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Résumé

Let G be a reductive p-adic group. It can be important for certain global arguments
on the trace formula to know that G admits supercuspidal complex representations. We
prove that it is always the case. This result has already been established by A. Kret in
[K]. Our argument is of a different nature and is based on the Harish-Chandra theory
of cusp forms. It ultimately relies on the existence of elliptic maximal tori in G.

Let p be a prime number and let F be a p-adic field (i.e. a finite extension of Qp). We
denote by O the ring of integers of F and we fix a uniformizer ̟ ∈ O. We also denote by
val : F× → Z the normalized valuation. Let G be a connected reductive group defined over
F . We will denote by g the Lie algebra of G. A sentence like "Let P = MN be a parabolic
subgroup of G" will mean as usual that P is a parabolic subgroup of G defined over F , that
N is its unipotent radical and that M is a Levi component of P also defined over F . Also,
all subgroups of G that we consider will be implicitly assumed to be defined over F .

Recall that a smooth representation of G(F ) is a pair (π, Vπ) where Vπ is a complex vector
space (usually infinite dimensional) and π is a morphism G(F ) → GL(Vπ) such that for all
vector v ∈ Vπ the stabilizer StabG(F )(v) of v in G(F ) is an open subgroup. Let (π, Vπ) be a
smooth representation of G(F ) and let P =MN be a parabolic subgroup of G. The Jacquet
module of (π, Vπ) with respect to P is the space

Vπ,N = Vπ/Vπ(N)

where Vπ(N) is the subspace of Vπ generated by the elements v−π(n)v for all v ∈ Vπ and all
n ∈ N(F ). It is also the bigger quotient of Vπ on which N(F ) acts trivially. There is a natural
linear action πN of M(F ) on Vπ,N and (πN , Vπ,N) is a smooth representation of M(F ). The
functor Vπ 7→ Vπ,N is an exact functor from the category of smooth representations of G(F )
to the category of smooth representations of M(F ). Indeed, this follows from the following
fact (cf proposition III.2.9 of [Re])
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(1) Let (N(F )k)k>0 be an increasing sequence of compact-open subgroups of N(F )
such that N(F ) =

⋃
k>0N(F )k (such sequence always exists). Then a vector

v ∈ Vπ belongs to Vπ,N if and only if there exists k > 0 such that

∫

N(F )k

π(n)vdn = 0

Let (π, Vπ) be an irreducible smooth representation of G(F ) (irreducible means that Vπ is
nonzero and that it has no non-trivial G(F )-invariant subspace). We say that (π, Vπ) is
supercuspidal if for all proper parabolic subgroup P = MN of G, the Jacquet module Vπ,N
is zero. An equivalent conditions is that the coefficients of (π, Vπ) are compactly supported
modulo the center (cf theorem VI.2.1 of [Re]).

The purpose of this short article is to show the following

Theorem 1 G(F ) admits irreducible supercuspidal representations.

This theorem has already been proved by A.Kret ([K]). We propose here a different proof.
Namely, we will deduce theorem 1 from the existence of nonzero compactly supported cusp
forms, in the sense of Harish-Chandra, for the group G(F ). Before stating this existence re-
sult, we need to introduce some more definitions and notations. We will denote by C∞

c (G(F ))
the space of complex-valued functions on G(F ) that are smooth, i.e. locally constant, and
compactly supported. We say that a function f ∈ C∞

c (G(F )) is a cusp form if for all proper
parabolic subgroup P =MN of G we have

∫

N(F )

f(xn)dn = 0, ∀x ∈ G(F )

(these functions are called supercusp forms in [H-C]). We denote by C∞

c,cusp(G(F )) ⊆ C∞

c (G(F ))
the subspace of cusp forms. As we said, theorem 1 will follows from the following proposition.

Proposition 1 We have C∞

c,cusp(G(F )) 6= 0.

Proof that proposition 1 implies theorem 1 : Let us denote by ρ the action of G(F ) on
C∞

c (G(F )) given by right translation. Then, (ρ, C∞

c (G(F ))) is a smooth representation of
G(F ). Moreover, it is easy to see that the subspace C∞

c,cusp(G(F )) ⊆ C∞

c (G(F )) is G(F )-
invariant. We claim the following

(2) For all proper parabolic subgroup P =MN of G, we have

C∞

c,cusp(G(F ))N = 0
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Let P = MN be a proper parabolic subgroup of G and let us fix an increasing sequence
(N(F )k)k>0 of compact-open subgroups of N(F ) such that N(F ) =

⋃
k>0N(F )k. Let f ∈

C∞

c,cusp(G(F )). By (1), it suffices to show the existence of an integer k > 0 such that

∫

N(F )k

ρ(n)fdn = 0

or what amounts to the same

(3)

∫

N(F )k

f(xn)dn = 0, ∀x ∈ G(F )

Since Supp(f) (the support of the function f) is compact, there exists k > 0 such that

(4) Supp(f) ∩ Supp(f) (N(F )\N(F )k) = ∅

We now show that (3) is satisfied for such a k. Let x ∈ G(F ). If x /∈ Supp(f)N(F )k, the
term inside the integral (3) is always zero and there is nothing to prove. Assume now that
x ∈ Supp(f)N(F )k. Up to translating x by an element of N(F )k, we may as well assume
that x ∈ Supp(f). Then, by (4) we have xn /∈ Supp(f) for all n ∈ N(F )\N(F )k. It follows
that

∫

N(F )k

f(xn)dn =

∫

N(F )

f(xn)dn

But by definition of C∞

c,cusp(G(F )), this last integral is equal to zero. This proves (3) and
ends the proof of (2).

We now show how to deduce from (2) that proposition 1 implies theorem 1. Assume that
proposition 1 is satisfied. Then, we can find f ∈ C∞

c,cusp(G(F )) which is nonzero. Denote by Vf
the G(F )-invariant subspace of C∞

c,cusp(G(F )) generated by f and let V ⊆ Vf be a maximal
G(F )-invariant subspace among those not containing f (Zorn’s lemma). Then, Vf/V is a
smooth irreducible representation of G(F ). We claim that it is supercuspidal. Indeed, let
P = MN be a proper parabolic subgroup of G. By (2) and since the Jacquet module’s
functor is left exact, we have Vf,N = 0. Hence, since the Jacquet module’s functor is also
right exact, we have (Vf/V )N = 0. Thus, Vf/V is indeed a supercuspidal representation and
this proves theorem 1. �

Because of the above, we are now left with proving proposition 1. The strategy is to prove
first an analog result on the Lie algebra and then lift it to the group by mean of the exponen-
tial map. Let C∞

c (g(F )) be the space of complex-valued smooth and compactly supported
functions on g(F ). We say that a function ϕ ∈ C∞

c (g(F )) is a cusp form if for all proper
parabolic subgroup P =MN of G we have

∫

n(F )

ϕ(X +N)dN = 0, ∀X ∈ g(F )
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We denote by C∞

c,cusp(g(F )) ⊆ C∞

c (g(F )) the subspace of cusp forms. The analog of propo-
sition 1 for the Lie algebra is the following lemma

Lemma 1 We have C∞

c,cusp(g(F )) 6= 0.

Before proving this lemma, we first show how it implies proposition 1.

Proof that lemma 1 implies proposition 1 : Assume that lemma 1 holds. Then, we can find
a nonzero function ϕ ∈ C∞

c,cusp(g(F )). The idea is to lift ϕ to a function on G(F ) using the
exponential map. Of course, the exponential map is not necessarily defined on the support
of ϕ. Hence, we need first to scale the function ϕ so that its support becomes small. Let us
fix an element λ ∈ F× in all what follows. We define the function ϕλ by

ϕλ(X) = ϕ(λ−1X), X ∈ g(F )

We easily check that ϕλ is still a cusp form. Recall that there exists an open neighborhood
ω ⊆ g(F ) of 0 on which the exponential map exp is defined and such that it realizes an
F -analytic isomorphism

exp : ω ≃ Ω

where Ω = exp(ω). Since Supp(ϕλ) = λSupp(ϕ), for λ sufficiently small, we have

Supp(ϕλ) ⊆ ω

We henceforth assume that λ is that sufficiently small. This allows us to define a function
fλ on G(F ) by setting

fλ(g) =

{
ϕλ(X) if g = exp(X) for some X ∈ ω
0 otherwise

for all g ∈ G(F ). Note that we have fλ ∈ C∞

c (G(F )) and obviously the function fλ is nonzero.
Hence, we will be done if we can prove the following

(5) If λ is sufficiently small, the function fλ is a cusp form.

Let us denote by log : Ω → ω the inverse of the exponential map. Then, by the Campbell-
Hausdorff formula, it is easy to see that we can find a lattice L ⊆ ω that satisfies the following
condition

(6) log(eXeY ) ∈ X + Y +̟valL(X)+valL(Y )L

for all X, Y ∈ L and where we have set valL(X) = sup{k ∈ Z; X ∈ ̟kL} for all X ∈ g(F ).
For all integer n > 0, we set Kn = exp(̟nL). It is easy to infer from (6) that Kn is an open-
compact subgroup of G(F ) for all n > 0. Since ϕ is smooth and compactly supported, there
exists n0 > 0 such that translation by ̟n0L leaves ϕ invariant. Also, since ϕ is compactly
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supported, there exists n1 > 0 such that Supp(ϕ) ⊆ ̟−n1L. We will show that (5) is true
provided val(λ) > 2n1 + n0. Assume this is so and set n = val(λ)− n1. Then, we have

(7) Supp(ϕλ) = λSupp(ϕ) ⊆ λ̟−n1L = ̟nL

Hence, it follows that

(8) Supp(fλ) ⊆ Kn

Let P =MN be a proper parabolic subgroup of G and let x ∈ G(F ). Consider the integral

(9)

∫

N(F )

fλ(xn)dn

If xN(F ) ∩ Kn = ∅, then by (8) the term inside the integral above is identically zero and
it follows that the integral is itself equal to zero. Assume now that xKn ∩ N(F ) 6= ∅. Up
to translating x by an element of N(F ), we may assume that x ∈ Kn. Then, we may write
x = eX for some X ∈ ̟nL. Using again (8), and since Kn is a subgroup of G(F ), we see
that the integral (9) is supported on Kn ∩N(F ). Thus, we have

(10)

∫

N(F )

fλ(xn)dn =

∫

Kn∩N(F )

fλ(e
Xn)dn

Set LN = L ∩ n(F ). Then, if we normalize measures correctly, the exponential map induces
a measure preserving isomorphism ̟nLN ≃ Kn ∩N(F ) so that we have

(11)

∫

Kn∩N(F )

fλ(e
Xn)dn =

∫

̟nLN

fλ(e
XeN )dN =

∫

̟nL

ϕλ(log(e
XeN))dN

By (6), for all N ∈ ̟nLN we have

(12) log(eXeN) ∈ X +N +̟2nL

Moreover, since ϕ is invariant by translation by ̟n0L, the function ϕλ is invariant by trans-
lation by λ̟n0L = ̟n+n1+n0L (recall that n = val(λ)− n1). As val(λ) > 2n1 + n0, we also
have n > n1 + n0. So finally, the function ϕλ is invariant by translation by ̟2nL. Thus, by
(12), we have

ϕλ(log(e
XeN)) = ϕλ(X +N)

for all N ∈ ̟nLN . By (10) and (11), it follows that

(13)

∫

N(F )

fλ(xn)dn =

∫

̟nL

ϕλ(X +N)dN

By (7) and since X ∈ ̟nL, the function N ∈ n(F ) 7→ ϕλ(X + N) is supported on ̟nLN .
Hence, we have
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∫

̟nL

ϕλ(X +N)dN =

∫

n(F )

ϕλ(X +N)dN

Since ϕλ is a cusp form, this last integral is zero. Hence, by (13) the integral (9) is also zero.
Since it is true for all x ∈ G(F ) and all proper parabolic subgroup P =MN of G, this shows
that fλ is a cusp form. Hence, (5) is indeed satisfied as soon as val(λ) > 2n1 + n0 and this
ends the proof that lemma 1 implies proposition 1. �

It now only remains to prove lemma 1. Recall that a maximal torus T in G is said to be
elliptic if AT = AG, where AT and AG denotes the maximal split subtorus in T and the
center of G respectively. The proof of lemma 1 will ultimately rely on the following existence
result (cf Theorem 6.21 of [PR]) :

Theorem 2 G admits an elliptic maximal torus.

Proof of lemma 1 : Let us fix a symmetric non-degenerate bilinear form B on g(F ) which
is G(F )-invariant. Such a bilinear form is easy to construct. On gder(F ), the derived subal-
gebra of g(F ), we have the Killing form BKil which is symmetric G(F )-invariant and non-
degenerate. Hence, we may take B = Bz ⊕ BKil where Bz is any non-degenerate symmetric
bilinear form on zG(F ), the center of g(F ). Let us also fix a non-trivial continuous additive
character ψ : F → C×. Using those, we can define the Fourier transform on C∞

c (g(F )) by

ϕ̂(Y ) =

∫

g(F )

ϕ(X)ψ(B(X, Y ))dX, ϕ ∈ C∞

c (g(F )), Y ∈ g(F )

Of course, this Fourier transform also depends on the choice of a Haar measure on g(F ).
More generally, if V is a subspace of g(F ) and V ⊥ denotes the orthogonal of V with respect
to B, we can also define a Fourier transform C∞

c (V ) → C∞

c (g(F )/V ⊥), ϕ 7→ ϕ̂, by setting

ϕ̂(Y ) =

∫

V

ϕ(Y )ψ(B(X, Y ))dY, X ∈ g(F )/V ⊥

where again we need to choose a Haar measure on V . It is easy to check that for compatible
choices of Haar measures, the following diagram commutes

C∞

c (g(F ))

resV

��

FT
// C∞

c (g(F ))
∫
V ⊥

��

C∞

c (V )
FT

// C∞

c (g(F )/V ⊥)

where the horizontal arrows are Fourier transforms, the left vertical arrow is given by res-
triction to V and the right vertical arrow is given by integration over the cosets of V ⊥. For
P =MN a parabolic subgroup of G, we have p(F )⊥ = n(F ). The commutation of the above
diagram in this particular case gives us (for some compatible choices of Haar measures) the
following formula
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(14)

∫

n(F )

ϕ̂(X +N)dN =

∫

p(F )

ϕ(Y )ψ(B(X, Y ))dY

for all ϕ ∈ C∞

c (g(F )) and all X ∈ g(F ).

Let Tell be an elliptic maximal torus of G whose existence is insured by theorem 2. Let tell

be its Lie algeba and tell,reg = tell ∩ greg be the subset of G-regular elements in tell. Denote
by tell,reg(F )

G the subset of elements in greg(F ) that are G(F )-conjugated to an element
of tell,reg(F ). Then, tell,reg(F )

G is an open subset of g(F ) (since the map Tell(F )\G(F ) ×
tell,reg(F ) → g(F ), (g,X) 7→ g−1Xg, is everywhere submersive). In particular, we can cer-
tainly find a non-zero function ϕ ∈ C∞

c (g(F )) whose support is contained in tell,reg(F )
G. Let

us fix such a function ϕ. We claim the following

(15) The function ϕ̂ is a cusp form.

Indeed, let P =MN be a proper parabolic subgroup of G and let X ∈ g(F ). Then, we need
to see that the following integral

∫

n(F )

ϕ̂(X +N)dN

is zero. By (14), this integral is equal to

∫

p(F )

ϕ(Y )ψ(B(X, Y ))dY

Hence, we only need to show that Supp(ϕ) ∩ p(F ) = ∅. By definition of ϕ, it even suffices
to see that tell,reg(F )

G ∩ p(F ) = ∅. But this follows immediately from the fact that P being
proper, it doesn’t contain any elliptic maximal torus of G. �

Bibliography

[H-C] Harish-Chandra : Harmonic analysis on reductive p-adic groups, Notes by G. van Dijk,
Lecture Notes in Mathematics, Vol. 162. Springer-Verlag, Berlin-New York, 1970. iv+125 pp

[K] A. Kret : Existence of cuspidal representations of p-adic reductive groups, arXiv e-prints,
May 2012

[PR] V.Platonov, A. Rapinchuk : Algebraic groups and number theory, Translated from the
1991 Russian original by Rachel Rowen. Pure and Applied Mathematics, 139. Academic
Press, Inc., Boston, MA, 1994. xii+614 pp

[Re] D. Renard : Représentations des groupes réductifs p-adiques, Cours Spécialisés [Specia-
lized Courses], 17. Société Mathématique de France, Paris, 2010. vi+332 pp

Institute for Advanced Study, Princeton, NJ USA
email address : rbeuzart@gmail.com

7


