ S′

c,d) ∧ (S′

a,b ≡ Sc,d) (corresponding to the logical expression

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)) are exchanged in the same way. P and R are
exchanged vertically by negating the first and the fourth (or the second and the
third) logical variable, and it is the same for A and I. Moreover A and R one the
one hand, and P and I on the other hand are nicely opposed through diagonals.
Again the four vertices of the square correspond to mutually exclusive situations.
Note also that the names of the vertices here, P, A, I and R, should not be confused
with the traditional names of the vertices of the Aristotelian square, i.e., A, E, O

and I.

P: (Sa,b ≡ Sc,d) ∧ (S′

a,b ≡ S′

c,d) A: (Da,b ≡ Dc,d) ∧ (D′

a,b ≡ D′

c,d)

I: (Sa,b ≡ S′

c,d) ∧ (S′

a,b ≡ Sc,d)R: (Da,b ≡ D′

c,d) ∧ (D′

a,b ≡ Dc,d)

Figure 5. Square of homogeneous logical proportions

It would be possible to organize into squares other logical proportions, in particular
the 16 conditional proportions, but this is beyond the scope of this paper.

5.4.2. Analogical and paralogical proportions in hexagons of opposition.



We first provide a brief reminder about the hexagonal extension of the Aristotelian
square, before applying it to homogeneous proportions. It has been noticed since
Aristotle that a statement (A) of the form “every x is p” is negated by the state-
ment (O) “some x is not p”, while a statement like (E) “no x is p” is clearly in even
stronger opposition to the first statement (A). These three statements, together
with the negation of the last statement, namely (I) “some x is p”, give birth to the
Aristotelian square of opposition in terms of quantifiers A : ∀x p(x), E : ∀x ¬p(x),
I : ∃x p(x), O : ∃x ¬p(x), pictured in Figure 6. Such a square is usually denoted
by the letters A, I (affirmative half) and E, O (negative half). The names of the
vertices come from a traditional Latin reading: AffIrmo, nEgO). Another standard
example of the square of opposition is in terms of modalities: A : �r, E : �¬r,
I : ♦r, O : ♦¬r (where ♦r ≡ ¬�¬r). As can be seen from these two examples,
different relations hold between the vertices. Namely,

- (a) A and O are the negation of each other, as well as E and I;
- (b) A entails I, and E entails O;
- (c) A and E cannot be true together, but may be false together, while
- (d) I and O cannot be false together, but may be true together.

ContrariesA: ∀x p(x) E: ∀x ¬p(x)

S
u
b
-altern

s

Sub-contrariesI: ∃x p(x) O: ∃x ¬p(x)

S
u
b
-a
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n
s

ContradictoriesCont
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Figure 6. Square of opposition

As proposed and advocated by Blanché [7, 8], it is always possible to complete
a square of opposition into a hexagon by adding the vertices Y =def I ∧ O, and
U =def A ∨ E. It fully exhibits the logical relations inside a structure of oppo-
sitions generated by the three mutually exclusive situations A, E, and Y , where
two vertices linked by a diagonal are contradictories, A and E entail U , while Y
entails both I and O. Moreover I = A ∨ Y and O = E ∨ Y . The interest of this
hexagonal construct has been especially advocated by Béziau [5] in the recent years
for solving delicate questions in paraconsistent logic modeling. Conversely, three
mutually exclusive situations playing the roles of A, E, and Y always give birth
to a hexagon [20], which is made of three squares of opposition: AEOI, AY OU ,
and EY IU . See Figure 7.

We are going now to apply the fact that a tri-partition leads to a hexagon of opposi-
tion, by considering tri-partitions of sets of 4-tuples of binary valuations. It is clear
that there is a unique quaternary connective that makes true a particular subset of



J

J ∪K

K

K ∪ L

L = (J ∪ L) ∩ (K ∪ L)

J ∪ L

Figure 7. Hexagon induced by a tri-partition (J,K,L)

4-tuples of binary valuations, and which is false on all the other subsets of 4-tuples
of valuations. We start by considering the whole set of the 16 possible 4-tuples
of binary valuations. The partition that we are going to consider is the follow-
ing one J = {0110, 1001)}, K = {0001, 0010, 0100, 1000, 1110, 1101, 1011, 0111)},
L = {0000, 1111, 1010, 0101, 1100, 0011)}. As can be seen, in this partition of the
16 possible 4-tuples of valuations into 3 mutually exclusive subsets, L corresponds
to the truth table of the analogy A, K gathers the 8 patterns including an odd
number of ‘1’ (and thus of ‘0’ ), while J gathers the two characteristic patterns
0110 and 1001 of the reverse analogy. The corresponding hexagon is pictured in
Figure 8. This hexagon has a nice interpretation in terms of analogical dissimi-
larity in the sense of [50]. Indeed the analogical dissimilarity of the 6 valuation
patterns in L is 0, since they correspond to the 6 cases where A holds true; the
analogical dissimilarity of the 8 valuation patterns in K is 1, since in each case it
is enough to switch one bit for getting a pattern for which proportion A is true;
the analogical dissimilarity of the 2 patterns in J is 2 since one needs to change
2 bits to get a pattern where proportion A is true. It is also noticeable that the
set of patterns in J ∪L corresponds to the truth table of a quaternary connective
that exactly corresponds to S. Klein’s view of analogy [37, 38], defined as:

Klein(a, b, c, d) , (a ≡ b) ≡ (c ≡ d)10,

which is closely related to the equation solving problem for proportions A, R,
P , and which we further comment in the related work section. The vertex cor-
responding to K ∪ L, named “approximate similarity” in Figure 8, is associated
with an operator which is true in the cases where the analogical dissimilarity is

10As indicated by the hexagonal structure of Figure 8, A(a, b, c, d) logically entails

Klein(a, b, c, d). It is also worth noticing that A(a, b, c, d) has two remarkable implicants, namely

(a ≡ b) ∧ (c ≡ d) and (a ≡ c) ∧ (b ≡ d) which are true for only 4 valuation patterns. Similar
logical bracketing can be obtained for the three other homogenous proportions.



not maximal. The hexagon of Figure 8 is clearly associated with the analogical
proportion A. There are 3 other similar hexagons associated with each of the 3
other homogeneous proportions, changing L and J in the appropriate way.

0 1 1 0
1 0 0 1

non analogy
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

approximate similarity

1 1 1 1
0 0 0 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

Klein’s operator

Figure 8. Hexagon induced by analogical dissimilarity

When choosing a tri-partition, it is not compulsory to consider all the 16 valuation
4-tuples. One may, for instance, restrict ourselves to the patterns that make the
analogical proportion, or the paralogical proportion true. Then, as can be seen
in Figure 9, we get interesting results since one may provide a logical semantic
counterpart to two hexagons respectively hinted by Moretti [53] and by Béziau [6]
recently. Note that in the second hexagon “analogy” is understood in the strong
sense of the restriction of A to its characteristic pattern, while “opposition” cor-
responds to the restriction of R to its characteristic pattern. “Contrariety” in the
first hexagon corresponds to the characteristic pattern of the inverse paralogy I.
Note also that the notions of “similarity” and “difference” slightly differ in the
two hexagons, while the notions of “identity” and “sameness” coincide (and cor-
respond here to the characteristic pattern of paralogy).

This section has surveyed properties that make the 4 homogeneous propor-
tions A,R, P, I remarkable among the 120 logical proportions. Indeed, using dif-
ferent points of view, we have seen that these proportions naturally emerge thanks
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Figure 9. Moretti’s and Béziau’s hexagons induced by decomposing analogy and paralogy
truth tables. The hexagons show the patterns for which the corresponding vertices are true.

to their singular properties. To the best of our knowledge, neither the 120 logical
proportions, nor the 4 homogeneous ones have been considered in the literature
before (if we except our own recent works). This is why the following related work
section only deals with the analogical proportion.

6. Related work

As emphasized by many authors, analogical reasoning is central in human intelli-
gence. For instance, the psychologist William James in his 1890 book [35] wrote
“A native talent for perceiving analogies is ... the leading fact in genius of every
order”. Moreover, as said in the introduction, analogical proportion, and more gen-
erally analogy, is a very old concept whose interest is shared by diverse scientific
communities. In the following, we only concentrate on works focusing on analog-
ical proportion, and which are logically, or at least computationally oriented. We
first summarize the pioneering works of [57] and [37] which are, as far as we know,
the only ones who contributed to a Boolean view of analogical proportions. Also
somewhat close to the framework presented here, are the works of a group of re-
searchers who developed a set-theoretic view of analogical proportion in the last
decade, which will be reviewed next. We will then successively consider logical
or algebraic approaches differing from the framework presented here, and other
psychologically inspired and computationally oriented works.

6.1. Boolean view of analogical proportions: the works of J. Piaget and S. Klein

As already said in the introduction, at the occasion of the study of the behavior of
his transformation group on ternary connectives [57], J. Piaget introduces a notion
logical proportion. Namely, four Boolean formulas α, β, γ, δ make a logical propor-
tion iff α∧ δ ≡ β ∧ γ and α∨ δ ≡ β ∨ γ holds. Moreover, Piaget used the notation



α
β = γ

δ in this situation. As we have previously observed, the conjunction of the

two above conditions is strictly equivalent to the definition given for A(α, β, γ, δ).
On this basis, Piaget [57] provides many valid logical proportions (in his sense),
that can be easily translated in known properties of the analogical proportion A,
for instance, in the notations of this paper, Piaget showed that the following holds

∀φ, ψ, A(I(φ),R(ψ), C(ψ),N (φ))

which can be recovered from Proposition 25 using central permutation, or

∀φ, ψ, A(I(φ), I(ψ),N (ψ),N (φ))

which is just exchange mirroring. More generally, Piaget gave different instances
of Proposition 25, substituting different formulas for α, β, γ, δ. For instance, with
φ = (p ∧ q) ∨ (p ∧ q) and ψ = p ∨ q in the above expression, we get N (φ) = p and
N (ψ) = p ∧ q leading to

A((p ∧ q) ∨ (p ∧ q), p ∨ q, p ∧ q, p).

In fact, all the Piaget’s formulas, involving general Boolean formulas can be
recovered using the properties of the analogical proportion A. This shows once
again that the notion of logical proportion is definitely linked to the human cogni-
tive process. But, what is retrospectively amazing, is that Piaget never referred to
analogical proportions, when speaking of his logical proportions [57, 58], although
he mentioned analogy in some of his previous book [55].

In a series of works, S. Klein [36, 37, 38] has proposed a way of solving
analogical proportion-like equations based on a so-called Appositional Transfor-
mation Operator or ATO (later named “Analogical Transformation Operators”
[39]), denoted ∗, which is nothing but the strong binary equivalence: ∗ab is just
a ≡ b. He observed that the repeated use of ∗ allows him to obtain the solution
d = ∗c(∗ab) = c ≡ (a ≡ b). We have seen that this is indeed the solution of the
analogical proportion equation when the solution exists, but otherwise provides
the solution of a paralogical, or a reverse analogical proportion equation. In other
words, his constructive view of analogy corresponds to what we called Klein qua-
ternary connective in Section 5.4.2, namely Klein(a, b, c, d) = (a ≡ b) ≡ (c ≡ d),
which is less restrictive than the definition given in this paper. With this definition,
if “a is to b as c is to d”, then “b is to a as c is to d”, which is hardly acceptable
since it does not fit well with the commonsense idea of analogy. In its truth table,
Klein connective has two more lines, corresponding to the valuations 0110 and
1001, leading to true than the analogical proportion defined in this paper. Never-
theless, Klein’s definition allows him to solve simple verbal and visual analogies,
and to explain numerous anthropological patterns appearing in various cultures.

The above-mentioned contributions by Piaget and Klein are the two first
works that have some relation with the idea of a logical model for analogical
proportion. In the following we review more recent works that propose either a
formal modeling of analogy or a computational approach to analogical reasoning.



6.2. Other algebraic and logical models

A formal study of analogical proportions (obeying the three postulates of section
5.1) has been first proposed in [43, 44] in a computational linguistics perspective,
and further developed in [76]. These authors have proposed different set-theoretic
definitions of analogical proportions. The main one, due to [76], reads as follows.
Let A, B, C, D be subsets of features, the analogical proportion A : B :: C : D
holds if and only if there exist four subsets U , V , W and Z, such that A = U ∪V ,
B = U ∪W , C = Z ∪ V , D = Z ∪W . An algebraic, factorization-based, gen-
eralization of this definition has been proposed and applied to various structures
ranging from semi-groups to lattices, including words over finite alphabets and
finite trees [75, 76, 51, 1]. One of the main interest of these approaches is the
fact that they also lead to effective implementations, generally dedicated to ma-
chine learning applications. In particular, the works of [3, 50] highlight the fact
that the use of analogical proportions as a classification tool, leads to results which
outperform standard classification techniques. Besides, the above set-theoretic def-
inition has been later restated in a different, simpler but equivalent way in [52],
as A \ B = C \ D and B \ A = D \ C. Moreover, the logical counterpart of this
definition is also studied in [52].

Due to the brittleness of its conclusions, analogical reasoning is not amenable
to a formal logic framework in a straightforward manner. Nevertheless, a logical
view, quite different from the propositional modeling of analogical proportions dis-
cussed here, has been proposed in [15] using a first order logic setting. Considering
two particular terms s and t that share a common property P (i.e P (s) and P (t)
hold), where moreover s satisfies an additional property Q (i.e. Q(s) holds), then
by an “analogical jump” t should satisfy Q (i.e. Q(t) should hold). The legitimacy
of this conclusion cannot be insured without some external background knowl-
edge. But, this background knowledge alone should not be sufficient to entail the
property Q(t) of the target (without the use of P (s) and Q(s)). A considerable
amount of works has been done to identify the weakest external conditions of this
kind making the inference scheme valid. It appears that such external conditions
are extremely strong, since they are not far from expressing a functional relation.
The reader is referred to [15] for details.

A rather different approach has been developed by [72, 30, 29]. Still logic-
based, both higher-order features and anti-unification [59] are added to the classical
first order framework, leading to what is known as the Heuristic-Driven Theory
Projection (HDTP) framework. In these works, all the items are represented as
first order terms, but the definition of analogical proportion is stated in another
manner. More precisely, a : b :: c : d holds iff we can find 2 patterns (i.e. terms)
P and Q such that Pσ1 = a, Pσ2 = c (i.e. σ1 and σ2 denote substitutions and P
generalizes a and c), and Qσ1 = b and Qσ2 = d (i.e. Q generalizes b and d). In
other words, the pair P,Q allows to transform a into b and c into d which makes
the proportion to hold. P and Q denote properties, which have to be found, thus
the need for higher order logic. Instead of using the basic logical equivalence ≡, an



equational theory E can be added to deal with more general pattern via equality
modulo E. This suggests an equation-solving process where d is unknown and
computed (when such a d exists) via an anti-unification process extracting P and
Q from a, b, c. Another approach that refers to unification is the one proposed by
[14] whose starting point is a general theory of pattern perception. As can be seen,
this kind of approaches, as the one of the previous paragraph, does not encode
the analogical reasoning mechanism at the same level as with the propositional
modeling of analogical proportions.

6.3. Other computational approaches

From a more practical viewpoint, analogical reasoning, considered a powerful
heuristic device, has been investigated in artificial intelligence for a long time.
Evans’ Analogy program [22] is the first attempt at implementing an analogy-
solving program in a setting of a knowledge representation language. It was de-
signed for solving a class of IQ puzzles of the form A is to B as C is to which of D1,
or D2 or ... Dn ? involving simple geometric figures. The program, starting from a
representation of A and B, first looks for transformation rules starting from A and
leading to B, and from C to each Di. Then it selects the Di associated with the
set of rules that are the most similar to the ones linking A and B. The work of [40]
follows the same philosophy, but applies it to an analogy-based first-order theorem
prover where A is stated as a theorem whose a known proof is B (represented as
an ordered set of clauses) and C is a new theorem to be proved. As previously,
the system heavily relies on the representation language and more importantly, of
the database of available theorems and lemma. Such a use of analogy has been
pursued for several researchers; see [49].

In the same spirit, [82] builds up an analogical engine able to establish links
between a current situation and previously seen ones, in terms of logical rules. Fol-
lowing this line of thought, the Structure Mapping Theory (SMT) [26], also based
on psychological and cognitive concerns [27], is probably the first framework ab-
stracting from first order logic and naturally leading to higher order logic where
an analogy is characterized by the mapping of relations between objects, rather
than attributes of objects. Despite its abstraction, the model led to what is known
as the Structure Mapping Engine (SME) [23] exploring SMT, and providing an
effective (in the sense where most of the steps are polynomial) ”tool kit” for con-
structing matching algorithms consistent with SMT. For instance, more recently,
SME has been used for analogical comparison of sketches [24], allowing to solve
analogies from geometrical sketches, or even Raven’s tests as in [48]. It is important
to note that the SMT-based engines are generally not constructive in the sense
they cannot solve an analogical equation from scratch. They are more designed to
choose a solution among a set of candidate solutions, as it was already the case
for Evans’s program. The Vivomind engine of Sowa [74], implemented on top of
a conceptual graphs representation, is also SMT-based, but adds some low-level
processes representative of the human brain behavior. [54] combines SMT with an
attribute matching process to solve geometric analogy problems.



The above approaches deal with symbolic representations. Others [25], in-
fluenced by connectionism, are more numerically-oriented (which may have some
merits by allowing for graded view of similarity). A well-known example of this
trend is the Copycat project [33], which focuses on analogical proportions whose ex-
perimental domain deals with incomplete analogical proportions of the form abc is
to abd as ijk is to ?. The program can lead to several options, using parallel search
and weighting the diverse answers, thus relaxing the rigid framework of SMT. An-
other more recent example of the use of numerical similarity evaluation as a basis
for selecting a candidate solution can be found in [41], On a more theoretical side,
[12] established a link between analogical reasoning and Kolmogorov complexity
used for evaluating the changes from A to B, or from C to Di. The author ad-
vocates a kind of “simplicity principle” to serve as a starting point for modeling
analogical proportion via Kolmogorov theory. This approach is in complete line
with the works of [11] in which “choose the pattern that provides the briefest rep-
resentation of the available information” is acknowledged as the rational basis of a
wide range of cognitive processes, including analogical reasoning. Besides, a Kol-
mogorov theory-based quantitative definition of analogical proportions has been
proposed in [2].

Obviously, there are still many other kinds of works related to analogy. For
instance, it is worth to mention that analogical proportion is not only an amazing
object, but also a crucial concept having various instances in natural language
leading to extensive investigations, and providing encouraging results for auto-
matic translation as in [45, 46, 42, 81, 9] or in text comprehension [79, 78], or even
in recommendation systems [71].

In this section, we have focused on those works that provide, at least at
the algorithmic level, some formal view of the analogical process, generally in
relation with the idea of analogical proportions. With respect to all these works, the
approach reported here enjoys at least three distinctive features: i) its simplicity,
due to an easy-to-understand propositional representation; ii) its coverage, since
the analogical proportion is a noticeable element among a large set of logical
proportions obeying the same type of similarity/dissimilarity-based pattern; iii)
its inference ability, thanks to the equation-solving property.

7. Conclusion

Our initial works on this topic [60, 61] were centered on the 3 proportions A,R, P ,
then expanded to the 15 proportions satisfying full identity [64]. It has appeared
[62] that many other options are available for defining further proportions: we have
called these proportions, defined via a pair of equivalences, logical proportions.
These equivalences relate the basic similarity and dissimilarity indicators that can
be considered when comparing two states of fact. A first inventory of the 120
existing logical proportions was provided both through a syntactic typology, and



through the study of some meaningful semantical properties. A more dedicated
study has recently focused on the 4 homogeneous proportions A,R, P, I [65].

The intended purpose of this paper is to provide a systematic discussion of
the idea of logical proportions, and a rigorous study of their relationships and
noticeable properties. In that respect, the present paper is not just the structured
union of the results that can be found in the previously-cited papers, but includes
many new results as well as new perspectives. Nevertheless, logical proportions,
which apparently have never been considered before in spite of their conceptual
simplicity, have to be further investigated.

In fact, thanks to a software implementation [66], a number of new notice-
able, or even in some cases amazing properties have been computationally checked
through enumerations. These results, for which we have not yet direct proofs, may
be regarded as conjectures. A selection of them can be found in Annex C. Let
us mention only here the existence of 4 remarkable semi-hybrid proportions such
that each satisfies three of the four following properties T (a, a, a, a), T (a, a, a, a),
T (a, a, a, a), T (a, a, a, a) (note that satisfying all of them corresponds to the nega-
tion of Klein’s operator in hexagon of Figure 8 which is true for 8 valuation pat-
terns). These proportions are closely related with the idea of spotting the odd one
out, or if we prefer of picking the one that doesn’t fit among 4 items [69]. It is
worth noticing that the setting of logical proportions both includes symmetrical
proportions that compare pairs on a par in a homogeneous way (as with analogy),
and non symmetrical ones that correspond to a different cognitive process.

Another worth investigating issue, is the extension of the study of Boolean
logical proportions to multiple-valued settings. Even, if some proposal has been
made for defining A,R, P , in the case of a 3-valued, and a [0, 1]-valued setting
[63, 68] with the idea of modeling a graded proportion (e.g., defining an approxi-
mate analogy), other extensions should be considered for accommodating unknown
values, or non-applicable attributes [68].

For those proportions that satisfy the equation solving property, they may
be used to complete an existing pattern, taking into account some regularities
with respect to an existing set of data, then paving the way to a machine learning
technique, similar in nature to the well known k-nearest neighbor technique, but
offering many more options and better results. From a practical viewpoint, it has
been shown for Boolean features in [3, 50], that this equation solving process, using
only the analogical proportion, can be the basis of a new classification technique.
In that case, the missing information for the 4th item d is only its class: d is then
classified according to analogical patterns extracted from the data at hand by
solving the corresponding analogical equation. This technique has been successfully
extended to numerical features [70], thanks to a multi-valued logic extension of A
and P . Moreover, a similar approach has been shown to be able to solve Raven
Progressive Matrices tests [13].
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ANNEX A: Truth tables

We do not repeat here the truth tables of homogeneous proportions which have
been largely investigated through this paper. Moreover, in order to reduce the size
of the tables, we omit the ∧ symbol and we separate the 2 equalities defining a
proportion by a simple vertical bar |.

• We start with Table 9 showing the 16 conditional proportions.
• Then we have 20 hybrids proportions given in Table 10.
• We have 32 semi-hybrids given in Table 11.
• We end the serie with Table 12 showing degenerated proportions, i.e., the

proportions where 2 indicators among 4 are identical. They are easy to build
up and we only show 3 of them. All the remaining ones are easily deducible.

• Table 13 shows the 15 proportions satisfying the full identity property (∧ are
omitted). A, R, P are on the first line, while degenerated ones are the last
four.

• We exhibit the 4 conditional and the 4 hybrid proportions satisfying the
symmetry property in Table 14. When adding the homogeneous proportions
A,R, P, I, we get a total number of 12 proportions.

formula notation

ab ≡ cd|ab ≡ cd b|a :: d|c
ab ≡ cd|ab ≡ cd b|a :: c|d
ab ≡ cd|ab ≡ cd a|b :: d|c
ab ≡ cd|ab ≡ cd a|b :: c|d
ab ≡ cd|ab ≡ cd b|a :: c|d
ab ≡ cd|ab ≡ cd b|a :: d|c
ab ≡ cd|ab ≡ cd a|b :: c|d
ab ≡ cd|ab ≡ cd a|b :: d|c

formula notation

ab ≡ cd|ab ≡ cd a|b :: d|c
ab ≡ cd|ab ≡ cd a|b :: c|d
ab ≡ cd|ab ≡ cd b|a :: d|c
ab ≡ cd|ab ≡ cd b|a :: c|d
ab ≡ cd|ab ≡ cd a|b :: c|d
ab ≡ cd|ab ≡ cd a|b :: d|c
ab ≡ cd|ab ≡ cd b|a :: c|d
ab ≡ cd|ab ≡ cd b|a :: d|c

Table 9. 16 conditional proportions

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 10. 20 hybrid proportions



S ≡ S′|S ≡ D S ≡ S′|S ≡ D

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

S ≡ S′|D ≡ S S ≡ S′|D ≡ S

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

D ≡ D′|S ≡ D D ≡ D′|S ≡ D

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

D ≡ D′ | D ≡ S D ≡ D′ | D ≡ S

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 11. 32 semi-hybrid proportions

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 12. Degenerated proportions (a sample among 48)

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 13. The 15 proportions satisfying full identity property

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 14. The 4 conditional (1st line) and 4 hybrid proportions
satisfying symmetry

ANNEX B: Proofs

The proofs are mainly obtained by a rigorous examination of the way the propor-
tions are built up. Since they are made up with a pair of equivalences between
indicators, let us investigate first these diverse equivalences. We have the following
property:
Lemma 1 An equivalence between indicators has exactly 10 valid valuations.
Proof: Such an equivalence eq , Ia,b ≡ Ic,d is satisfied only when it matches one
of the 2 patterns 1 = 1 or 0 = 0: due to the fact that 0 is an absorbing value for
∧, these patterns correspond to the 10 values shown in Table 15 for the literals
involved in the indicators (with obvious notation). Any other valuation does not



match anyone of the 2 previous patterns and will lead to the truth value 0 for the
equivalence eq. �

literal 1 literal 2 literal 3 literal 4 pattern
1 1 1 1 1 = 1
0 1 0 1 0 = 0
0 1 1 0 0 = 0
0 1 0 0 0 = 0
1 0 0 1 0 = 0
1 0 1 0 0 = 0
1 0 0 0 0 = 0
0 0 0 1 0 = 0
0 0 1 0 0 = 0
0 0 0 0 0 = 0

Table 15. The 10 valid literal valuations for an equivalence be-
tween indicators

Lemma 2 Two equivalences between indicators have the same truth table iff they
are identical.
Proof: It is sufficient to show that if 2 equalities eq1 and eq2 have the same truth
table, then they are syntactically identical. In other terms, we have to prove that
eq1 ≡ eq2 implies eq1 =Id eq2. We can assume for instance without loss of gener-
ality that eq1 contains a but eq2 contains a. Let us consider the unique valuation
v such that v(eq1) = 1 with the pattern 1 = 1. This valuation v is such that
v(a) = 1. By hypothesis, v(eq2) = 1 but in that case with the pattern 0 = 0 since
v(a) = 0. Let us now modify v into v′ such that v′(a) = 0, v′(c) = v(c), v′(d) = v(d)
and v′(b) = v(b). Obviously v′ does not validate eq1 but still validates eq2 which
contradicts the hypothesis. Then the expected result. �

Lemma 3 When an equivalence involves a similarity indicator and a dissimilarity
indicator, then it cannot be satisfied for both valuations 0000 and 1111.
Proof: First of all, we observe that any of the 2 valuations 0000 or 1111 will assign
the value 0 to any dissimilarity indicator. On the opposite, one of the 2 previous
valuations will assign the value 1 to any similarity indicator. Let us suppose we
have an equivalence Sa,b ≡ Dc,d, the 2 previous remarks show that at least one of
the 2 valuations will assign the value 0 to the equivalence. �

Lemma 4 An equivalence involving only dissimilarity indicators is satisfied by both
1111 and 0000.



Proof: This comes from the fact that these 2 valuations allocate the value 0 to any
dissimilarity indicator. �

Now, we have a lemma showing that certain classes of valuation cannot be sat-
isfied by an equivalence between indicators, and then certainly not by a logical
proportion which is built up with 2 such equivalences.

Lemma 5 A logical proportion cannot satisfies the classes of valuation {0111, 1011,
1101, 1110} or the classe {1000, 0100, 0010, 0001}.
Proof: It is enough to show that this is the case for an equivalence between indi-
cators. So let us consider such an equivalence l1 ∧ l2 ≡ l3 ∧ l4. If this equivalence
is valid for {0111, 1011}, it means that its truth value does not change when we
switch the truth value of the 2 first literals from 0 to 1: there are only 2 indicators
for a and b satisfying this requirement: a ∧ b and a ∧ b. On top of that, if this
equivalence is still valid for {1101, 1110}, it means that its truth value does not
change when we switch the truth value of the 2 last literals from 0 to 1: there are
only 2 indicators for c and d satisfying this requirement: c∧ d and c∧ d. Then the
equivalence l1∧l2 ≡ l3∧l4 is just a∧b ≡ c∧d, a∧b ≡ c∧d, a∧b ≡ c∧d or a∧b ≡ c∧d.
None of these equivalences satisfies the whole class {0111, 1011, 1101, 1110}. The
same reasoning applies for the other class. �

Before starting with the proofs of the main properties, let us summarize in a
final lemma some straightforward properties of the indicators:

Lemma 6 Given a pair (a, b) with S(a,b) and S′

(a,b) (resp. D(a,b) and D′

(a,b)) the 2

similarity (resp. dissimilarity) indicators, and a valuation σ:

• σ(a) 6= σ(b) iff σ(S(a,b)) = σ(S′

(a,b)) = 0 (or equivalently if σ(S(a,b)) = 1 or

σ(S′

(a,b)) = 1 then σ(a) = σ(b))

• σ(a) = σ(b) iff σ(D(a,b)) = σ(D′

(a,b)) = 0 (or equivalently if σ(D(a,b)) = 1 or

σ(D′

(a,b)) = 1 then σ(a) 6= σ(b))

• σ(S(a,b)) and σ(S′

(a,b)) (resp. σ(D(a,b)) and σ(D′

(a,b))) cannot be equal to 1

simultaneously.

This lemma justifies once again the name similarity (resp. dissimilarity) for
the respective indicators: for instance, we observe the identity of 2 objects σ(a)
and σ(b) when at least one similarity indicator is equal to 1 (and the other one is
equal to 0) or equivalently, when their 2 dissimilarity indicators are equal to 0.

Proposition 1: The truth table of a logical proportion has 6 and only 6 lines with
truth value 1.
Proof: Since a logical proportion T is the conjunction eq1 ∧ eq2 of 2 equalities be-
tween indicators, with eq1 6= eq2, it appears from Lemma 1 that T has a maximum
of 10 valid valuations and a minimum of 4 valid valuations. Let us start from eq1,
having 10 valid valuations which are candidate to validate T . Obviously, adding



eq2 to eq1 will reduce the number of valid valuations for T . Let us assume eq2
differs from eq1 with only one literal (or negation operator). This is then a degen-
erated proportion. Without loss of generality, we can consider that the difference
between eq1 and eq2 occurs on the first literal meaning eq1 is a ∧ l2 ≡ l3 ∧ l4 and
eq2 is a ∧ l2 ≡ l3 ∧ l4 or vice versa. It is then quite clear that the first valuation
1111 valid for eq1 is not valid any more for T . It remains 9 candidates valuations.
Finally any valuation starting with 01 is not valid any more and we have 3 such
valuations. All the 6 remaining valuations are still valid for T . Which ends the
proof when the 2 equalities differ from one negation (i.e. one literal).

Now when they differ from 2 literals, two cases have to be considered:

• either the 2 literals where eq1 differs from eq2 are on the same side of an
equivalence i.e. eq2 is l′1 ∧ l

′

2 ≡ l3 ∧ l4 (degenerated proportion)
• or they are on different side i.e. eq2 is l′1 ∧ l2 ≡ l′3 ∧ l4.

In the first case, the valuations 1111, 0010, 0001 and 0000 are not valid any more,
but all other ones remain valid. In the second case, the valuations 0100, 0110, 1001
and 0001 are not valid anymore, but all the other ones remain valid. We are done
for the case of 2 differences. When they differ from 3 literals, let us suppose l4 ap-
pears in both equivalence, the valuations 1001, 0101, 0010 and 0000 are not valid
anymore and we stick with the 6 remaining ones. In the case where all the literals
are different, obviously the 4 valuations containing only one occurence of 1 are not
valid anymore because they lead to an invalid pattern 0=1 or 1=0 for eq2. And
we have exactly 4 such valuations. It remains 6 valid valuations. Which ends the
proof. �

Proposition 2: The truth tables of the 120 proportions are all distinct.
Proof: We shall show that, when 2 proportions T , eq1 ∧ eq2 and T ′ , eq′1 ∧ eq

′

2

have the same truth table, they are syntactically identical (up to a permutation of
the 2 equalities). In other words T ≡ T ′ implies T =Id T

′. Starting from T ≡ T ′

(i.e. T and T ′ coincide on any valuation σ), if eq1 is syntactically different from
eq′1, we show that eq1 is syntactically equal to eq2. This will complete the proof as
a similar reasoning will show that eq2 is, in the same context, syntactically equal
to eq′1.

In fact, if eq1 is syntactically different from eq′1, we can assume for instance
without loss of generality that eq1 contains a but eq′1 contains a. Let us consider
the unique valuation σ, validating T and T ′, such that σ(eq1) = 1 with the pattern
1 = 1. Necessarily, this valuation σ is such that σ(a) = 1. By hypothesis, σ(eq′1) = 1
but in that case with the pattern 0 = 0 since σ(a) = 0. Let us now consider the
new valuation σ′ such that σ′(a) = 0, σ′(c) = σ(c), σ′(d) = σ(d) and σ′(b) = σ(b).
Obviously σ′(T ) = σ′(eq1) = 0 but still σ′(eq′1) = 1 following the pattern 0 = 0.
The only option for having σ′(T ) = σ′(T ′) = 0 is thus to have σ′(eq′2) = 0 which
means a belongs to eq′2. Continuing the same reasoning, we show that eq1 =Id eq

′

2



and we conclude that if eq1 6= eq′1, necessarily eq1 =Id eq2. Which is the expected
result. �

Proposition 3: There are only 15 proportions satisfying full identity: 3 of them are
homogeneous (they are A, R, and P), 8 of them are conditional proportions and
the 4 remaining ones are degenerated.
Proof: Lemma 3 shows that none of the hybrid or semi-hybrid proportions can
satisfy full identity since by definition such a proportion includes an equivalence
between a similarity indicator and a dissimilarity indicator. Concerning the condi-
tional ones, it is clear that the equivalence involving only dissimilarity indicators
will be satisfied whatever the valuations (lemma 4), but the remaining equivalence
involving similarity indicators will be satisfied iff it is of the form a ∧ b ≡ c ∧ d or
a ∧ b ≡ c ∧ d which leads to exactly 8 conditional proportions. Finally, the same
reasoning applies to degenerated proportions: only remain the proportions which
do not involve an equivalence between a similarity indicator and a dissimilarity
indicator. But now, if we remember that an indicator appears twice in a given de-
generated proportion, the proportions involving only similarity indicators cannot
lead to 1 for the 2 previous valuations since such a valuation can satisfy only one
equivalence. It remains only the degenerated proportions involving only equalities
between dissimilarity indicators. And we have exactly 4 such proportions: we fix
for instance the first dissimilarity indicator (2 possibilities) as the left hand side
of the 2 equalities and we build only one proportion with the right hand side indi-
cators. We repeat the process but fixing now the right hand side of the equalities.
And we are done with the 4 degenerated proportions. An immediate check allows
to conclude for homogeneous proportions. This achieves the whole proof. �

Proposition 4: There are 30 proportions validated with 1111 but not validated with
0000. Dually, there are also 30 proportions validated with 0000 but not with 1111.
Proof: Due to the complete symmetry in the notation, it is sufficient to show the
first part of the proposition. Lemma 4 tells us that any equivalence involving 2
dissimilarity indicators D(a,b) ≡ D(c,d) is validated with both 1111 and 0000. On
the opposite, an equivalence involving only similarity indicator S(a,b) ≡ S(c,d) is

validated by both of them (a∧b ≡ c∧c and a∧b ≡ c∧d) or by none of them (a∧b ≡
c ∧ d and a ∧ b ≡ c ∧ d). This excludes the 4 homogeneous and the 16 conditional
proportions as suitable candidates. Concerning the hybrid proportions, they obey
3 possible distinct patterns characterized by equivalences between similarity and
dissimilarity indicators in their definitions. They are of the form:

S(a,b) ≡ D(c,d) ∧ S
′

(a,b) ≡ D′

(c,d)

or

D(a,b) ≡ S(c,d) ∧D
′

(a,b) ≡ S′

(c,d)

or

S(a,b) ≡ D(c,d) ∧D(a,b) ≡ S(c,d)



The first pattern, involving a similarity indicator on the left hand side of the 2
equalities, cannot lead to suitable proportions since the right hand side is a dis-
similarity indicator having value 0 for the 2 valuations: this implies that at least
one of the 2 equalities will not be satisfied whatever the valuation. The same rea-
soning applies with the second pattern where the similarity indicators appear on
the right hand side of the equalities. It remains only the hybrid proportions where
a similarity indicator appears as the left hand side of the first equivalence and as
the right hand side of the second equivalence or vice-versa. If we consider only
the valuation 1111, the only suitable similarity indicators are a ∧ b and c ∧ d: and
we have 4 choices for the remaining dissimilarity indicators leading to exactly 4
suitable hybrid proportions. A similar reasoning leads to 12 semi-hybrids and 14
degenerated (degenerated proportions are simpler to investigate since they make
use of only 3 distinct indicators). �

Proposition 5:

• There is no proportion simultaneously satisfying the 3 facts T (a, a, b, b),
T (a, b, a, b) and T (a, b, b, a).

• A is the only proportion to satisfy T (a, a, b, b) and T (a, b, a, b).
• R is the only proportion to satisfy T (a, a, b, b) and T (a, b, b, a).
• P is the only proportion to satisfy T (a, b, a, b) and T (a, b, b, a).
• 6 proportions satisfying T (a, b, a, b) including A and P but not R and I.
• 6 proportions satisfying T (a, b, b, a) including P and R but not A and I.
• 6 proportions satisfying T (a, a, b, b) including A and R but not P and I.

Proof: The two last statements remain to be proved. See the main text for the
other ones. Given a logical proportion T (a, b, c, d) of the form (I1

(a,b) ≡ I2
(c,d)) ∧

(I3
(a,b) ≡ I4

(c,d)), reverse reflexivity enforces the two equivalences I1
(a,b) ≡ I2

(b,a)

and I3
(a,b) ≡ I4

(b,a). Thus, the only choices for the equivalences are a ∧ b ≡ c ∧ d,

a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d among the 16 possibilities. Since a
logical proportion is defined from two distinct, non-ordered equivalences, there
are 4 × 3/2 = 6 proportions satisfying T (a, b, b, a). They are given in Table 16.
We recognize the proportions R, P , and the 4 conditional proportions a|b :: d|c,
b|a :: c|d, a|b :: d|c, and b|a :: c|d.

Concerning sameness property, a similar reasoning applies leading to the
fact that I1

(a,a) ≡ I2
(b,b) and I3

(a,a) ≡ I4
(b,b) where equivalence appears between

conjunctions which do not share variables. This is only possible when I1
(a,a) ≡

I2
(b,b) ≡ ⊥ and I3

(a,a) ≡ I4
(b,b) ≡ ⊥ leading to the pattern a ∧ a. Thus we still have

6 candidates given in Table 17 where we recognize A and R, and 4 degenerated
proportions. Which completes the proof. �

Proposition 6 There are only 12 proportions satisfying symmetry property. Apart



ab ≡ cd ab ≡ cd (R) ab ≡ cd ab ≡ cd (P )

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

Table 16. The 6 proportions satisfying reverse reflexivity T (a, b, b, a)

ab ≡ cd ab ≡ cd (A) ab ≡ cd ab ≡ cd (R)

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

Table 17. The 6 proportions satisfying sameness T (a, a, b, b)

from P,A, I,R (homogeneous proportions), there are 4 conditional proportions and
4 hybrid proportions.(These proportions are shown in Table 14 in Annex A).
Proof: The symmetry property implies that

T (a, b, c, d) ≡ T (c, d, a, b)

and since both are logical proportions, Proposition 2 tells us that these 2 propor-
tions should be identical up to a permutation of the 2 equalities. Let us denote
σ the permutation such that σ(a) = c, σ(b) = d, σ(c) = a, σ(d) = b. Back to our

initial notation where T (a, b, c, d) , I(a,b) ≡ I(c,d) ∧ I
′

(a,b) ≡ I ′(c,d), σ transforms an

indicator for (a, b) into an indicator for (c, d) and vice-versa, the only options are:

• σ(I(a,b)) =Id I(c,d) and σ(I(c,d)) =Id I(a,b) (and similar for I ′): this means
that the 2 sides of the equations are indicators of the same type i.e. eq1 can
only be a∧ b ≡ c∧d, a∧ b ≡ c∧d, a∧ b ≡ c∧d or a∧ b ≡ c∧d. Since we have
4 choices for eq1, it remains 3 choices for eq2 which should be different from
eq1 to build up a proportion. Taking into account the fact that the order of
the equations is not relevant, we get 4 × 3/2 = 6 such proportions.

• σ(I(a,b)) =Id I
′

(c,d) and σ(I(c,d)) =Id I
′

(a,b) (and similar by switching I and I ′).

The previous reasoning applies telling us that I(a,b) and I ′(c,d) should be of

the same type leading to 4 possibilities. Then I ′(a,b) and I(c,d) should be of the

same type leading to only 3 remaining possibilities. Then again 4 × 3/2 = 6
such proportions which achieves the proof. �

Proposition 7. There are 16 proportions satisfying the central permutation property.
Proof: It is sufficient to adapt the previous reasoning (Proposition 6) to this type
of permutation. These proportions are given in Table 18. �

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd(I)

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd(A) ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

Table 18. The 16 proportions stable for central permutation



Proposition 9.

• A and I are the only logical proportions satisfying symmetry and being stable
for permutation p23, i.e. the permutation of the means. The same result holds
replacing p23 by p14 (permutation of extremes).

• P and I are the only logical proportions satisfying symmetry and being stable
for permutation p12. The same result holds replacing p12 by p34.

• There are 10 proportions including only 2 homogeneous11, namely R and I,
satisfying symmetry and being stable for permutation p24. The same result
holds replacing p13 by p24.

Proof: Regarding the first statement, it is sufficient for instance to compare Ta-
ble 14 in Annex A, showing the proportions satisfying symmetry with Table 18
showing the proportions stable for central permutation: this gives us the result.
Regarding the 2 other statements, checking the truth tables of the 12 proportions
satisfying symmetry (shown in Table 14) gives the result. �

Proposition 11. There are exactly 8 proportions satisfying the code independency
property. Apart from the homogeneous proportions P,A, I,R, there are 4 hybrid
proportions.
Proof: In fact, the code-independency property implies that:

T (a, b, c, d) ≡ T (a, b, c, d)

Since both T (a, b, c, d) and T (a, b, c, d) are logical proportions, Proposition 2 tells
us that the 2 proportions should be identical up to a permutation of the 2 equalities.
This exactly means that the second equivalence is obtained from the first one by
negating all the variables. Since we have 4×4 equalities between indicators, we can
build exactly 16/2 = 8 proportions satisfying code independency property: each
time we choose an equivalence, we use it and its negated form to build up a suitable
proportion. Since A,R, P, I are built this way, they satisfy code independency.
These proportions are shown in Table 4. �

Proposition 13.There are 54 transitive proportions: 2 homogeneous A and P , 4
conditional proportions, namely (ab ≡ cd)∧ (ab ≡ cd); (ab ≡ cd)∧ (ab ≡ cd); (ab ≡
cd) ∧ (ab ≡ cd); (ab ≡ cd) ∧ (ab ≡ cd), and the 48 degenerated proportions.
Proof: Let us consider first the degenerated proportions. They are built up with 3
distinct indicators only. Without loss of generality, we can consider a degenerated
proportion of the form T (a, b, c, d) , (I1(a, b) ≡ I(c, d))∧ (I2(a, b) = I(c, d)) where
I1(a, b) distinct from I2(a, b). It appears that a degenerated proportion states the
equivalence between 2 distinct indicators of the same pair (in that case I1(a, b)
and I2(a, b)). Thus, a valuation σ validating such an equivalence between 2 dis-
tinct indicators of the same pair necessarily satisfies: σ(I(c, d)) = σ(I1(a, b)) =

11This corrects an erroneous statement in a previous paper [65], where we suggested that the 2
homogeneous proportions R and I were the only ones to satisfy these properties.



σ(I2(a, b)) = 0 i.e. allocating 0 as truth value for all the indicators. Then a val-
uation σ validating T (a, b, c, d) ∧ T (c, d, e, f) satisfies σ(I(c, d)) = σ(I1(a, b)) =
σ(I2(a, b)) = σ(I(e, f)) = σ(I1(c, d)) = σ(I2(c, d)) = 0. As a consequence, σ vali-
dates T (a, b, e, f) since σ(I(e, f)) = σ(I1(a, b)) = σ(I2(a, b)) = 0. And we are done
for the degenerated proportions.

Thanks to Lemma 6, we can exclude the hybrid and semi-hybrid proportions from
being transitive. Let us consider for instance the case of a hybrid proportion of the
form: T (a, b, c, d) , S(a,b) ≡ D(c,d) ∧ S

′

(a,b) ≡ D′

(c,d). Let us consider σ a valuation

validating T (a, b, c, d) ∧ T (c, d, e, f). We have 2 cases:

• either σ(S(a,b)) = 1: then σ(D(c,d)) = 1 and thanks to Lemma 6, σ(c) 6=
σ(d). Again with Lemma 6, σ(S(c,d)) = 0 which implies σ(D(e,f)) = 0: then
σ(S(a,b)) 6= σ(D(e,f)) meaning that T (a, b, e, f) does not hold.

• or σ(S(a,b)) = 0. If σ(S′

(a,b)) = 1, we are back to the previous case. If

σ(S′

(a,b)) = 0, then both σ(D(c,d)) = 0 and σ(D′

(c,d)) = 0. Thanks to Lemma

6, σ(c) = σ(d) then at least one term between σ(S(c,d)) or σ(S′

(c,d)) is equal

to 1, thus preventing σ(S(a,b)) or σ(S′

(a,b)) to be equal to the corresponding

term σ(D(e,f)) or σ(D′

(e,f)): this means that T (a, b, e, f) does not hold.

A similar reasoning does the job for semi-hybrid proportions. Regarding the 4
homogeneous proportions, a simple observation of the truth table shows that only
A and P are transitive.

Finally, as the 16 conditional proportions express semantic equivalence (which is
transitive) between conditional objects, it is clear that the 4 proportions a|b ::
c|d, b|a :: d|c, a|b :: c|d, b|a :: d|c are transitive (for instance a|b :: c|d ∧ c|d :: e|f
implies a|b :: e|f due to the transitivity of the equivalence between conditional ob-
jects) but none of the remaining conditional proportions is transitive: for instance
from a|b :: d|c ∧ c|d :: f |e, we cannot infer a|b :: f |e. Which achieves the proof. �

Proposition 15. Among the 120 logical proportions, only 6 (among which the homo-
geneous R and I) satisfy semi-mirroring, only 6 (among which the homogeneous
P and I) satisfy negation-compatibility, and only 6 (among which the homoge-
neous A and I) satisfy exchange-mirroring.
Proof: Let us consider the substitution σ such that σ(c) = a and σ(d) = b. For
semi-mirroring property to hold, the right hand side of the 2 equations should be-
come equal to their left hand side when σ is applied. And we have only 4 options
which are a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d and a ∧ b ≡ c ∧ d. Since
we need 2 of these equalities to build up a proportion, we have 6 choices only
(among which we obviously have I by combining the 2 first equalities and R by
combining the 2 last ones). The same reasoning applies to negation-compatibility
and exchange-mirroring. �

Proposition 17. There are 64 proportions for which the solution is always unique
when it exists, and 56 proportions for which the equation T (a, b, c, x) = 1 may have



2 solutions for some entries. These 56 proportions divide into 8 conditional ones,
8 hybrid ones, 8 semi-hybrid ones, and 32 degenerated ones.
Proof: In that case, a simple (but fastidious) examination of the truth tables leads
to the result. �

Proposition 24. I is the unique Boolean formula (up to equivalence) satisfying these
2 sets of postulates.
Proof: Let us consider for instance the first set of postulates. For a logical propor-
tion T to satisfy non reflexivity, means that one valuation of the class {1111, 0000,
1010, 0101} is not valid. If this valuation is 1010 (or 0101), then central permuta-
tion and symmetry imply that 1100, 0011 and 0101 are not valid for T . Since T
has exactly 6 valid valuations, it means that among the remaining candidate valu-
ations at least one has an odd number of 0. Let us assume 0111 (any other option
would lead to the same result as a fact of symmetry) is valid: again symmetry and
central permutation insure that the whole class {0111, 1011, 1110, 1101} is valid
for T . And thanks to Lemma 5, this cannot be valid for a logical proportion.
Then, we have to consider that 1010, 0101 are valid for T . Using central per-
mutation, we get 1100 and 0011 are still valid for T . Since we have neither
{0111, 1011, 1110, 1101} nor {1000, 0100, 0010, 0001}, it remains to choose 2 valua-
tions among {1111, 0000, 0110, 1001} excluding at least one among {1111, 0000} to
complete the truth table of T . If we introduce 0110, we have to introduce 1001 to
be consistent with symmetry and we get the truth table of I. If we remove one of
the valuation 0110 or 1001, then we have to remove the other and the only remain-
ing option for T is to be valid for the valuations 1111, 0000, 1010, 0101, 1100, 0011.
Which contradicts the initial assumption about T (non reflexivity). Therefore, I
is the unique option. A similar reasoning does the job for the second set of postu-
lates. �

ANNEX C: Conjectures

Using a software described in [66], it becomes easier to investigate the universe of
logical proportions. In particular, one can check the previous results, but we may
also discover new properties, which may be more difficult to prove for some of them
(otherwise than by tedious enumerations), and which may be even unexpected. In
the following, we only mention conjectures discovered in this way that deal with
the distribution of valuations among logical proportions, the study of properties
similar to T (a, a, a, a), but where some a may be negated (e.g., T (a, a, a, a), or
also T (a, a, a, a)), and finally the study of the 20 hybrid proportions. But one may
find many other results, such as for instance: Given a permutation, there are 16
proportions satisfying such a permutation except for P1,2 and P3,4 where there are
32 proportions.

Distribution of valuations among logical proportions



A first series of conjectures pertains to the way the valuations that make
logical proportions true (we have 16 distinct quaternary valuations, e.g. (0100))
are distributed among them:

- given any valuation v, there are exactly 45 proportions valid for v.

- given any pair of valuations (v1, v2), there are exactly 15 proportions valid
for v1 and v2.

- when we go for 3 randomly chosen valuations (v1, v2, v3), we can get 3
proportions or 6 proportions valid for these valuations. It means that whatever
the triple of valuations, at least we have 3 valid proportions.

- on top of that, given 3 consecutive valuations, there are exactly 3 proportions
valid for these valuations.

- when we go for 4 randomly chosen valuations, we can get 0 or 6 proportions.

- on top of that, given 4 consecutive valuations, there is no proportion valid
for these valuations.

- when we go for 5 or 6 randomly chosen valuations, either we get 1 proportion
or no proportion at all (obviously, there is no need to go for 7, since there is no
proportion having 7 valid valuations).

- given any pair of valuations (v1, v2), there are exactly 30 proportions valid
for v1 and not valid for v2.

Homogeneity properties

We have seen that the 15 proportions satisfying full identity, i.e., T (a, a, a, a),
are A, R, P , together with 8 conditional proportions, and 4 degenerated ones. See
Proposition 3. But, we have not studied

- the 15 proportions satisfying T (a, a, a, a);

- the 15 proportions satisfying T (a, a, a, a);

- the 15 proportions satisfying T (a, a, a, a).

Indeed,

- there are 15 proportions satisfying T (a, a, a, a); they are A, R, I, 8 condi-
tional proportions, and 4 degenerated ones. Moreover, these 4 degenerated ones
are the same as the ones for T (a, a, a, a) (to reduce the size of the expressions, we
omit the ∧ symbol in the writing of the indicators, e.g., a∧ b is abbreviated in ab):
ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd; the 8
conditional proportions associated with T (a, a, a, a) together with the 8 conditional
ones associated with T (a, a, a, a) make a partition of the 16 existing conditional
proportions.

- there are 15 proportions satisfying T (a, a, a, a); they are A, P , I, 8 condi-
tional proportions, and 4 degenerated ones.

- there are 15 proportions satisfying T (a, a, a, a); they are R, P , I, 8 condi-
tional proportions, and 4 degenerated ones.

Moreover, it can be noticed that the 4 degenerated ones are the same for
T (a, a, a, a) and for T (a, a, a, a): ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd,
ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd; the 8 conditional proportions associated



with T (a, a, a, a) together with the 8 conditional ones associated with T (a, a, a, a)
make a partition of the 16 existing conditional proportions.

Besides, there are 6 proportions that satisfy:
- T (a, a, a, a) and T (a, a, a, a): A, R, and 4 degenerated ones (already given)

- T (a, a, a, a) and T (a, a, a, a): A, P , and 4 conditional ones: ab ≡ cd ∧ ab ≡
cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd;

- T (a, a, a, a) and T (a, a, a, a): P , R, and 4 conditional ones: ab ≡ cd ∧ ab ≡
cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd

- T (a, a, a, a) and T (a, a, a, a): A, I, and 4 conditional ones: ab ≡ cd ∧ ab ≡ cd,
ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd;

- T (a, a, a, a) and T (a, a, a, a): R, I and 4 conditional ones: ab ≡ cd ∧ ab ≡ cd,
ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd;

- T (a, a, a, a) and T (a, a, a, a): P , I, and 4 degenerated ones (already given).
As can be seen, the 16 conditional proportions are partitioned into 4 groups

of 4 proportions by the 4 conjunctions of two properties as indicated above. All
these results provide counterparts to Proposition 3, and show regularities among
logical proportions of the same kind.

If now we require that 3 among the 4 conditions hold
- T (a, a, a, a)
- T (a, a, a, a)
- T (a, a, a, a)
- T (a, a, a, a)
then it provides a unique characterization of each of the 4 proportions homo-

geneous proportions A, R, P , I, as it is obvious from their truth tables.

Intruder properties

But, one may also consider requirements, where the number of negations is
odd rather than even as previously. Note that T (a, a, a, a) is the same as T (a, a, a, a).
We call these requirements intruder properties, since it expresses that one of the
four items differ from the 3 others that are identical. They clearly contrast with the
4 homogeneity properties studied above, where the number of negations is even.

- T (a, a, a, a)
- T (a, a, a, a)
- T (a, a, a, a)
- T (a, a, a, a)
Requiring 3 of them together defines a quaternary operator that is true for

the 6 corresponding valuation patterns. But is it a logical proportion? The answer
is yes. Here are the details:

- the one that satisfies T (a, a, a, a), T (a, a, a, a), and T (a, a, a, a) is

ab ≡ cd ∧ ab ≡ cd
and means “among a, b, c, d, there is an intruder (i.e., which is true, or false,

alone) and which is not a”; this proportion satisfies the permutation properties
p23, p24, and p34;



- the one that satisfies T (a, a, a, a), T (a, a, a, a), and T (a, a, a, a) is

ab ≡ cd ∧ ab ≡ cd

and means “among a, b, c, d, there is an intruder (i.e., which is true, or false,
alone) and which is not b”; this proportion satisfies the permutation properties
p13, p14, and p34;

- the one that satisfies T (a, aaa), T (a, a, a, a), and T (a, a, a, a) is

ab ≡ cd ∧ ab ≡ cd

and means “among a, b, c, d, there is an intruder (i.e., which is true, or false,
alone) and which is not c”; this proportion satisfies the permutation properties
p12, p14, and p24;

- the one that satisfies T (a, a, a, a), T (a, a, a, a), and T (a, a, a, a) is

ab ≡ cd ∧ ab ≡ cd

and means “among a, b, c, d, there is an intruder (i.e., which is true, or false,
alone) and which is not d”; this proportion satisfies the permutation properties
p12, p13, and p23.

These 4 logical proportions are precisely the 4 non symmetrical hybrid pro-
portions that satisfy code independency (see Proposition 12). They also have no-
ticeable permutation properties; as can be seen, each permutation is satisfied by
2 proportions among the 4.

As follows from their truth tables, these 4 logical proportions are true for
valuation patterns that altogether gather the 8 patterns that make Klein’s operator
false, see Figure 8. Thus, these 4 logical proportions are in some sense, “opposed”
to A, R, P , and I, which altogether gather the 8 other possible valuation patterns
in their truth tables (restricted to those patterns that make them true). This is
confirmed by the following properties. Among the whole set of logical proportions,

each of T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) is incompatible
with T (a, a, a, a)

each of T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) is incompatible
with T (a, a, a, a)

each of T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) is incompatible
with T (a, a, a, a)

each of T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) is incompatible
with T (a, a, a, a).

The 20 hybrid proportions: symmetry and permutations properties

While there are only 12 logical proportions that are symmetrical, there are
88 proportions that satisfy at least one permutation.

- the 4 hybrid proportions that are symmetrical (not to be confused with the
4 hybrid proportions satisfying code independency described above) have truth
tables obeying the following specifications

- T (a, a, a, a), T (a, a, a, a), and (1 0 1 0 and 1 1 1 1) : ab ≡ cd ∧ ab ≡ cd

- T (a, a, a, a), T (a, a, a, a), and (0 1 0 1 and 0 0 0 0) : ab ≡ cd ∧ ab ≡ cd

-T (a, a, a, a), T (a, a, a, a), and (0 1 0 1 and 1 1 1 1) : ab ≡ cd ∧ ab ≡ cd



- T (a, a, a, a), T (a, a, a, a), and (1 0 1 0 and 0 0 0 0) : ab ≡ cd ∧ ab ≡ cd
They satisfy permutations p13 and p24.
- Regarding the 12 remaining hybrid proportions that do not satisfy nei-

ther symmetry nor code independency their truth tables obey to (with after, the
permutations that they satisfy):

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (1
1 0 0 and 1 0 1 0) – p23

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (0
0 1 1 and 0 1 0 1) – p23

*ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (0
1 1 0 and 1 1 1 1) – p23, p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (1
0 0 1 and 0 0 0 0) – p23, p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (0
1 1 0 and 1 1 0 0) – p13

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (1
0 0 1 and 0 0 1 1) – p13

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (1
0 0 1 and 1 1 1 1) – p23, p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (0
1 1 0 and 0 0 0 0) – p23, p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (1
0 0 1 and 1 1 0 0) – p24

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (0
1 1 0 and 0 0 1 1) – p24

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (0
1 0 1 and 1 1 0 0) – p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns (1
0 1 0 and 0 0 1 1) – p14

None of these 12 proportions satisfy permutations p12 or p34.
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