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Abstract

Let G be a reductive p-adic group. We give a short proof of the fact that G always

admits supercuspidal complex representations. This result has already been established

by A. Kret using the Deligne-Lusztig theory of representations of finite groups of Lie

type. Our argument is of a different nature and is self-contained. It is based on the

Harish-Chandra theory of cusp forms and it ultimately relies on the existence of elliptic

maximal tori in G.

Let p be a prime number and let F be a p-adic field (i.e. a finite extension of Qp). We
denote by O the ring of integers of F and we fix a uniformizer ̟ ∈ O. We also denote by
val : F× → Z the normalized valuation (i.e. val(̟) = 1). Let G be a connected reductive
group defined over F . We will denote by g the Lie algebra of G. A sentence like "Let
P =MN be a parabolic subgroup of G" will mean as usual that P is a parabolic subgroup
of G defined over F , that N is its unipotent radical and that M is a Levi component of P
also defined over F . More generally, all subgroups of G that we consider will be defined over
F . We will also need to fix Haar measures on the various groups that we consider. The
precise normalization of these Haar measures won’t be important (unless we specify that
they need to satisfy an explicit compatibility condition) and we will only make use of Haar
measures on unimodular groups (e.g. F points of reductive or unipotent groups) so that the
distinction between left and right Haar measures is irrelevant here and will be dropped from
the notations.

Remark 1 We exclude fields of positive characteristic because we will use in a crucial way
the exponential map. If G = GLn, we can use the map X 7→ Id + X instead and work
over any non-archimedean local field. For classical groups, we could probably also replace the
exponential map by some Cayley map and considerably weaken the characteristic assumption.
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Recall that a smooth representation of G(F ) is a pair (π, Vπ) where Vπ is a complex vector
space (usually infinite dimensional) and π is a morphism G(F ) → GL(Vπ) such that for all
vectors v ∈ Vπ the stabilizer StabG(F )(v) of v in G(F ) is an open subgroup. Let (π, Vπ) be a
smooth representation of G(F ) and let P =MN be a parabolic subgroup of G. The Jacquet
module of (π, Vπ) with respect to P is the space of coinvariants

Vπ,N = Vπ/Vπ(N)

where Vπ(N) is the subspace of Vπ generated by the elements v−π(n)v for all v ∈ Vπ and all
n ∈ N(F ). It is the biggest quotient of Vπ on which N(F ) acts trivially. There is a natural
linear action πN of M(F ) on Vπ,N and (πN , Vπ,N) is a smooth representation of M(F ). The
functor Vπ 7→ Vπ,N is an exact functor from the category of smooth representations of G(F )
to the category of smooth representations of M(F ). Indeed, this follows rather easily from
the following fact (cf [Re] Proposition III.2.9)

(1) Let (N(F )k)k>0 be an increasing sequence of compact-open subgroups of N(F )

such that N(F ) =
⋃

k>0N(F )k (such a sequence always exists). Then a vector

v ∈ Vπ belongs to Vπ(N) if and only if there exists k > 0 such that

∫

N(F )k

π(n)vdn = 0

Let (π, Vπ) be an irreducible smooth representation of G(F ) (irreducible means that Vπ is
non-trivial and that it has no nonzero proper G(F )-invariant subspace). The representation
(π, Vπ) is said to be supercuspidal if for all proper parabolic subgroup P = MN of G, the
Jacquet module Vπ,N is zero. An equivalent condition is that the coefficients of (π, Vπ) are
compactly supported modulo the center (cf [Re] Theorem VI.2.1).

The purpose of this short note is to prove the following result.

Theorem 1 G(F ) admits irreducible supercuspidal representations.

Remark 2 This theorem has already been proved by A.Kret ([K]). The proof of Kret has
the advantage of working in any characteristic (cf Remark 1) and of being explicit (i.e. it
exhibits a way to construct such supercuspidal representations by compact induction). The
proof of loc. cit. eventually relies on the Deligne-Lusztig theory of representations of finite
groups of Lie type and so can hardly be considered as elementary. Although less complete
and explicit than the results of loc. cit., the proof presented here has the advantage of being
short and (almost) self-contained using only elementary harmonic analysis arguments.

We will deduce Theorem 1 from the existence of nonzero compactly supported cusp forms,
in the sense of Harish-Chandra, for the group G(F ). Before stating this existence result,
we need to introduce some more definitions and notation. We will denote, as usual, by
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C∞

c (G(F )) the space of complex-valued functions on G(F ) that are smooth, i.e. locally
constant, and compactly supported. We say that a function f ∈ C∞

c (G(F )) is a cusp form
if for all proper parabolic subgroups P =MN of G we have

∫

N(F )

f(xn)dn = 0, for all x ∈ G(F )

(these functions are called supercusp forms in [H-C]). We shall denote by C∞

c,cusp(G(F )) ⊆
C∞

c (G(F )) the subspace of cusp forms. As we said, Theorem 1 will follow from the following
existence theorem.

Theorem 2 We have C∞

c,cusp(G(F )) 6= 0.

Proof that Theorem 2 implies Theorem 1: Let us denote by ρ the action of G(F ) on
C∞

c (G(F )) given by right translation. Then, (ρ, C∞

c (G(F ))) is a smooth representation
of G(F ). Moreover, it is easy to see that the subspace C∞

c,cusp(G(F )) ⊆ C∞

c (G(F )) is G(F )-
invariant. We claim the following:

(2) For all proper parabolic subgroups P =MN of G, we have

C∞

c,cusp(G(F ))N = 0

Let P = MN be a proper parabolic subgroup of G and let us fix an increasing sequence
(N(F )k)k>0 of compact-open subgroups of N(F ) such that N(F ) =

⋃
k>0N(F )k. Let f ∈

C∞

c,cusp(G(F )). By (1), it suffices to show the existence of an integer k > 0 such that

∫

N(F )k

ρ(n)fdn = 0

or what amounts to the same

(3)

∫

N(F )k

f(xn)dn = 0, for all x ∈ G(F )

Since Supp(f) (the support of the function f) is compact, there exists k > 0 such that

(4) Supp(f) ∩ [Supp(f) (N(F )\N(F )k)] = ∅

We now show that (3) is satisfied for such k. Let x ∈ G(F ). If x /∈ Supp(f)N(F )k, the term
inside the integral (3) vanish identically and there is nothing to prove. Assume from now
on that x ∈ Supp(f)N(F )k. Up to translating x by an element of N(F )k, we may as well
assume that x ∈ Supp(f). Then, by (4) we have xn /∈ Supp(f) for all n ∈ N(F )\N(F )k. It
follows that

∫

N(F )k

f(xn)dn =

∫

N(F )

f(xn)dn
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But by definition of C∞

c,cusp(G(F )), this last integral vanishes. This proves (3) and ends the
proof of (2).

We now show how to deduce from (2) that Theorem 2 implies Theorem 1. Assume that
Theorem 2 is satisfied. Then, we can find f ∈ C∞

c,cusp(G(F )) which is nonzero. Denote by Vf
the G(F )-invariant subspace of C∞

c,cusp(G(F )) generated by f and let V ⊆ Vf be a maximal
G(F )-invariant subspace among those not containing f (Zorn’s lemma). Then, Vf/V is a
smooth irreducible representation of G(F ). We claim that it is supercuspidal. Indeed, let
P = MN be a proper parabolic subgroup of G. By (2) and since the Jacquet module’s
functor is exact, we have (Vf/V )N = 0. Thus, Vf/V is indeed a supercuspidal representation
of G(F ) and this proves Theorem 1. �

We are now left with proving Theorem 2. The strategy is to prove first an analog result on
the Lie algebra and then lift it to the group by means of the exponential map. Let C∞

c (g(F ))
be the space of complex-valued smooth and compactly supported functions on g(F ). We say
that a function ϕ ∈ C∞

c (g(F )) is a cusp form if for all proper parabolic subgroup P = MN
of G we have

∫

n(F )

ϕ(X +N)dN = 0, for all X ∈ g(F )

where n(F ) denotes the F -points of the Lie algebra of N . We will denote by C∞

c,cusp(g(F )) ⊆
C∞

c (g(F )) the subspace of cusp forms. The analog of Theorem 2 for the Lie algebra is the
following lemma.

Lemma 1 We have C∞

c,cusp(g(F )) 6= 0.

Before proving this lemma, we first explain how it implies Theorem 2.

Proof that Lemma 1 implies Theorem 2: Assume that Lemma 1 holds. Then, we can find
a nonzero function ϕ ∈ C∞

c,cusp(g(F )). The idea is to lift ϕ to a function on G(F ) using the
exponential map. Of course, the exponential map is not necessarily defined on the support
of ϕ. Hence, we need first to scale the function ϕ so that its support becomes small. Let us
fix an element λ ∈ F× that we will eventually assume to be sufficiently small. We define the
function ϕλ by

ϕλ(X) = ϕ(λ−1X), X ∈ g(F )

We easily check that ϕλ is still a cusp form. Recall that there exists an open neighborhood
ω ⊆ g(F ) of 0 on which the exponential map exp is defined and such that it realizes an
F -analytic isomorphism

exp : ω ≃ Ω

where Ω = exp(ω). Since Supp(ϕλ) = λSupp(ϕ), for λ sufficiently small we have
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Supp(ϕλ) ⊆ ω

We henceforth assume that λ is that sufficiently small. This allows us to define a function
fλ on G(F ) by setting

fλ(g) =

{
ϕλ(X) if g = exp(X) for some X ∈ ω
0 otherwise

for all g ∈ G(F ). Note that we have fλ ∈ C∞

c (G(F )) and obviously the function fλ is
nonzero. Hence, we will be done if we can prove the following

(5) If λ is sufficiently small, the function fλ is a cusp form.

Let us denote by log : Ω → ω the inverse of the exponential map. Then, by the Campbell-
Hausdorff formula, it is easy to see that we can find an O-lattice L in the F -vector space
g(F ) which is contained in ω and satisfies the following condition

(6) log(eXeY ) ∈ X + Y +̟valL(X)+valL(Y )L

for all X, Y ∈ L, where we have set valL(X) = sup{k ∈ Z; X ∈ ̟kL} for all X ∈ g(F ).
For all integers n > 0, set Kn = exp(̟nL). It is easy to infer from (6) that Kn is an open-
compact subgroup of G(F ) for all n > 0. Since ϕ is smooth and compactly supported, there
exists n0 > 0 such that translation by ̟n0L leaves ϕ invariant. Also, since ϕ is compactly
supported, there exists n1 > 0 such that Supp(ϕ) ⊆ ̟−n1L. We will show that (5) holds
provided val(λ) > 2n1 + n0. Assume this is so and set n = val(λ)− n1. Then, we have

(7) Supp(ϕλ) = λSupp(ϕ) ⊆ λ̟−n1L = ̟nL

Hence, it follows that

(8) Supp(fλ) ⊆ Kn

Let P =MN be a proper parabolic subgroup of G and let x ∈ G(F ). Consider the integral

(9)

∫

N(F )

fλ(xn)dn

If xN(F ) ∩Kn = ∅, then by (8) the term inside the integral above vanishes identically and
it follows that the integral is equal to zero. Assume from now on that xKn ∩N(F ) 6= ∅. Up
to translating x by an element of N(F ), we may assume that x ∈ Kn. Then, we may write
x = eX for some X ∈ ̟nL. Using again (8), and since Kn is a subgroup of G(F ), we see
that the integral (9) is supported on Kn ∩N(F ). Thus, we have equalities

(10)

∫

N(F )

fλ(xn)dn =

∫

Kn∩N(F )

fλ(e
Xn)dn
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Set LN = L ∩ n(F ). Then, if we normalize measures correctly, the exponential map induces
a measure preserving isomorphism ̟nLN ≃ Kn ∩N(F ) so that we have

(11)

∫

Kn∩N(F )

fλ(e
Xn)dn =

∫

̟nLN

fλ(e
XeN )dN =

∫

̟nL

ϕλ(log(e
XeN))dN

By (6), for all N ∈ ̟nLN we have

(12) log(eXeN) ∈ X +N +̟2nL

Moreover, as ϕ is invariant by translation by ̟n0L, the function ϕλ is invariant by translation
by λ̟n0L = ̟n+n1+n0L (recall that n = val(λ)−n1). Since val(λ) > 2n1+n0, we also have
n > n1 + n0. Hence, the function ϕλ is invariant by translation by ̟2nL and so using (12),
we deduce

ϕλ(log(e
XeN)) = ϕλ(X +N)

for all N ∈ ̟nLN . From (10) and (11), it follows that

(13)

∫

N(F )

fλ(xn)dn =

∫

̟nL

ϕλ(X +N)dN

By (7) and since X ∈ ̟nL, the function N ∈ n(F ) 7→ ϕλ(X + N) is supported on ̟nLN .
Consequently, we have

∫

̟nL

ϕλ(X +N)dN =

∫

n(F )

ϕλ(X +N)dN

As ϕλ is a cusp form, this last integral vanishes. Hence, using (13) we see that the integral (9)
is also zero. Since it is true for all x ∈ G(F ) and all proper parabolic subgroup P =MN of G,
this shows that fλ is a cusp form. Hence, (5) is indeed satisfied as soon as val(λ) > 2n1+n0

and this ends the proof that Lemma 1 implies Theorem 2. �

It only remains to establish Lemma 1. Recall that a maximal torus T in G is said to be
elliptic if AT = AG, where AT and AG denote the maximal split subtori in T and the center
of G respectively. The proof of Lemma 1 will ultimately rely on the following existence result
(cf [PR] Theorem 6.21):

Theorem 3 G admits an elliptic maximal torus.

Proof of Lemma 1: Let us fix a symmetric non-degenerate bilinear form B on g(F ) which
is G(F )-invariant. Such a bilinear form is easy to construct. On gder(F ), the derived sub-
algebra of g(F ), we have the Killing form BKil which is symmetric G(F )-invariant and
non-degenerate. Hence, we may take B = Bz ⊕ BKil where Bz is any non-degenerate sym-
metric bilinear form on zG(F ), the center of g(F ). Let us also fix a non-trivial continuous
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additive character ψ : F → C×. Using those, we can define a Fourier transform on C∞

c (g(F ))
by

ϕ̂(Y ) =

∫

g(F )

ϕ(X)ψ(B(X, Y ))dX, ϕ ∈ C∞

c (g(F )), Y ∈ g(F )

Of course, this Fourier transform also depends on the choice of a Haar measure on g(F ).
More generally, if V is a subspace of g(F ) and V ⊥ denotes the orthogonal of V with respect
to B, we can also define a Fourier transform C∞

c (V ) → C∞

c (g(F )/V ⊥), ϕ 7→ ϕ̂, by setting

ϕ̂(Y ) =

∫

V

ϕ(Y )ψ(B(X, Y ))dY, X ∈ g(F )/V ⊥

where again we need to choose a Haar measure on V . It is easy to check that for compatible
choices of Haar measures, the following diagram commutes

C∞

c (g(F ))

resV

��

FT
// C∞

c (g(F ))
∫
V ⊥

��

C∞

c (V ) FT
// C∞

c (g(F )/V ⊥)

where the horizontal arrows are Fourier transforms, the left vertical arrow is given by re-
striction to V and the right vertical arrow is given by integration over the cosets of V ⊥. For
P = MN a parabolic subgroup of G, we have p(F )⊥ = n(F ) (where p stands for the Lie
algebra of P ). The commutation of the above diagram in this particular case gives us (for
some compatible choices of Haar measures) the following formula

(14)

∫

n(F )

ϕ̂(X +N)dN =

∫

p(F )

ϕ(Y )ψ(B(X, Y ))dY

for all ϕ ∈ C∞

c (g(F )) and all X ∈ g(F ).

Let Tell be an elliptic maximal torus of G whose existence is guaranteed by Theorem 3. Let tell
be its Lie algebra and set tell,reg = tell∩greg for the subset of G-regular elements in tell. Denote
by tell,reg(F )

G the subset of elements in greg(F ) that are G(F )-conjugated to an element of
tell,reg(F ). Then, tell,reg(F )

G is an open subset of g(F ) (since the map Tell(F )\G(F ) ×
tell,reg(F ) → g(F ), (g,X) 7→ g−1Xg, is everywhere submersive). In particular, we can
certainly find a non-zero function ϕ ∈ C∞

c (g(F )) whose support is contained in tell,reg(F )
G.

Let us fix such a function ϕ. We claim the following:

(15) The function ϕ̂ is a cusp form.

Indeed, let P =MN be a proper parabolic subgroup of G and let X ∈ g(F ). Then, we need
to see that the following integral
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∫

n(F )

ϕ̂(X +N)dN

is zero. By (14), this integral is equal to

∫

p(F )

ϕ(Y )ψ(B(X, Y ))dY

Hence, we only need to show that Supp(ϕ) ∩ p(F ) = ∅. By definition of ϕ, it even suffices
to see that tell,reg(F )

G ∩ p(F ) = ∅. But this follows immediately from the fact that P being
proper, it does not contain any elliptic maximal torus of G. �
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